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Abstract

Bellare, Boldyreva, and O’Neill (CRYPTO ’07) initiated the study of deterministic public-key
encryption as an alternative in scenarios where randomized encryption has inherent drawbacks.
The resulting line of research has so far guaranteed security only for adversarially-chosen plaintext
distributions that are independent of the public key used by the scheme. In most scenarios,
however, it is typically not realistic to assume that adversaries do not take the public key into
account when attacking a scheme.

We show that it is possible to guarantee meaningful security even for plaintext distributions
that depend on the public key. We extend the previously proposed notions of security, allowing
adversaries to adaptively choose plaintext distributions after seeing the public key, in an interac-
tivemanner. The only restrictions we make are that: (1) plaintext distributions are unpredictable
(as is essential in deterministic public-key encryption), and (2) the number of plaintext distribu-
tions from which each adversary is allowed to adaptively choose is upper bounded by 2p, where
p can be any predetermined polynomial in the security parameter. For example, with p = 0 we
capture plaintext distributions that are independent of the public key, and with p = O(s log s)
we capture, in particular, all plaintext distributions that are samplable by circuits of size s.

Within our framework we present both constructions in the random-oracle model based on
any public-key encryption scheme, and constructions in the standard model based on lossy trap-
door functions (thus, based on a variety of number-theoretic assumptions). Previously known
constructions heavily relied on the independence between the plaintext distributions and the
public key for the purposes of randomness extraction. In our setting, however, randomness ex-
traction becomes significantly more challenging once the plaintext distributions and the public
key are no longer independent. Our approach is inspired by research on randomness extraction
from seed-dependent distributions. Underlying our approach is a new generalization of a method
for such randomness extraction, originally introduced by Trevisan and Vadhan (FOCS ’00) and
Dodis (PhD Thesis, MIT, ’00).
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1 Introduction

Deterministic public-key encryption was introduced by Bellare, Boldyreva, and O’Neill [BBO07]
as an alternative in scenarios where randomized encryption has inherent drawbacks. For example,
ciphertexts that are produced by a randomized encryption algorithm are not length preserving (i.e.,
may be longer than their corresponding plaintexts), and are in general not efficient searchable – two
properties that are problematic in many applications involving massive amounts of data. In addition,
the security guarantees provided by randomized public-key encryption schemes are typically highly
dependent on the assumption that fresh and essentially uniform random bits are available – which
may not always be a valid assumption.

When using a deterministic encryption algorithm, however, the full-fledged notion of semantic
security [GM84] is out of reach. In this light, Bellare et al. initiated the study of formalizing
other strong and meaningful notions of security for deterministic public-key encryption, and quite
a significant amount of work has been devoted to proposing various such notions and constructing
schemes satisfying them [BBO07, BFO+08a, BFO08b, BBN+09, BS11, FOR12, MPR+12, Wee12].
Aiming to obtain as-strong-as-possible notions of security, this recent line of research has successfully
shown that a natural variant of the notion of semantic security can be guaranteed even when using
a deterministic encryption algorithm, as long as plaintexts are: (1) somewhat unpredictable, and (2)
independent of the public key used by the scheme.

Plaintext unpredictability. When using a deterministic encryption algorithm, essentially no
meaningful notion of security can be satisfied when plaintexts are distributed over a small (e.g.
polynomial-sized) set. In such a case, an adversary who is given a public key pk and an encryption
c of some plaintext m under the public key pk can simply encrypt all possible plaintexts,1 compare
each of them to the given ciphertext c, and thus recover the plaintextm. Therefore, when formalizing
a notion of security for deterministic public-key encryption, it is indeed essential to focus on security
for unpredictable plaintext distributions.

Key-independent plaintext distributions. Even when dealing with highly unpredictable plain-
text distributions, some restrictions should be made on their relation to the public key. Consider, for
example, the uniform distribution over plaintexts m subject to the restriction that the first bit of m
and the first bit of c = Encpk(m) are equal.2 More generally, by constructing plaintext distributions
that depends on the public key, adversaries can use any deterministic encryption algorithm as a
subliminal channel that leaks much more information on the plaintext than what any meaningful
notion of security should allow.

This paper. For preventing adversaries from exploiting deterministic encryption algorithms as
subliminal channels, research on deterministic public-key encryption has so far guaranteed security
only for plaintext distributions that are independent of the public key used by the scheme (which
is not realistic, as an adversary can often influence the plaintext distribution after seeing the public
key). In this paper, we ask whether or not this is essential. Namely, is it possible to formalize a
meaningful notion of security that allows dependencies between plaintext distributions and keys?

1.1 Our Contributions

In this paper, we show that it is not essential to focus only on plaintexts distributions that are
independent of the keys used by the scheme. We formalize and realize a new notion of security for
deterministic public-key encryption, allowing adversaries to adaptively choose plaintext distributions

1More generally, an adversary can encrypt all plaintexts that occur with at least some non-negligible probability.
2Note that the support of this distribution will contain nearly half of all plaintexts with high probability.
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after seeing the public key of the scheme, in an interactive manner. The only restriction we make
is that the number of plaintext distributions from which each adversary is allowed to adaptively
choose is upper bounded by 2p(λ), where p(λ) can be any predetermined polynomial in the security
parameter λ. We stress that the set of 2p(λ) plaintext distributions can be different for each adversary.
Intuitively, this bound says that the entire plaintext distribution (not just a single sample) contains
at most p(λ) bits of information about the public key. We view this as a natural first model
for adaptively chosen plaintext distributions, particularly in light of the impossibility of handling
arbitrary dependencies (as sketched earlier), and hope that it will pave the way for more realistic
models.

Our approach is a generalization of the security notions that have been proposed so far. For
example, with p(λ) ≡ 0 we obtain the notion of security introduced by Bellare, Boldyreva, and
O’Neill [BBO07], where the plaintext distribution chosen by the adversary is independent of the
public key. As an additional example, with p(λ) = O(s(λ) log s(λ)) we capture, in particular, all
plaintext distributions that are samplable by boolean circuits of size at most s(λ).

Within our framework we present both generic constructions in the random-oracle model based
on any public-key encryption scheme, and generic constructions in the standard model based on
lossy trapdoor functions. Our constructions are inspired by the constructions of Bellare, Boldyreva,
and O’Neill [BBO07] and of Boldyreva, Fehr, and O’Neill [BFO08b]. These constructions rely on
the independence between the plaintext distributions and the keys for the purposes of extracting
randomness from the plaintext distributions. Randomness extraction becomes significantly more
difficult once the plaintext distributions and the public keys are no longer independent. Challenges
along somewhat similar lines arise in the context of deterministic randomness extraction, where one
would like to construct seedless randomness extractors, or seeded randomness extractors for seed-
dependent distributions. Indeed, underlying our approach is a new generalization of a method for
deterministic extraction, originally introduced by Trevisan and Vadhan [TV00] and Dodis [Dod00].

Finally, our approach naturally extends to the setting of “hedged” public-key encryption schemes,
introduced by Bellare et al. [BBN+09]. In this setting, one would like to construct randomized
schemes that are semantically secure in the standard sense, and maintain a meaningful and realistic
notion of security even when “corrupt” randomness is used by the encryption algorithm. Our
notions of adaptive security for deterministic public-key encryption give rise to analogous notions
for hedged public-key encryption, and our constructions (when used within the framework of Bellare
et al. [BBN+09]3) yield the first adaptively-secure hedged public-key encryption schemes.

1.2 Related Work

The formal study of deterministic public-key encryption was initiated by Bellare, Boldyreva, and
O’Neill [BBO07], following research on symmetric-key encryption of high-entropy messages by Rus-
sell and Wang [RW06] and Dodis and Smith [DS05b]. Bellare et al. formalized several notions of secu-
rity, which were later refined and extended by Bellare, Fischlin, O’Neill, and Ristenpart [BFO+08a],
and by Boldyreva, Fehr, and O’Neill [BFO08b]. Bellare, Boldyreva, and O’Neill presented construc-
tions in the random oracle model, and constructions in the standard model were first presented by
Bellare, Boldyreva, and O’Neill, and additionally by Boldyreva, Fehr, and O’Neill. Brakerski and
Segev [BS11] showed that the min-entropy requirement considered in all previous works on deter-
ministic public-key encryption can be relaxed to consider hard-to-invert auxiliary inputs. Based on
specific number-theoretic assumptions, they designed schemes that are secure in the more general
auxiliary-input model, and their constructions were later unified by Wee [Wee12]. Progress along

3For example, as part of their generic “pad-then-deterministic” scheme, which deterministically encrypts the con-
catenation of the plaintext and the randomness.
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similar lines was made by Fuller, O’Neill and Reyzin [FOR12], who presented a scheme that can
securely encrypt a small predetermined number of plaintexts with arbitrary dependencies as long
as each has high min-entropy. Additional progress in studying deterministic public-key encryption
schemes was recently made by Mironov, Pandey, Reingold, and Segev [MPR+12] who constructed
such schemes with optimal incrementality.

A step towards obtaining adaptive security for deterministic public-key encryption was made by
Bellare et al. [BBN+09] who defined and constructed “hedged” public-key encryption schemes (dis-
cussed in Section 1.1). Whereas the notions of security considered in [BBO07, BFO+08a, BFO08b,
BS11, Wee12, FOR12, MPR+12] capture only “single-shot” adversaries (i.e., adversaries that chal-
lenge the given scheme with only one plaintext distribution), Bellare et al. [BBN+09] showed that it
is possible to guarantee security even against “multi-shot” adversaries (i.e., adversaries that inter-
actively challenge the scheme with plaintext distributions depending on previous ciphertexts that
they received). In their notion of security, however, adversaries are not given access to the public
key that is being attacked. In our work we consider the more general, and more typical, scenario
where adversaries are given direct access to the public key being attacked (and are allowed to adap-
tively and interactively choose plaintext distributions depending on previous ciphertexts that they
received).4 As discussed in Section 1.1, our constructions yield the first adaptively-secure hedged
public-key encryption schemes.

1.3 Overview of Our Approach

In this section we provide a high-level overview of our notions of security and of the main ideas
underlying our constructions. We focus here on our constructions in the standard model (i.e., with-
out random oracles), as these emphasize more clearly the main challenges in designing encryption
schemes satisfying our notions of security.

Our notions of security. As discussed above, our notions of security for deterministic public-key
encryption differ from the previously proposed ones by providing adversaries with direct access to
the public key. Specifically, we formalize security via a game between an adversary and a “real-or-
random” encryption oracle. First, a pair containing a public key and a secret key is produced using
the key-generation algorithm of the scheme under consideration, and the adversary is given the
public key. Then, the adversary adaptively interacts with the encryption oracle, where each query
consists of a description of a plaintext distribution M . For simplicity, here we consider distributions
over plaintexts, but in fact our notion allows distributions over blocks of plaintexts. The encryption
oracle operates in one of two modes, “real” or “random”, which is chosen uniformly at random at
the beginning of the game. In the “real” mode, the encryption oracle samples a plaintext according
to M , and the adversary is given its encryption under the public key. In the “random” mode, the
encryption oracle samples a plaintext from the uniform distribution over the plaintext space, and
the adversary is again given its encryption under the public key.5

The goal of the adversary in this game is to distinguish between the “real” mode and “random”
mode with a non-negligible advantage, subject only to the requirement that for any such adversary
there exists a set X = Xλ of plaintext distributions such that:

4In fact, the approach of Bellare et al. [BBN+09] relies on encryption schemes in which ciphertexts reveal essentially
no information on the corresponding public key. Therefore, even multi-shot adversaries learn essentially no information
on the public key being attacked, and thus their “adaptive” choices of plaintext distributions are still independent of
the public key. This approach does not seem to extend to our setting, where adversaries are given direct access to the
public key.

5We note that the resulting notion of security is polynomially equivalent (via a standard hybrid argument) to an
analogous “left” or “right” formulation in which the adversary specifies two plaintext distributions, and the encryption
oracle uses either the left one of the right one.

3



1. |X | ≤ 2p, where p = p(λ) is any predetermined polynomial in the security parameter (the
construction of the scheme can depend on the polynomial p).

2. The adversary queries the encryption oracle only with plaintext distributions in X .
3. Each plaintext distribution in X has min-entropy at least k, where k = k(λ) is a predetermined

function of the security parameter.

In addition, we naturally extend the above game to capture chosen-ciphertext attacks, by allowing
adversaries adaptive access to a decryption oracle (subject to the standard requirement of not
querying the decryption oracle with any ciphertext that was produced by the encryption oracle).

We note that our security game is in fact almost identical to the standard “real-or-random”
one for randomized public-key encryption. Specifically, unlike the previously proposed notions of
security for deterministic public-key encryption, we provide the adversary with direct access to the
public key, and allow the adversary to adaptively interact with the encryption and decryption oracles
in any order.6

Chosen-plaintext security in the standard model. The starting point for our construction
is the one of Boldyreva, Fehr, and O’Neill, which we now briefly describe. In their construction,
the public key consists of a function f that is sampled from the injective mode of a collection of
lossy trapdoor functions, and a permutation π sampled from a pairwise-independent collection of
permutations. (We refer the reader to Section 2 for the relevant definitions.) The secret key consists
of the trapdoor for inverting f . (We require that π is efficiently invertible.) The encryption of a
message m is defined as Encpk(m) = f(π(m)), and decryption is naturally defined.

The proof of security consists of two steps. First, the security of the collection of lossy trapdoor
functions allows one to replace the injective function f with a lossy function f̃ (where lossy means
that the size of f̃ ’s image is significantly smaller than the size of its domain). Then, the Crooked
Leftover Hash Lemma of Dodis and Smith [DS05a] states that for any plaintext distribution M that
has a certain amount of min-entropy, for a uniformly and independently chosen pairwise-independent
permutation π it holds that the distributions f̃(π(M)) and f̃(U) are statistically close (even given
f̃ and π), where U is the uniform distribution over plaintexts. That is, essentially no information
on the plaintext is revealed.

This construction, however, becomes insecure when adversaries can choose the plaintext distri-
bution M after receiving the description of π. Specifically, the Crooked Leftover Hash Lemma no
longer holds when M may depend on π, and adversaries may easily use the encryption algorithm as
a subliminal channel for leaking information about the plaintext, as discussed above.

The main idea underlying our basic construction is to sample the permutation π from a collection
of highly-independent permutations. We prove that this modification results in a scheme that is
secure according to our new notion of security by proving a High-Moment Crooked Leftover Hash
Lemma for collections of permutations. Informally, we prove that for any lossy function f̃ , and for
any set X of sources with a certain amount of min-entropy, with an overwhelming probability over
the choice of a permutation π from a t-wise almost-independent collection of permutations (where
t depends only logarithmically on the size of X ), for every M ∈ X it holds that f̃(π(M)) and f̃(U)
are statistically close. In particular, in such a setting the specific choice of M ∈ X can adaptively
depend on the permutation π, and still the statistical distance is negligible.

As already noted, a high-moment generalization of the (standard) Leftover Hash Lemma was
given by Trevisan and Vadhan [TV00] and Dodis [Dod00]. In addition, an analogous generalization

6In contrast, due to requiring key-independent plaintext distributions, Bellare et al. [BBO07] and Boldyreva et
al. [BFO08b] allow chosen-ciphertext adversaries to query the decryption oracle only after they have queried the
encryption oracle.
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of the Crooked Leftover Hash Lemma for collections of functions was implicitly given in the work of
Kiltz, O’Neill and Smith [KOS10, Proof of Theorem 2]. Their generalization, however, does not seem
to admit a direct translation to collections of permutations. A different high-moment generalization
of the Crooked Leftover Hash Lemma was proved by Fuller et al. [FOR12] for the purpose of
extracting randomness from a small number of possibly correlated sources. This generalization does
not allow seed-dependent sources, and therefore allows only non-adaptive adversaries.

The advantage of our high-moment generalization. As shown by Trevisan and Vadhan
[TV00], the main advantage in using high-moment variants of the leftover hash lemma over using
the basic leftover hash lemma is the exponential improvement in the dependency of the required
min-entropy on the size of the set of sources. Specifically, for obtaining security with respect to
any set of 2p plaintext distributions, in our proof of security we need to apply the (either basic or
generalized) crooked leftover hash lemma together with a union bound over all 2p distributions. For
enabling a union bound over a set of 2p distributions, the crooked leftover hash lemma would require
all plaintext distributions to have min-entropy that is logarithmic in 2p, whereas our high-moment
generalization requires min-entropy that is doubly-logarithmic in 2p. In both cases, the required
min-entropy is also linear in log |Im(f)| where f̃ is the lossy function that is used by the encryption
scheme, in log T where T is the number of blocks when considering block sources, and in log(1/ϵ)
where ϵ is the statistical security parameter.

One on hand, this exponential improvement indeed comes at the cost of increasing the length of
the “public” parameters (which, in our setting, correspond to the public key of the scheme). On the
other hand, however, this exponential improvement enables us to guarantee security with respect to
any set of 2p distributions, where p = p(n) may be any predetermined polynomial, whereas the basic
crooked leftover hash lemma would enable us to consider at most 2n distributions (in fact, even less
when taking constants into account as well as the security parameter). This means, for example,
that our scheme can be set up to guarantee security against all plaintext distributions that can be
sampled by circuits of size n2, but using the basic crooked leftover hash lemma one would obtain
security only against circuits of size less than n (i.e., less than the length n of the plaintext that
they output).

In addition, even when focusing on rather small sets of distributions, consider the case of dealing
with 2n/2 distributions, where |Im(f)| = nϵ (as provided by known constructions of lossy trapdoor
functions). For these parameters, our approach requires all plaintext distributions to have min-
entropy roughly nϵ, whereas the basic crooked leftover hash lemma would require min-entropy that
is linear in n.

Chosen-ciphertext security in the standard model. While in the setting of chosen-plaintext
security our construction is a natural generalization of that of Boldyreva et al. [BFO08b] (given
our high-moment generalization of the crooked leftover hash), this is not the case in the setting of
chosen-ciphertext security. In this setting, the CCA-secure scheme of Boldyreva et al. relies more
strongly on the assumption that the challenge plaintext distribution is independent of the public
key of the scheme (not just in the context of the Crooked Leftover Hash Lemma as above) – an
assumption that we do not make. Nevertheless, we show that some of the ideas underlying their
approach can still be utilized to construct a scheme that is secure according to our notion of security.

The scheme of Boldyreva et al. follows the “all-but-one” simulation paradigm of Peikert and
Waters [PW11] using all-but-one lossy trapdoor functions. These are tag-based functions, where
one of the tags corresponds to a lossy function, and all other tags correspond to injective functions.
As in the work of Peikert and Waters [PW11], the approach of Boldyreva et al. makes sure that
the challenge plaintext corresponds to a lossy tag (and thus the challenge ciphertext reveals no
information), while all other plaintexts corresponds to injective tags (and a suitable simulator is
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able to properly simulate the decryption oracle). When dealing with a deterministic encryption
algorithm, note that tags must be derived deterministically from the plaintext and the public key.
The approach of Boldyreva et al. is based on first sampling the challenge plaintext m∗, and only then
generating a public key for which m∗ corresponds to a lossy tag, but all other plaintexts correspond
to injective tags.

This approach fails in our setting, where adversaries specify the distribution of the challenge
plaintext in an adaptive manner as a function of the public key. Thus, in our setting we must be
able to generate a public key before the challenge plaintext is known. We note that a somewhat
similar issue arises in the setting of identity-based encryption (IBE): “selective security” considers
adversaries that specify the challenge identity in advance, whereas “full security” considers adver-
saries that can adaptively choose the challenge identity. One simple solution that was proposed
in the IBE setting is to a-priori guess the challenge identity, and this solution naturally extends
to our setting by guessing the tag corresponds to the challenge plaintext. This, however, requires
sub-exponential hardness assumptions, which we aim to avoid.

Our approach is based on the one of Boneh and Boyen [BB04] (and on its refinement by Cash,
Hofheinz, Kiltz, and Peikert [CHK+10] for converting a large class of selectively-secure IBE schemes
to fully-secure ones,7 combined with the idea ofR-lossiness due to Boyle, Segev, and Wichs [BSW11].
Specifically, we derive tags from plaintexts using an admissible hash function [BB04, CHK+10], and
instead of using all-but-one lossy trapdoor functions, we introduce the notion of R-lossy trapdoor
functions (which we generically construct based on lossy trapdoor functions).8 This is a generaliza-
tion of the notion of all-but-one lossy trapdoor functions, where the set of tags is partitioned into
lossy tags and injective tags according to the relation R. (In particular, there may be more than
one lossy tag.) Combined with an admissible hash function, we are able to ensure that even with
an adaptive adversary, with some non-negligible probability, the challenge plaintext corresponds to
a lossy tag (and thus the challenge ciphertext reveals no information), while all other plaintexts
corresponds to injective tags (and a suitable simulator is able to properly simulate the decryption
oracle). We show that such a guarantee enables us to prove the security of our scheme with respect
to adaptive adversaries.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce several basic defi-
nitions and tools. In Section 3 we formally define our new notions capturing adaptive security for
deterministic public-key encryption. In Section 4 we present our high-moment generalization of the
crooked leftover hash lemma, which we then use in Section 5 for constructing our basic adaptively-
secure scheme. In Section 6 we introduce and realize the notion of R-lossy trapdoor functions,
which we then use Section 7 for extending our basic construction to the setting of chosen-ciphertext
attacks. Finally, in Section 8 we present generic constructions satisfying our notions of security in
the random-oracle model.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform distribution over
the set {0, 1}n. For a random variable X we denote by x ← X the process of sampling a value x

7We note that the work of Cash et al. [CHK+10] is based on ideas introduced by Boneh and Boyen [BB04] and
Waters [Wat05].

8Boyle, Segev and Wichs [BSW11] introduced the notion of R-lossy public-key encryption, which can be viewed as
a randomized variant of our notion of R-lossy trapdoor functions.
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according to the distribution of X and by E[X] the expectation of the random variable X. Similarly,
for a finite set S we denote by x ← S the process of sampling a value x according to the uniform
distribution over S. We denote by X = (X1, . . . , XT ) a joint distribution of T random variables,
and by x = (x1, . . . , xT ) a sample drawn from X. For two bit-strings x and y we denote by x∥y
their concatenation. A non-negative function f : N → R is negligible if it vanishes faster than any
inverse polynomial.

In this paper we consider the uniform adversarial model (i.e. consider uniform probabilistic
polynomial-time adversaries). We note that all of our results also apply to the nonuniform adversarial
model (under nonuniform complexity assumptions).

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]). A k-source is a
random variable X with H∞(X) ≥ k. A (T, k)-source is a random variable X = (X1, . . . , XT ) where
each Xi is a k-source for every i ∈ [T ]. A (T, k)-block source is a random variable X = (X1, . . . , XT )
where for every i ∈ [T ] and x1, . . . , xi−1 it holds that H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k.

The following standard lemma states that conditioning on random variable that obtains at most
2v values can reduce the min-entropy of any other random variable by essentially at most v.

Lemma 2.1 (cf. [Vad12, Lemma 6.30]). Let (Z,X) be any two jointly distributed random variables
such that |Supp(Z)| ≤ 2v. Then, for any ϵ > 0 it holds that

Pr
z←Z

[H∞(X|Z = z) ≥ H∞(X)− v − log(1/ϵ)] ≥ 1− ϵ.

The statistical distance between two random variables X and Y over a finite domain Ω is
SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω] |. Two random variables X and Y are δ-close if

SD(X,Y ) ≤ δ. Two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are statistically indistinguishable
if it holds that SD(Xλ, Yλ) is negligible in λ. They are computationally indistinguishable if for every
probabilistic polynomial-time algorithm A it holds that∣∣∣∣ Pr

x←Xλ

[
A(1λ, x) = 1

]
− Pr

y←Yλ

[
A(1λ, y) = 1

]∣∣∣∣
is negligible in λ.

2.1 t-Wise δ-Dependent Permutations

A collection Π of permutations over {0, 1}n is t-wise δ-dependent if for any distinct x1, . . . , xt ∈
{0, 1}n the distribution (π(x1), . . . , π(xt)) where π is sampled uniformly from Π is δ-close in statistical
distance to the distribution (π∗(x1), . . . , π

∗(xt)) where π∗ is a truly random permutation. For our
construction in the standard model we rely on an explicit construction of such a collection due
to Kaplan, Naor, and Reingold [KNR09] that enjoys an asymptotically optimal description length
(although we note that in fact any other construction can be used):

Theorem 2.2 ([KNR09]). For any integers n and t ≤ 2n, and for any 0 < δ < 1, there exists an
explicit t-wise δ-dependent collection Π of permutations over {0, 1}n where each permutation π ∈ Π
can be described using O(nt+ log(1/δ)) bits, and is computable and invertible in time polynomial in
n, t and log(1/δ).

2.2 Admissible Hash Functions

The concept of an admissible hash function was first defined by Boneh and Boyen [BB04] to convert
a large class of selectively-secure identity-based encryption scheme into a fully-secure ones. In this

7



paper we use such hash functions in a somewhat similar way as part of our construction of a CCA-
secure deterministic public-key encryption scheme. The main idea of an admissible hash function
is that it allows the reduction in the proof of security to secretly partition the message space into
two subsets, which we will label as “lossy tags” and “injective tags,” such that there is a noticeable
probability that all of the messages in the adversary’s decryption queries will correspond to injective
tags, but the challenge ciphertext will correspond to a lossy tag. This is useful if the simulator can
efficiently answer decryption queries with injective tags, while a challenge ciphertext with a lossy
tag reveals essentially no information on the encrypted message. Our exposition and definition of
admissible hash function follows that of Cash, Hofheinz, Kiltz, and Peikert [CHK+10].

For K ∈ {0, 1,⊥}v(λ), we define the “partitioning” function PK : {0, 1}v(λ) → {Lossy, Inj}
which partitions the space {0, 1}v(λ) of tags in the following way:

PK(y) :=

{
Lossy if ∀ i ∈ {1, . . . , v(λ)} : Ki = yi or Ki = ⊥
Inj otherwise

For any u = u(λ) < v(λ), we let Ku,λ denote the uniform distribution over {0, 1,⊥}v(λ) condi-
tioned on exactly u positions having ⊥ values. (Note, if K is chosen from Ku,λ, then the map PK(·)
defines exactly 2u values as Lossy.) We would like to pick a distribution Ku,λ for choosing K so
that, there is a noticeable probability for every set of tags y0, . . . , yq, of y0 being classified as “lossy”
and all other tags “injective.” Unfortunately, this cannot happen if we allow all tags. Instead, we
will need to rely on a special hash function the maps messages x to tags y.

Definition 2.3 (Admissible hash functions [BB04, CHK+10]). LetH = {Hλ}λ∈N be a hash-function
ensemble, where each h ∈ Hλ is a polynomial-time computable function h : {0, 1}n(λ) → {0, 1}v(λ).
We say that H is an admissible hash-function ensemble if for every λ ∈ N and h ∈ Hλ there exists
a efficiently recognizable set Unlikelyh ⊆

∪
q∈N

(
{0, 1}n(λ)

)q
of string-tuples such that the following

two properties hold:

• For every probabilistic polynomial-time algorithm A there exists a negligible function ν(λ)
satisfying

Pr[(x0, . . . , xq) ∈ Unlikelyh] ≤ ν(λ),

where h← Hλ and (x0, . . . , xq)← A(1λ, h).

• For every polynomial q = q(λ) there is a polynomial ∆ = ∆(λ) and an efficiently computable
u = u(λ) such that, for every h ∈ Hλ and (x0, . . . , xq) ̸∈ Unlikelyh with x0 ̸∈ {x1, . . . , xq} we
have:

Pr
K←Ku,λ

[PK(h(x0)) = Lossy ∧ PK(h(x1)) = · · · = PK(h(xq)) = Inj ] ≥ 1

∆(λ)
.

The work of Boneh and Boyen [BB04] shows how to construct admissible hash functions from
collision-resistant hash functions.

2.3 Lossy Trapdoor Functions

A collection of lossy trapdoor functions [PW11] consists of two families of functions. Functions in
one family are injective and can be efficiently inverted using a trapdoor. Functions in the other
family are “lossy,” which means that the size of their image is significantly smaller than the size of
their domain. The only security requirement is that a description of a randomly chosen function
from the family of injective functions is computationally indistinguishable from a description of a
randomly chosen function from the family of lossy functions.
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Definition 2.4 (Lossy trapdoor functions [PW11, FGK+13]). Let n : N → N and ℓ : N → N be
non-negative functions, and for any λ ∈ N let n = n(λ) and ℓ = ℓ(λ). A collection of (n, ℓ)-lossy
trapdoor functions is a 4-tuple of probabilistic polynomial-time algorithms (Gen0,Gen1,F,F

−1) such
that:

1. Sampling a lossy function: Gen0(1
λ) outputs a function index σ ∈ {0, 1}∗.

2. Sampling an injective function: Gen1(1
λ) outputs a pair (σ, τ) ∈ {0, 1}∗ × {0, 1}∗, where

σ is a function index and τ is a trapdoor.

3. Evaluation: Let n = n(λ) and ℓ = ℓ(λ). Then, for every function index σ produced by either
Gen0 or Gen1, the algorithm F(σ, ·) computes a function fσ : {0, 1}n → {0, 1}∗ with one of the
two following properties:

• Lossy: If σ is produced by Gen0, then the image of fσ has size at most 2n−ℓ.

• Injective: If σ is produced by Gen1, then the function fσ is injective.

4. Inversion of injective functions: For every pair (σ, τ) produced by Gen1 and every x ∈
{0, 1}n, we have F−1(τ,F(σ, x)) = x.

5. Security: The two ensembles
{
σ : σ ← Gen0(1

λ)
}
λ∈N and

{
σ : (σ, τ)← Gen1(1

λ)
}
λ∈N are

computationally indistinguishable.

Constructions of lossy trapdoor functions were proposed based on a wide variety of number-
theoretic assumptions and for a large range of parameters (see, for example, [FGK+13, PW11] and
the references therein). In particular, in terms of parameters, several constructions are known to
offer ℓ = n− nϵ for any fixed constant 0 < ϵ < 1 with n = poly(λ).

2.4 Deterministic Public-Key Encryption

A deterministic public-key encryption scheme is a triplet Π = (KeyGen,Enc,Dec) of polynomial-time
algorithms with the following properties:

• The key-generation algorithm KeyGen is a randomized algorithm that takes as input the se-
curity parameter 1λ and outputs a key pair (sk, pk) consisting of a secret key sk and a public
key pk.

• The encryption algorithm Enc is a deterministic algorithm that takes as input a public key pk
and a message m ∈ {0, 1}n(λ), and outputs a ciphertext c = Encpk(m).

• The decryption algorithm is a possibly randomized algorithm that takes as input a secret key
sk and a ciphertext c and outputs a message m← Decsk(c) such that m ∈ {0, 1}n(λ) ∪ {⊥}.

3 Formalizing Adaptive Security for Deterministic Public-Key Encryption

In this section we present a framework for modeling the security of deterministic public-key en-
cryption schemes in an adaptive setting. As discussed in Section 1.3, we consider adversaries that
adaptively choose plaintext distributions after seeing the public key of the scheme, in an interactive
manner. The only restriction we make is that the number of plaintext distributions from which
each adversary is allowed to choose is upper bounded by 2p(λ), where p(λ) can be any a-priori given
polynomial in the security parameter λ.

The security definitions that follow are parameterized by three parameters:
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• p = p(λ) denoting the 2p bound on the number of allowed plaintext distributions.

• T = T (λ) denoting the number of blocks in each plaintext distribution.

• k = k(λ) denoting the min-entropy requirement.

Additionally, they are implicitly parameterized by bit-length n = n(λ) of plaintexts. We begin by
defining the “real-or-random” encryption oracle which we use to formalize security.

Definition 3.1 (Real-or-random encryption oracle). The real-or-random oracle RoR takes as in-
put triplets of the form (mode, pk,M), where mode ∈ {real, rand}, pk is a public key, and M =
(M1, . . . ,MT ) is a circuit representing a joint distribution over T messages. If mode = real then the
oracle samples (m1, . . . ,mT )←M , and if mode = rand then the oracle samples (m1, . . . ,mT )← UT

where U is the uniform distribution over the appropriate message space. It then outputs the vector
of ciphertexts (Encpk(m1), . . . ,Encpk(mT )).

Following [BBO07, BFO08b] we consider two classes of adversarially-chosen message distribu-
tions M = (M1, . . . ,MT ): The class of (T, k)-sources, where each Mi is assumed to be a k-source,
and the more restrictive class of (T, k)-block-sources, where each Mi is assumed to be a k-source
even given M1, . . . ,Mi−1. (See Section 2 for formal definitions.) Our constructions in the random
oracle model are secure with respect to (T, k)-sources, and our constructions in the standard model
are secure with respect to (T, k)-block-sources. This gap was recently shown by Wichs [Wic13]
to be inherent to our techniques, and in fact to all the techniques that were so far used for de-
signing deterministic public-key encryption schemes without random oracles [BFO+08a, BFO08b,
BBN+09, BS11, FOR12, MPR+12, Wee12]. Specifically, Wichs showed that no deterministic public-
key encryption scheme can be proven secure for all (T, k)-sources using a black-box reduction to a
“falsifiable” hardness assumption. (We refer the reader to [Wic13] for more details on his notion of
falsifiability.)

3.1 Chosen-Plaintext Security

The following two definitions capture the class of adversaries and security game that we consider in
this paper.

Definition 3.2 (2p-bounded (T, k)-source adversary). Let A be a probabilistic polynomial-time
algorithm that is given as input a pair (1λ, pk) and oracle access to RoR(mode, pk, ·) for some
mode ∈ {real, rand}. Then, A is a 2p-bounded (T, k)-source adversary if for every λ ∈ N there exists
a set X = Xλ of polynomial-time samplable (T, k)-sources such that:

1. |X | ≤ 2p.

2. For each of A’s RoR queries M it holds that:

– M ∈ X .

– For all (m1, . . . ,mT ) in the support of M and for all distinct i, j ∈ [T ] it holds that
mi ̸= mj .

In addition, A is a block-source adversary if X is a set of (T, k)-block-sources.

Definition 3.3 (Adaptive chosen-distribution attacks (ACD-CPA)). A deterministic public-key
encryption scheme Π = (KeyGen,Enc,Dec) is (p, T, k)-ACD-CPA-secure (resp. block-wise (p, T, k)-
ACD-CPA-secure) if for any probabilistic polynomial-time 2p-bounded (T, k)-source (resp. block-
source) adversary A, there exists a negligible function ν(k) such that

AdvACD-CPA
Π,A (λ)

def
=
∣∣∣Pr[ExptrealΠ,A(λ) = 1

]
− Pr

[
ExptrandΠ,A(λ) = 1

]∣∣∣ ≤ ν(λ),
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where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
Π,A (λ) is defined as follows:

1. (sk, pk)← KeyGen(1λ).

2. b← ARoR(mode,pk,·)(1λ, pk).

3. Output b.

In addition, such a scheme is (p, T, k)-ACD1-CPA-secure (resp. block-wise (p, T, k)-ACD1-CPA-
secure) if the above holds for any probabilistic polynomial-time 2p-bounded (T, k)-source (resp.
block-source) adversary A that queries the RoR oracle at most once.

Our adaptive notion of security enables an immediate reduction of “multi-shot” adversaries to
“single-shot” ones, as in the case of randomized public-key encryption. The following theorem
follows via a standard hybrid argument.

Theorem 3.4 (Equivalence of ACD-CPA-security and ACD1-CPA-security). For any p, T , and k,
a deterministic public-key encryption scheme Π is (p, T, k)-ACD-CPA-secure (resp. block-wise (p,
T, k)-ACD-CPA-secure) if and only if it is (p, T, k)-ACD1-CPA-secure (resp. block-wise (p, T, k)-
ACD1-CPA-secure).

3.2 Chosen-Ciphertext Security

We now extend our notion of security to capture chosen-ciphertext adversaries. We note that, unlike
Bellare et al. [BBO07] and Boldyreva at el. [BFO08b] , we allow the adversary to adaptively interact
with the encryption and decryption oracles in any order.

Definition 3.5 (2p-bounded (T, k)-source chosen-ciphertext adversary). Let A be an algorithm
that is given as input a pair (1λ, pk) and oracle access to two oracles: RoR(mode, pk, ·) for some
mode ∈ {real, rand}, and Dec(sk, ·). Then, A is a 2p-bounded (T, k)-source chosen-ciphertext (resp.
block-source) adversary if:

1. A is a 2p-bounded (T, k)-source (resp. block-source) adversary.

2. A never queries Dec(sk, ·) with any ciphertext c that was part of a previous output by the
RoR oracle.

Definition 3.6 (Adaptive chosen-distribution chosen-ciphertext attacks (ACD-CCA)). A deter-
ministic public-key encryption scheme Π = (KeyGen,Enc,Dec) is (p, T, k)-ACD-CCA-secure (resp.
block-wise (p, T, k)-ACD-CCA-secure) if for every probabilistic polynomial-time 2p-bounded (T, k)-
source (resp. block-source) chosen-ciphertext adversary A, there exists a negligible function ν(k)
such that

AdvACD-CCA
Π,A (λ)

def
=
∣∣∣Pr[ExptrealCCAΠ,A (λ) = 1

]
− Pr

[
ExptrandCCAΠ,A (λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment ExptmodeCCA
Π,A (λ) is defined as follows:

1. (sk, pk)← KeyGen(1λ).

2. b← ARoR(mode,pk,·),Dec(sk,·)(1λ, pk).

3. Output b.

In addition, such a scheme is (p, T, k)-ACD1-CCA-secure (resp. block-wise (p, T, k)-ACD1-CCA-
secure) if the above holds for any probabilistic polynomial-time 2p-bounded (T, k)-source (resp.
block-source) adversary A that queries the RoR oracle at most once. (Note that A may still query
the decryption oracle many times.)
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As in the case of chosen-plaintext security, a standard hybrid argument immediately reduce
“multi-shot” adversaries to “single-shot” ones by exploiting the adaptive flavor of our security notion.

Theorem 3.7 (Equivalence of ACD-CCA-security and ACD1-CCA-security). For any p and k,
a deterministic public-key encryption scheme Π is (p, T, k)-ACD1-CCA-secure (resp. block-wise (p,
T, k)-ACD-CCA-secure) if and only if it is (p, T, k)-ACD1-CCA-secure (resp. block-wise (p, T, k)-
ACD1-CCA-secure).

4 Deterministic Extraction via a High-Moment Crooked Leftover Hash Lemma

In this section we present a high-moment generalization of the Crooked Leftover Hash Lemma of
Dodis and Smith [DS05a]. Informally, the Crooked Leftover Hash Lemma states that for every
lossy function f (where lossy means that the size of f ’s image is significantly smaller than the
size of its domain), and for every random source X that has a certain amount of min-entropy,
for a uniformly and independently chosen pairwise-independent permutation π it holds that the
distributions f(π(X)) and f(U) are statistically close (even given f and π), where U is the uniform
distribution over the domain of f . In this paper, as discussed in Section 1.3, we consider a setting in
which the distribution X may be adaptively chosen depending on π. In this setting, in general, the
Crooked Leftover Hash Lemma no longer holds. Nevertheless, we show that a natural high-moment
generalization of the Crooked Leftover Hash Lemma does hold in such a setting by applying a union
bound over all possible choices. Our approach is based on that of Trevisan and Vadhan [TV00] and
Dodis [Dod00], who presented a similar generalization to the standard Leftover Hash Lemma.

Specifically, we prove that for every lossy function f , and for every set X of random sources with a
certain amount of min-entropy, with an overwhelming probability over the choice of a permutation π
from a t-wise almost-independent collection of permutations (where t depends only logarithmically
on the size of X ), for every X ∈ X it holds that f(π(X)) and f(U) are statistically close. In
particular, in such a setting the specific choice of X ∈ X can adaptively depend on the permutation
π, and still the statistical distance is negligible.

We note that throughout this section, whenever our expressions for lower bounding the min-
entropy k contain an additive constant factor (denoted by using the Θ(1) notation), this factor is a
universal constant (which may differ from claim to claim).

4.1 A High-Moment Crooked Leftover Hash Lemma

Given a function f , we begin by considering a specific element y in the image of f , and prove
that for most permutations π the distributions f(π(X)) and f(U) “hit” y with essentially the same
probability.

Lemma 4.1. Let f : {0, 1}n → {0, 1}n′
, and let Π be a t-wise δ-dependent collection of permutations

over {0, 1}n, where t ≥ 8 is even and δ ≤ 2−nt. Then, for every y ∈ Im(f), every k-source X over
{0, 1}n, and every 0 < ϵ < 1 such that

k ≥ log |Im(f)|+ 2 log(1/ϵ) + 2 log t+Θ(1),

it holds that

Pr
π←Π

[∣∣∣∣∣ Prx←X
[f(π(x)) = y]−

∣∣f−1(y)∣∣
2n

∣∣∣∣∣ > ϵ ·max

{∣∣f−1(y)∣∣
2n

,
1

|Im(f)|

}]
≤ 2−t. (4.1)
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Proof. For every x ∈ {0, 1}n let px = Pr[X = x], and let If(π(x))=y be the indicator of the event
in which f(π(x)) = y (note that f and y are fixed). In addition, let qx = px · If(π(x))=y and
q =

∑
x∈{0,1}n qx = Prx←X [f(π(x)) = y].

Since X has min-entropy at least k, if for every x ∈ {0, 1}n we let Qx = 2k ·qx = 2k ·px ·If(π(x))=y,

it holds that Qx ∈ [0, 1]. Let Q = 2k ·
∑

x∈{0,1}n qx and µ = E[Q] (where the expectation is taken
over the choice of π). For every π ∈ Π it holds that

Q = 2k · Pr
x←X

[f(π(x)) = y] and E[Q] = µ = 2k ·
∣∣f−1(y)∣∣

2n
.

Next, we define µ′
def
= max{µ, 2k−log |Im(f)|}. To bound the quantity in Equation (4.1) (multiplying

all terms by 2k) we proceed as follows,

Pr
π←Π

[∣∣∣∣∣ Prx←X
[f(π(x)) = y]−

∣∣f−1(y)∣∣
2n

∣∣∣∣∣ > ϵ ·max

{∣∣f−1(y)∣∣
2n

,
1

|Im(f)|

}]
= Pr

π←Π

[
|Q− µ| > ϵµ′

]
= Pr

π←Π

[
(Q− µ)t > (ϵµ′)t

]
≤ Eπ←Π

[
(Q− µ)t

]
(ϵµ′)t

,

where the above inequalities use Markov’s inequality and the fact that t is even. The following claim
is proved in Section 4.3:

Claim 4.2. For Q and µ defined above it holds that

E
π←Π

[
(Q− µ)t

]
≤ Ct · (tµ+ t2)t/2 + δ · 2nt,

for some small constant Ct (in fact, Ct < 5 for t ≥ 8).

Claim 4.2 guarantees that

Pr
π←Π

[
|Q− µ| > ϵµ′

]
≤ Ct ·

(
tµ+ t2

ϵ2µ′2

)t/2

+ δ ·
(
2n

ϵµ′

)t

≤ 2Ct ·
(
tµ+ t2

ϵ2µ′2

)t/2

, (4.2)

where the inequality derived in Equation (4.2) uses the fact that δ ≤ 2−nt which implies that the
dominant term is the first one. We now distinguish between two possible cases:

Case 1: t ≤ µ. In this case we have that

Pr
π←Π

[
|Q− µ| > ϵµ′

]
≤ 2Ct ·

(
2tµ

ϵ2µ′2

)t/2

≤ 2Ct ·
(

2t

ϵ2µ′

)t/2

.

Upon substituting for µ′ and noting again that µ′ ≥ 2k−log |Im(f)|, we get:

Pr
π←Π

[∣∣∣∣∣ Prx←X
[f(π(x)) = y]−

∣∣f−1(y)∣∣
2n

∣∣∣∣∣ > ϵ ·max

{∣∣f−1(y)∣∣
2n

,
1

Im(f)|

}]

≤ 2Ct ·
(

2t

ϵ2 · 2k−log |Im(f)|

)t/2

≤ 2Ct · 2t/2·(log (2t)+2 log (1/ϵ)+log |Im(f)|−k)

≤ 2−t.
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Case 2: t > µ. In this case we have that

Pr
π←Π

[
|Q− µ| > ϵµ′

]
≤ 2Ct ·

(
2t2

ϵ2µ′2

)t/2

.

Upon substituting for µ′ and noting that µ′ ≥ 2k−log |Im(f)|, we get:

Pr
π←Π

[∣∣∣∣∣ Prx←X
[f(π(x)) = y]−

∣∣f−1(y)∣∣
2n

∣∣∣∣∣ > ϵ ·max

{∣∣f−1(y)∣∣
2n

,
1

Im(f)|

}]

≤ 2Ct ·
(

2t2

ϵ2 · 22(k−log |Im(f)|)

)t/2

≤ 2Ct · 2t/2·(log (2t
2)+2 log (1/ϵ)+2 log |Im(f)|−2k)

≤ 2−t.

The next lemma uses Lemma 4.1 to show that for most permutations π, not only that the
distributions f(π(X)) and f(U) are point-wise similar, but in fact they are statistically close.

Definition 4.3. A function f : {0, 1}n → {0, 1}n′
is (n, ℓ)-lossy if |Im(f)| ≤ 2n−ℓ.

Lemma 4.4. Let f : {0, 1}n → {0, 1}n′
be (n, ℓ)-lossy, and let Π be a t-wise δ-dependent collection

of permutations over {0, 1}n, where t ≥ 8 is even and δ ≤ 2−nt. Then, for every k-source X over
{0, 1}n and 0 < ϵ < 1 such that

k ≥ n− ℓ+ 2 log(1/ϵ) + 2 log t+Θ(1),

it holds that
Pr

π←Π
[SD (f(π(X)), f(Un)) ≤ ϵ] ≥ 1− 2n−ℓ−t,

where Un is the uniform distribution over {0, 1}n.

Proof. From Lemma 4.1, for every k-source X there exists a set of permutations ΠX ⊆ Π such that
Prπ←Π[π ∈ ΠX ] ≥ 1− 2−t · |Im(f)| ≥ 1− 2n−ℓ−t, and for every π ∈ ΠX and y ∈ Im(f) it holds that∣∣∣∣∣ Prx←X

[f(π(x)) = y]−
∣∣f−1(y)∣∣

2n

∣∣∣∣∣ ≤ ϵ ·max

{∣∣f−1(y)∣∣
2n

,
1

|Im(f)|

}
.

The definition of statistical distance implies that for every X ∈ X and for every π ∈ ΠX

SD (f(π(X)), f(Un)) =
1

2

∑
y∈Im(f)

|Pr[f(π(X)) = y]− Pr[f(Un) = y]|

=
1

2

∑
y∈Im(f)

∣∣∣∣∣ Prx←X
[f(π(x)) = y]−

∣∣f−1(y)∣∣
2n

∣∣∣∣∣
≤ 1

2

∑
y∈Im(f)

ϵ ·
∣∣f−1(y)∣∣

2n
+

1

2

∑
y∈Im(f)

ϵ

|Im(f)|
(4.3)

≤ ϵ

2
+

ϵ

2
= ϵ, (4.4)

where we use the fact that max (a, b) ≤ a + b when a, b ≥ 0 in Equation (4.3) and the fact that∑
y∈Im(f) |f−1(y)| = 2n in Equation (4.4).
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4.2 Generalization to Block Sources

We now extend Lemma 4.4 to block sources by first deriving an average-case variant.

Lemma 4.5. Let f : {0, 1}n → {0, 1}n′
be (n, ℓ)-lossy, and let Π be a t-wise δ-dependent collection

of permutations over {0, 1}n, where t ≥ 8 is even and δ ≤ 2−nt. Then, for every 0 < ϵ < 1
and for every jointly distributed random variables (X,Y ) over {0, 1}n × {0, 1}m such that for every
y ∈ {0, 1}m, H∞(X|Y = y) ≥ k where

k ≥ n− ℓ+ 2 log(1/ϵ) + 2 log t+Θ(1),

it holds that

Pr
π←Π

[
SD
(
(f(π(X), Y )) , (f(Un), Y )

)
≤ 2ϵ

]
≥ 1− 2n−ℓ−t

ϵ
,

where Un is the uniform distribution over {0, 1}n.

Proof. For every permutation π ∈ Π and for every y ∈ {0, 1}m, denote by Badπ(y) the event in
which

SD
(
(f(π(X|Y=y)), y) , (f(Un), y)

)
> ϵ.

As the distribution X|Y=y has min-entropy at least k for every y ∈ {0, 1}m, applying Lemma 4.4
with |X | = 1, for every y ∈ {0, 1}m, we have that:

Pr
π←Π

[Badπ(y)] < 2n−ℓ−t. (4.5)

Applying Markov’s inequality, it then following that for most permutations π ∈ Π is holds that
Pry←Y [Badπ(y)] ≤ ϵ:

Pr
π←Π

[
Pr

y←Y
[Badπ(y)] > ϵ

]
≤

Eπ←Π

[
Pry←Y [Badπ(y)]

]
ϵ

=
1

|Π|
·
∑

π∈Π ·Pry←Y [Badπ(y)]

ϵ

=
1

|Π|
·
∑

π∈Π
∑

y∈{0,1}m Pr[Y = y] · IBadπ(y)
ϵ

=
Pry←Y [Eπ←Π [Badπ(y)]]

ϵ

≤ 2n−ℓ−t

ϵ
. (from Eq. (4.5)) (4.6)

Now, we bound the statistical distance between the distributions (f(π(X)), Y ) and (f(Un), Y ) us-
ing Equation (4.6) by partitioning the set Π of permutations into two disjoint subsets: Permutations
π for which Pry←Y [Badπ(y)] > ϵ, and permutations π for which Pry←Y [Badπ(y)] ≤ ϵ. Specifically,
it holds that

Pr
π←Π

[
SD
(
(f(π(X)), Y ) , (f(Un), Y )

)
> 2ϵ

]
≤ Pr

π←Π

[
Pr

y←Y
[Badπ(y)] > ϵ

]
+ Pr

π←Π

[
SD ((f(π(X)), Y ) , (f(Un), Y )) > 2ϵ Pr

y←Y
[Badπ(y)] ≤ ϵ

]
≤ 2n−ℓ−t

ϵ
+ 0.
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To see that Prπ←Π[SD ((f(π(X)), Y ) , (f(Un), Y )) > 2ϵ Pry←Y [Badπ(y)] ≤ ϵ] = 0, note that

SD ((f(π(X)), Y ) , (f(Un), Y ))

≤ Pr
y←Y

[Badπ(y)] + SD
((
f(π(X)), Y |¬Badπ(y)

)
,
(
f(Un), Y |¬Badπ(y)

))
,

where each term is at most ϵ (from the conditioning event and the definition of Badπ(y) respectively).
This completes the proof of the lemma.

We now use Lemma 4.5 and an inductive argument to show that applying f ◦ π allows us to
deterministically extract from a set X of (T, k)-block-sources.

Theorem 4.6. Let f : {0, 1}n → {0, 1}n′
be (n, ℓ)-lossy, let Π be a t-wise δ-dependent collection of

permutations over {0, 1}n where t = p+ n− ℓ+ log(T/ϵ) + log(T/γ) + 1 and δ ≤ 2−nt, and let X be
a set of (T, k)-block sources over {0, 1}n such that |X | ≤ 2p. Then, for every 0 < ϵ < 1 such that

k ≥ n− ℓ+ 2 log(1/ϵ) + 2 log T + 2 log t+Θ(1),

with probability at least 1 − γ over the choice of π ∈ Π, for every X = (X1, . . . , XT ) ∈ X it holds
that

SD
(
(f (π (X1)) , . . . , f (π (XT ))) ,

(
f
(
U (1)
n

)
, . . . , f

(
U (T )
n

)))
≤ ϵ,

where U
(1)
n , . . . , U

(T )
n are T independent instances of the uniform distribution over {0, 1}n.

Proof. Fix a (T, k)-block-source (X1, . . . , XT ) ∈ X . We prove the theorem using induction on the
block index i of (X1, . . . , XT ) starting with i = T and ending with i = 1.

In particular, we show that for every (X1, . . . , XT ) ∈ X and every i ∈ [T ], it holds that

Pr
π←Π

[
SD
(
(X1, . . . , Xi−1, f (π (Xi)) , . . . , f (π (XT ))) ,

(
X1, . . . , Xi−1, f

(
U (i)
n

)
, . . . , f

(
U (T )
n

)))
>

ϵ(T − i+ 1)

T

]
≤ 2−p · γ(T − i+ 1)

T
. (4.7)

The base case when i = T follows from Lemma 4.5 (by setting the distributions X = XT ,
Y = (X1, . . . , XT−1), and with ϵ/2T instead of ϵ) and noting that from the definition of a (T, k)-
block-source, H∞(X|Y = y) ≥ k as required.

We now assume that Equation (4.7) holds for some 2 ≤ i ≤ T and prove that it holds for i− 1.
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From the triangle inequality, it holds that

Pr
π←Π

[
SD
(
(X1, . . . , Xi−2, f (π (Xi−1)) , . . . , f (π (XT ))) ,

(
X1, . . . , Xi−2, f

(
U (i−1)
n

)
, . . . , f

(
U (T )
n

)))
>

ϵ(T − (i− 1) + 1)

T

]

≤ Pr
π←Π

[
SD
(
(X1, . . . , Xi−2, f (π (Xi−1)) , . . . , f (π (XT ))) ,

(
X1, . . . , Xi−2, f (π (Xi−1)) , f

(
U (i)
n

)
, . . . , f

(
U (T )
n

)))
>

ϵ(T − i+ 1)

T

]
(4.8)

+ Pr
π←Π

[
SD
((

X1, . . . , Xi−2, f (π (Xi−1)) , f
(
U (i)
n

)
, . . . , f

(
U (T )
n

))
(
X1, . . . , Xi−2, f

(
U (i−1)
n

)
, . . . , f

(
U (T )
n

)))
>

ϵ

T

]
. (4.9)

≤ 2−p · γ(T − i+ 1)

T
+

2−p · γ
T

=
2−p · γ(T − (i− 1) + 1)

T
. (4.10)

The two terms in Equation (4.10) are derived as follows. The term in Equation (4.8) is bounded
by applying f(π(·)) to Xi−1 in Equation (4.7) (i.e., by considering inductive step i) and noting
that applying a (deterministic) function to any component cannot increase the statistical distance
of two distributions. The term in Equation (4.9) follows from Lemma (4.5) (by setting the distri-
butions X = Xi−1, Y = (X1, . . . , Xi−2), and with ϵ/2T instead of ϵ) for our choice of parameter t
and observing that the remaining components f

(
U i
)
, . . . , f

(
U (T )

)
are sampled independently and

identically in both distributions.
We complete the inductive argument in this manner. Now, setting i = 1 in Equation (4.7) and

applying a union bound over all 2p possible (T, k)-block-sources in X completes the proof of the
theorem.

4.3 Proof of Claim 4.2

For every x ∈ {0, 1}n define

Wx
def
= 2k · px · If(π∗(x))=y, (4.11)

where π∗ is sampled uniformly at random from the set of all permutations over {0, 1}n, and let
W =

∑
x∈{0,1}n Wx. Note that the Wx’s are defined in a similar manner to the Qx’s in Section 4,

where the only difference is that here we consider the set of all permutations whereas in Section 4
we considered a t-wise δ-dependent collection of permutations. Note that

E[(Q− µ)t] =
∑

x1,...,xt∈{0,1}n
E

[
t∏

i=1

(Qxi − µ)

]

≤
∑

x1,...,xt∈{0,1}n
E

[
t∏

i=1

(Wxi − µ)

]
+ δ · 2nt (4.12)

= E
[
(W − µ)t

]
+ δ · 2nt, (4.13)
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where (4.12) follows from the definition of a t-wise δ-dependent collection of permutations.
If the Wx’s were independent random variables, then we can trace the proof of [BR94, Lemma

2.3] to bound E[(W − µ)t] in (4.13) as done in [TV00, Prop. A.1]. However, the Wx’s are not
independent as they all share the same underlying permutation. Nevertheless, the main observation
is that although the Wx’s are not independent, for any integer d ≥ 1, any x1, . . . , xd ∈ {0, 1}n, and
any integers e1, . . . , ed ≥ 0 it holds that

E[W e1
x1
W e2

x2
· · ·W ed

xd
] ≤ E[W e1

x1
] · E[W e2

x2
] · · ·E[W ed

xd
]. (4.14)

This follows from the definition of Wx’s and observing that the indicator variables If(π∗(x))=y have
a higher probability of being 0 conditioned on the other indicator variables being 1 because π∗ is a
permutation. We use this in inequality (4.16) for deriving Lemma 4.7 below.

To bound the first term in (4.13), we first derive a variant of a lemma used in [Rom90] and [BR94]
applied to theWx’s. Lemma 4.7, stated and proved below, follows the proof outline of [BR94, Lemma
A.5] closely but incorporates the inequality in Equation (4.14).

Lemma 4.7. Suppose that Wx1 , . . . ,Wx2n
are random variables as defined in Equation (4.11) and

let W =
∑

x∈{0,1}n Wx. Then, for any a ≥ 0 it holds that

Pr [|W − µ| > a] < max(2e−3a
2/8µ, e−2a/5). (4.15)

Proof. For some parameter γ, which will be optimized for later,

Pr [W − µ > a] ≤ E[eγ(W−µ)]
eγa

=
e−µγ

eγa
·
∞∑
i=1

γi

i!
E[W i]

=
e−µγ

eγa
·
∞∑
i=1

γi

i!

∑
x1,...,xi

E

 i∏
j=1

Wxj


≤ e−µγ

eγa
·
∞∑
i=1

γi

i!

∑
x1,...,xi

i∏
i=1

E
[
Wxj

]
(from Eq. (4.14))

≤
∏

x∈{0,1}n
E[eγ(Wx−µ/2n)]/eγa. (4.16)

From here on in, the proof is identical to the proof of [Rom90, Lemma 2.2.9] and included here for
completeness.

Let ν
def
= µ/2n. Now, by the convexity of the exponential function

E[eγ(Wx−ν)] ≤ (1− ν)e−γν + νeγ(1−ν).

Taking Taylor expansions and combining terms,

E[eγ(Wx−ν)] ≤ 1 + ν(1− ν)

(
γ2

2!
+
(
(1− ν)2 − ν2

) γ3
3!

+
(
(1− ν)3 + ν3

) ν4
4!

+ · · ·
)

≤ 1 + ν

(
γ2

2!
+
|γ|3

3!
+ · · ·

)
= 1 + ν

(
e|γ| − 1− |γ|

)
= 1 + ν

γ2

2!

(
e|γ| − 1− |γ|

γ2/2

)
.
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Restricting |γ| < 4/5 it follows

E[eγ(Wx−ν)] ≤ 1 + ν
2γ2

3
≤ e2νγ

2/3,

which implies that E[eγ(W−µ)] ≤ e2µγ
2/3. Therefore,

Pr[W − µ > a] < e2µγ
2/3−γa.

The optimal value for γ in the above formula is 3a/4µ. But we must have that |γ| < 4/5, so we let
γ = min(3a/4µ, 4/5). For a ≤ 16µ/5. t = 3a/4µ, so

Pr[W − µ > a] < e3a
2/8µ−3a2/4µ = e−3a

2/8µ.

For a ≥ 16µ/15, γ = 4/5, so

Pr[W − µ > a] < e32µ/75−4a/5 ≤ e2a/5−4a/5 = e−2a/5.

Similarly, we note that

Pr[W − µ < −a] < E[eγ(W−µ)]/e−γa,

which is optimized by letting γ = −3a/4µ, obtaining

Pr[W − µ < −a] < e−3a
2/8µ.

Note that we do not consider the case a > 16µ/15 as Pr[W < 0] = 0. Therefore, we have

Pr [|W − µ| > a] < max(2e−3a
2/8µ, e−2a/5).

Given Lemma 4.7, the proof of Claim 4.2 proceeds as follows.

E[(W − µ)t] =

∫ ∞
0

Pr
[
|W − µ| > x1/t

]
dx

≤ 2

∫ ∞
0

exp

(
−3x2/t

8µ

)
dx+

∫ ∞
0

exp

(
−2x1/t

5

)
dx. (4.17)

Changing variables to y = 3x2/t/8µ and then using the definition of the Gamma function and
Stirling’s approximation the first term in the sum in (4.17) can be bound by

2 · t
2

(
8µ

3

)t/2 ∫ ∞
0

yt/2−1e−ydy = 2 ·
(
8µ

3

)t/2

· t
2
· Γ
(
t

2

)
= 2 ·

(
8µ

3

)t/2

· (t/2)!

< 2 ·
(
8µ

3

)t/2

· e1/6t
√
πt

(
t

2e

)t/2

= 2e1/6t
√
πt

(
4

3e

)t/2

· (tµ)t/2. (4.18)

Similarly with a change of variable z = 2x1/t/5, the second term in (4.17) can be bounded by

e1/12t
√
2πt ·

(
5

2e

)t

· tt. (4.19)

Putting together (4.17), (4.18), and (4.19) together to bound the first term in (4.13) and setting the
constant Ct = 2e1/6t

√
πt(4/3e)t/2 + e1/12t

√
2πt(5/2e)t concludes the proof of Claim 4.2.

19



5 Chosen-Plaintext Security based on Lossy Trapdoor Functions

In this section we present our basic construction of a public-key deterministic encryption scheme
that is secure according to our notion of adaptive security. We refer the reader to Section 1.3 for a
high-level description of the scheme, and of the main challenges and ideas underlying our approach.
In what follows we formally describe the scheme, discuss the parameters that we obtain using known
instantiations of its building blocks, and prove its security.

The scheme DE. Let n = n(λ), ℓ = ℓ(λ), t = t(λ) and δ = δ(λ) be functions of the security
parameter λ ∈ N. Let (Gen0,Gen1,F,F−1) be a collection of (n, ℓ)-lossy trapdoor functions, and for
every λ ∈ N let Πλ be a t-wise δ-dependent collection of permutations over {0, 1}n. Our scheme
DE = (KeyGen,Enc,Dec) is defined as follows:

• Key generation. The key-generation algorithm KeyGen on input 1λ samples (σ, τ) ←
Gen1(1

λ) and π ← Πλ. It then outputs pk = (σ, π) and sk = τ .

• Encryption. The encryption algorithm Enc on input a public key pk = (σ, π) and a message
m ∈ {0, 1}n outputs c = F(σ, π(m)).

• Decryption. The decryption algorithm Dec on input a secret key sk = τ and a ciphertext c
outputs m = π−1

(
F−1(τ, c)

)
.

Theorem 5.1. The scheme DE is block-wise (p, T, k)-ACD-CPA-secure for any n = n(λ), ℓ = ℓ(λ),
p = p(λ), and T = T (λ) by setting t = p+n−ℓ+log T+ω(log λ), k = n−ℓ+2 log T+2 log t+ω(log λ),
and δ = 2−nt.

Parameters. Using existing constructions of lossy trapdoor functions (see Section 2.3), for any
n = n(λ) and for any constant 0 < ϵ < 1 we can instantiate our scheme with ℓ = n− nϵ. Therefore,
for any n = n(λ), p = p(λ), and T = T (λ), we obtain schemes with t = p + nϵ + ω(log λ),
k = nϵ + ω(log λ), and δ = 2−nt.

Proof overview. The proof of security consists of two steps. Let X be a set of at most 2p plaintext
distributions. First, the security of the collection of lossy trapdoor functions allows us to replace the
injective function f(·) = F(σ, ·) with a lossy function f̃(·) = F(σ̃, ·). Next, we use the high-moment
crooked leftover hash lemma derived in Section 4 and show that with overwhelming probability over
the choice of the permutation π, it holds that for every plaintext distribution M ∈ X , the two
distributions f̃(π(M)) and f̃(U) are statistically close, even given the public key (i.e., σ̃ and π).
Therefore, essentially no information on the plaintext is revealed – even when the specific choice
of M ∈ X may adaptively depend on pk. A second application of the security of the collection of
lossy trapdoor functions allows us to switch back from the lossy function to an injective one, which
exactly reflects the output of the real-or-random encryption oracle in the rand mode. We give a full
proof of the theorem below.

Proof of Theorem 5.1 Using Theorem 3.4 it suffices to prove that DE is block-wise (p, T, k)-
ACD1-CPA-secure. Let A be a 2p-bounded (T, k)-block-source adversary that queries the oracle
RoR at most once. In what follows, we describe four experiments, Expt0, . . . ,Expt3, and derive
a series of claims relating them. We then combine these claims to bound the advantage of the
adversary.

Experiment Expt0. This is the experiment ExptrealDE,A(λ) (recall Definition 3.3).

Experiment Expt1. This experiment is obtained from Expt0 by modifying the key-generation
algorithm to sample a lossy function index σ̃ rather than an injective function index σ.

20



Claim 5.2. |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| is negligible in λ.

Proof. As A and RoR can be simulated in probabilistic polynomial time, the security of the col-
lection of lossy trapdoor functions (Gen0,Gen1,F,F

−1) immediately implies Claim 5.2. Specifically,
any efficient adversary A for which |Pr[Expt0(λ) = 1] − Pr[Expt1(λ) = 1] | is non-negligible can be
used to distinguish a randomly sampled injective key σ from a random sampled lossy key σ̃.

Experiment Expt2. This experiment is obtained from Expt1 by running RoR in rand mode rather
than in real mode (using a lossy function index σ̃ as in Expt1).

Claim 5.3. |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| is negligible in λ.

Proof. We fix a lossy key σ̃ and argue Claim 5.3 for any such lossy key. Note that A’s view in

Expt1 is
(
σ̃, π, f

(
π
(
X(1)

))
, . . . , f

(
π
(
X(T )

)))
where σ̃ is a fixed lossy key, π ← Π, f(·) def

= F(σ̃, ·),
and X =

(
X(1), . . . , X(T )

)
is a (T, k)-block-source. Additionally, as A is 2p-bounded, there is a set

X of size at most 2p such that X ∈ X .
Similarly, A’s view in Expt2 is

(
σ̃, π, f

(
U

(1)
n

)
, . . . , f

(
U

(T )
n

))
, where U

(1)
n , . . . , U

(T )
n are T inde-

pendent instances of the uniform distribution of {0, 1}n. Our choice of parameters enables us to apply
Theorem 4.6 and obtain that with with an overwhelming probability over the choice of π ← Π, for
all such block sources X =

(
X(1), . . . , X(T )

)
∈ X the distributions

(
f
(
π
(
X(1)

))
, . . . , f

(
π
(
X(T )

)))
and

(
f
(
U

(1)
n

)
, . . . , f

(
U

(T )
n

))
are statistically close, and thus |Pr[Expt1(λ) = 1]−Pr[Expt2(λ) = 1] |

is negligible in the security parameter λ.

Experiment Expt3. This experiment is obtained from Expt2 by modifying the key-generation
algorithm to sample an injective function index σ rather than a lossy function index σ̃. That is,
this is experiment ExptrandDE,A(λ) (recall Definition 3.3).

Claim 5.4. |Pr[Expt2(λ) = 1]− Pr[Expt3(λ) = 1]| is negligible in λ.

Proof. This proof is identical to the proof of Claim 5.2.

Completing the proof of Theorem 5.1. The definition of AdvACD-CPA
DE,A (λ) implies that for any

such adversary A:

AdvACD-CPA
DE,A (λ)

def
=
∣∣∣Pr[ExptrealDE,A(λ) = 1

]
− Pr

[
ExptrandDE,A(λ) = 1

]∣∣∣
= |Pr[Expt0(λ) = 1]− Pr[Expt3(λ) = 1]|
≤ |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| (5.1)

+ |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| (5.2)

+ |Pr[Expt2(λ) = 1]− Pr[Expt3(λ) = 1]| . (5.3)

Claims 5.2 – 5.4 state that the terms in Equations (5.1) – (5.3) are negligible, and this completes
the proof of Theorem 5.1.
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6 R-Lossy Trapdoor Functions

The notion of R-lossy public-key encryption schemes was put forward by Boyle, Segev, and Wichs
[BSW11], and here we define an analogous notion for trapdoor functions. Informally, an R-lossy
trapdoor function family is a collection of tagged functions where the set of possible tags is parti-
tioned into two subsets: injective tags, and lossy tags. Functions evaluated with an injective tag can
be efficiently inverted with a trapdoor (where all injective tags share the same trapdoor informa-
tion). On the other hand, functions evaluated with a lossy tag lose information – the size of their
image is significantly smaller than the size of their domain. The partitioning of the tags is defined
by a binary relation R ⊆ K × T : the key-generation algorithm receives as input an initialization
value K ∈ K and this partitions the set tags T so that t ∈ T is lossy if and only if (K, t) ∈ R.
More, formally, we require that the relation R ⊆ K × T consists of a sequence of efficiently (in
λ) recognizable sub-relations Rλ ⊆ Kλ × Tλ. The only computational requirement of an R-lossy
trapdoor function family is that its description hides the initialization value K.

Definition 6.1 (R-lossy trapdoor functions). Let n : N → R and ℓ : N → R be non-negative
functions, and for any λ ∈ N let n = n(λ) and ℓ = ℓ(λ). Also, let R ⊆ K × T be an efficiently
computable binary relation. An R-(n, ℓ)-lossy trapdoor function family is a triplet of probabilistic
polynomial-time algorithms RLTDF = (GenR,G,G

−1) such that:

1. Key generation: For any initialization value K ∈ Kλ, the algorithm GenR(1
λ,K) outputs a

public index σ and a trapdoor τ .

2. Evaluation: For any K ∈ K, (σ, τ) ← GenR(1
λ,K), and any t ∈ T , the algorithm G(σ, t, ·)

computes a function fσ,t : {0, 1}n → {0, 1}∗ with one of the two following properties:

• Lossy tags: If (K, t) ∈ R, then the image of fσ,t has size at most 2n−ℓ.

• Injective tags: If (K, t) /∈ R, then the function fσ,t is injective.

3. Inversion under injective tags: For any initialization value K ∈ K and tag t ∈ T such
that (K, t) /∈ R, and for any input x ∈ {0, 1}n, we have G−1(τ, t,G(σ, t, x)) = x.

4. Indistinguishability of initialization values: For every probabilistic polynomial-time ad-
versary A, there exists a negligible function ν(λ) such that

AdvR-lossy
RLTDF,A(λ)

def
=
∣∣∣Pr[Expt(0)RLTDF,A(λ) = 1

]
− Pr

[
Expt

(1)
RLTDF,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
RLTDF,A(λ) is defined as follows:

(a) (K0,K1, state)← A(1λ).
(b) (σ, τ)← GenR(1

λ,Kb).

(c) b′ ← A(1λ, σ, state).
(d) Output b′.

6.1 The Relation RBM

We are interested mainly in the bit-matching relation RBM, as defined by Boyle, Segev, and Wichs
[BSW11]. For every λ ∈ N let Kλ = {0, 1,⊥}v(λ) and Tλ = {0, 1}v(λ), and define (K, t) ∈ RBM

λ ⊆
Kλ × Tλ if for every i ∈ {1, . . . , v(λ)} it holds that Ki = ti or Ki = ⊥. That is, given some fixed
initialization value K, the set of lossy tags t are exactly those whose bits match K in all positions i
for which Ki ̸= ⊥.

In our construction of CCA-secure deterministic encryption schemes, the RBM-lossy trapdoor
functions will be used in combination with an admissible hash function (discussed in Section 2.2).
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An admissible hash function enables us to map messages to encryption tags such that, with high
probability over an appropriate distribution of K, all decryption queries map to injective tags while
the challenge query maps to a lossy tag which loses information about the plaintext.

6.2 Constructing RBM-Lossy Trapdoor Functions

We now present a generic construction of RBM-lossy trapdoor functions based on any collection of
lossy trapdoor functions. In turn, this implies that RBM-lossy trapdoor functions can be based on a
variety of number-theoretic assumptions.

Let LTDF = (Gen0,Gen1,F,F
−1) be a collection of (n, ℓ)-lossy trapdoor functions. The key-

generation algorithm of our collection of RBM-lossy trapdoor functions samples v(λ) pairs of keys
from the collection LTDF. Each such pair is of one out of three possible types according to the
symbols of the initialization value K ∈ {0, 1,⊥}v(λ). For every i ∈ {1, . . . , v(λ)}, if Ki = 0 then
the i-th pair consists of a lossy key and an injective key, if Ki = 1 then the i-th pair consists of an
injective and a lossy key (i.e., the order is reversed), and if Ki = ⊥ then i-th pair consists of two
lossy keys. The evaluation algorithm given a tag t ∈ {0, 1}v(λ) and an input x ∈ {0, 1}n outputs the
concatenation of the values obtained by evaluating one of the functions from each pair on x according
to the corresponding bit of t. More formally, consider the following collection RLTDF = (GenRBM ,G,
G−1):

• Key generation: On input 1λ and an initialization value K = K1 · · ·Kv(λ) ∈ {0, 1,⊥}v(λ),
for every 1 ≤ i ≤ v(λ) the algorithm GenRBM produces a pair ((σi,0, τi,0), (σi,1, τi,1)) as follows:

– If Ki = 0 then it samples σi,0 ← Gen0(1
λ), (σi,1, τi,1)← Gen1(1

λ), and sets τi,0 = ⊥.
– If Ki = 1 then it samples (σi,0, τi,0)← Gen1(1

λ), and σi,1 ← Gen0(1
λ), and sets τi,1 = ⊥.

– If Ki = ⊥ then it samples σi,0 ← Gen0(1
λ), σi,1 ← Gen0(1

λ), and sets τi,0 = τi,1 = ⊥.

It then outputs the pair (σ, τ) defined as

σ =
(
{(σi,0, σi,1)}v(λ)i=1

)
τ =

(
K, {(τi,0, τi,1)}v(λ)i=1

)
• Evaluation: On input a function index σ of the above form, a tag t = t1 · · · tv(λ) ∈ {0, 1}v(λ)

and an input x ∈ {0, 1}n(λ), the algorithm G outputs

y =
(
Fσ1,t1

(x), . . . ,Fσv(λ),tv(λ)
(x)
)

• Inversion: On input a trapdoor τ of the above form, a tag t = t1 · · · tv(λ) ∈ {0, 1}v(λ) and a
value y = (y1, . . . , yv(λ)), the inversion algorithm G−1 proceeds as follows. If (K, t) ∈ RBM (i.e.,
t is a lossy tag) then it outputs ⊥. Otherwise (i.e., t is an injective tag), there exists an index
i ∈ {1, . . . , v(λ)} such that Ki ̸= ti and Ki ̸= ⊥, and therefore the pair (σi,ti , τi,ti) corresponds
to an injective function. In this case the inversion algorithm outputs x = F−1(τi,ti , yi).

Theorem 6.2. For any n = n(λ), ℓ = ℓ(λ) and v = v(λ), if LTDF = (Gen0,Gen1,F,F
−1) is a

collection of (n, ℓ)-lossy trapdoor functions, then RLTDF = (GenRBM ,G,G−1) is a collection of RBM-
(n, vℓ− (v − 1)n)-lossy trapdoor functions with v-bit tags.
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Proof. Indistinguishability of initialization values follows directly from the indistinguishability of
lossy and injective keys of the underlying collection LTDF of lossy trapdoor functions via a straight-
forward hybrid argument. The correctness of the inversion algorithm under injective tags follows
from the fact that for any injective tag t (i.e., (K, t) /∈ RBM) there exists an index i ∈ {1, . . . , v(λ)}
such that Ki ̸= ti and Ki ̸= ⊥, and therefore the pair (σi,ti , τi,ti) corresponds to an injective
function of LTDF. Lossiness of the function under lossy tags follows from the fact for any lossy
tag t (i.e., (K, t) ∈ RBM) and for any index i ∈ {1, . . . , v(λ)} it holds that σi,ti corresponds to a
lossy function of LTDF. Therefore, the possible number of output values for a lossy tag is at most(
2n−ℓ

)v
= 2n−(vℓ−(v−1)n).

Parameters. In our construction of a CCA-secure deterministic public-key encryption scheme
in Section 7, v is the output length of an admissible hash function, which is nϵ for any constant
0 < ϵ < 1 [BB04]. Several of the known constructions of lossy trapdoor functions (see Section 2.3)
offer ℓ = n−nϵ, and thus Theorem 6.2 guarantees that the possible number of output values for any
lossy tag in our construction is at most 2n−(vℓ−(v−1)n) = 2n

2ϵ
. That is, based on existing constructions

of lossy trapdoor functions, for any constant 0 < ϵ < 1 Theorem 6.2 yields constructions of RBM-
(n, n− n2ϵ)-lossy trapdoor functions with nϵ-bit tags.

7 Chosen-Ciphertext Security based on R-Lossy Trapdoor Functions

In this section we present a construction of a public-key deterministic encryption scheme that is
secure according to our notion of adaptive security even when adversaries can access a decryption
oracle. As discussed in Section 1.3, our construction is inspired by that of Boldyreva et al. [BFO08b]
combined with the approach of Boneh and Boyen [BB04] (and its refinement by Cash, Hofheinz,
Kiltz, and Peikert [CHK+10]) for converting a large class of selectively-secure IBE schemes to fully-
secure ones, and the notion of R-lossy trapdoor functions that we introduced in Section 6 following
Boyle, Segev, and Wichs [BSW11]. In what follows we formally describe the scheme, discuss the
parameters that we obtain using known instantiations of its building blocks, and prove its security.

The scheme DECCA. Let n = n(λ), ℓ = ℓ(λ), v = v(λ), t1 = t1(λ), t2 = t2(λ), δ1 = δ1(λ), and
δ2 = δ2(λ) be functions of the security parameter λ ∈ N. Our construction relies on the following
building blocks:

1. A collection Hλ of admissible hash functions h : {0, 1}n → {0, 1}v for every λ ∈ N.

2. A collection (Gen0,Gen1,F,F
−1) of (n, ℓ)-lossy trapdoor functions.

3. A collection (GenBM,G,G
−1) of RBM-(n, ℓ)-lossy trapdoor functions.

4. A t1-wise δ1-dependent collection Π
(1)
λ of permutations over {0, 1}n for every λ ∈ N.

5. A t2-wise δ2-dependent collection Π
(2)
λ of permutations over {0, 1}n for every λ ∈ N.

Our scheme DECCA = (KeyGen,Enc,Dec) is defined as follows:

• Key generation. The key-generation algorithm KeyGen on input 1λ samples h ← Hλ,

(σf , τf ) ← Gen1(1
λ), K ← Kλ, (σg, τg) ← GenBM(1

λ,K), π1 ← Π
(1)
λ , and π2 ← Π

(2)
λ . Then, it

outputs pk = (h, σf , σg, π1, π2) and sk = (τf , τg).
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• Encryption. The encryption algorithm Enc on input a public key pk = (h, σf , σg, π1, π2) and
a message m ∈ {0, 1}n outputs

c =
(
h(π1(m)), F

(
σf , π2(m)

)
, G

(
σg, h(π1(m)), π2(m)

))
.

• Decryption. The decryption algorithm Dec on input a secret key sk = (τf , τg) and a cipher-
text tuple (ch, cf , cg) first computes m = π−12

(
F−1(τf , cf )

)
. Then, if Encpk(m) = (ch, cf , cg) it

outputs m, and otherwise it outputs ⊥.
In other words, the decryption algorithm inverts cf using the trapdoor τf , and outputs m if
the ciphertext is well-formed.

Theorem 7.1. The scheme DECCA is block-wise (p, T, k)-ACD-CCA-secure for any n = n(λ),
ℓ = ℓ(λ), v = v(λ), p = p(λ), and T = T (λ) by setting

t1 = p+ (T − 1) · n+ v + ω(log λ), δ1 = 2−nt1 ,

t2 = p+ (T − 1) · n+ v + n− (2ℓ− n) + ω(log λ), δ2 = 2−nt2 ,

k = max
(
n− (2ℓ− n), v

)
+ 2 log t2 + ω(log λ).

Parameters. Using existing constructions of admissible hash functions and lossy trapdoor functions
(see Sections 2.2 and 2.3, respectively), and using our construction of RBM-lossy trapdoor functions
(see Section 6), for any n = n(λ) and for any constant 0 < ϵ < 1 we can instantiate our scheme with
v = nϵ and ℓ = n − nϵ. Therefore, for any n = n(λ), p = p(λ), and T = T (λ), we obtain schemes
with

t1 = p+ (T − 1) · n+ nϵ + ω(log λ), δ1 = 2−nt1 ,

t2 = p+ (T − 1) · n+ 3n2ϵ + ω(log λ), δ2 = 2−nt2 ,

k = 2n2ϵ + ω(log λ).

Proof overview. On a high level, an encryption of a message m in our scheme consists of three
ciphertext components. The first ciphertext component is a short tag h(π1(m)), where h is an
admissible hash function and π1 is a permutation. Looking ahead, our high-moment crooked leftover
hash lemma will enable us to argue that such a tag reveals essentially no information on m, as h
is a compressing function. The second ciphertext component is f(π2(m)), where f is an injective
function sampled from a collection of lossy trapdoor functions, and π2 is a permutation. The
third ciphertext component is g(h(π1(m)), π2(m)) where g is sampled from a collection of RBM-lossy
trapdoor functions, and is evaluated on π2(m) using the tag h(π1(m)). The role of the second
and third components is to allow us to prove security using a generalization of the “all-but-one”
simulation paradigm, as discussed in Section 1.3, to our setting of adaptive adversaries.

Specifically, in our proof of security, the combination of the admissible hash function and the
RBM-lossy trapdoor function enables us to generate a public key for which, with a non-negligible
probability, all decryption queries correspond to injective tags for g, while the challenge ciphertext
corresponds to a lossy tag for g – even when the challenge plaintext is not known in advance. This
is done via a subtle artificial abort argument, similar to the one of Cash et al. [CHK+10]. Looking
ahead, such a partitioning of the tags will enable us to simulate the decryption oracle for answering
all decryption queries, and apply our high-moment crooked leftover hash lemma to argue that the
second and third ciphertext components, f(π2(m)) and g(h(π1(m)), π2(m)), reveal essentially no
information on m. For applying our lemma, we observe that f can be replaced by a lossy function f̃
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(while answering decryption queries through the trapdoor for g – as all decryption queries correspond
to injective tags for g), and that g is evaluated on π2(m) using a lossy tag h(π1(m)).

Proof of Theorem 7.1. Using Theorem 3.7, it suffices to prove that DECCA is block-wise (p, T, k)-
ACD1-CCA-secure. Let A be a 2p-bounded (T, k)-block-source chosen-ciphertext adversary that
queries the real-or-random oracle RoR exactly once. We assume without loss of generality that A
always makes q decryption queries for some polynomial q = q(λ). We denote by c(1), . . . , c(q) the
random variables corresponding to these decryption queries, and by c∗ = (c∗1, . . . , c

∗
T ) the vector of

random variables corresponding to the challenge ciphertexts returned by the RoR oracle.
For every i ∈ {0, . . . , T} we define an experiment Expt(i) that is obtained from the experiment

ExptrealCCADECCA,A by modifying the distribution of the challenge ciphertext. Recall that in the experiment

ExptrealCCADECCA,A the oracle RoR is given a block-source M , samples (m1, . . . ,mT ) ←M , and outputs

the challenge ciphertext (Encpk(m1), . . . ,Encpk(mT )). In the experiment Expt(i), the oracle RoR on

input a block-source M , samples (m1, . . . ,mT ) ←M and (u1, . . . , uT ) ← ({0, 1}n)T , and outputs
the challenge ciphertext (Encpk(m1), . . . ,Encpk(mT−i),Encpk(uT−i+1),Encpk(uT )). That is, the first
T − i challenge messages are sampled according to M , and the remaining messages are sampled
independently and uniformly at random. Then, observe that Expt(0) = ExptrealCCADECCA,A and Expt(T ) =

ExptrandCCADECCA,A. Therefore it suffices to prove that for every i ∈ {0, . . . , T − 1} the expression∣∣∣Pr[Expt(i)(λ) = 1
]
− Pr

[
Expt(i+1)(λ) = 1

]∣∣∣ (7.1)

is negligible in the security parameter λ. For the remainder of the proof we fix the value of i and
focus on the experiments Expt(i) and Expt(i+1). We denote by RoR(i, pk, ·) and RoR(i + 1, pk, ·)
the encryption oracles of these two experiments, respectively, and observe that the only difference
between them is the distribution of the challenge message mT−i.

In what follows, for each j ∈ {i, i+1} we describe seven experiments, Expt
(j)
0 , . . . ,Expt

(j+1)
6 , and

derive a series of claims relating them. We then combine these claims to bound the expression in
Equation (7.1).

Experiment Expt
(j)
0 . This experiment is the experiment Expt(j) as defined above.

Experiment Expt
(j)
1 . This experiment is obtained from Expt

(j)
0 by outputting an independently and

uniformly sampled bit whenever the (T − i)th challenge message and the messages corresponding
to the decryption queries c(1), . . . , c(q) define a “bad” sequence of inputs for the admissible hash
function h (recall the efficiently recognizable set Unlikelyh from Definition 2.3).

Formally, let x∗ = π1(mT−i) for j = i and let x∗ = π1(uT−i) for j = i + 1. In addition, for
any ζ ∈ [q], if Decsk(c

(ζ)) ̸= ⊥ then let xζ = π1
(
Decsk

(
c(ζ)
))
, and if Decsk

(
c(ζ)
)
= ⊥ then let

xζ be an arbitrary value that is different from x∗, x1, . . . , xζ−1. The experiment Expt
(j)
1 is defined

by running Expt
(j)
0 , and then outputting either an independently and uniformly sampled bit if

(x∗, x1, . . . , xq) ∈ Unlikelyh, or the output of Expt
(j)
0 if (x∗, x1, . . . , xq) /∈ Unlikelyh.

Claim 7.2. For each j ∈ {i, i+ 1}, it holds that∣∣∣Pr[Expt(j)0 (λ) = 1
]
− Pr

[
Expt

(j)
1 (λ) = 1

]∣∣∣ ≤ negl(λ).

Proof. By the definition of admissible hash functions (see Definition 2.3), the probability that
(x∗, x1, . . . , xq) ∈ Unlikelyh is some negligible function ν(λ). Let Bad(j) denote the event in which
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(x∗, x1, . . . , xq) ∈ Unlikelyh in the experiment Expt
(j)
0 , then∣∣∣Pr[Expt(j)1 (λ) = 1

]
− Pr

[
Expt

(j)
0 (λ) = 1

]∣∣∣
≤ Pr

[
¬Bad(j)

]
·
∣∣∣Pr[Expt(j)1 (λ) = 1 ¬Bad(j)

]
− Pr

[
Expt

(j)
0 (λ) ¬Bad(j)

]
= 1
∣∣∣

+Pr
[
Bad(j)

]
·
∣∣∣Pr[Expt(j)1 (λ) = 1 Bad

]
− Pr

[
Expt

(j)
0 (λ) Bad(j)

]
= 1
∣∣∣

= Pr
[
¬Bad(j)

]
· 0 + Pr[Bad] ·

∣∣∣∣12 − Pr
[
Expt

(j)
0 (λ) = 1

]∣∣∣∣
≤

Pr
[
Bad(j)

]
2

=
ν(λ)

2
,

which is negligible as required.

Experiment Expt
(j)
2 . This experiment is obtained from Expt

(j)
1 by outputting the output of Expt

(j)
1

with probability 1/∆, and outputting an independent and uniform bit with probability 1 − 1/∆,
where ∆ = ∆(λ) is the polynomial corresponding to q from the definition of admissible hash functions
(see Definition 2.3). The following claim follows in a straightforward manner.

Claim 7.3. It holds that∣∣∣Pr[Expt(i)2 (λ) = 1
]
− Pr

[
Expt

(i+1)
2 (λ) = 1

]∣∣∣ = 1

∆
·
∣∣∣Pr[Expt(i)1 (λ) = 1

]
− Pr

[
Expt

(i+1)
1 (λ) = 1

]∣∣∣ .
Proof. For each j ∈ {i, i+ 1} it holds that

Pr
[
Expt

(j)
2 (λ) = 1

]
=

1

∆
· Pr
[
Expt

(j)
1 (λ) = 1

]
+

(
1− 1

∆

)
· 1
2
.

Now, from the triangle inequality and Claim 7.2, we have the following series of inequalities.∣∣∣Pr[Expt(i)0 (λ) = 1
]
− Pr

[
Expt

(i+1)
0 (λ) = 1

]∣∣∣
≤
∣∣∣Pr[Expt(i)0 (λ) = 1

]
− Pr

[
Expt

(i)
1 (λ) = 1

]∣∣∣+ ∣∣∣Pr[Expt(i)1 (λ) = 1
]
− Pr

[
Expt

(i+1)
1 (λ) = 1

]∣∣∣
+
∣∣∣Pr[Expt(i+1)

1 (λ) = 1
]
− Pr

[
Expt

(i+1)
0 (λ) = 1

]∣∣∣
≤
∣∣∣Pr[Expt(i)0 (λ) = 1

]
− Pr

[
Expt

(i)
1 (λ) = 1

]∣∣∣+∆ ·
∣∣∣Pr[Expt(i)2 (λ) = 1

]
− Pr

[
Expt

(i+1)
2 (λ) = 1

]∣∣∣
+
∣∣∣Pr[Expt(i+1)

1 (λ) = 1
]
− Pr

[
Expt

(i+1)
0 (λ) = 1

]∣∣∣ ,
leading to the following corollary.

Corollary 7.4. It holds that∣∣∣Pr[Expt(i)0 (λ) = 1
]
− Pr

[
Expt

(i+1)
0 (λ) = 1

]∣∣∣
≤ ∆ ·

∣∣∣Pr[Expt(i)2 (λ) = 1
]
− Pr

[
Expt

(i+1)
2 (λ) = 1

]∣∣∣+ negl(λ).
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Experiment Expt
(j)
3 . This experiment is obtained from Expt

(j)
2 by changing the abort condition.

Specifically, at the end of experiment Expt
(j)
2 , we sample an independent initialization value K ′ (in

addition to K that is used by the key-generation algorithm), and denote by Partition
(j)
K′,h the event in

which PK′(h(x∗)) = Lossy and PK′(h(xi)) = Inj for any ζ ∈ [q] such that Decsk
(
c(ζ)
)
̸= ⊥, where

PK′ : {0, 1}v → {Lossy, Inj} is the partitioning function of the admissible hash function (recall that

the values x∗, x1, . . . , xq were defined in Expt
(j)
1 ).

We would like to replace the abort condition from experiment Expt
(j)
2 (which is independent of

the adversary’s view) with one that depends on the event Partition
(j)
K′,h. Unfortunately, all we are

guaranteed is that the event Partition
(j)
K′,h occurs with probability that is at least 1/∆ (assuming

that (x∗, x1, . . . , xq) /∈ Unlikelyh). Therefore, if (x
∗, x1, . . . , xq) /∈ Unlikelyh, we first approximate the

value
p(j) = Pr

K′←Kλ

[
Partition

(j)
K′,h | (h(x

∗), h(x1), . . . , h(xq))
]

by sampling a sufficient number of independent initialization keys K ′′ ← Kλ and observing whether

or not the event Partition
(j)
K′′,h occurs (with respect to the fixed values h(x∗), h(x1), . . . , h(xq)). For

any polynomial S, Hoeffding’s inequality yields that with ⌈λS · ∆⌉ samples we can obtain an ap-
proximation p̃(j) ≥ (1/∆) of p(j) such that

Pr

[∣∣∣p(j) − p̃(j)
∣∣∣ ≥ 1

∆ · S

]
≤ 1

2λ
. (7.2)

Then, looking all the way back to experiment Expt
(j)
1 , the output of Expt

(j)
3 is computed as follows:

1. If (x∗, x1, . . . , xq) ∈ Unlikelyh or if the event Partition
(j)
K′,h does not occur, then we output the

output of Expt
(j)
1 .

2. If (x∗, x1, . . . , xq) /∈ Unlikelyh and the event Partition
(j)
K′,h does occur, then we output the

output of Expt
(j)
1 with probability 1/(∆p̃(j)), and we “artificially” enforce an abort and output

an independent and uniform bit with probability 1− 1/(∆p̃(j)).

Claim 7.5. For each j ∈ {i, i+ 1} and for any polynomial S = S(λ) it holds that∣∣∣Pr[Expt(j)2 (λ) = 1
]
− Pr

[
Expt

(j)
3 (λ) = 1

]∣∣∣ ≤ 1

∆S
+

1

2λ
.

Proof. Denote by ¬Abort(j)2 and ¬Abort(j)3 the events in which the experiments Expt
(j)
2 and Expt

(j)
3

output the output of Expt
(j)
1 , respectively. Then,

Pr
[
¬Abort(j)2

]
=

1

∆
and Pr

[
¬Abort(j)3

]
= p(j) · 1

∆p̃(j)
=

1

∆
· p

(j)

p̃(j)
.

Equation (7.2) implies that with probability at least 1− 2−λ it holds that∣∣∣Pr[¬Abort(j)2

]
− Pr

[
¬Abort(j)3

]∣∣∣ = 1

∆
·

∣∣∣∣∣ p̃(j) − p(j)

p̃(j)

∣∣∣∣∣ ≤ 1

∆2Sp̃(j)
≤ 1

∆S
. (7.3)

As (7.3) holds for any (x∗, x1, . . . , xq) with probability at least 1−2−λ, we obtain that the statistical

distance between the outputs of experiments Expt
(j)
2 and Expt

(j)
3 is at most 1/(∆S) + 2−λ.

28



Now, from the triangle inequality and Claim 7.5, we get

∆ ·
∣∣∣Pr[Expt(i)2 (λ) = 1

]
− Pr

[
Expt

(i+1)
2 (λ) = 1

]∣∣∣
≤ ∆ ·

∣∣∣Pr[Expt(i)2 (λ) = 1
]
− Pr

[
Expt

(i)
3 (λ) = 1

]∣∣∣
+∆ ·

∣∣∣Pr[Expt(i)3 (λ) = 1
]
− Pr

[
Expt

(i+1)
3 (λ) = 1

]∣∣∣
+∆ ·

∣∣∣Pr[Expt(i+1)
3 (λ) = 1

]
− Pr

[
Expt

(i+1)
2 (λ) = 1

]∣∣∣ .
This gives us the following corollary.

Corollary 7.6. For any polynomial S = S(λ) it holds that

∆ ·
∣∣∣Pr[Expt(i)2 (λ) = 1

]
− Pr

[
Expt

(i+1)
2 (λ) = 1

]∣∣∣
≤ 2 ·

(
1

S
+

∆

2λ

)
+∆ ·

∣∣∣Pr[Expt(i)3 (λ) = 1
]
− Pr

[
Expt

(i+1)
3 (λ) = 1

]∣∣∣ .
Experiment Expt

(j)
4 . This experiment is obtained from Expt

(j)
3 by replacing the event PartitionK′,h

with the event PartitionK,h. That is, we do not sample a new initialization value K ′ for the partition-
ing, but rather consider the partition defined by the initialization valueK used by the key-generation
algorithm.

Claim 7.7. For each j ∈ {i, i+ 1} it holds that∣∣∣Pr[Expt(j)3 (λ) = 1
]
− Pr

[
Expt

(j)
4 (λ) = 1

]∣∣∣ ≤ negl(λ).

Proof. We observe that any adversary A for which the above difference is non-negligible can be
used to distinguish initialization values of the R-lossy trapdoor function family. The distinguisher
first chooses two keys K,K ′ ← K independently and uniformly at random. Then, upon receiving
σ the public index sampled from one of the two ensembles {σ : (σ, τ) ← GenBM(1

λ,Kλ)}λ∈N or
{σ : (σ, τ) ← GenBM(1

λ,K ′λ)}λ∈N, the distinguisher proceeds to efficiently simulate A as follows:

Sample two permutations and a lossy trapdoor function as in Expt
(j)
3 but use σg = σ (one of the

two possible function indices returned by the R-lossy challenge) to setup the public key pk. Then

proceed to simulate Expt
(j)
3 with the initialization value K.

If σ was sampled from the ensemble corresponding to K ′ then the adversary participates exactly

in Expt
(j)
3 . However, if σ was sampled from the ensemble corresponding to K then the simulation

proceeds exactly as in Expt
(j)
4 .

Corollary 7.8. It holds that∣∣∣Pr[Expt(i)3 (λ) = 1
]
− Pr

[
Expt

(i+1)
3 (λ) = 1

]∣∣∣
≤
∣∣∣Pr[Expt(i)4 (λ) = 1

]
− Pr

[
Expt

(i+1)
4 (λ) = 1

]∣∣∣+ negl(λ).

Experiment Expt
(j)
5 . This experiment is obtained from Expt

(j)
4 by not taking into account the

event (x∗, x1, . . . , xq) ∈ Unlikelyh when computing the output of the experiment. Looking all the

way back to experiment Expt
(j)
0 , the output of Expt

(j)
4 is computed as follows:
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1. If the event Partition
(j)
K,h does not occur, then we output an independent uniform bit.

2. If the event Partition
(j)
K,h does occur, then we output the output of Expt

(j)
0 with probability

1/(∆p̃(j)), and we “artificially” enforce an abort and output an independent and uniform bit
with probability 1− 1/(∆p̃(j)).

Note that the event (x∗, x1, . . . , xq) ∈ Unlikelyh has the same probability in the experiments Expt
(j)
4

and Expt
(j)
5 , and that this probability is upper bounded by some negligible function ν(n) (see Claim

7.2). Therefore, for each j ∈ {i, i + 1} we have that
∣∣∣Pr[Expt(j)4 (λ) = 1

]
− Pr

[
Expt

(j)
5 (λ) = 1

]∣∣∣ ≤
negl(λ), implying the following corollary

Corollary 7.9. It holds that∣∣∣Pr[Expt(i)4 (λ) = 1
]
− Pr

[
Expt

(i+1)
4 (λ) = 1

]∣∣∣
≤
∣∣∣Pr[Expt(i)5 (λ) = 1

]
− Pr

[
Expt

(i+1)
5 (λ) = 1

]∣∣∣+ negl(λ).

Looking ahead, the modification of ignoring the (negligible-probability) event (x∗, x1, . . . , xq) ∈
Unlikelyh ensures that the abort conditions of experiments Expt

(i)
5 and Expt

(i+1)
5 are computed in an

identical manner given K, h, and the challenge ciphertexts. Previously, the abort condition relied
on x∗ (which was defined as π1(mT−i) for j = i and as π1(uT−i) for j = i+ 1), and now it relies on
h(x∗) which is given as part of the challenge ciphertext (therefore, given the challenge ciphertexts,
the abort condition is now completely independent of whether j = i or j = i+ 1).

Experiment Expt
(j)
6 . This experiment is obtained from Expt

(j)
5 by changing the decryption oracle

to decrypt using the trapdoor τg of the R-lossy trapdoor function, instead of using the trapdoor

τf of the lossy trapdoor function. Specifically, we define the oracle D̃ec(sk, ·) that on input the

ith decryption query c(i) =
(
c
(i)
h , c

(i)
f , c

(i)
g

)
computes m = π−12

(
G−1

(
τg, c

(i)
g

))
, and checks whether

the ciphertext components are well-formed. Note, however, that for a decryption query c(i) that
corresponds to a lossy tag it is impossible to (efficiently) decrypt using τg. In this case the decryption
oracle outputs ⊥, and the output of the experiment is an independent and uniform bit.

Claim 7.10. For each j ∈ {i, i+ 1}, we have Pr
[
Expt

(j)
5 (λ) = 1

]
= Pr

[
Expt

(j)
6 (λ) = 1

]
.

Proof. Note that whenever the event Partition
(j)
K,h occurs then in particular all decryption queries

which are well-formed correspond to injective tags and therefore can be decrypted using τg. Thus,

conditioned on the event Partition
(j)
K,h (which as the exact same probability in Expt

(j)
5 and Expt

(j)
6 )

the oracles Dec and D̃ec are identical from which the claim follows.

Corollary 7.11. It holds that∣∣∣∣Pr[Expt(i)5 = 1
]
− Pr

[
Expt

(i+1)
5 = 1

] ∣∣∣∣ = ∣∣∣∣Pr[Expt(i)6 = 1
]
− Pr

[
Expt

(i+1)
6 = 1

] ∣∣∣∣.
Experiment Expt

(j)
7 . This experiment is obtained from Expt

(j)
6 by sampling the public key as

follows: instead of an injective function σf , sample a lossy function σ̃f . The rest of the experiment

is identical to Expt
(j)
6 .
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Claim 7.12. For each j ∈ {i, i+ 1} it holds that∣∣∣Pr[Expt(j)6 (λ) = 1
]
− Pr

[
Expt

(j)
7 (λ) = 1

]∣∣∣ ≤ negl(λ).

Proof. Observe that as σf is no longer used by the decryption oracle, and thus, replacing σf with
σ̃f does not affect decryption queries. Therefore, any efficient adversary for which the claim is false
can be used to distinguish a randomly sampled injective function σf from a randomly sampled lossy
function σ̃f .

As a corollary, we get

Corollary 7.13. It holds that∣∣∣Pr[Expt(i)6 (λ) = 1
]
− Pr

[
Expt

(i+1)
6 (λ) = 1

]∣∣∣
≤
∣∣∣Pr[Expt(i)7 (λ) = 1

]
− Pr

[
Expt

(i+1)
7 (λ) = 1

]∣∣∣+ negl(λ).

The final claim we require is as follows.

Claim 7.14. It holds that∣∣∣Pr[Expt(i)7 (λ) = 1
]
− Pr

[
Expt

(i+1)
7 (λ) = 1

]∣∣∣ ≤ negl(λ).

Proof. We prove the claim by upper bounding the statistical distance between the output distribu-

tions of Expt
(i)
7 and Expt

(i+1)
7 . We observe that these output distributions can be computed by ap-

plying the exact same randomized (and, very likely, inefficient) function to the marginal distribution

consisting of the public key p̃k and the challenge ciphertext c∗ in each experiment. The difference
between the resulting distributions will follow from the difference between the challenge ciphertexts:

In Expt
(i)
7 the (T −i)th challenge message is mT−i, whereas in Expt

(i+1)
7 it is a uniform message uT−i.

This follows since, as discussed above, the modification of ignoring the (negligible-probability) event

(x∗, x1, . . . , xq) ∈ Unlikelyh ensures that the abort conditions of experiments Expt
(i)
5 and Expt

(i+1)
5

are computed in an identical manner given K, h, and the challenge ciphertexts (and this continued
to hold in remaining experiments). Previously, the abort condition relied on x∗ (which was defined
as π1(mT−i) for j = i and as π1(uT−i) for j = i + 1), and now it relies on h(x∗) which is given as
part of the challenge ciphertext (therefore, given the challenge ciphertexts, the abort condition is
now completely independent of whether j = i or j = i+ 1).

Therefore, it suffices to consider the statistical distance between the distribution (p̃k, c∗) in the

experiment Expt
(i)
7 and the same distribution in the experiment Expt

(i+1)
7 (since applying the same

randomized function to a pair of distributions cannot increase the statistical distance). Moreover,
we prove that this statistical distance is negligible in the security parameter even when fixing all
components of the public key p̃k other than the two permutations π1 and π2. Specifically, we prove
that for any set X of at most 2p (T, k)-block-sources, with an overwhelming probability over the
choice of π1 and π2, for any M ∈ X , the distribution of the challenge ciphertext c∗ resulting from

M in Expt
(i)
7 and the distribution of the challenge ciphertext c∗ resulting from M in Expt

(i+1)
7 lead

these two experiments to statistically-close outputs.

Recall that the challenge ciphertexts for Expt
(j)
7 are of the form c∗ = (c∗1, . . . , c

∗
T ) where the

components c∗1, . . . , c
∗
T−i−1 and c∗T−i+1, . . . , c

∗
T are identically distributed for j ∈ {i, i+1}. Moreover,

in both experiments the components c∗T−i+1, . . . , c
∗
T are encryptions of independent and uniformly
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distributed messages. Therefore, it suffices to consider the distribution of c∗T−i conditioned on
c∗1, . . . , c

∗
T−i−1 in each experiment. Recall from our definitions that,

c∗T−i =



(c∗h, c
∗
f , c
∗
g)

def
=
(
h(π1(mT−i)),F

(
σ̃f , π2(mT−i)

)
,G
(
σg, h(π1(mT−i)), π2(mT−i)

))
for j = i,

(u∗h, u
∗
f , u
∗
g)

def
=
(
h(π1(uT−i)),F

(
σ̃f , π2(uT−i)

)
,G
(
σg, h(π1(uT−i)), π2(uT−i)

))
for j = i+ 1.

Denote by C∗h, C
∗
f , and C∗g the random variables corresponding to c∗h, c

∗
f , and c∗g, respectively, and

similarly U∗h , U
∗
f , U

∗
g corresponding to u∗h, u

∗
f , u
∗
g where the probability is taken over the choice of π1,

π2, mT−i, and uT−i. In what follows, we fix m1, . . . ,mT−i−1, and argue that the two distributions
(C∗h, C

∗
f , C

∗
g ) and (U∗h , U

∗
f , U

∗
g ) conditioned on the first T − i− 1 challenge messages m1, . . . ,mT−i−1

are statistically close.
We begin by focusing on the distributions C∗h = h(π1(MT−i)) and U∗h = h(π1(UT−i). Observe

that h : {0, 1}∗ → {0, 1}v is an (n, n− v)-lossy function, and let Z denote the indicator of the event
in which M1 = m1, . . . ,MT−i−1 = mT−i−1. Consider the set Z defined as the set of distributions
MT−i|Z=1 for all M = (M1, . . . ,MT−i, . . . ,MT ) ∈ X and for all possible values of m1, . . . ,mT−i−1.
Then, we have,

|Z| ≤ |X | · 2(T−i−1)n ≤ |X | · 2(T−1)n ≤ 2p+n(T−1).

Applying Theorem 4.6 (for T = 1) with our choice of parameters implies that with an overwhelming
probability over the choice of π1 ← Π1 for any such MT−i we have

SD (h(π1(MT−i))|Z=1, h(π1(UT−i)|Z=1) ≤ 2−ω(log λ). (7.4)

We now fix any π1 ∈ Π1 for which (7.4) holds. Consider now any possible value αh that the

random variables h(π1(MT−i)) and h(π1(UT−i) may obtain in the experiments Expt
(i)
7 and Expt

(i+1)
7 ,

respectively. If αh corresponds to an injective tag for G, then in particular the event PartitionK,h

will not occur in either one of the experiments, and thus the output of both experiments is an
independent and uniform bit. Moreover, (7.4) above implies that the probabilities of having an αh

that corresponds to injective tag in Expt
(i)
7 and Expt

(i+1)
7 are negligibly close. Therefore, it remains

to show that for all but a negligible probability of the αh’s that correspond to lossy tags for G, the
distributions (C∗f , C

∗
g )|C∗

h=αh
and (U∗f , U

∗
g )|U∗

h=αh
are statistically close (once again, conditioned on

the first T − i− 1 challenge messages m1, . . . ,mT−i−1 as before).
The following straightforward claim shows that the message distributions of the (T − i)th chal-

lenge message in Expt
(i)
7 and Expt

(i+1)
7 (denotedMT−i and UT−i, respectively), have sufficient entropy

even when conditioned on αh.

Claim 7.15. For any ϵ > 0, with probability at least 1− ϵ over the choice of αh ← C∗h conditioned
on PK(αh) = Lossy, it holds that

H∞(MT−i C∗h = αh,M1 = m1, . . . ,MT−i−1 = mT−i−1) ≥ k − v − log(1/ϵ).

Similarly, for any ϵ > 0, with probability at least 1 − ϵ over the choice of αh ← U∗h conditioned on
PK(αh) = Lossy, it holds that

H∞(UT−i U∗h = αh,M1 = m1, . . . ,MT−i−1 = mT−i−1) ≥ n− v − log(1/ϵ).
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Proof. As the output length of h is v bits, the claim follows from applying Lemma 2.1 to the dis-
tribution MT−i|M1=m1,...,MT−i−1=mT−i−1

(recall that M is a (T, k)-block source) and to the uniform
distribution UT−i.

Fix some ϵ = ω(log λ) and any αh for which both parts of Claim 7.15 hold, and let k′ =
k − v − log(1/ϵ). Then, since PK(αh) = Lossy, we have that αh corresponds to a lossy tag for
G, and therefore for the function fh : {0, 1}n → {0, 1}n′

defined as fh(·) = (F(σ̃f , ·),G(σg, c∗h, ·))
it holds that |Im(fh)| ≤ 22n−2ℓ. Let Y denote the indicator of the event in which C∗h = αh,
M1 = m1, . . . ,MT−i−1 = mT−i−1, and consider the set Y defined as the set of distributionsMT−i|Y=1

for all M = (M1, . . . ,MT−i, . . . ,MT ) ∈ X and for all possible values of αh,m1, . . . ,mT−i−1. Then,
we have,

|Y| ≤ |X | · 2v · 2(T−i−1)n ≤ |X | · 2v+(T−1)n ≤ 2p+v+n(T−1).

Now, applying Theorem 4.6 (setting T = 1) with our choice of parameters implies that with an
overwhelming probability over the choice of π2, for any such MT−i and Y we have

SD (fh(π2(MT−i))|Y=1, fh(Un)) ≤ 2−ω(log λ).

An essentially identical argument holds for UT−i, and from this it follows that

SD

((
C∗f , C

∗
g

) ∣∣∣
C∗

h=αh

,
(
U∗f , U

∗
g

) ∣∣∣
U∗
h=αh

)
≤ negl(λ) (7.5)

for all but a negligible probability of the αh’s that correspond to lossy tags for G, as required.

Completing the proof of Theorem 7.1. To complete the proof of the theorem, recollect that it
suffices to bound the expression in (7.1). For any polynomial S = S(λ), collecting negligible terms
negl(λ), we have∣∣∣∣Pr[Expt(i)(λ) = 1

]
− Pr

[
Expt(i+1)(λ) = 1

] ∣∣∣∣
def
=

∣∣∣∣Pr[Expt(i)0 (λ) = 1
]
− Pr

[
Expt

(i+1)
0 (λ) = 1

] ∣∣∣∣
≤ ∆ ·

∣∣∣∣Pr[Expt(i)2 (λ) = 1
]
− Pr

[
Expt

(i+1)
2 (λ) = 1

] ∣∣∣∣+ negl(λ) (from Cor. 7.4)

≤ 2

(
1

S
+

∆

2λ

)
+∆ ·

∣∣∣∣Pr[Expt(i)3 (λ) = 1
]
− Pr

[
Expt

(i+1)
3 (λ) = 1

] ∣∣∣∣+ negl(λ) (from Cor. 7.6)

≤ ∆ ·
∣∣∣∣Pr[Expt(i)4 (λ) = 1

]
− Pr

[
Expt

(i+1)
4 (λ) = 1

] ∣∣∣∣+ 2

(
1

S
+

∆

2λ

)
+ negl(λ) (from Cor. 7.8)

≤ ∆ ·
∣∣∣∣Pr[Expt(i)5 (λ) = 1

]
− Pr

[
Expt

(i+1)
5 (λ) = 1

] ∣∣∣∣+ 2

(
1

S
+

∆

2λ

)
+ negl(λ) (from Cor. 7.9)

= ∆ ·
∣∣∣∣Pr[Expt(i)6 (λ) = 1

]
− Pr

[
Expt

(i+1)
6 (λ) = 1

] ∣∣∣∣+ 2

(
1

S
+

∆

2λ

)
+ negl(λ) (from Cor. 7.11)

≤ ∆ ·
∣∣∣∣Pr[Expt(i)7 (λ) = 1

]
− Pr

[
Expt

(i+1)
7 (λ) = 1

] ∣∣∣∣+ 2

(
1

S
+

∆

2λ

)
+ negl(λ) (from Cor. 7.13)

≤ 2

(
1

S
+

∆

2λ

)
+ negl(λ). (from Claim 7.14)

As ∆ = ∆(λ) is some fixed polynomial, and the above holds for any polynomial S = S(λ), this
completes the proof of Theorem 7.1.
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8 Generic Constructions in the Random-Oracle Model

In this section we present two generic constructions in the random-oracle model based on any
(randomized) public-key encryption scheme. In our first construction (Section 8.1), given any public-
key encryption scheme, we modify its encryption algorithm Enc into a deterministic one Enc′ as
follows: Given a public key pk and a message m, the encryption algorithm Enc′ first computes
rm = H(m∥u), where H is a hash function modeled as a random oracle, and u is a uniformly
chosen string of length roughly p bits that is part of the public key of the deterministic scheme. The
encryption algorithm then outputs the ciphertext Encpk(m; rm). This scheme was originally proposed
by Bellare, Boldyreva and O’Neill [BBO07], who proved its security with respect to adversarially-
chosen plaintext distributions that are independent of the public key used by the scheme. We observe
that by including in the public key a uniform value u of length roughly p bits, and then using it
during the encryption process as described above, we obtain security against 2p-bounded adversaries.

Our second construction (Section 8.2) considers a setting where adversaries adaptively query the
real-or-random encryption oracle only with plaintexts distributions that are samplable using at most
some predetermined number, q = q(λ), of random-oracle queries (and we do not require an upper
bound, 2p, on the number of plaintext distributions from which an adversary can choose). In this
setting we show that the additive blow-up in the length of the public key in our first construction
can be avoided. Specifically, given any public-key encryption scheme, we modify its encryption
algorithm Enc into a deterministic one Enc′ as follows: Given a public key pk and a message m,
the encryption algorithm Enc′ first computes rm = ⊕q+1

i=1H(m∥i), and then outputs the ciphertext
Encpk(m; rm).

8.1 A Construction Secure Against 2p-Bounded (T, k)-Source Adversaries

The scheme. Let Π = (KeyGen,Enc,Dec) be a (randomized) public-key encryption scheme. We
denote by n = n(λ) and ρ = ρ(λ) the bit-lengths of the messages and random strings that are given
as input to the encryption algorithm Enc, respectively. In addition, let H : {0, 1}∗ → {0, 1}ρ be a
hash function modeled as a random oracle. Our scheme Π′p = (KeyGen′,Enc′,Dec′) is parameterized
by a polynomial p = p(λ).

• Key generation. On input the security parameter 1λ the key-generation algorithm KeyGen′

samples (pk, sk) ← KeyGen(1λ) and u ← {0, 1}ℓ, where ℓ = ℓ(λ) = p(λ) + ω(log λ). It then
outputs pk′ = (pk, u) and sk′ = sk.

• Encryption. The encryption algorithm Enc′ on input a public key pk′ = (pk, u) and a message
m, computes rm = H(m∥u), and outputs c = Encpk(m; rm).

• Decryption. The decryption algorithm Dec′ is identical to the underlying decryption algo-
rithm Dec.

Theorem 8.1. Let Π be a randomized public-key encryption scheme. Then, for any polynomials
p = p(λ), T = T (λ), and for any k = k(λ) = ω(log λ) the following hold:

1. If Π is IND-CPA-secure then Π′p is (p, T, k)-ACD-CPA-secure.

2. If Π is IND-CCA-secure then Π′p is (p, T, k)-ACD-CCA-secure.

Proof overview. The main idea underlying the proof of security is that, for any challenge message
m, as long asH is not queried onm∥u, either by the adversaryA or by its adaptively chosen plaintext
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distribution M ∈ X , then the adversary learns essentially no information on m (for simplicity we
focus here on security for a single message m with a little abuse of notation, and refer the reader
to the formal analysis below for the general case). We divide the set of random-oracle queries made
by A and M into queries made in either of the following three phases, and for each of these phases
we argue that the query m∥u appears with only a negligible probability:

• H-queries made by A before querying the real-or-random encryption oracle: As A runs in
polynomial time, and m ← M is sampled with a super-logarithmic min-entropy, then it is
unlikely that A queries H with any input of the form m∥∗.

• H-queries made by the challenge plaintext distribution M : The randomness, z, used by the
real-or-random oracle when sampling from M is independent of u, and thus can be thought of
as chosen before u. Therefore, for any set X of at most 2p plaintext distributions, and for any
M ∈ X , the probability over the choice of u← {0, 1}ℓ that M(z) queries H with any input of
the form ∗∥u is at most |M | · 2−ℓ (where |M | is an upper bound in the number of H-queries
made by M). By setting ℓ = p+ω(log λ), a union bound over all 2p possible such M ’s implies
that with an overwhelming probability no such M queries H on an input of the form ∗∥u.

• H-queries made by A after querying the real-or-random encryption oracle: Assuming that
H was not queried with m∥u in either one of the two previous phases, then the value rm =
H(m∥u) is independently and uniformly distributed from the adversary’s point of view (subject
to producing the challenge ciphertext). Thus, any adversary that queries H on m∥u in this
phase for the first time case be used to break the security of the underlying (randomized)
encryption scheme.

Proof of Theorem 8.1. Using Theorem 3.4 and Theorem 3.7 it suffices to prove that Π′p is
(p, T, k)-ACD1-CPA-secure if Π is IND-CPA-secure and Π′p is (p, T, k)-ACD1-CCA-secure if Π is
IND-CCA-secure. Let A be a 2p-bounded (T, k)-source adversary if Π is IND-CPA-secure and a
2p-bounded (T, k)-source chosen-ciphertext adversary if Π is IND-CCA-secure. Note that in the
random-oracle model, the adversary A gets oracle access to H. Additionally, the (T, k)-source M
with which A queries RoR(mode, pk, ·) is samplable by a probabilistic polynomial-time algorithm
that can query the random oracle H. The decryption algorithm Dec′sk(·) is identical to Decsk(·) of
the underlying scheme Π and therefore does not query the random oracle H.9 In what follows, we
describe four experiments, Expt0, . . . ,Expt3, and derive a series of claims relating them. We then
combine these claims to bound the advantage of the adversary.

For our proof we define a variant R̃oR of the oracle RoR, which uses true randomness for the
encryption process instead of the value rm = H(m∥u). Specifically, on input (mode, pk,M) it
samples (m1, . . . ,mT ) from eitherM if mode = real or UT if mode = rand, then samples r1, . . . , rT ←
({0, 1}ρ)T independently and uniformly at random, and outputs (Encpk(m1; r1), . . . ,Encpk(mT ; rT )).

Experiment Expt0. This is the experiment ExptrealΠ′,A(λ) (recall Definition 3.3) if Π is IND-CPA-

secure or the experiment ExptrealCCAΠ′,A (λ) (recall Definition 3.6) if Π is IND-CCA secure.

Experiment Expt1. This experiment is obtained from Expt0 by replacing RoR(real, ·, ·) with

R̃oR(real, ·, ·).

Claim 8.2. |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| is negligible in λ.

9We do allow the underlying scheme Π to rely on a random oracle and in this case, we assume that H is independent
of the random oracle used by Π (e.g., uses a different prefix).
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Proof. Let (m1, . . . ,mT ) denote the messages sampled from M . For every j ∈ [T ] we denote by
Badj the event in which H is queried on the point mj∥u. Note that for every j ∈ [T ], as long as the
event Badj does not occur, then the value rmj = H(mj∥u) is uniformly distributed and independent

of the adversary’s view. Thus, the oracles RoRH(real, pk, ·) and R̃oR
H
(real, pk, ·) are identical as long

as the event Bad = ∪Tj=1Badj does not occur. This implies that∣∣∣∣Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]

∣∣∣∣ ≤ Pr[Bad] .

To calculate Pr[Bad], we divide the random oracle queries during the experiment Expt0 and Expt1
into the following three (disjoint) phases.

Phase I: Random oracle queries that are made by A before querying RoRH(real, pk, ·)
or R̃oR

H
(real, pk, ·). During this phase the two experiments are identical. As A is a probabilistic

polynomial-time algorithm, it queries H only a polynomial number of times. Noting that for each
j ∈ [T ], the random variable corresponding to mj has min-entropy at least k(λ), the probability over
the choice of mj that mj appears in even one of the H-queries that were made by A before mj is
sampled is at most poly(λ) · 2−k(λ), which is negligible since k(λ) = ω(log λ). Thus, the probability
that the event Bad occurs in phase I is negligible in either one of Expt0 or Expt1.

Phase II: Random oracle queries that are made by the challenge distribution M . We
model the probabilistic polynomial-time algorithm that samples from M as taking a single input
a sufficiently long random string z ∈ {0, 1}∗. Then, for any M ∈ X and randomness z, the
probability over the choice of u← {0, 1}ℓ that M(z) queries H on an input of the form (∗∥u) is at
most poly(λ) · 2−|u|, where poly(λ) is an upper bound on the number of oracle queries made by any
M ∈ X . Therefore, for any randomness z, a union bound over all M ∈ X implies that

Pr
u←{0,1}ℓ

[
∃M ∈ X s.t. M(z) queries H on some (∗∥u)

]
≤ poly(λ) · 2−|u| · |X |.

From our choice of ℓ, the probability therefore that Bad occurs for the first time in phase II is
negligible in either Expt0 or Expt1.

Phase III: Random oracle queries that are made by A after querying RoRH(real, pk, ·)
or R̃oR

H
(real, pk, ·). Assuming that the event Bad did not occur during phases I and II, then

during this phase Expt0 and Expt1 are identical until the event Bad occurs10. Therefore, it suffices
to consider Expt1.

In Expt1, however, the security of the underlying encryption scheme yields that the view of the
adversary A is computationally indistinguishable from being independent of (m1, . . . ,mT ). Specif-

ically, since the oracle R̃oR uses true randomness when encrypting m1, . . . ,mT , the security of the
underlying encryption scheme enables us to replace the output of this oracle by T random encryp-
tions of 0, and the probability of the event Bad will change by only a negligible additive factor. In
this case, since A queries the random oracle only a polynomial number of times, and since each mj

has min-entropy at least k(λ) = ω(log λ), there is only a negligible probability that some mj would
appear in even one of the H-queries that were made by A. Thus, the probability that the event Bad
occurs for the first time in phase III is negligible in either one of Expt0 or Expt1.

10This is observed by noticing that if the event Bad did not occur during phases I and II, then for every j ∈ [T ] H
was not queried on (mj∥u). Thus, if for every j ∈ [T ] we set the value of the random oracle H at the point (mj∥u) to
rj (where rj is the random string used by R̃oR to encrypt mj) it holds that the two executions are in fact identical
(until, clearly, the event Bad occurs for the first time).
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Experiment Expt2. This experiment is obtained from Expt1 by replacing R̃oR(real, ·, ·) with

R̃oR(rand, ·, ·).

Claim 8.3. |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| is negligible in λ.

Proof. This follows from the security of the underlying scheme Π. Observe that as R̃oR imple-
ments Π using true randomness for the encryption process. Therefore, any adversary A for which
|Pr[Expt1(λ) = 1]−Pr[Expt2(λ) = 1] | is non-negligible can be used to break the IND-CPA security
or the IND-CCA security of Π.

Experiment Expt3. This experiment is obtained from Expt2 by replacing R̃oR(rand, ·, ·) with
RoR(rand, ·, ·). That is, this is experiment ExptrandΠ′,A(λ) (recall Definition 3.3) if Π is IND-CPA-secure,

experiment ExptrandCCAΠ′,A (λ) (recall Definition 3.6) if Π is IND-CCA-secure.

Claim 8.4. |Pr[Expt2(λ) = 1]− Pr[Expt3(λ) = 1]| is negligible in λ.

Proof. The proof of this claim follows in an identical manner to the proof of Claim 8.2 noting that
the distribution UT from which challenge messages are sampled has min-entropy at least k in each
coordinate.

Completing the proof of Theorem 8.1. Let (ATK,mode1,mode2) = (ACD1-CPA, real, rand)
if Π is IND-CPA-secure, and let (ATK,mode1,mode2) = (ACD1-CCA, realCCA, randCCA) if Π is
IND-CCA-secure. Then the definition of AdvATK

Π′
p,A(λ) implies that for any 2p-bounded (T, k)-source

adversary A it holds that

AdvATK
Π′

p,A(λ)
def
=
∣∣∣Pr[Exptmode1

Π′
p,A

(λ) = 1
]
− Pr

[
Exptmode2

Π′
p,A

(λ) = 1
]∣∣∣

= |Pr[Expt0(λ) = 1]− Pr[Expt3(λ) = 1]|
≤ |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| (8.1)

+ |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| (8.2)

+ |Pr[Expt2(λ) = 1]− Pr[Expt3(λ) = 1]| . (8.3)

Claims 8.2 – 8.4 state that the terms in Equations (8.1) – (8.3) are negligible, and this completes
the proof of Theorem 8.1.

8.2 A Construction Secure Against q-Query (T, k)-Source Adversaries

We define the notion of a q-query adversary, and extend our notions of adaptive security to such
adversaries. Our definitions, in addition to the parameters T denoting the number of blocks and
k = k(λ) denoting the min-entropy requirement are parameterized by a new parameter q = q(λ) that
denotes an upper bound on the number of queries to the random oracle required for sampling from
M . Unlike the definitions in Section 3, we do not need a bound 2p on the set of allowed message
distributions. As before, they are implicitly parameterized by bit-length n = n(λ) of plaintext
blocks.

Definition 8.5 (q-query (T, k)-source adversary). Let A be a probabilistic polynomial-time algo-
rithm that is given as input a pair (1λ, pk) and oracle access to RoR(mode, pk, ·) for some mode ∈
{real, rand}. Then, A is a q-query (T, k)-source adversary if for each of A’s RoR queries M it holds
that:
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– M is a (T, k)-source that is samplable by a polynomial-size circuit using at most q queries
to the random oracle.

– For any (m1, . . . ,mT ) in the support of M it holds that mi ̸= mj for any distinct i, j ∈ [T ].

In addition, A is a block-source adversary if each such M is a (T, k)-block-source.

Definition 8.6 (Adaptive chosen-distribution attacks (ACD-CPA)). A deterministic public-key
encryption scheme Π = (KeyGen,Enc,Dec) is (q, T, k)-ACD-CPA-secure (resp. block-wise (s, k)-
ACD-CPA-secure) if for any probabilistic polynomial-time q-query (T, k)-source (resp. block-source)
adversary A, there exists a negligible function ν(k) such that

AdvACD-CPA
Π,A (λ)

def
=
∣∣∣Pr[ExptrealΠ,A(λ) = 1

]
− Pr

[
ExptrandΠ,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
Π,A (λ) is identical to the one in

Definition 3.3.
In addition, such a scheme is (q, T, k)-ACD1-CPA-secure (resp. block-wise (q, T, k)-ACD1-CPA-

secure) if the above holds for any probabilistic polynomial-time q-query (T, k)-source (resp. block-
source) adversary A that queries RoR at most once.

Definition 8.7 (q-query (T, k)-source chosen-ciphertext adversary). Let A be an algorithm that is
given as input a pair (1λ, pk) and oracle access to two oracles: RoR(mode, pk, ·) for some mode ∈
{real, rand}, and Dec(sk, ·). Then, A is an q-query (T, k)-source chosen-ciphertext (resp. block-source)
adversary if the following two conditions hold:

1. A is an q-query (T, k)-source (resp. block-source) adversary.

2. A does not query Dec(sk, ·) with any ciphertext c that was part of a previous output by the
RoR oracle.

Definition 8.8 (Adaptive chosen-distribution chosen-ciphertext attacks). A deterministic public-
key encryption scheme Π = (KeyGen,Enc,Dec) is (q, T, k)-ACD-CCA-secure (resp. block-wise (q,
T, k)-ACD-CCA-secure) if for any probabilistic polynomial-time q-query (T, k)-source (resp. block-
source) chosen-ciphertext adversary A, there exists a negligible function ν(k) such that

AdvACD-CCA
Π,A (λ)

def
=
∣∣∣Pr[ExptrealCCAΠ,A (λ) = 1

]
− Pr

[
ExptrandCCAΠ,A (λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment ExptmodeCCA
Π,A (λ) is identical to the one

defined in Definition 3.6.

We are now ready to describe a scheme with short public keys.

The scheme. Let Π = (KeyGen,Enc,Dec) be a (randomized) public-key encryption scheme. We
denote by n = n(λ) and ρ = ρ(λ) the bit-lengths of the messages and random strings that are given as
input to the encryption algorithm Enc, respectively. In addition, let H : {0, 1}∗ → {0, 1}ρ be a hash
function modeled as a random oracle. Our scheme Π′q = (KeyGen′,Enc′,Dec′) is parameterized by an
upper bound q = q(λ) on the number of random-oracle queries made by the plaintext distributions.

• Key generation. The key-generation algorithm KeyGen′ is identical to the underlying key-
generation algorithm KeyGen.

• Encryption. The encryption algorithm Enc′ on input a public key pk and a message m,
computes rm = ⊕q+1

i=1H(m∥i), and outputs c = Encpk(m; rm).
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• Decryption. The decryption algorithm Dec′ is identical to the underlying decryption algo-
rithm Dec.

Theorem 8.9. Let Π be a randomized public-key encryption scheme. Then, for any polynomials
q = q(λ), T = T (λ), and for any k = k(λ) = ω(log λ) the following hold:

1. If Π is IND-CPA-secure then Π′q is (q, T, k)-ACD-CPA-secure.

2. If Π is IND-CCA-secure then Π′q is (q, T, k)-ACD-CCA-secure.

Proof overview. The main idea underlying the proof of security is similar to that underlying
the proof of Theorem 8.1: For any challenge message m, as long as H is not queried on the q + 1
points m∥1, . . . ,m∥q+1, either by the adversary A or by its adaptively chosen plaintext distribution
M ∈ X , then the adversary learns essentially no information on m (for simplicity we focus here on
security for a single message m, and refer the reader to the formal analysis below for the general
case). As in the proof of Theorem 8.1, we divide the set of random-oracle queries made by A and
M into queries made in either of the following three phases, and for each of these phases we argue
that the random oracle is queried with q+1 queries m∥1, . . . ,m∥q+1 only a negligible probability:

• H-queries made by A before querying the real-or-random encryption oracle: As A runs in
polynomial time, and m ← M is sampled with a super-logarithmic min-entropy, then it is
unlikely that A queries H with any input of the form m∥∗.

• H-queries made by the challenge plaintext distributionM : The distribution is q-query bounded
and therefore there is at least one index j ∈ [q+1] such that m∥j is not queried by the circuit
that samples the distribution.

• H-queries made by A after querying the real-or-random encryption oracle: Assuming that H
was not queried with each of m∥j for j ∈ [q+1] in either one of the two previous phases, then
the value rm = ⊕q+1

i=1H(m∥i) is independently and uniformly distributed from the adversary’s
point of view (subject to producing the challenge ciphertext). Thus, any adversary that queries
H on each of m∥j in this phase for the first time case be used to break the security of the
underlying (randomized) encryption scheme.

Proof of Theorem 8.9. Using Theorem 3.4 and Theorem 3.7 slightly modified to accommodate q-
query adversaries, it suffices to prove that Π′q is (q, T, k)-ACD1-CPA-secure if Π is IND-CPA-secure
and Π′q is (q, T, k)-ACD1-CCA-secure if Π is IND-CCA-secure. As mentioned above, the following
proof is similar to that of Theorem 8.1, and follows essentially the same structure and reasoning.

Let A be a (q, T, k)-ACD1-CPA adversary if Π is IND-CPA-secure and a (q, T, k)-ACD1-CCA
adversary if Π is IND-CCA-secure. In the random oracle model, the adversary A gets oracle access
to H. Additionally, from the definition of a q-query adversary, the (T, k)-source M with which
A queries RoR(mode, pk, ·) is samplable by oracle circuit (that is, the circuit is allowed to contain
H-gates) with at most q oracle gates. Note that the decryption algorithm Dec′sk(·) is identical to
Decsk(·) of the underlying scheme Π and therefore does not query the random oracle H.11 In what
follows, we describe four experiments, Expt0, . . . ,Expt3, and derive a series of claims relating them.
We then combine these claims to bound the advantage of the adversary.

For our proof we define a variant R̃oR of the oracle RoR, which uses true randomness for the
encryption process instead of the value rm = ⊕q+1

i=1H(m∥i). Specifically, on input (mode, pk,M)

11We do allow the underlying scheme Π to rely on a random oracle and in this case, we assume that H is independent
of the random oracle used by Π (e.g., uses a different prefix).
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it first samples (m1, . . . ,mT ) from either M if mode = real or UT if mode = rand, then samples
r1, . . . , rT ← ({0, 1}ρ)T independently and uniformly at random, and outputs(

Encpk(m1; r1), . . . ,Encpk(mT ; rT )
)
.

Experiment Expt0. This is the experiment ExptrealΠ′,A(λ) (recall Definition 3.3) if Π is IND-CPA-

secure or the experiment ExptrealCCAΠ′,A (λ) (recall Definition 3.6) if Π is IND-CCA secure.

Experiment Expt1. This experiment is obtained from Expt0 by replacing RoR(real, ·, ·) with

R̃oR(real, ·, ·).

Claim 8.10. |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| is negligible in λ.

Proof. Let (m1, . . . ,mT ) denote the messages sampled from M . For every j ∈ [T ] we denote by
Badj the event in which H is queried on each of the q+ 1 points (mj∥1), . . . , (mj∥q+ 1). Note that

for every j ∈ [T ], as long as the event Badj does not occur, then the value rmj = ⊕q+1
i=1H(mj∥i) is

uniformly distributed and independent of the adversary’s view. Thus, the oracles RoRH(real, pk, ·)
and R̃oR

H
(real, pk, ·) are identical as long as the event Bad = ∪Tj=1Badj does not occur. This implies

that |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| ≤ Pr[Bad].
We divide the random oracle queries during the experiment Expt0 and Expt1 into the following

three (disjoint) phases.

Phase I: Random oracle queries that are made by A before querying RoRH(real, pk, ·)
or R̃oR

H
(real, pk, ·). During this phase the two experiments are identical. As A is a probabilistic

polynomial-time algorithm, it queries H only a polynomial number of times. Noting that for each
j ∈ [T ], the random variable corresponding to mj has min-entropy at least k(λ), the probability over
the choice of mj that mj appears in even one of the H-queries that were made by A before mj is
sampled is at most poly(λ) · 2−k(λ), which is negligible since k(λ) = ω(log λ). Thus, the probability
that the event Bad occurs in phase I is negligible in either one of Expt0 or Expt1.

Phase II: Random oracle queries that are made by M . As (m1, . . . ,mT )←M is chosen by
a q-query adversary, the number of H-queries in this phase is at most q. Therefore, for any j ∈ [T ]
assuming that mj does not appear in an H-query in phase I, there always exists at least one index
i ∈ [q + 1] such that H is not queried on (mj∥i). Thus, the probability that the event Bad occurs
for the first time in phase II is negligible in either one of Expt0 or Expt1.

Phase III: Random oracle queries that are made by A after querying RoRH(real, pk, ·)
or R̃oR

H
(real, pk, ·). Assuming that the event Bad did not occur during phases I and II, then

during this phase Expt0 or Expt1 are identical until the event Bad occurs12. Therefore, it suffices to
consider Expt1.

In Expt1, however, the security of the underlying encryption scheme yields that the view of the
adversary A is computationally indistinguishable from being independent of (m1, . . . ,mT ). Specif-

ically, since the oracle R̃oR uses true randomness when encrypting m1, . . . ,mT , the security of the
underlying encryption scheme enables us to replace the output of this oracle by T random encryp-
tions of 0, and the probability of the event Bad will change by only a negligible additive factor. In

12This is observed by noticing that if the event Bad did not occur during phases I and II, then for every j ∈ [T ]
there exists at least one index i = i(j) ∈ [q + 1] such that H was not queried on (mj∥i). Thus, if for every j ∈ [T ] we
set the value of the random oracle H at the point (mj∥i) to rj ⊕t∈[q+1]\{i} H(mj∥t) (where rj is the random string

used by R̃oR to encrypt mj) it holds that the two executions are in fact identical (until, clearly, the event Bad occurs
for the first time).
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this case, since A queries the random oracle only a polynomial number of times, and since each mj

has min-entropy at least k(λ) = ω(log λ), there is only a negligible probability that some mj would
appear in even one of the H-queries that were made by A. Thus, the probability that the event Bad
occurs for the first time in phase III is negligible in either one of Expt0 or Expt1.

Experiment Expt2. This experiment is obtained from Expt1 by replacing R̃oR(real, ·, ·) with

R̃oR(rand, ·, ·).

Claim 8.11. |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| is negligible in λ.

Proof. This follows from the security of the underlying scheme Π. Observe that as R̃oR imple-
ments Π using true randomness for the encryption process. Therefore, any adversary A for which
|Pr[Expt1(λ) = 1]−Pr[Expt2(λ) = 1] | is non-negligible can be used to break the IND-CPA security
or the IND-CCA security of Π.

Experiment Expt3. This experiment is obtained from Expt2 by replacing R̃oR(rand, ·, ·) with
RoR(rand, ·, ·). That is, this is experiment ExptrandΠ′,A(λ) (recall Definition 3.3) if Π is IND-CPA-secure,

experiment ExptrandCCAΠ′,A (λ) (recall Definition 3.6) if Π is IND-CCA-secure.

Claim 8.12. |Pr[Expt2(λ) = 1]− Pr[Expt3(λ) = 1]| is negligible in λ.

Proof. The proof of this claim follows in an identical manner to the proof of Claim 8.10 noting
that the distribution UT from which challenge messages are sampled has min-entropy at least k in
each coordinate.

Completing the proof of Theorem 8.9. Let (ATK,mode1,mode2) = (ACD1-CPA, real, rand)
if Π is IND-CPA-secure, and let (ATK,mode1,mode2) = (ACD1-CCA, realCCA, randCCA) if Π is
IND-CCA-secure. Then the definition of AdvATK

Π′
q ,A(λ) implies that for any q-query (T, k)-source

adversary A it holds that

AdvATK
Π′

q ,A(λ)
def
=
∣∣∣Pr[Exptmode1

Π′
q ,A

(λ) = 1
]
− Pr

[
Exptmode2

Π′
q ,A

(λ) = 1
]∣∣∣

= |Pr[Expt0(λ) = 1]− Pr[Expt3(λ) = 1]|
≤ |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| (8.4)

+ |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| (8.5)

+ |Pr[Expt2(λ) = 1]− Pr[Expt3(λ) = 1]| . (8.6)

Claims 8.10 – 8.12 state that the terms in Equations (8.4) – (8.6) are negligible, and this completes
the proof of Theorem 8.9.
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