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Abstract. An often neglected problem for potential practical adoption of Password-based Authenti-
cated Key Exchange (PAKE) protocols on the Internet is the handling of failed password trials. Unlike
the currently used approach, where a server-authenticated TLS channel (involving constant number of
public key-based operations on both sides) is set up once and can then be used by the client to try a
limited number of passwords essentially for free, any new password trial using PAKE would result in
the repetition of the entire protocol. With existing PAKE protocols, the minimum number of public
key-based operations on both sides is thus lower-bounded by O(n), where n is the number of trials.
This bound is optimal for the client (that tries n passwords in the worst case) but is clearly not optimal
for the server, which uses the same reference password of the client in each trial. This paper presents
a secure and practical approach for achieving the lower bound of O(1) public key operations on the
server side.
To this end, we introduce Oblivious PAKE (O-PAKE), a general compiler for a large class of PAKE
protocols, allowing a client that shares one password with a server to use a set of passwords within one
PAKE session, which succeeds if and only if one of those input passwords matches the one stored on
the server side. The term “oblivious” is used to emphasize that no information about non-matching
passwords input by the client is made available to the server, which contrasts for instance to the
aforementioned TLS-based approach, where any tried password is disclosed to the server. The O(1)
bound on the server side is obtained in our O-PAKE compiler using special processing techniques for
the messages of the input PAKE protocol. We prove security of the O-PAKE compiler under standard
assumptions using the latest variant of the popular game-based PAKE model by Bellare, Rogaway,
and Pointcheval (Eurocrypt 2000). We identify the requirements that PAKE protocols must satisfy in
order to suit the compiler and give two concrete O-PAKE protocols based on existing PAKE schemes.
Both protocols are implemented and the analysis of their performance attests to the practicality of the
compiler.
The use of O-PAKE further eliminates another practical problem with password-based authentication
on the Web in that users no longer need to remember the actual association between their frequently
used passwords and corresponding servers and can try several of them in one execution without revealing
the entire set to the server.

1 Introduction

Authentication with passwords is the most common (and perhaps most critical) authentication mechanism
on the modern Internet.The dominating approach today is when clients send passwords (or some function
thereof) to the server over a secure channel (typically TLS [23]). This approach requires PKI and its security
relies on the client’s ability to correctly verify server’s certificate. Any impersonation of the certificate leads
to password exposure and even if no impersonation takes place then any password input on the client side is
still revealed to the server. This creates a different problem based on the existing statistics that many users
operate with a small set of passwords but often do not remember their correct matching to the servers. If
a user types in a password that is not shared with this server but with another one then its exposure may
lead to subsequent impersonation attacks on the client. The study in [25] shows that on average every user
has 6.5 passwords, which are used on 25 different websites. Another study in [26] shows that 2.4 failed login
attempts are needed on average until the user types in the correct password. These numbers suggest that in
the worst case roughly 2 passwords from the client’s set could potentially be revealed through failed login
attempts to the server within a single TLS session — a significant threat for the client. In order to minimize



the risk of online dictionary attacks aiming to impersonate the client, servers typically limit the number of
failed trials. Yet, the amount of work for processing failed attempts on the server side is negligible since all
tried passwords are transmitted through the same TLS channel.

The notion of Password-based Authenticated Key Exchange (PAKE), introduced in [12], initially formal-
ized in [10, 15], and later explored in numerous further works (cf. Section 1.2), is considered today as a
more secure alternative to the above approach. The standard model of PAKE does not require any PKI and
assumes that only one password is shared between the both parties. Considering that passwords have low
entropy, PAKE protocols aim to protect against offline dictionary attacks but require the same method of
protection against online dictionary attacks as the aforementioned TLS-based approach, namely by restrict-
ing the number of failed password trials. The only way for current PAKE protocols to deal with failed sessions
is to repeat the protocol. This however implies that the computational costs on the server side, in particular
for (costly) public key-operations that are inherent to all PAKE protocols, increase linearly with the number
of attempts, i.e. O(n) where n is the number of attempted PAKE sessions, which is a clear disadvantage in
comparison to the TLS-based approach and could be seen as a reason for the limited progress on the adoption
of PAKE on the Internet (in addition to some other unrelated issues such as browser incompatibility, patent
considerations, and the lack of adopted standards).

Handling multiple password trials with PAKE, without experiencing linear increase in the amount of
public key operations for the server, is a non-trivial problem. The problem seems to be avoidable if in a
single PAKE execution the client can use several passwords, without exposing them to offline dictionary
attacks and to the (possibly malicious) server, which in turn would use only one password that is shared
with the client. Yet this idea alone is not sufficient for breaking the linear bound on the server side: for
instance, assume that one PAKE execution is build out of n independent (possibly parallelized) runs of some
secure PAKE protocol, where the client uses a different password in each session but the server uses the
same one in all of them. The amount of work for the server in this case would still remain O(n). Therefore,
something non-trivial must additionally happen in order to reduce the amount of work on the server to O(1).

In addition, such PAKE protocol still needs to fulfill some basic requirements. For instance, it needs to
address the persistent threat of online dictionary attacks by enforcing that the number of passwords that can
be tested by the client in one session remains below some threshold, which is set by the server. Note that for
the server there is no difference whether a client is given the opportunity to perform at most n independent
PAKE sessions (password trials) or only one session but with verifiably at most n input passwords. Due to
the asymmetry in the number of passwords used by the client and server, i.e. if n > 1, the protocol must
also prevent a possibly malicious server from mounting an online dictionary attack against more than one
password with respect to the client’s input set of passwords, as this is the best what also traditional PAKE
protocols can provide.

1.1 Oblivious PAKE and Our Contributions

We solve the aforementioned problem of efficient handling of password trials on the server side by proposing
a compiler that transforms suitable PAKE protocols in a black-box way into what we call an Oblivious PAKE
(O-PAKE). The functionality of O-PAKE protocols resembles that of PAKE except that the client inputs
a set pw of n passwords from some dictionary D while the input of the server is limited to one password
pw. Note that this does not increase the probability for offline dictionary attacks as the server still limits
the number of trials and the maximum number of passwords input by the client. The protocol execution of
O-PAKE succeeds if and only if pw ∈ pw. We utilise the well-known (game-based) PAKE model by Bellare,
Pointcheval, and Rogaway [10] in its (stronger) Real-or-Random flavor from [6] and update it to match the
O-PAKE setting by allowing pw as input on the client side. Thereby, we also assume uniformly at random
distributed passwords. A client using passwords with different probabilities in one O-PAKE session obviously
lowers the security of O-PAKE to the least secure password distribution as the server has to break only one
of the client’s passwords (cf. Section 2).

The crucial idea behind our transformation is to let each client execute n sessions of the input AKE-
secure PAKE protocol in parallel and let the server execute only one PAKE session. The challenging part is
to enable the server to actually identify messages of the PAKE session that was computed by the client using
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the correct password pw ∈ pw while preserving security against offline dictionary attacks, including with
respect to other passwords in the client’s set. This is the most trickiest part of the compiler since intuitively
if the server can recover the messages of the “right” PAKE session it can answer them according to the
specification of the PAKE protocol and by repeating this for all PAKE rounds both parties will be able to
successfully accomplish the protocol. If identification of the “right” PAKE session by the server requires only
a constant amount of (costly) operations then the total amount of server’s work in the resulting O-PAKE
protocol will also remain constant. The minimal runtime of the client on the other side is linear in the number
of input passwords. This stems from the obvious fact that the client has to compute messages for all PAKE
sessions without knowing the correct password.1

Our solution for the identification of the “right” PAKE session is a careful composition of two techniques
that were introduced in a different context. Our first building block is a special message encoding technique
that was suggested by Manulis, Pinkas, and Poettering [36, 37] in the context of affiliation-hiding authenti-
cation protocols (to solve there an open problem of group discovery from [30]). Their Index-Hiding Message
Encoding (IHME) technique assigns a different index to each given message and encodes the resulting index-
message pairs into a single structure from which messages can be recovered on the receiver side using the
corresponding indices. The IHME structure hides indices that were used at the encoding time and therefore
all encoded messages must contain enough entropy to prevent dictionary attacks over the index space. The
intuition behind our O-PAKE transformation is to encode messages of n PAKE sessions on the client side us-
ing corresponding passwords from pw as indices and let the server use its input password pw in the decoding
procedure. However, adopting the IHME technique to the O-PAKE setting requires some work around, since
the only known IHME construction treats index-message pairs as roots of a polynomial of a finite field F and
the coefficients of the interpolated polynomial as the corresponding IHME structure. Therefore, in order to
encode PAKE messages with IHME the former need to be first represented as elements of F in a way that
would prevent offline dictionary attacks, i.e. the resulting field elements must remain indistinguishable from
random elements, yet it should be possible to revert them into the original PAKE messages after the IHME
decoding procedure. We show how to realise this intermediate step by adopting the generalised version of
admissible encodings [14, 16, 24] that were initially introduced in the context of identity-based encryption
as a method of hashing into groups of points E(F) over pairing-friendly elliptic curves. By generalizing this
concept to the message spaces of PAKE, we can plug in the corresponding admissible encoding for PAKE
messages prior to encoding the resulting password-message pairs with IHME. Admissible encodings (cf. Sec-
tion 3.2) exist for messages from rings ZN , groups of quadratic residues QR(p) ⊂ Z×p , prime-order subgroups
of Gq ⊂ E(F) for certain elliptic curves E over a finite field F, and one that can be applied to prime order
groups Gq ⊂ Z×p for primes p = αq+ 1. In order to judge whether an AKE-secure PAKE protocol is suitable
for our generic O-PAKE transformation it is sufficient to check the existence of an appropriate admissible
encoding for its round messages.

To exemplify instantiations of O-PAKE we implement the generic compiler and use it on two suitable
PAKE protocols, namely the AKE-secure (standard model, CRS) PAKE framework of Gennaro [27] and the
(random-oracle based) SPAKE protocol from [7]. Based on real-world parameters from the aforementioned
studies in [25, 26] we analyse the actual performance of our implementation and confront it with the näıve
approach of repeating the PAKE protocol n times.

1.2 Related Work

The concept of PAKE was introduced by Bellovin [12] and corresponding security models for PAKE were ini-
tially developed by Bellare, Pointcheval, and Rogaway [10], Boyko, MacKenzie, and Patel [15], and Goldreich
and Lindell [29]. The Find-then-Guess PAKE model from [10], strengthened and simplified in [6] towards
the Real-or-Random PAKE model aims at Authenticated Key Exchange (AKE)-security, the main security
property of PAKE protocols. The models in [6, 10] remain the most popular game-based PAKE models,
adopted in the analysis of many protocols, including the random oracle-based protocols [2, 5] and protocols
requiring a common reference string (CRS) [27, 28, 33]. The only (but fairly inefficient) protocol that is

1 Note that the passwords are uniformly distributed in the dictionary by assumption.
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built from general secure multi-party computation techniques but does not require any setup assumptions
nor random oracles is due to Goldreich and Lindell [29], which was subsequently simplified at the cost of
weakened security in [39]. A stronger PAKE model in the framework of Universal Composability (UC) [18]
is due to Canetti, Halevi, Katz and Lindell [19]. UC-secure PAKE protocols require setup assumptions, with
CRS being the most popular one [34], albeit ideal ciphers / random oracles [4] and stronger hardware-based
assumptions [22] have also been used. In general, all PAKE models (see [40] for the recent overview) take
into account unavoidable online dictionary attacks and aim to guarantee security against offline dictionary
attacks.

Many PAKE constructions require a constant number of communication rounds [7,27,28,33,34]; a recent
framework by Katz and Vaikuntanathan [34] offers an optimal one-round PAKE. We observe that CRS-
based PAKE constructions from [28,33] make use of smooth projective hash function families and one-time
signatures, whereas in [27] the latter were replaced with (more efficient) MACs. Interestingly, thanks to
this replacement PAKE protocols from [27] can be transformed into O-PAKE protocols using our approach,
whereas the protocols from [28,33] are not suitable for the transformation; the same applies to the framework
in [34], which adopts (simulation-sound) NIZK proofs. We discuss these issues in Section 4.1 Remark 2.

There exist further PAKE flavors, including three-party protocols [3, 6] and group protocols [1, 8]. Addi-
tionally, there are several threshold-based PAKE protocols, e.g. [5, 9], where the client’s password is shared
amongst two (or possibly more) servers that jointly authenticate the client. In addition to the aforementioned
approaches that are tailored to the password-based setting there exist several more general authentication
and key exchange frameworks such as [13, 17] that also lend themselves to the constructions of (somewhat
less practical) PAKE protocols. We observe that for many of these aforementioned password-based concepts
efficient processing of failed password attempts (without repeating the execution) remains an open problem.

2 Oblivious PAKE Model

(Oblivious) PAKE protocols establish a session key k between two parties. The security model for O-PAKE
protocols is in a multi-user setting and utilizes the Real-or-Random approach for AKE-security from [6,10].
Note that the AKE-security definition also suffices the aforementioned security against malicious servers.
A server learning anything about the additional passwords in the client’s password vector can easily break
AKE-security by using his knowledge in a different session with the same client (and hence same password
vector).

Participants and Passwords An O-PAKE protocol is executed between two parties P and P ′, chosen
from the universe of participants Ω = S ∪ C, where S denotes the universe of servers and C the universe of
clients, such that if P ∈ C then P ′ ∈ S, and vice versa. For each pair (P, P ′) ∈ C × S, a password pwP,P ′

(shared between client P and server P ′) is drawn uniformly at random from the dictionary D of size |D|.
Let Xc(D) denote the subset of the power set of D with all elements of maximum size c ∈ N. For a client
P , let pwP ∈ Xc(D) denote a vector of passwords with |pwP | = n and 1 ≤ n ≤ c. We will sometimes write
pw and pw instead of pwP and pwP,P ′ when the association with the participants is clear or if it applies to
every participant. We will further write PAKE for O-PAKE protocols with c = 1, i.e. standard PAKE.

Protocol Instances For i ∈ N, we denote by Pi the i-th instance of P ∈ Ω. In order to model uniqueness
of Pi within the model we use i as a counter. For each instance Pi we consider further a list of parameters:

– pidiP is the partner id of Pi, defined upon initialisation, subject to following restriction: if Pi ∈ C then
pidiP ∈ S, and if Pi ∈ S then pidiP ∈ C.

– sidiP is the session id of Pi, modelled as ordered (partial) protocol transcript [m1
in,m

1
out, . . . ,m

r
in,m

r
out]

of incoming and outgoing messages of Pi in rounds 1 to r. sidiP is thus updated on each sent or received
protocol message.

– kiP is the value of the session key of instance Pi, which is initialised to null.
– stateiP is the internal state of instance Pi.
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– usediP indicates whether Pi has already been used.
– roleiP indicates whether Pi acts as a client or a server.

Partnered Instances Two instances Pi and P ′j are partnered if all of the following holds: (i) (P, P ′) ∈ C×S,

(ii) pidiP = P ′ and pid
j
P ′ = P , and (iii) match(sidiP , sid

j
P ′) = 1, where Boolean algorithm match is defined

according to the matching conversations from [11], i.e. outputs 1 if and only if round messages (in temporal
order) in sidiP equal to the corresponding round messages in sid

j
P ′ except for the final round, in which the

incoming message of one instance may differ from the outgoing message of another instance.

Oblivious PAKE: Definition We define O-PAKE using an initialisation algorithm init and a stateful
interactive algorithm next, which handles protocol messages and eventually outputs the session key.

Definition 1 (Oblivious PAKE). An O-PAKE protocol O-PAKE = (init, next) over a message space
M = (

⋃
rMr

C) ∪ (
⋃
rMr

S), where Mr
C resp. Mr

S denotes the space of outgoing server’s resp. client’s
messages in the r-th invocation of next, a dictionary D, and a key space K consists of two polynomial-time
algorithms:

Pi ← init(pw, role, P ′, par): On input pw ∈ Xc(D), role ∈ {client, server}, P ′ ∈ Ω and the public
parameters par, the algorithm initialises a new instance Pi with the internal O-PAKE state information
state, defines the intended partner id as pidiP = P ′ and session key kiP = null, and stores protocol
parameters par. The role indicates whether the participant acts as client or server.

(mout, k
i
P )← next(min): On input min ∈ Mr

[S,C] ∪ ∅ with implicit access to internal state, the algorithm

outputs the next protocol message mout ∈ Mr+1
[S,C] ∪ ∅ and updates kiP with kiP ∈ K ∪ null ∪ ⊥. As long

as the instance has not terminated the key kiP is null. If min leads to acceptance then kiP is from K,
otherwise kiP = ⊥. We also assume that next implicitly updates the internal state prior to each output
and sets used to true.

Note that M = (
⋃
rMr

S) ∪ (
⋃
rMr

C) is the union of outgoing client’s message spaces Mr
C and server’s

message spaces Mr
S over all protocol rounds r. We may further view each round’s message space Mr

C as a

Cartesian productMr,1
C ×· · ·× M

r,l
C for up to l different classes of message components, e.g. to model labels,

identities, group elements, etc. When clear from the context, we will writeMr
C instead of Mr,1

C ×· · ·× M
r,l
C .

Correctness Let Pi be an instance initialised through init(pwP , client, P
′, par) and P ′j be an instance

initialised through init(pwP,P ′ , server, P, par) where P ∈ C, P ′ ∈ S, and pwP,P ′ ∈ pwP . Assume that all
outgoing messages, generated by next are faithfully transmitted between Pi and P ′j so that the instances
become partnered. An O-PAKE = (init, next) is said to be correct if for all partnered Pi and P ′j it holds that

kiP ∈ K and kiP = k
j
P ′ .

Adversary Model The adversary A is modelled as a probabilistic-polynomial time (PPT) algorithm, with
access to the following oracles:

mout ← Send(P, i,min): the oracle processes the incoming message min ∈ Mr
[C,S] for the instance Pi and

returns its outgoing message mout ∈ Mr+1
[C,S] ∪ ∅. If Pi does not exist, the according session is created

with P ′j as partner, where P ′j is given in min.
trans← Execute(P, P ′): if (P, P ′) ∈ C × S the oracle creates two new instances Pi and P ′j via appropriate

calls to init and returns the transcript trans of their protocol execution, obtained through invocations
of corresponding next algorithms and faithful transmission of generated messages amongst the two
instances.

pw← Corrupt(P, P ′): if P ∈ C and P ′ ∈ S then return pwP,P ′ and mark (P, P ′) as a corrupted pair.
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AKE-Security The following definition of AKE-security follows the Real-Or-Random (ROR) approach
from [6], which provides the adversary multiple access to the Test oracle for which the randomly chosen bit
b ∈R {0, 1} is fixed in the beginning of the experiment:
kA ← Test(P, i), depending on the values of bit b and kiP , this oracle responds with key kA defined as follows:

– If a pair (P, pidiP ) or (pidiP , P ) was corrupted (cf. definition of Corrupt oracle) while kiP = null then
abort. Note that this prevents A from obtaining pwP,P ′ and then testing new instances of P and P ′ or
instances that were still in the process of establishing session keys when corruption took place.

– If some previous query Test(P ′, j) was asked for an instance P ′j , which is partnered with Pi, and b = 0
then return the same response as to that query. Note that this guarantees consistency of oracle responses.

– If kiP ∈ K then if b = 1, return kiP , else if b = 0, return a randomly chosen element from K and store it
for later use.

– Else return kiP . Note that in this case kiP is either ⊥ or null.

According to [6] a session is an online session when A queried the Send oracle on one of the participants.

Definition 2 (AKE-Security). An O-PAKE protocol Π with up to c passwords on client side is AKE-
secure if for all dictionaries D with corresponding universe of participants Ω and for all PPT adversaries A
using at most t online session there exists a negligible function ε(·) such that:

AdvAKE-SecΠ,A (λ) =

∣∣∣∣Pr[ExpAKE-SecΠ,A (λ) = 1]− 1

2

∣∣∣∣ ≤ c · O(t)

|D|
+ ε(λ).

ExpAKE-SecΠ,A (λ) : Choose c ∈ N, b ∈R {0, 1} for each pair (P, P ′) ∈ C × S, pick pwP,P ′ ∈R D, call

b′ ← ASend,Execute,Corrupt,Test(λ, c) and return b = b′.

The above definition reverts to ROR AKE-security from [6] for c = 1. We have to factor in the maximal
size of |pw| = n ≤ c into the original adversarial advantage bound O(t)/|D| to account for the adversarial
possibility of testing up to c passwords per session in the role of the client.

PAKE vs O-PAKE The actual relation between common PAKE and O-PAKE security may not be
immediately evident. To clarify that we discuss the relation between O-PAKE and the simple repetition of
a PAKE protocol c times, and the implication of user’s password choice.

The advantage of an adversary that is allowed to query up to c passwords in one session is not greater
than the advantage of an adversary that is allowed to use c times as much online sessions with one password
each. The typical advantage of a PAKE adversary A in an AKE-security experiment, e.g. [6,10], is bounded
by O(t)/|D|+ ε(λ). In contrast, we limit the advantage of an O-PAKE adversary to c · O(t)/|D|+ ε′(λ). We
give the following lemma to formalize the relation between the two notions.

Lemma 1. AdvAKE-SecΠc,A ≤ c · AdvAKE-SecΠ,A for O-PAKE protocol Πc allowing up to c passwords in one session,
built from PAKE protocol Π.

Proof (sketch). The lemma follows directly from the following observations. O-PAKE can be realized in the
näıve way by running c separate PAKE sessions. That results in an advantage of at most c · AdvAKE-SecΠ,A =
c · O(t)/|D| + ε′(λ). Information gathered from Send and Execute oracle invocations are the same for the
O-PAKE and PAKE adversary. Corrupt and Test queries of the O-PAKE adversary return one password,
respectively key, independent from c, while the PAKE adversary gets c passwords, respectively keys. Thus,
the resulting advantage of the O-PAKE adversary is at most c · O(t)/|D| + ε′(λ), but depending on the
implementation most probably lower. ut

Assuming malicious servers one may also be concerned about the client’s password choice considering a client
entering passwords from different dictionaries, i.e. weak passwords beside stronger ones. However, the used
model considers uniformly at random chosen passwords from one dictionary such that the case of varying
password probabilities can not be adequately addressed in this model. Nonetheless, O-PAKE does not lower
the security in contrast to common PAKE. In the case of diverse password probabilities the protocol security
is limited by the weakest client password using PAKE or O-PAKE.
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3 Transforming PAKE Protocols into O-PAKE

As discussed in the introduction it is easy to implement O-PAKE the näıve by running the input PAKE n
times. That approach however is not efficient due to the linear increasing round complexity and the enormous
server load. The idea of the O-PAKE compiler is to “encrypt” the n PAKE messages on client side such that
the server can “decrypt” the “correct” one with the common password and answer only on that. However,
using encryption does not work as the server does not know which PAKE message to decrypt, and when he
knows (by some kind of verification mechanism) the protocol would become insecure as a malicious server
could launch an offline dictionary attack.

Therefore, we present our compiler that follows the high-level intuition from Section 1.1 and uses mainly
two building blocks — Index-Hiding Message Encoding (IHME) [36, 37] and admissible encoding [14, 16, 24]
— to generically construct AKE-secure O-PAKE protocols from (suitable) AKE-secure PAKE protocols,
preserving constant round complexity and offering nearly constant server load. An IHME scheme consists of
two algorithms iEncode and iDecode. The iEncode algorithm takes as input a set of index-message pairs
(i1,m1), . . . , (in,mn) and outputs a structure S whereas the iDecode algorithm can extract mj , j ∈ [1, n]
from S using the corresponding index ij . For formal definitions surrounding IHME we refer to Appendix A
or the original work and only mention that the original IHME construction in [36] assumes (ij ,mj) ∈ F
for a prime-order finite field F and defines the IHME structure S through coefficients of the interpolated
polynomial by treating index-message pairs as its points. There exists a more efficient IHME version from [37]
for longer messages, which uses (ij ,mj) ∈ F×Fν and thus splits mj into ν components each being an element
of F. The corresponding index-hiding property demands that no information about indices ij is leaked to
the adversary that doesn’t know the corresponding messages mj and is defined for messages that are chosen
uniformly from the IHME message space. For the aforementioned IHME schemes the message space is given
by F (or Fν) and their index-hiding property is perfect (in the information-theoretic sense). This approach
still allows the server to learn which of the n PAKE sessions is the “correct” one, however, it does not reveal
any new password the server.

In order to enable encoding of PAKE messages using IHME with passwords as indices we first apply the
inverse transformation IF of an admissible encoding F (cf. Definition 3) to map PAKE messages into the
IHME message space where necessary. In Section 3.2 we will discuss suitable PAKE message spaces for which
there exist admissible encodings that offer compatibility with the message space F of the IHME schemes
from [36,37].

Definition 3 (Admissible Encoding [16]). Let S and R denote two finite sets such that |S| > |R|. A
function F : S → R is called an ε-admissible encoding for (S,R) if it satisfies the following properties:

1. Efficient: F is computable in deterministic polynomial time.

2. Invertible : There exists a polynomial time algorithm IF such that IF (r) ∈ F−1(r)∪{⊥} for all r ∈ R
3. Uniform: For all r uniformly distributed in R the distribution of IF (r) is ε-statistically indistinguishable

from the uniform distribution over S.

If ε is a negligible function of the security parameter then F is called an admissible encoding.

In the following we describe the compiler that allows to transform a suitable AKE-secure PAKE protocol into
an AKE-secure O-PAKE protocol. The intuition behind the compiler is to let the client run n PAKE sessions
for all input passwords and apply an index-hiding message encoding on each PAKE message, password pair
such that the server is only able to recover the PAKE message he knows the password of. After recovering
the “correct” PAKE message on the server side, the PAKE protocol with the according password is executed
and the result returned to client just as in the original PAKE protocol. When the input protocol finished
the server sends a confirmation message to the client so that he can identify the correct PAKE session and
thus key.
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3.1 The O-PAKE Compiler

Our compiler takes as input a PAKE protocol Π and outputs its O-PAKE version, denoted CΠ , which con-
tains two algorithms init and next, as detailed in Figure 1. For each PAKE round r it uses a corresponding
instance IHMEr with message space MIHME,r and an compatible instance F r :MIHME,r → Mr

C where Mr
C is

the space of client’s messages of Π in that round. In the following we will first assume that underlying Π.next
algorithm in each round outputs messages that can be seen as elements of one set and thus can be processed
using one instance (F r, IHMEr). We will discuss the case of multi-set messages Mr

C = Mr,1
C × · · · × M

r,l
C

that will require composition of up to l instances of encoding schemes per round separately at the end of
this section.

The CΠ .next algorithm on the client side computes corresponding PAKE round messages for all pass-
words in pw using the original Π.next algorithm and encodes them with IF r and IHMEr.iEncode prior to
transmission to the server. On the server side CΠ .next decodes the incoming PAKE message using F r and
IHMEr.iDecode (using its input pw as index) and replies using with the message output by Π.next. Note that
server only decodes messages but never encodes them. If pw ∈ pw then at the end of its n PAKE sessions
the client will hold n intermediate PAKE keys, whereas the server holds only one such key. The additional
key confirmation and key derivation steps allow the client to determine which of its n PAKE session keys
matches the one held by the server, in which case both participants will derive the same session key.

Algorithm CΠ .init As specified in Algorithm 1, CΠ .init makes n calls to Π.init in Line 3, one for
each password in pw, to generate corresponding state for each of the n PAKE sessions that are stored in
statestatestateiP . The partner id pidiP is set to P ′ (Line 5) and the instance Pi with the given role and a vector of
n local states in statestatestateiP is established. We require that no two passwords in pw are equal, which is needed
to ensure the correctness of the IHME step. Note that if role = server then n = 1, i.e. servers run only
one PAKE session.

Algorithm CΠ .next We separate between CΠ .next specifications for clients (Algorithm 2) and servers
(Algorithm 3) as they are significantly different. We write Πpw[i].next for the invocation of Π.next, where
the protocol state is initialised with pw[i]. On the client side CΠ .next computes messages for all running
PAKE sessions in Line 4 and encodes them (cf. Line 10). The server decodes the incoming message and
computes its response using Π.next. (cf. Line 3-7). If on the client side, after processing the incoming round
message k ∈ KΠ then the client expects server’s confirmation message, which it then checks and eventually
derives the final session key. Computation of this confirmation message with subsequent key derivation on
the server side is specified in Line 10 and Line 11. Note that the use of the pseudorandom function PRF

ensures the independence between the final session key and the confirmation message. If the confirmation
message is not valid or some other failures occurred during the execution of the protocol then parties will
end up with the session key being set to ⊥ (cf. Line 13, resp. 12).

Remark 1 (Compiler Efficiency). The compiler offers several possibilities to save computation time. PAKE
protocols with built-in key confirmation (e.g. [7]) for example can omit the additional key confirmation step
from the compiler and use the given one to identify the correct PAKE session on the client side. Protocol
specific encodings of PAKE messages to identify individual parts slow the compiler down as it has to decode
messages before applying admissible and index-hiding encodings. This can be omitted by implementing the
compiler protocol specific and therefore use the message elements directly.

The AKE-security of an O-PAKE protocol generated with the O-PAKE compiler is established in Theorem
1 and proven in Appendix B.

Theorem 1. If Π is an AKE-secure PAKE protocol, for which admissible encodings for every output mes-
sage of Π.next of the client exist, and IHME is an index-hiding message encoding, then CΠ is an AKE-secure
O-PAKE protocol.
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Algorithm 1 CΠ .init(pw, role, P ′, par)

Input: pw, role, P ′, par
Output: Pi
1: initialise empty statestatestateiP vectors of length n = |pw| and kiP = null

2: for l = 1 . . . n do
3: Pl ← Π.init(pw[l], role, P ′, par)
4: statestatestateiP [l] = statelP
5: pidiP = P ′

6: return Pi

Algorithm 2 CΠ .next(min) — Client

Input: min

Output: (mout, k)

1: P = ∅
2: for i = 1 . . . n do

3: if Π[i] has not finished then

4: (m′out, k)← Πpw[i].next(min)

5: P = P ∪ {(pw[i], IF r (m′out))}
6: state[i].k = k

7: else if Π[i] has finished &&

min = PRFΠ[i].key(sidiP , 0) then

8: k = PRFΠ[i].k(sid
i
P , 1)

9: if P 6= ∅ then

10: mout = IHMEr.iEncode(P )

11: else if k 6∈ KCΠ then

12: k = ⊥
13: return (mout, k)

Algorithm 3 CΠ .next(min) — Server

Input: min

Output: (mout, k)

1: if k = null then

2: if min 6= null then

3: m← IHMEr.iDecode(pw,min)

4: m′ = F r(m)

5: else

6: m′ = min

7: (mout, k)← Π.next(m′)

8:

9: else if k ∈ KΠ then

10: mout = PRFk(sidjP ′ , 0)

11: k← PRFk(sid
j
P ′ , 1)

12: else

13: (mout, k) = (∅,⊥)

14: return (mout, k)

Fig. 1: O-PAKE Compiler

Processing Multi-Component Messages As mentioned before, message spaces of PAKE protocols
mostly consist of Cartesian products of message spaces of the individual message components. We now
briefly discuss how the compiler proceeds in the case of multi-component messages.

Message components can for instance be constants, group elements or integers. As constants are password
independent they do not have to be processed by the compiler and can be sent directly. All other message
components have to be encoded as described in the compiler. [37] introduces ν-fold IHME (cf. Appendix A),
which allows to encode a list of ν message components from the same finite field. Therefore, we separate
message components from different finite fields into message component classes. Message components from
different classes (finite fields) have to be encoded in separate IHME structures over the corresponding finite
field. This requires admissible encodings and index-hiding message encodings for each element class mj

of m. Thus, a loop over m1, . . . ,ml adds (pw[i], IF r,j (mj)) to the input set of ν−fold−IHMErj .iEncode
according to their message classes (finite fields). Likewise, the output message mout of the next algorithm
is the concatenation of the encoded message component classes. The server upon receiving a client message
min has to decompose it to retrieve the IHME encoded messages. After decoding the message parts with
mj ← ν−fold−IHMErj .iDecode(pwP,P ′ ,m

j
in) the original PAKE message of Π is reassembled by decoding

messages F r,j(mj).
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If we adopt the above approach for multi-component messages then the AKE-security remains preserved.
This is due to the following observation on the proof of Theorem 1: in the game-hopping sequence the
adversary will be provided with l IHME encoded messages (one for each message component class that
requires encoding) and the corresponding index-hiding advantage will have to be multiplied by l.

3.2 Oblivious PAKE Instantiation

An AKE-secure PAKE protocol Π is suitable for our O-PAKE transformation if it outputs client messages
that are uniformly distributed in respective round-dependent message spaces and there exist admissible
encodings that can map those messages into the message space of IHME. We give a list of four sets R with
suitable admissible encodings, meaning that any AKE-secure PAKE protocols whose client messages contain
components from these four sets can be transformed into an O-PAKE protocol using our compiler.

Admissible Encodings for Client Messages An admissible encoding F : {0, 1}`(λ) → R with some
polynomial `(λ) exists for any of the following fours sets R:

(1) Set R = {0, . . . , N − 1} = ZN of natural numbers, for arbitrary N ∈ N. (cf. [24, Lemma 12])
(2) The set of quadratic residues modulo safe primes p, i.e. R = QR(p) ⊆ Z×p . (cf. [24, Lemma 12])
(3) Arbitrary subgroups Gq ⊆ Z×p of prime order q. (cf. [24, Lemma 12])
(4) The set R = E(F) of rational points on (certain) elliptic curves, defined over a finite field. (cf. [16])

4 Implementation & Performance

To show the practicality of the O-PAKE compiler we implement it in C++ (using gcc 4.7.2), together with
two concrete O-PAKE protocol implementations based on well-known PAKE protocols, namely the SPAKE
protocol from [7] and the PAKE framework from [27].

4.1 Compiler Implementation

The O-PAKE compiler implementation consists basically of three packages: Admissible Encodings, IHME
and the actual O-PAKE Compiler. The first package implements admissible encodings from Definition 3
and its references. The second package contains the implementation of IHME from [37]. The actual compiler
functionality is implemented in the third package as an abstract class with virtual init and next functions.
Despite the virtual functions the compiler offers all functions necessary to implement an O-PAKE protocol
from a suitable PAKE protocol, namely it initializes and stores all c PAKE instances and offers next functions
according to Algorithms 2 and 3. The compiler expects the server to initiate the O-PAKE protocol, e.g. after
receiving the client’s username and retrieving the corresponding password from the database.

The compiler’s modular design makes it easy to implement O-PAKE protocols from suitable PAKE
protocols. On high level, it is sufficient to derive a concrete instance of the abstract O-PAKE compiler class
and implement the virtual init and next functions with protocol specific message handling and suitable
admissible encodings to implement an instance of the O-PAKE compiler. Before we show how to use the
compiler on the example of SPAKE and RG-PAKE we specify necessary admissible encodings and key
derivation steps.

Admissible Encodings Using PAKE protocols on prime order groups, we briefly discuss the imple-
mentations of admissible encodings according to Definition 3 (1) and (3). To implement (3) we use (1)
IF (1) : ZN → {0, 1}`(λ) to get IF (3,1) : Gq ⊆ Z×p → Z×p → {0, 1}`(λ) with `(λ) > 2|N | and p = N .
Implementation of (1,3) is straight forward according to [24, Lemma 12] after generating appropriate `(λ).
To use the output of (1) as input to IHME `(λ) has to be the next prime q′ with q′ = `(λ) > 2|N | such that
the implemented admissible encoding is defined as IF (3,1) : Gq → Zq′ .
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Algorithm 4 SPAKE.init(pw, role, P ′, j, (G,M,N,H))

Input: pw, role, P ′, j
Output: Pi
1: i ∈ N
2: Create Pi
3: stateiP = {pw, role, (G,M,N,H)}
4: pidiP = P ′

5: return Pi

Algorithm 5 RG.init(pw, role, P ′, j, pk)

Input: pw, role, P ′, j
Output: Pi
1: i ∈ N
2: Create Pi
3: stateiP = {pw, role, pk}
4: pidiP = P ′

5: return Pi

Confirmation and Key Derivation The final key confirmation and derivation steps are implemented
according to Algorithms 2 and 3. In particular, we use CBC-MAC [31, Sec. 4.5] with AES-256 [31, Sec. 5.5]
to instantiate the pseudorandom function. The output of the confirmation value is sent to the client. Using
this, the client can check the confirmation message, choose the correct PAKE session and compute the final
key.

In the following we demonstrate how our compiler can be applied to implementations of two efficient PAKE
protocols — the random-oracle-based SPAKE protocol from [7] and the standard-model RG-PAKE protocol
framework from [27].

Oblivious SPAKE The SPAKE protocol from [7, Sec. 5], which is a secure variant of [12], is a PAKE
protocol whose security has been proven in the random oracle model. SPAKE uses a prime-order cyclic
group G = (G, g, q) for which the Computational Diffie-Hellman (CDH) is assumed to be hard. We recall
the corresponding specification of SPAKE in Algorithms 4, 6 and 7, where M,N ∈ G and H are considered
as random oracles. The shared SPAKE password pw is chosen from Zq. The protocol proceeds in one round,
where client and server each send one message in arbitrary order (cf. Line 2 to 5 in Algorithms 6 and 7).
Upon receiving the message the algorithm next starts performing the key derivation step (cf. Line 10).

The SPAKE protocol is a suitable input PAKE protocol for our O-PAKE compiler since it can instantiated
using prime-order subgroups of Z×p or prime order subgroups of E(F) in which the CDH problem is believed
to be hard and for its messages there exist a suitable admissible encoding. In particular, the admissible
encodings in (3) and (4) are suitable due to the fact that SPAKE messages of the form X∗ = gx ·Mpw

are uniformly distributed in G, given the uniformity of the exponent x. The implementation of Oblivious
SPAKE (O-SPAKE) is straightforward as only one group element is exchanged in a single round per party.
We use prime-order subgroups of Z×p in which the CDH problem is assumed to be hard.2

Oblivious RG-PAKE As a second O-PAKE instantiation we present the protocol based on the efficient
PAKE framework proposed by Gennaro [27] and proven AKE-secure under standard assumptions in the
model from [10] assuming the existence of a Common Reference String (CRS). We refer to the PAKE
protocols that can be obtained using the framework from [27] as RG-PAKE. Their construction relies on a
CCA-secure labeled encryption algorithm Enc, a smooth projective hash function (α,Hk). For an overview of
these building blocks we refer to [27] and focus here on the protocol communication. The RG-PAKE protocol
consists of three rounds and is depicted in Algorithms 5, 8 and 9. The client initially computes the ciphertext
c (cf. Algorithm 8, Line 2 to 5)) and sends it to the server that in turn replies with the projected value s
and another ciphertext c′ (cf. Algorithm 9, Line 2 to 7). This message is then parsed by the client that
first computes its final message, consisting of the projected value s′ and a MAC value t and finally derives
the session key (cf. Algorithm 8, Line 8 to 15). The server checks the received MAC value t and eventually
computes the session key (cf. Algorithm 9, Line 9 to 16).

2 We use the Botan cryptographic library (http://botan.randombit.net) and the prime-order groups specified in
RFC 3526 [35].
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Algorithm 6 SPAKE.next(min) — Client

Input: min

Output: (mout, k)
1: if not used then
2: x ∈R Zp, X = gx

3: X∗ = X ·Mpw

4: stateiP ← stateiP ∪ (X∗, x)
5: (mout, k) = (X∗, null)
6: if min 6= ∅ then
7: goto 10
8: else
9: mout = ∅

10: K = (min/N
pw)x)

11: k = H(P, P ′, X∗,min,pw,K)
12: return (mout, k)

Algorithm 7 SPAKE.next(min) — Server

Input: min

Output: (mout, k)
1: if not used then
2: y ∈R Zp, Y = gy

3: Y ∗ = Y ·Mpw

4: state
j
P ′ ← state

j
P ′ ∪ (Y ∗, y)

5: (mout, k) = (Y ∗, null)
6: if min 6= ∅ then
7: goto 10
8: else
9: mout = ∅

10: K = (min/N
pw)y)

11: k = H(P, P ′,min, Y
∗,pw,K)

12: return (mout, k)

Whether RG-PAKE is a suitable protocol for our O-PAKE compiler depends on the existence of appro-
priate admissible encodings for the sets of possible ciphertexts c, projected hash values s′ and MAC values
t and their distribution in the corresponding sets, which needs to be uniform. As discussed in [21, 27, 28],
suitable encryption schemes and smooth projective hash functions for RG-PAKE are known to exist from
various number-theoretic assumptions, including Decision Diffie-Hellman (DDH), quadratic residuosity, and
N -residuosity assumptions. We observe that for client’s ciphertexts c and projected values s′ output by the
those schemes an appropriate admissible encoding can be found amongst those mentioned in Section 3.2.
That is, our compiler is applicable to a large class of PAKE protocols that can be explained through the
framework from [27]. With regard to MAC values t we notice that the corresponding MAC algorithm must
not only be unforgeable but also have pseudorandom outputs, in which case the admissible encoding can be
realized as an identity function. Interestingly, if the RG-PAKE protocol is used in a way where the server
performs Algorithm 8 and the client performs Algorithm 9 (which is possible since RG-PAKE is symmetric
with no strict separation into the client/server roles), then no pseudorandomness of MAC values would be
required, as they would become part of server’s messages.

In our implementation of Oblivious RG-PAKE (O-RG-PAKE) we rely on the DDH-based instantiation,
and realize the encryption algorithm Enc using the CCA-secure labeled Cramer-Shoup encryption scheme [20,
43] and the smooth projective hash function (α,Hk) using the scheme from [28, 32]. This leads to the CRS
containing the public key pk = (b, d, h, g1, g2, q,H) = (gx1

1 gx2
2 , gy11 g

y2
2 , g

z
1 , g1, g2, q,H) where x1, x2, y1, y2, z ∈R

Zq, g1, g2 ∈R G are generators, and H is a universal one-way hash function3. Given the above instantiations,
the ciphertext c and projected hash value s′ in the resulting RG-PAKE protocol have the following form:

c← Encpk(pw, label): c = (u1, u2, e, v) with u1 = gr1, u2 = gr2, e = hrgpw, v = (bdθ)r, θ = H(u1, u2, e, label)
and r ∈R Zq.

s′ ← α(k, c, label): s′ = gk11 g
k2
2 h

k3(bdθ)k4 for key k ∈ Z4
q = (k1, k2, k3, k4) with k1, k2, k3, k4 ∈R Zq and

θ = H(u1, u2, e, label).

As a final remark we observe that in order to encrypt the password in Line 3 on client and Line 5 on server
side, our implementation first hashes it into the group G = (G, g, p) within Encpk by computing gpw. The
temporary session keys sk and sk′ are computed using the smooth projective hash function Hk(c,pw) in one
of the following two ways: (1) as sk = uk11 u

k2
2 (e/(gpw))k3vk4 using the projection key k = (k1, k2, k3, k4) and

the ciphertext c = (u1, u2, e, v), or (2) as sk = sr using the projection value s and the randomness r used in
the generation of c.

3 H is implemented using collision-resistant hash function SHA-256 [38].
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Algorithm 8 RG.next(min) — Client

Input: min

Output: (mout, k)

1: if min = ∅ then

2: label = (P, P ′)

3: c← Encpk(pw, label)

4: stateiP ← stateiP ∪ (c)

5: (mout, k) = (c, null)

6:

7: else

8: Parse min as (s, c′)

9: k ∈R K, s′ = α(k, c′)

10: label′ = (c, s), label = (P, P ′)

11: sk = Hk(c′,pwP,P ′ , label′)

12: sk′ = Hk′(c,pwP,P ′ , label)

13: t = MACsk′(c, s, c
′, s′)⊕ sk

14: k = sk⊕ sk′

15: (mout, k) = ((s′, t), k)

16:

17: return (mout, k)

Algorithm 9 RG.next(min) — Server

Input: min

Output: (mout, k)

1: if not used then

2: k ∈R K, s = α(k,min)

3: label = (P, P ′), label′ = (min, s)

4: sk = Hk(min,pwP,P ′ , label)

5: c′ ← Encpk(pw, label′)

6: state
j
P ′ ← state

j
P ′ ∪ (c, s, c′)

7: (mout, k) = ((s, c′), null)

8: else

9: Parse min as (s′, t)

10: label = (c, s)

11: sk′ = Hk′(c′,pwP,P ′ , label)

12: if t = MACsk(c, s, c
′, s′)⊕ sk′ then

13: k = sk⊕ sk′

14: (mout, k) = (∅, k)

15: else

16: (mout, k) = (∅,⊥)

17: return (mout, k)

Remark 2 (MACs vs. One-Time Signatures and NIZKs). CRS-based PAKE frameworks from [28, 33] used
one-time signatures, whereas in the RG-PAKE framework [27] those were essentially replaced by MACs for
better efficiency. Interestingly, unlike the RG-PAKE protocols that can be directly made oblivious using our
O-PAKE compiler, the protocols from [28, 33] cannot because the use of one-time signatures introduces for
an adversary the possibility to publicly check the consistency of PAKE messages by performing signature
verification. Note that existence of such public checks rules out any index-hiding encoding of those messages.
That is, PAKE protocols from [28,33], if processed with our O-PAKE compiler, would become susceptible to
offline dictionary attacks. The same reasoning applies to the PAKE framework in [34], which adopts publicly
verifiable (simulation-sound) NIZK proofs [41,42]. In contrast, the more efficient MAC-based approach taken
in RG-PAKE [27] doesn’t admit public consistency checks of the resulting PAKE messages.

4.2 Performance Analysis

As discussed in the introduction the näıve solution of executing n PAKE protocols allows for several improve-
ments, namely on the round complexity and the server’s computation costs. We have shown how to improve
those with the proposed compiler. In the following we substantiate this by conducting a performance analysis
of our implementation. All calculations are done on the 2048 bits modular exponential Diffie-Hellman group
from [35].

The proposed O-PAKE compiler is efficient in the sense that it achieves almost constant server load
and preserves the constant round complexity of the original PAKE protocol. The O-PAKE compiler doesn’t
reduce the overall length of transmitted client messages compared with the näıve solution due to the overhead
implied by the encoding process. In our implementation of the SPAKE protocol parties exchange two group
elements in total with each element being 2048 bits long. In RG-PAKE client and server exchange 10 group
elements altogether (five per party) and one MAC value. In our RG-PAKE implementation this corresponds
to 10 · 2048 + 128 = 20608 bits from which 128 bits are the output of the MAC algorithm, implemented as
CBC-MAC with AES.
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Fig. 2: Server-side Timings for Oblivious RG-PAKE (left) and SPAKE (right) Protocols

Considering the compiled versions of SPAKE and RG-PAKE, denoted O-SPAKE and O-RG-PAKE re-
spectively, we observe that the encoding process applied to client messages increases the length of their group
elements to 4096 bits due to the bound on function ` from Section 4.1. Note that this increase comes from
the application of admissible encoding and not from IHME, which is length-preserving. In contrast server’s
messages are not encoded and thus do not experience any size increase at all. Only in the final compiler round
where the server needs to send its confirmation message, computed using CBC-MAC with AES, additional
128 bits needs to be communicated.

We proceed with the experimental performance analysis of the implemented O-SPAKE and O-RG-PAKE
protocols and their comparison with the näıve execution involving multiple independent PAKE sessions. An
Intel(R) Core(TM)2 Duo P8600 @ 2.40GHz platform was used as a reference architecture. The measurements
include the entire computation time (exclusive network delays) from the moment of initialization and until the
derivation of the session key. The original SPAKE protocol requires roughly 5ms for the client and server and
is significantly faster than the RG-PAKE protocol that requires 141ms. Figure 2 illustrates server-side timings
measured for our O-SPAKE and O-RG-PAKE implementations and compares them with the performance
of näıve protocols (N-SPAKE, N-RG-PAKE) with linear number of PAKE sessions on the server side. The
exact measurements are provided in Table 1. The first thing to notice is that the server runtime for protocols
obtained through our O-PAKE compiler is almost independent from the number of used client passwords.
With roughly 5.5ms for O-SPAKE and 143ms for O-RG-PAKE, the compiled protocols are significantly
faster than the corresponding näıve protocols. The latter experience linear increase in the server’s runtime
with the number of used passwords. For instance, if two client passwords are used then the running time

Table 1: Oblivious and Näıve PAKE Measurements [ms]

c
O-SPAKE N-SPAKE O-RG-PAKE N-RG-PAKE

Client Server Client Server Client Server Client Server

2 52.415 5.374 10.83 10.934 487.872 143.079 282.014 282.332
3 52.609 5.402 16.245 16.401 756.986 142.95 423.021 423.498
4 112.561 5.503 21.66 21.868 995.472 142.64 564.028 564.664
5 142.927 5.502 27.075 27.335 1274.418 143.226 705.035 705.83
6 176.513 5.535 32.49 32.802 1564.885 143.494 846.042 846.996
7 210.325 5.543 37.905 38.269 1838.485 143.078 987.049 988.162
8 245.79 6.057 43.32 43.736 2127.653 143.817 1128.056 1129.328
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of N-SPAKE with roughly 10.8ms and of N-RG-PAKE with 282ms is almost double the time required by
the compiled versions of those protocols. Due to the IHME decoding step a quadratic increase in server’s
runtime might be expected. However, this increase remains unnoticeable in practice where on average two
to five passwords are used (cf. Section 1).

5 Conclusion

In this paper we addressed the problem of handling multiple password trials efficiently within the execution
of PAKE protocols; in particular, aiming to optimize the amount of work on the server side. The proposed
O-PAKE compiler results in almost constant computational complexity for the server without significantly
increasing the computation costs on the client side, yet preserving all security guarantees offered by standard
PAKE protocols. The proposed compiler can be used with arbitrary PAKE protocols as input as long
as those messages are uniformly distributed within the corresponding message space and can be encoded
through a suitable admissible encoding scheme. The security of the compiler has been proven under standard
assumptions in a widely used PAKE model from [6] and its practicality has been demonstrated experimentally
through the implementation and compilation of two efficient PAKE constructions from [7,27].
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A Index-Hiding Message Encoding (IHME)

The concept of an index-based message encoding scheme with the index-hiding property (IHME) was intro-
duced in [36,37]. Here we recall their definitions and constructions.

Definition 4 (Index-Based Message Encoding [36]). An index-based message encoding scheme (iEncode,
iDecode) over an index space I and a message space M consists of two efficient algorithms:

S ← iEncode(P): On input consisting of a tuple of index-message pairs P = {(i1,m1), . . . , (in,mn)} ⊆
I ×M with distinct indices i1, . . . , in, this algorithm outputs an encoding S.

m← iDecode(S, i): On input of an encoding S and an index i ∈ I, this algorithm outputs a message m ∈M.

An index-based message encoding scheme is correct if iDecode(iEncode(P), ij) = mj for all j ∈ {1, . . . , n}
and all tuples P = {(i1,m1), . . . , (in,mn)} ⊆ I ×M with distinct indices ij.

The index-hiding property of an index-based message encoding ensures that all indices are hidden from the
receiver of the message, as long as he does not know which message to expect. Thus, a receiver of an index-
hiding encoded message can only recover those messages, encoded with an index he knows while all other
indices stay hidden. The index-hiding property of an index-based message encoding is given by the following
definition.

Definition 5 (Index-Hiding Message Encoding (IHME) [36]). Let IHME = (iEncode, iDecode) de-
note a correct index-based message encoding scheme over index space I and message space MIHME,r. Let
b ∈R {0, 1} be a randomly chosen bit and let A = (A1,A2) be a PPT adversary. We say that IHME provides
index-hiding if there exists a negligible function ε(·) such that:

AdvihideIHME,A(λ) := |Pr[Expihide,0IHME,A(λ) = 1]− Pr[Expihide,1IHME,A(λ) = 1]| ≤ ε(λ).

Moreover, if AdvihideIHME,A(λ) = 0 for all λ, the IHME-scheme is called perfect.

Expihide,bIHME,A(λ) : Let (I0, I1,M
′, St) ← A1(1λ) with I0, I1 ⊆ I, |I0| = |I1| = n, M ′ = (m′1, . . . ,m

′
|I0∩I1|),

m′j ∈ MIHME,r and {i1, . . . , ir} = Ib \ I1−b. Choose m1, . . . ,mr uniformly at random from MIHME,r, execute
S ← iEncode({(ij ,m′j)|ij ∈ I0 ∩ I1} ∪ {(ij ,mj)|ij ∈ Ib \ I1−b}) and b′ ← A2(St,S), and return b′ = b.

ν-fold IHME There exists an optimized version of IHME for longer messages, denoted ν-fold IHME [37]
which has mainly two advantages. The original instantiation of IHME requires that the index and message
space correspond, i.e. I = MIHME,r = F. Regarding the fact that the password (even the hashed one) is
most likely significantly shorter than a PAKE message, the constraint I = MIHME,r seems impractical.
Furthermore, ν-fold IHME is significantly faster than the original IHME implementation, as shown in [37].
It also allows us to encode distinct components of the same protocol message (cf. Section 3.1).

Definition 6 (ν-fold IHME [37]). For an arbitrary finite field F and ν ∈ N, after setting I = F and
MIHME,r = Fν , an index-hiding message encoding scheme IHME = (iEncode, iDecode) with index space I
and message space MIHME,r is constructed from standard IHME′ = (iEncode′, iDecode′) over F as follows:

S ← iEncode(P): On input of P = {(i1, (m1,1, . . . ,m1,ν)), . . . , (in, (mn,1, . . . ,mn,ν))} ⊆ I×MIHME,r = F×
Fν , the encoding is defined as the list S = (S1, . . . ,Sν) of IHME′-encodings Sk = iEncode′({ij ,mj,k}1≤j≤n),
for 1 ≤ k ≤ ν.

m← iDecode(S, i): On input of an encoding S = (S1, . . . ,Sν) and an index i ∈ I, this algorithm outputs a
message (m1, . . . ,mν) = m ∈MIHME,r where mk = iDecode′(Sk, i), for 1 ≤ k ≤ ν.
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B Proof of Theorem 1

At first, we want to stress that the existence of the admissible encodings for client messages implies the
uniform distribution of these messages, output by Π.next over Mr

C . Thus, the uniform distribution of the
messages output by the clients Π.next in the according message space is a compulsory condition. Let w.l.o.g.
P denote a client and P ′ a server. We first specify the conditions under which an instance Pi is qualified to
be used in a Test session. For an instance Pi with pidiP = P ′ to be qualified for a Test query the following
must hold: (i) (P, P ′) must not be marked as corrupt, (ii) Test(P ′, j) has not been asked before for the
partnered instance P ′j . Furthermore, we distinguish between two kinds of messages: adversarial generated
messages and forwarded messages. Adversarial generated messages are generated by the adversary himself,
i.e. have never been output by an oracle. Forwarded messages in contrast are outputs of oracle queries.
We define experiments Exp0, . . . ,Exp4, where the original experiment ExpAKE-SecCΠ ,A corresponds to Exp0. Let
Advi,A, Succi,A denote the advantage resp. success of A in the i-th experiment Expi and Sim the simulator
that simulates the oracles in the experiments. All changes we introduce in the experiments are done for
qualified Test sessions. Every other session has to be simulated honestly or in accordance to previous Test
queries as the adversary would recognise the experiment change due to his knowledge of the password or the
key.

On high level the experiments first replace the key computation done by Π with choosing a random key.
This first step is possible since the possibility of an adversary against the AKE-security of Π to distinguish
between randomly chosen keys and correct computed keys is bounded according to the AKE-security of
Π. Subsequently, we replace the client messages output by Π.next with randomly chosen messages from
the appropriate IHME message space. The second step relies on the existence of an appropriate admis-
sible encoding. In the next experiment we replace certain passwords in the clients password vector with
random ones. Based on the index-hiding of IHME this step introduces a gap according to the advantage
of the index-hiding adversary.4 Since all messages and keys are password independent now, we have to
ensure that the key confirmation and derivation steps do not offer any attack possibilities. This is assured
by the used pseudorandom function. In the following we describe the experiments and their impacts in detail.

The AKE-security of Π ensures that it is not possible to distinguish between randomly chosen keys k′ ∈R KΠ
and correct computed keys k output by TestΠ oracles. Therefore, we change the experiment as follows.

Exp1: The key kA ∈ KCΠ returned by the Test oracle in a qualified test session is computed as follows.
Instead of the correct key k, computed by Π, a randomly chosen key k′ ∈R KΠ is used to compute kA in
the case of b = 1.

Claim (1). |Succ0,A − Succ1,A| ≤ c · AdvAKE-SecΠ,A′

Proof. The claim follows directly from the AKE security of the used PAKE protocol Π and Lemma 1. Sim
can use A′ to distinguish between real keys and randomly chosen ones and thus break the AKE security
of Π. Therefore, the simulator interacts with c AKE experiments of Π on c different instances of P . Each
experiment has a secret bit b for Test queries. Sim also chooses a random bit b′ to use in Test query generation
and thus simulates Exp0 and Exp1. The Corrupt queries can be answered by calling CorruptΠ on one of the
c experiments. Sim answers Send oracle queries of A′ by forwarding the queries to all c experiments and
combining their answers according to the O-PAKE compiler except that for all but one message distinct
random passwords are used to create the IHME structure. If a SendΠ query finishes Π, i.e. all r messages are
sent, Sim additionally calls TestΠ queries on all c experiments if Test has not been asked to the respective
partnered instance. Thus, Sim is able to answer the remaining SendCΠ query as well as a potential TestCΠ
query. ExecuteCΠ oracles can be simulated by using the ExecuteΠ and TestΠ oracles of the c experiments and
the same construction as above. TestCΠ queries are answered with a key according to the chosen bit b′, i.e.
with kf derived from a randomly chosen key k ∈R KΠ for b′ = 0 or derived from the according k returned
by a TestΠ oracle answer to a random experiment for b′ = 1. On b′′ ← A′, Sim returns 1 to all experiments

4 Note that the used IHME implementation is perfectly hiding such that the gap is actually zero.
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if b′′ = b′, else 0. Here, the factor c comes into play as it is sufficient that the simulator wins in one of the
c experiments. Let p1 denote the probability that Sim outputs 1. We can see that p1 can be reduced to the
success of A′ guessing the correct bit. For the TestCΠ oracles that returned real keys, p1 is equal to the
success of A′ in Exp0. For the TestCΠ oracles that returned random keys, p1 is equal to the success of A′ in
Exp1 that uses only random keys. ut

Note that we assumed a perfect index-hiding so far. Thus, the adversary has no advantage through the
message format in CΠ , i.e. he can not recover anything from the sent passwords. To formally proof that this
assumption is justified we define the next two experiments. Let εF denote the advantage of an adversary
against the used ε-admissible encoding.

Exp2: We modify the Execute and Send oracle for qualified Test sessions such that Execute returns a transcript
trans = [m0

P ,m
0
P ′ ,m1

P ,m
1
P ′ , . . . ] and Send a messages mout generated as follows. Instead of the protocol-

conform encoded message IF r (m), a randomly chosen message m′ ∈R MIHME,r is used for client messages.
Server messages are computed honestly.

Claim (2). |Adv1,A − Adv2,A| < c · εF

Proof. The admissible encoding maps a uniformly distributed message m ∈ Mr
C into the IHME message

space MIHME,r. According to our premises, F r with its inverse IF r is an εF -admissible encoding such that
|Pr[Exp1 = 1]−Pr[Exp2 = 1]| ≤ εF (λ). In any other case Sim can use A to distinguish between an uniformly
at random sampled m′ ∈RMIHME,r and IF r (m). ut

Based on Exp2 we show that the index-hiding property of IHME is necessary to prevent the adversary from
obtaining the correct password pwP,P ′ and thus breaking the AKE security. This justifies the assumption
above that A gains no advantage from the message format used in CΠ . We use the term of qualified pass-
words here similar to the qualified Test sessions. A password pw[i] from the clients password vector pw is
qualified if no Corrupt(T, T ′) has been asked with pwT,T ′ = pw[i].

Exp3: All qualified client passwords from pw are replaced with randomly chosen passwords pw[i] ∈R D. Let
pwq ⊆ pw with |pwq| = x denote the vector of qualified passwords. Let pw[t] = pwq[t

′] = pwP,P ′ denote
the correct password. Thus, the client messages returned by Send and Execute oracles are generated as

mout = iEncode({(pw[1],m1), . . . , (pw[n− x],mn−x)}

∪{(pw′q[1],m′1), . . . , (pw′q[x],m′x)}),

with pw′q[i] ∈R D and m′i ∈RMIHME,r for i ∈ 1, . . . , x and pw[j],mj for j ∈ 1, . . . , n− x computed honestly.
To ensure the correctness of the protocol, i.e. P and P ′ compute the same key, the server’s password has
to be changed according to the random passwords pw′q[t

′]. Computation of server messages, returned by
the oracles is not changed. The final key computation in the case where only forwarded messages have been
used is done protocol-conform. If adversarial generated messages have been injected, the final key is drawn
uniformly at random from the key space as a correct key computation is not possible. Oracles in unqualified
Test sessions answer according to their specification in Exp2.

Claim (3). |Adv2,A − Adv3,A| ≤ c ·
∑
r Adv

ihide,r
IHME,B

Proof. The gap between Exp2 and Exp3 is bounded by the the sum over the advantage of the index-hiding
adversary B of each round, multiplied by c, the maximum number of passwords in one O-PAKE session.
Let B = (B1,B2) denote the adversary in the ihide experiment against the index-hiding of IHMEr. We define
B1 as follows: Choose pw1, . . . ,pwn,pw′1, . . . ,pw′x ∈R D and m1, . . . ,mn−x ∈R MIHME,r, and initialise Pi
with role = client, pwP = (pw1, . . . ,pwn) and partner P ′ with pwP ′,P = pwt. The output is generated
as I0 = pwP , I1 = pw′P with pw′P = pwP \ pwq ∪ (pw′1, . . . ,pw′x), St = (t,pw′P ,pwP , Pi, P

′,M ′) and
M ′ = {m1, . . . ,mn−x} where mi for i ∈ 1, . . . , n − x are computed honestly according to the protocol
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specification of Π. The intersection ω = Ib \ I1−b is either ω = pwq for b = 0, or ω = (pw′1, . . . ,pw′x) for

b = 1. The message m′i ∈RMIHME,r for i ∈ 1, . . . , x are chosen and encoded as

S ← IHMEr.iEncode({(pw1,m1), . . . , (pwn−x,mn−x)}

∪{(ω[1],m′1), . . . , (ω[x],m′x)}),

according to the index-hiding game. As IHMEr is index-hiding according to Definition 5 the advantage of B
to distinguish between Exp2 and Exp3 in round r is given as c · AdvihideIHME,B. ut

The final key k output by the O-PAKE compiler is computed by applying an additional pseudorandom
function PRFk. To show the security of the additional confirmation and key derivation step we change the
experiment as follows. Let AdvPRF denote the advantage of the adversary against the used PRF.

Exp4: The key kA returned by the Test oracle and the confirmation message c is chosen uniformly at random
from KCΠ in qualified Test sessions.

Claim (4). |Adv3,A − Adv4,A| ≤ 2 · AdvPRF

Proof. The key k′ used for confirmation c and final key generation k is according to Exp1 chosen uniformly at
random and thus offers no attack possibilities. Furthermore, the probability to distinguish between randomly
chosen c, k and c← PRFk′ resp. k← PRFk′ is bounded by AdvPRF as long as the used PRF is a pseudorandom
function. ut

The client messages in Exp4 are password independent and thus can not leak any information about the
passwords. Furthermore, the key kA is chosen uniformly at random. Thus, the advantage of A is given as

AdvAKE-SecCΠ ,A (λ) ≤ c · (AdvAKE-SecΠ,A′ (λ) +
∑
r

AdvihideIHME,B + εF ) + 2 · AdvPRF,

and therefore

AdvAKE-SecCΠ ,A (λ) ≤ c · O(t)

|D|
+ ε(λ).

ut
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