
Blank Digital Signatures

Christian Hanser
Institute for Applied Information Processing and

Communications (IAIK)
Graz University of Technology (TUG)
Inffeldgasse 16a, 8010 Graz, Austria
christian.hanser@iaik.tugraz.at

Daniel Slamanig
Institute for Applied Information Processing and

Communications (IAIK)
Graz University of Technology (TUG)
Inffeldgasse 16a, 8010 Graz, Austria
daniel.slamanig@iaik.tugraz.at

ABSTRACT
In this paper we present a novel type of digital signatures,
which we call blank digital signatures. The basic idea be-
hind this scheme is that an originator can define and sign
a message template, describing fixed parts of a message as
well as multiple choices for exchangeable parts of a message.
One may think of a form with blank fields, where for such
fields the originator specifies all the allowed strings to choose
from. Then, a proxy is given the power to sign an instantia-
tion of the template signed by the originator by using some
secret information. By an instantiation, the proxy commits
to one allowed choice per blank field in the template. The
resulting message signature can be publicly verified under
the originator’s and the proxy’s signature verification keys.
Thereby, no verifying party except the originator and the
proxy learn anything about the “unused” choices from the
message template given a message signature. Consequently,
the template is hidden from verifiers.

We discuss several applications, provide a formal defini-
tion of blank digital signature schemes and introduce a secu-
rity model. Furthermore, we provide an efficient construc-
tion of such a blank digital signature scheme from any se-
cure digital signature scheme, pairing-friendly elliptic curves
and polynomial commitments, which we prove secure in our
model. We also provide a detailed efficiency analysis of
our proposed construction supporting its practicality. Fi-
nally, we outline several open issues and extensions for fu-
ture work.

Categories and Subject Descriptors
[Security and privacy]: Digital signatures
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1. INTRODUCTION
Digital signatures provide the means to achieve source

authentication and data integrity for digital messages in
a publicly verifiable way meaning that at signing time a
signer commits himself to a concrete message. In this pa-
per, we propose the novel concept of a blank digital signature
scheme. Here, an originator can define and sign a message
template, describing fixed parts of a message as well as sev-
eral choices for exchangeable parts of a message (one may
think of a form with blank fields, where for such fields the
originator specifies all the allowed strings to choose from),
for which he can delegate signing permissions to a proxy.
This proxy is given the power to sign template instantia-
tions of the template given by the originator by using some
secret information. The resulting message signature can be
publicly verified under the originator’s and the proxy’s sig-
nature verification keys. Thereby, no verifying party except
the originator and the proxy learn anything about the “un-
used” choices from the message template and, consequently,
about the template when given a message signature. In or-
der to construct such a scheme it is helpful to look at existing
variants of digital signature schemes to figure out, whether
they can be used to instantiate blank digital signatures.

Conventional digital signatures require the signer to be
available during signature creation, e.g., when a contract is
signed. To overcome this limitation, the concept of proxy
signatures [16] has been introduced. Basically, a proxy sig-
nature scheme allows an entity (the delegator) to delegate
his signing capabilities to another entity (the proxy) that
can then construct signatures on behalf of the delegator.
This concept has seen a considerable amount of interest since
then [7]. Surprisingly, only quite recently a suitable security
model for proxy signatures has been introduced [6], and been
extended to multi-level and identity-based proxy signature
schemes later on [21]. Since in a practical application, the
delegator may not want to give the proxy the power to sign
any message on behalf of the signer, the delegation by war-
rant [16] approach was proposed. Here, a signed warrant is
used to describe the delegation. Thereby, any type of secu-
rity policy may be included in the warrant to describe the
restrictions under which the delegation is valid. This ap-
proach seems to be particularly attractive and received the
most attention, since the designator can define a message
space for which he delegates his signing rights. In state of



the art schemes [21, 7], a warrant consists of the description
ω of the message space for which signing is being delegated,
together with a “certificate”, which is a signature on ω un-
der the delegators private signing key. We are given a simi-
lar requirement and, consequently, could ask whether proxy
signatures can be used in this setting. In proxy signatures,
this warrant is an abstract description, which could, for in-
stance, be a context-free grammar, a regular expression, or
as in [6], the description of a polynomial-time Turing ma-
chine computing the characteristic function of all potential
messages, i.e., given a message to decide, whether the mes-
sage is covered by ω or not. However, in proxy signatures
the proxy is allowed to sign arbitrary messages from this
abstract message space with the downside that the verifier
learns the entire message space. Consequently, our require-
ment that the proxy can sign instantiations of a template
without a verifier learning the corresponding template can
not be realized by using existing proxy signature schemes.

Conventional digital signature schemes do not allow alter-
ations of a signed document without invalidating the signa-
ture. Since it may be valuable to have the possibility to re-
place or remove (specified) parts of a message after signature
creation such that the original signature stays valid (and no
interaction with the original signer is required), redactable
[23, 13] as well as sanitizable signature schemes [3] have been
introduced. Signature schemes, which allow removal of con-
tent (replacement by some special symbol ⊥) by any party
are called redactable [23, 13], while signature schemes allow-
ing (arbitrary) replacements of admissible parts by a desig-
nated party are called sanitizable signature schemes [3], cf.
[20] for a comparison. As in our setting, the proxy should
be allowed to choose from a list of predefined replacements
for designated parts of the message, one could ask whether
redactable or sanitizable signatures can be used in this set-
ting. Since in redactable signature schemes any party is
allowed to modify signed messages by removing message
parts, such signature schemes are obviously not compatible
with our requirements. The original concept of sanitizable
signatures [3] allows designated sanitizers to replace desig-
nated parts of a message. However, here the sanitizer does
not have the role of a proxy meaning that it does not sign
the modified message. Furthermore, a sanitizer can replace
the designated parts with arbitrary strings, which is clearly
not meeting our requirements. The concept of sanitizable
signatures was later on extended to allow only permitted re-
placements [15], yet, the Bloom filter [5] based construction
does not meet cryptographic security requirements and the
cryptographic accumulator [4] based approach [15, 9] allows
to securely restrict replacements. Yet, both approaches are
not designed and also do not support the hiding of the set
of accumulated values (allowed replacements) and, thus, are
not suitable for our construction.

To sum this up, our concept has more in common with
proxy signatures than with sanitizable signatures. This is
due to our requirements that the signature of the originator
is not publicly verifiable as it is the case in sanitizable sig-
natures and only instantiations can be publicly verified as it
is the case for proxy signatures.

1.1 Contribution
Since, however, none of the existing concepts covers all

our requirements, we propose the novel concept of a blank
digital signature scheme. Here, an originator, i.e., the signer

delegating signing permissions, can define and sign a mes-
sage template, describing fixed parts of a message as well
as several choices for exchangeable parts of a message. One
may think of a form with blank fields, where for such fields
the originator specifies all the allowed strings to choose from.
Then, a proxy is given the power to sign template instantia-
tions of the template given by the originator by using some
secret information. The resulting message signature can be
publicly verified under the originator’s and the proxy’s sig-
nature verification keys. Thereby, no verifying party except
the originator and the proxy learn anything about the “un-
used” choices from the message template and, consequently,
about the template given a message signature. Since this
setting is quite different from the security requirements of
proxy signatures and sanitizable signatures, most impor-
tantly, the template should be hidden from verifiers, we de-
fine a novel type of signature scheme along with a suitable
security model. Similar to proxy signatures and sanitizable
signatures, we require a public key infrastructure meaning
that the originator and proxy are in possession of authentic
signing keys. Moreover, since we use polynomial commit-
ments in our construction, we need the parameters to be
generated by a trusted third party.

A naive approach to realize blank digital signatures is that
the originator produces n signatures for all n possible instan-
tiations together with the public key of the proxy using a
standard digital signature scheme, whereas the proxy simply
signs the originator’s signature for the chosen instantiations.
However, the number of signatures issued by the originator
would then be O(n), which gets impractical very soon with
increasing number of choices in exchangeable parts. By us-
ing randomized Merkle hash trees [17] as in redactable sig-
natures, the number of signatures of the originator could be
reduced to O(1), whereas the signature of the proxy would
then, however, be of size O(log n). At first glance, this may
seem attractive, yet in Section 5.4 we illustrate that this
approach also becomes soon impractical with an increasing
number of choices. In our construction, the number of signa-
tures of the originator is O(1), whereas the size of both sig-
natures, of the originator and the proxy, are also O(1) and,
in particular, very small and constant. Clearly, this is far
more appealing than the aforementioned naive approaches.

1.2 Outline
In Section 2, we sketch some application scenarios for

blank digital signatures. Section 3 discusses the mathemat-
ical and cryptographic preliminaries. Then, in Section 4 we
introduce the notion of blank digital signatures and the cor-
responding security model. A construction of a blank digital
signature scheme along with its security proof, an efficiency
analysis and a comparison to the naive approaches are given
in Section 5. Finally, Section 6 concludes the paper and lists
open issues for future work.

2. APPLICATIONS
Here, we sketch some application scenarios which we en-

vision for this novel type of digital signatures.

Partially blank signed contracts: Suppose a person is
willing to sign a contract under certain predefined condi-
tions, e.g., set of potential prices, range of possible contract
dates, but is not able to sign the contract in person. Then,
this person can elegantly delegate this task to another semi-



trusted party, e.g., his attorney, by using blank digital signa-
tures. The third party is then able to conclude the contract
on behalf of his client. The client can do so by defining a
contract template thereby leaving certain positions “blank”,
i.e., defining certain potential choices for the position with-
out committing to one, and signing the template. Then, at
a later point in time, the attorney is able to “fill in the gaps”
by choosing from predefined choices, whereas the original
signature of the client remains valid, and then signing the
resulting contract as a proxy.

“Sanitizable”signatures: Wemay interpret exchangeable
parts of message templates as replacements (with a poten-
tially empty string) and, thus, can achieve a scheme with
similar capabilities, but different meaning and strength as
a non-interactive publicly accountable sanitizable signature
scheme [8]1, which supports controlled replacements [9, 15].
Note that such a sanitizable signature scheme does not yet
exist. However, there are some key differences. In contrast
to sanitizable signatures, our template signature is not in-
tended to be publicly verifiable, i.e., can only be verified
by the proxy and, thus, the originator does not commit to
a concrete instantiation of the template. Furthermore, in
blank digital signatures, the allowed replacements are hid-
den, which is not supported by sanitizable signatures allow-
ing such replacements [9, 15]. Consequently, blank digital
signatures may be seen as signature schemes supporting san-
itizing capabilities, but are a different concept as it is clear
from the differences mentioned above.

3. PRELIMINARIES
In this section we firstly provide an overview of required

mathematical and cryptographic preliminaries.

3.1 Mathematical Background
An elliptic curve over the finite field Fq is a plane, smooth

curve described by the Weierstrass equation:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1)

where a1, a2, a3, a4, a6 ∈ Fq. The set E(Fq) of points (x, y) ∈
F2
q satisfying Equation (1) plus the point at infinity ∞,

which is the neutral element, forms an additive Abelian
group, whereas the group law is determined by the chord-
and-tangent method [22].

Let G be a cyclic group and p be a divisor of its group
order, then there exists a subgroup of order p, which we
subsequently denote by G[p].

Definition 1 (Bilinear Map). Let G1, G2 and GT be
three cyclic groups of the same prime order p, where G1, G2

are additive groups and GT is a multiplicative group. We
call the map e : G1 ×G2 → GT a bilinear map or pairing, if
the following conditions hold:

Bilinearity: For all P1, P2 ∈ G1 and P ′
1, P

′
2 ∈ G2 we have:

• e(P1 + P2, P
′) = e(P1, P

′) · e(P2, P
′) for all P ′ ∈

G2,

• e(P,P ′
1 +P ′

2) = e(P, P ′
1) · e(P, P ′

2) for all P ∈ G1.

1In such a sanitizable signature scheme, when given a sig-
nature anybody can verify, whether a modification has been
conducted by the original signer or the sanitizer without in-
teracting with any party.

Non-degeneracy: If P is a generator of G1 and P ′ a gen-
erator of G2, then e(P, P ′) is a generator of GT , i.e.,
e(P, P ′) �= 1GT .

Efficiently computable: e can be computed efficiently.

If G1 = G2, then e is called symmetric and asymmetric
otherwise. The former type is also called Type-1 pairing,
whereas in case of the latter we distinguish between Type-2
and Type-3 pairings. For Type-2 pairings there is an effi-
ciently computable isomorphism Ψ : G2 → G1 [10] and for
Type-3 pairings such an efficiently computable isomorphism
does not exist. In our setting, G1 and G2 are p-order ellip-
tic curve group over Fq and GT = F∗

qk [p], which is an order

p subgroup of F∗
qk . Note that k, the so called embedding

degree, is defined as k = min{� ∈ N : p | q� − 1}.

3.2 Digital Signatures
Here, we briefly recall the definition of a standard digital

signature scheme.

Definition 2 (Digital Signature Scheme). A digi-
tal signature scheme is a tuple (KeyGenDSS,SignDSS,VerifyDSS)
of polynomial-time algorithms:

KeyGenDSS(κ) : Is a key generation algorithm that takes as
input a security parameter κ ∈ N and outputs a pri-
vate (signing) key skDSS and a public (verification) key
pkDSS.

SignDSS(M, skDSS) : Is a (probabilistic) algorithm taking in-
put a message M ∈ {0, 1}∗, a private key skDSS and
outputs a signature σ.

VerifyDSS(σ,M, pkDSS) : Is a deterministic algorithm taking
input a signature σ, a message M ∈ {0, 1}∗, a public
key pkDSS and outputs a single bit b ∈ {true, false}
indicating whether σ is a valid signature for M .

Furthermore, we require the digital signature scheme to be
correct, i.e., for all (skDSS, pkDSS) ∈ KeyGen(κ) and all M ∈
{0, 1}∗, VerifyDSS(SignDSS(M, skDSS),M, pkDSS) = true must
hold. A digital signature scheme is secure, if it is existen-
tially unforgeable under adaptively chosen-message attacks
(UF-CMA) [12]. Note that in practice, the sign and verify
algorithms will typically use a hash function to map input
messages to constant size strings, which is also known as the
hash-then-sign paradigm.

3.3 Polynomial Commitments
In [14], Kate et al. introduced the notion of constant-

size polynomial commitments. The authors present two dis-
tinct commitment schemes, whereas one is unconditionally
binding and computationally hiding (PolyCommitDL) and the
other is unconditionally hiding as well as computationally
binding (PolyCommitPed). For our scheme, we are using
PolyCommitPed, which is based on Pedersen commitments [19].
The constructions of [14] use an algebraic property of poly-
nomials f(X) ∈ Zp[X]. Namely, that (X − λ) perfectly
divides the polynomial f(X) − f(λ) for λ ∈ Zp: Now, we
briefly present the PolyCommitPed construction of [14].

Setup(κ, t) : Pick two groups G,GT of the same prime or-
der p (with p being a prime of bitlength κ) having
a symmetric pairing e : G × G → GT . Choose two



generators P,Q ∈ G and α ∈R Z∗
p and output pk =

(G,GT , p, e, P, αP, . . . , α
tP,Q,αQ, . . . , αtQ) as well as

sk = α.

Commit(pk, f(X)) : Given f(X) ∈ Zp[X] with deg(f) ≤
t, choose a random polynomial r(X) ∈ Zp[X] with
deg(f) ≤ deg(r) ≤ t, compute the commitment C =
f(α)P + r(α)Q ∈ G and output C.

Open(pk, C, f(X), r(X)) : Output (f(X), r(X)).

VerifyPoly(pk, C, f(X), r(X)) : Verify whether

C =

deg(f)∑

i=0

f (i)(αiP ) +

deg(r)∑

i=0

r(i)(αiQ)

holds and output true on success and false otherwise.

CreateWit(pk, f(X), r(X), λ) : Compute φ(X) = f(X)−f(λ)
X−λ

,

φ̂(X) = r(X)−r(λ)
X−λ

and Wλ = φ(α)P + φ̂(α)Q and out-

put (λ, f(λ), r(λ),Wλ).

VerifyEval(pk, C, λ, f(λ), r(λ),Wλ) : Verify that f(λ) is the
evaluation of f at point λ. This is done by checking
whether

e(C, P ) = e(Wλ, αP − λP ) · e(f(λ)P + r(λ)Q,P )

holds. Output true on success and false otherwise.

This scheme can be proven secure under the t-SDH assump-
tion in G, as long as t <

√
2κ. For the proof we refer the

reader to [14]. Notice that α must remain unknown to the
committer (and thus the setup has to be run by a trusted
third party), since, otherwise, it would be a trapdoor com-
mitment scheme.

Moreover, we note that we do not need the algorithms
CreateWit and VerifyEval in our construction, since we do not
need to prove valid evaluations of the polynomial f(X) with-
out revealing the polynomial itself. For the same reason, we

simply use a random point R instead of
∑deg(r)

i=0 r(i)(αiQ),
which obviously also yields an unconditionally hiding Ped-
ersen commitment.

4. BLANK DIGITAL SIGNATURES
In this section we introduce the notion of blank digital

signatures as well as the according security model. As a pre-
requisite we first need to introduce representations and en-
codings for message templates and template instantiations.

4.1 Template and Message Representation
In the following we introduce a representation for message

templates. A message template T describes all potential
template instantiations that correspond to a single template.
More formally, a message template is defined as follows.

Definition 3 (Message Template). A message tem-
plate T is a sequence of non-empty sets Ti = {Mi1 , . . . ,Mil}
of bitstrings Mij and uniquely identified by idT . If the size
of Ti is one, then the set Ti is called fixed element of T
and exchangeable element otherwise. The set of all mes-
sage templates is denoted by T.

An exchangeable element Ti represents allowed substitu-
tions, i.e., Ti can be replaced by any of its elements Mij in
order to obtain an instantiation of the template. Let n be

the sequence length of T , then n is called length of template
T . Furthermore, with |T | we denote the size of template T ,
that is |T | =

∑n
i=1 |Ti|. Finally, we call max1≤i≤n |Ti| the

depth of template T = (Ti)
n
i=1.

Definition 4 (Template Instantation). A template
instantiation M of some template T = (Ti)

n
i=1 is derived

from T as follows. For each 1 ≤ i ≤ n choose exactly one
element Mi ∈ Ti and set M = (Mi)

n
i=1. A template instan-

tiation M is called valid, which we denote by M 	 T , if
it represents choices that were intended by the originator of
template T . Furthermore, we use MT = {M : M 	 T }
to denote the set of all possible template instantiations of a
template T .

A message template T is called

• trivial if it does not contain any exchangeable ele-
ments. Note that this implies |T | = n, and

• minimal if no two fixed elements are adjacent.

The minimal property guarantees that the number of fixed
elements is kept minimal. The complement of the template
instantiation M denoted as M is a sequence of sets of bit-
strings and represents all unused choices in the exchangeable
elements, that is M = (Ti \ {Mi})ni=1 for an instantiation
M = (Mi)

n
i=1 of T = (Ti)

n
i=1.

Now, we give a short example to illustrate our concept.

Example 1. Let T = (T1, T2, T3) with

• T1 = {“I, hereby, declare to pay ”},

• T2 = {“100$”, “120$”, “150$”} and

• T3 = {“ for this tablet device.”}.

Here, T1 and T3 are fixed elements and T2 is an exchangeable
element with three choices. A template instantiation could,
for instance, be M = (“I, hereby, declare to pay ”, “120$”,
“ for this tablet device.”). The complement of template in-
stantiation M is then M = (∅, {“100$”, “150$”}, ∅).

In the following, we define encodings of templates and
template instantiations, for which we use polynomials in the
Euclidean ring Zp[X]. This allows us to perform polynomial
division with remainder, which is essential to our construc-
tion.

Definition 5 (Template Encoding). Let T =(Ti)
n
i=1

be a message template and H : {0, 1}∗ → Zp be a full-domain
cryptographic hash function. A template encoding function
t : T → Zp[X] is defined as follows:

T �→
n∏

i=1

∏

M∈Ti

(
X −H(M‖idT ‖i)

)
.

The evaluation t(T ) results in a so-called template encoding
polynomial tT ∈ Zp[X] of degree |T |.

Note that the degree of the resulting polynomial needs to be
bounded by

√
2κ, as otherwise the security of the polynomial

commitment scheme is no longer guaranteed. However, this
has no impact in practice, since the polynomial can only be
created by a polynomial time algorithm.



Definition 6 (Message Encoding). Similar to Defi-
nition 5, a message encoding function mT : MT → Zp[X]
with respect to a message template T is defined as follows:

M �→
n∏

i=1

(X −H(Mi‖idT ‖i)),

where M = (Mi)
n
i=1 is an instantiation of T = (Ti)

n
i=1. We

call mM = mT (M) ∈ Zp[X] message encoding polynomial.
Furthermore, we define the complementary message encod-
ing function mT : MT → Zp[X]:

M �→
n∏

i=1

∏

M∈(Ti\{Mi})

(
X −H(M‖idT ‖i)

)
.

We call mM = mT (M) = ( tT
mM

) ∈ Zp[X] the complemen-

tary message encoding polynomial of mM with respect to
template T .

In the following, we consider all polynomials to be expanded.
To do so, we assume that an algorithm Exp, which carries
out the polynomial expansion, is applied implicitly to all
polynomials.

Typically, a template instantiation M = (Mi)
n
i=1 	 T

will be mapped to a single bitstring M =M1‖ . . . ‖Mn. We
denote the mapping leading fromM to M by λ(M, I) = M,
where I = (|Mi|)ni=1 is a descriptional sequence holding the
lengths of the n elements of M as given by template T .
For sake of simplicity, we consider all templates to be non-
trivial as well as minimal and do not differentiate between
a template instantiation M and its corresponding bitstring
M .

4.2 Blank Digital Signature Scheme
Now, we are able to formally define what we mean by a

blank digital signature scheme.

Definition 7 (Blank Digital Signature Scheme).

A blank digital signature scheme BDSS consists of a tuple
(KeyGen, Sign,VerifyT , Inst,VerifyM) of polynomial-time al-
gorithms:

KeyGen(κ, t): This probabilistic algorithm gets the security
parameter κ ∈ N and a value t ∈ N specifying the max-
imum template size. It generates private and public
keys (pkorig, skorig) for the originator and returns them.

Sign(T , skorig, pkorig, skDSS
orig , pk

DSS
proxy): This probabilistic algo-

rithm takes a message template T , the originator’s
private key skorig, the originator’s public key pkorig, the
originator’s signing key skDSS

orig , the proxy’s verification

key pkDSS
proxy and outputs a template signature σT and a

template dependent private key for the proxy skTproxy.

VerifyT (T , σT , pkorig, pk
DSS
orig , sk

T
proxy, pk

DSS
proxy): This determin-

istic algorithm takes a template T , its signature σT ,
the originator’s public key pkorig, the originator’s sig-
nature verification key pkDSS

orig , the private key of the

proxy skTproxy, and the proxy’s verification key pkDSS
proxy. It

outputs a bit b ∈ {true, false} indicating whether σT
is a valid signature for T .

Inst(T ,M, σT , pkorig, sk
T
proxy, sk

DSS
proxy, pk

DSS
proxy): This probabilistic

algorithm takes a template T , an instantiation M, a
template signature σT , the public key of the originator

pkorig, the private key of the proxy skTproxy, the signing

key pair (skDSS
proxy, pk

DSS
proxy) of the proxy and outputs a mes-

sage signature σM.

VerifyM(M, σM, pkorig, pk
DSS
proxy, pk

DSS
orig ): This deterministic al-

gorithm takes a template instantiation M of T , the
signature σM, the public key of the originator pkorig,
the signature verification key of the proxy pkDSS

proxy, and

the signature verification key of the originator pkDSS
orig .

It outputs a bit b ∈ {true, false} indicating whether
σM is a valid signature for M 	 T .

4.3 Security Definitions
In the following, we define the security properties a blank

digital signature scheme needs to satisfy in order to be se-
cure. Therefore, we start with a brief overview of the re-
quired properties.

Correctness: The scheme must be correct in terms of sig-
nature correctness, signature soundness and instantia-
tion correctness, i.e., both template and message signa-
tures are accepted when valid and template signatures
of the originator are binding.

Unforgeability: No entity without knowledge of the pri-
vate key skorig and the signing keys skDSS

orig and skDSS
proxy

should be able to forge a valid template or message sig-
nature. This is analogous to the security of traditional
digital signatures. In particular, this means that it is
infeasible to produce forgeries of the following types:

T1 finding a template T ∗ yielding the same template
signature σT ∗ = σTi for one queried template Ti.

T2 forging a valid template signature σT ∗ for some
unqueried template T ∗.

M1 finding another message M∗ �= Mij yielding mes-
sage signature σM∗ such that σM∗ = σMij

for

some previously queried message Mij .

M2 forging a valid message signature σM for some
non-queried M from template signature σTi for
some previously queried template Ti. There are
two cases:

• M 	 Ti for some queried template Ti,

• M � Ti for some queried template Ti.

Immutability: The proxy having access to skTproxy and skDSS
proxy,

when given a template signature σT for template T
should not be able to forge signatures. Here, cases
T1,T2 and M2 from above apply.

Privacy: No entity should be able to restore template T
from a message signature σM representing a signature
for an instantiation M of template T .

4.3.1 Correctness
For a blank digital signature scheme the usual correctness

properties are required to hold, i.e., genuinely signed tem-
plates and message signatures are accepted. Furthermore,
we require template signatures to be sound, i.e., the origina-
tor commits to exactly one template by creating a template
signature.

Signature correctness: For any key pairs (skDSS
orig , pk

DSS
orig ) ∈

KeyGenDSS(κ) and (skDSS
proxy, pk

DSS
proxy) ∈ KeyGenDSS(κ), any BDSS



key (pkorig, skorig) ∈ KeyGen(κ, t), any template T and any
honestly computed template signature

σT = Sign(T , skorig, pkorig, skDSS
orig , pk

DSS
proxy),

we require that the verification

VerifyT (T , σT , pkorig, pk
DSS
orig , sk

T
proxy, pk

DSS
proxy) = true

holds.

Signature soundness: For any key pairs (skDSS
orig , pk

DSS
orig ) ∈

KeyGenDSS(κ) and (skDSS
proxy, pk

DSS
proxy) ∈ KeyGenDSS(κ), any BDSS

key (pkorig, skorig) ∈ KeyGen(κ, t), any template T and any
honestly computed template signature

σT = Sign(T , skorig, pkorig, skDSS
orig , pk

DSS
proxy),

we require that for any T ∗ �= T the probability that the
verification

VerifyT (T ∗, σT , pkorig, pk
DSS
orig , sk

T
proxy, pk

DSS
proxy) = true

holds is negligibly small as a function of the security param-
eter κ.

Instantiation correctness: For any key pairs (skDSS
orig , pk

DSS
orig )

∈ KeyGenDSS(κ) and (skDSS
proxy, pk

DSS
proxy) ∈ KeyGenDSS(κ), any

BDSS key (pkorig, skorig) ∈ KeyGen(κ, t), any template T , any
honestly computed signature σT and corresponding skTproxy
such that

VerifyT (T , σT , pkorig, pk
DSS
orig , sk

T
proxy, pk

DSS
proxy) = true,

any honestly computed message signature

σM = Inst(T ,M, σT , pkorig, sk
T
proxy, sk

DSS
proxy, pk

DSS
proxy),

we require that the verification

VerifyM(M, σM, pkorig, pk
DSS
proxy, pk

DSS
orig ) = true

holds.

Definition 8. A BDSS is correct if satisfies signature
correctness, signature soundness and instantiation correct-
ness.

4.3.2 Unforgeability
Unforgeability in the context of blank digital signatures

resembles the notion of existential unforgeability against
adaptive chosen message attacks (UF-CMA) in classic dig-
ital signature schemes. We adapt the classical notion to our
setting in Game 1. Unforgeability is a protection against
attacks mounted by parties not having access to any secret
information.

Definition 9 (Unforgeability). A BDSS is called
unforgeable, if for any polynomial-time algorithm A the prob-
ability of winning Game 1 is negligible as a function of se-
curity parameter κ.

4.3.3 Immutability
Immutability guarantees that no malicious proxy can com-

pute message templates or template instantiations not in-
tended by the signer. In contrast to unforgeability, im-
mutability deals with malicious insiders.

The immutability game differs only slightly from the un-
forgeability game. Therefore, we only briefly discuss the
differences. Here, the adversary additionally obtains skTproxy

Setup: The challenger B runs KeyGen(κ, t) to obtain
(pkorig, skorig). Furthermore, B runs KeyGenDSS(κ) of
a secure digital signature scheme twice to generate
(skDSS

orig , pk
DSS
orig ) and (skDSS

proxy, pk
DSS
proxy). It gives the adver-

sary A the resulting public keys pkorig, pk
DSS
orig and pkDSS

proxy

and keeps the private keys skorig, sk
DSS
orig and skDSS

proxy to it-
self.

Query: The adversary A has access to an oracle O,
which is simulated by the challenger and an-
swers to queries of the form (Ti,MTi) as fol-
lows. For each template Ti the challenger
chooses idTi , computes and stores (σTi , sk

T
proxy) =

Sign(Ti, skorig, pkorig, sk
DSS
orig , pk

DSS
proxy). Next, B computes

σMij
= Inst(Ti,Mij , σT , pkorig, sk

T
proxy, sk

DSS
proxy, pk

DSS
proxy)

and returns σMij
. A can issue these queries for differ-

ent templates as well as template instantiations in an
adaptively interleaved manner.

Output: The adversary A outputs either a triple

(T ∗, σT ∗ , skT
∗

proxy) or a pair (M∗, σM∗). A wins if

either VerifyT (T ∗, σT ∗ , pkorig, pk
DSS
orig , sk

T ∗
proxy, pk

DSS
proxy)

or VerifyM(M∗, σM∗ , pkorig, pk
DSS
proxy, pk

DSS
orig ) accepts,

whereas the forgeries must be of type T1,T2 or
M1,M2.

Game 1: Unforgeability Game

and skDSS
proxy from the challenger in the setup phase. In the

query phase, A has access to a template signing oracle and
can query signatures for arbitrary templates. A can com-
pute valid template instantiations locally. In this game, A
wins if he outputs valid forgeries of type T1,T2 or M2.

Definition 10 (Immutability). A BDSS is called im-
mutable, if for any polynomial-time algorithm A the prob-
ability of winning the immutability game is negligible as a
function of security parameter κ.

4.3.4 Privacy
Privacy captures that any verifier except for the originator

and the proxy, which is given a signature for a template
instantiation M of a non-trivial template T , can not gain
any information about M and thereby learn about T . This
means that even if all but one choice of a single exchangeable
element has been revealed no verifier should be able to gain
complete knowledge of T . More precisely, let k be the depth
of template T , which is the smallest number of instantiations
necessary to reveal all choices of T , then no verifier should
be able to derive information about the remaining unseen
choices inside T by knowing k − 1 instantiations.

Definition 11 (Privacy). A BDSS is called private,
if for any polynomial-time algorithm A the probability of
winning Game 2 is negligible as a function of security pa-
rameter κ.

4.3.5 Security
Now, we can define what constitutes a secure blank digital

signature scheme.

Definition 12. We call a BDSS secure, if it is correct,
unforgeable, immutable and private.



KeyGen: On input (κ, t), choose an elliptic curve E(Fq) with a subgroup of large prime order p generated by P ∈ E(Fq)[p],
such that the bitlength of p is κ. Choose a pairing e : E(Fq)[p] × E(Fq)[p] → F∗

qk [p], a full-domain crypto-

graphic hash function H : {0, 1}∗ → Zp for use with the encoding functions and a full-domain cryptographic
hash function H ′ : F∗

qk [p] → {0, 1}κ. Let P ∈ E(Fq)[p] be a generator and let g = e(P, P ) be a generator of

F∗
qk [p]. Pick two elements α, δ ∈R Z∗

p, compute (αP, . . . , αtP ) as well as (δP, αδP, . . . , αtδP ) and output skorig = δ,

pkorig = (H,H ′, E(Fq), e, p, P, g, αP, . . . , α
tP, δP, αδP, . . . , αtδP ).

Sign: Given T , skorig, pkorig, skDSS
orig and pkDSS

proxy, where T is a template of size |T | = � and length n with � > n, this algorithm
picks a unique idT ∈R {0, 1}κ, computes tT = t(T ) ∈ Zp[X], picks a random point R ∈ E(Fq)[p], computes R0 = δR,

C = H ′(e(
�∑

i=0

t
(i)
T (αiP ) +R, δP )) and τ = SignDSS(idT ‖C‖R0‖R2‖n‖pkDSS

proxy, sk
DSS
orig ).

It picks a point R1 ∈R E(Fq)[p], computes R2 = R−R1, and returns the template signature σT = (idT , C, R0, R2, n, τ )
as well as skTproxy = R1.

VerifyT : Given T , σT , pkorig, pk
DSS
orig , sk

T
proxy and pkDSS

proxy, where T is a template of size |T | = � and length n with � > n, this
algorithm checks whether |T | ≤ t. If not, it returns false. Otherwise, it computes tT = t(T ) and checks whether

VerifyDSS(τ, idT ‖C‖R0‖R2‖n‖pkDSS
proxy, pk

DSS
orig ) = true ∧ e(R0, P ) = e(R1+R2, δP ) ∧ H ′(e(

�∑

i=0

t
(i)
T (αiδP )+R0, P )) = C

where t
(i)
T is the i’th coefficient of tT . If so, return true and false otherwise.

Inst: Given T ,M, σT , pkorig, sk
T
proxy and skDSS

proxy, pk
DSS
proxy, where T is a template of size |T | = � and length n with � > n, this

algorithm, chooses γ ∈R Z∗
p, and computes mM = mT (M) ∈ Zp[X]. Then, it computes

CM =

�−n∑

i=0

m
(i)

M(αiP ) + γR1 and μ = SignDSS(τ‖CM‖γ‖I, skDSS
proxy),

where m
(i)

M is the i’th coefficient of mM. It returns σM = (μ, CM, γ, I, σT ).

VerifyM: Given M, σM = (μ, CM, γ, I = (|Mi|)ni=1, σT ), pkorig, pk
DSS
proxy and pkDSS

orig this algorithm verifies whether

VerifyDSS(τ, idT ‖C‖R0‖R2‖n‖pkDSS
proxy, pk

DSS
orig ) = true ∧ VerifyDSS(μ, τ‖CM‖γ‖I, pkDSS

proxy) = true ∧|I| = n ∧
n∑

i=1

|Mi| = |M|

On failure return false, otherwise evaluate mM = mT (M), let m
(i)
M be the i’th coefficient of mM, and compute

CM =

n∑

i=0

m
(i)
M(αiP ) and C′

M =

n∑

i=0

m
(i)
M(αiδP )

and check whether

H ′(e(CM + γR2, C′
M) · e((1− γ)R0, CM) · e(P − CM, R0)) = C

On success return true and false otherwise.

Scheme 1: Blank Digital Signature Scheme

5. CONSTRUCTION
In this section we detail our construction and present an

analysis of its efficiency in terms of computational effort as
well as key and signature sizes. Moreover, we prove its secu-
rity, i.e., we show that our presented construction is correct,
unforgeable, immutable and private.

5.1 Intuition
Before we present the detailed construction, we provide

some intuition in order to make our design choices compre-
hensible. As already noted, we use standard digital signa-
tures, such as ECDSA [11], as a building block assuming
the respective signature keys to be available to every par-

ticipant in an authentic fashion. Note that this requires the
availability of public key infrastructures, which are, how-
ever, commonly used in practice today. In our construction,
DSS signatures provide authenticity of template and mes-
sage signatures.

As already discussed in Section 4, we use polynomials to
represent templates and template instantiations. The intu-
ition is that the originator commits to a template polyno-
mial. By construction every allowed template instantiation
is represented by a message encoding polynomial that per-
fectly divides the template polynomial. A proxy can now
commit to a message polynomial, by computing and sign-
ing a commitment to the complementary message encoding
polynomial. However, he can not choose arbitrary divisors



We assume that the originator as well as the proxy both own an authentic key pair for a secure digital signature scheme
(skDSS

orig , pk
DSS
orig ) and (skDSS

proxy, pk
DSS
proxy), respectively.

SetupT: The trusted third party T chooses a suitable security parameter κ and a value t ∈ N representing the maximum
template length, runs KeyGen(κ, t), sends skorig to the originator O and publishes pkorig in an authentic fashion.

IssueO: O defines a message template T , runs Sign(T , skorig, pkorig, skDSS
orig , pk

DSS
proxy) and gives σT = (idT , C, n, τ ) as well as skTproxy

to P.

IssueP: P runs VerifyT (T , σT , pkorig, pk
DSS
orig , sk

T
proxy, pk

DSS
proxy) to check whether σT is a valid signature for T issued by O. On

success, P, on behalf of O, defines a template instantiation M 	 T and runs Inst(T ,M, σT , pkorig, sk
T
proxy, sk

DSS
proxy, pk

DSS
proxy)

and publishes (M, σM).

Verify: Anybody in possession of the public keys can now take (M, σM) and run VerifyM(M, σM, pkorig, pk
DSS
proxy, pk

DSS
orig ) to check

whether σM is a valid signature for M issued by O and P.

Protocol 1: Blank Digital Signature Protocol

Setup: The challenger B runs KeyGen(κ, t) to obtain
(pkorig, skorig). Furthermore, B runs KeyGenDSS(κ) of
a secure digital signature scheme twice to generate
(skDSS

orig , pk
DSS
orig ) and (skDSS

proxy, pk
DSS
proxy). It gives the adver-

sary A the resulting public keys pkorig, pk
DSS
orig and pkDSS

proxy

and keeps the private keys skorig, sk
DSS
orig and skDSS

proxy to it-
self.

Query 1: The adversary A issues template signature
queries T1, . . . , Tq. To each query Ti the challenger
responds by running Sign(Ti, skorig, pkorig, sk

DSS
orig , pk

DSS
proxy)

to generate a signature σTi for Ti and sending it to-

gether with skTi
proxy to the adversary. For each tem-

plate signature query Ti, A can issue an arbitrary
number of signature instantiation queries of the form
(Ti,Mij ). To every such query B responds by run-

ning Inst(Ti,Mij , σT , pkorig, sk
Ti
proxy, sk

DSS
proxy, pk

DSS
proxy) and

returning σMij
. All of these queries can be made adap-

tively interleaved.

Challenge: At some point A signals B that he is ready
to be challenged. B constructs a non-queried random
template T of depth k and produces a template signa-
ture for T , but keeps T and skTproxy to itself.

Query 2: The adversary A is allowed to issue queries as in
query phase 1 and at most k − 1 instantiation queries
to the unknown template T . All of these queries can
be made adaptively interleaved.

Output: The adversary A outputs T ∗ and wins if T ∗ = T .

Game 2: Privacy Game

of the template polynomial, as the indexes of message ele-
ments are incorporated into the encoding and the length of
the message, i.e., the degree of the message polynomial, is
fixed by the originator.

In the verification, the verifier computes a commitment to
the message polynomial and checks whether the computed
commitment and the commitment given by the proxy re-
late to the commitment given by the originator, whereas
the originator’s commitment is given as hash value in order
to prevent arithmetics. We need a trusted third party, as
the originator should not know the value α. Otherwise, he
could exchange the template polynomial after signature gen-
eration for another polynomial having the same evaluation
at the point α. Note that in the context of polynomial com-

mitments the setup must always be run by a trusted third
party, as otherwise these commitments represent trapdoor
commitments, i.e., the knowledge of α allows to open the
commitment to arbitrary polynomials.

We use polynomial Pedersen commitments of the form
C = f(α)P + R to hide the committed polynomials. Ped-
ersen commitments provide computational binding as long
as the discrete logarithm between the values R and P is un-
known. Typically, this is achieved by letting a third party
compute these parameters. In our scenario, R is chosen by
the originator, which requires us to additionally commit to
a multiple of R and to use an additive decomposition of R
in order to fix it.

5.2 Scheme
In Scheme 1, we present the detailed construction of our

proposed BDSS. Moreover, in Protocol 1, we illustrate a typ-
ical scenario for the interaction of the originator, the proxy
and the verifier.

We note that Scheme 1 can easily be turned into a scheme
using asymmetric pairings giving flexibility in the choice of
curves and pairings as well as improved efficiency. In case
of Type-2 pairings there are only minor modifications neces-
sary, as there is an efficiently computable isomorphism be-
tween G1 and G2, whereas in the Type-3 setting this comes
at the costs of doubling the size of pkorig. This is because the
values αP, . . . , αtP, δP, αδP, . . . , αtδP ∈ G1 also need to be
mapped to elements of group G2, i.e., we need to put the
additional points αP ′, . . . , αtP ′, δP ′, αδP ′, . . . , αtδP ′ ∈ G2

into pkorig, where P
′ is a generator of G2.

5.3 Efficiency
In the following, we give a detailed analysis of the effi-

ciency of our scheme in terms of computational effort as
well as key and signature sizes. We use P, S, A and m to de-
note the costs of a pairing evaluation, the costs of an elliptic
curve scalar multiplication, the costs of a point addition and
the costs of one multiplication in Zp, respectively. More-
over, we use Exp(d), s and v for the costs of the expansion
of a polynomial of degree d, the costs of a signing opera-
tion and the costs of a signature verification, respectively.
Note that Exp(d) is d(d + 1)/2m when ignoring shifts and
field additions, which are inexpensive. The costs of the al-
gorithms of Scheme 1 are summarized in Table 1. Figure 1
illustrates the performance of the algorithms in Scheme 1
for varying template size |T | = � and template length n set
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Figure 1: Performance Evaluation of the Algorithms
in Scheme 1.

to �/4, meaning that on average there are three choices per
exchangeable element. We conducted the experiments on
an Intel Core i5-2540M equipped with 8GB RAM running
Ubuntu 12.10/amd64 and OpenJDK 6/amd64. For ECDSA

and basic elliptic curve arithmetics we were using the Java
TM

library ECCelerate
TM

2.0 [1], which is freely available for
purposes of research, as well as the jPBC library [2] version
1.2.1 for the pairing evaluations. Thereby, we are using the
NIST P-224 curve [11] for ECDSA and the Tate pairing on
an MNT curve [18] with a group size of 224 bits and em-
bedding degree k = 6 in order to perform our benchmarks,
respectively. Note that we have chosen the asymmetric ver-
sion of Scheme 1 to gain improved efficiency.

Algorithm Costs

KeyGen (2t+1)S
Sign P+(�+1)S+(�+2)A+Exp(�)+s

VerifyT 3P+(�+1)S+(�+2)A+Exp(�)+v

Inst 3P+(�−n+2)S+(�−n+1)A+Exp(�−n)+s+v

VerifyM 3P+(2n+4)S+(2n+2)A+Exp(n)+2v

Table 1: Costs of the Algorithms of Scheme 1 for
templates of size � and length n.

In Table 2, we analyze the sizes of keys and signatures
of Scheme 1. We use a pairing-friendly curve of bitsize κ,
assume all points to be compressed and for the DSS we use
ECDSA with key sizes of κ bits. Consequently, the public
and private keys of the DSS are of size κ bits and the sig-
nature is of size 2κ. Note that we only count values that
are related to the security parameter κ and, consequently,
no small values, such as integers and the like.

Component Size

skorig κ
pkorig 2(t+ 1)κ
skproxy κ
σT 6κ
σM 10κ

Table 2: Sizes of Keys and Signatures in Scheme 1.

Observe that only pkorig depends on the maximum degree

� of the template polynomial tT . For instance, given a tem-
plate T with 20 fixed elements and 25 exchangeable elements
with 5 choices each, we obtain a template of size � = 145
yielding a template polynomial tT with deg(tT ) = 145. Con-
sequently, we have t ≥ 145 and the size of pkorig would be
approximately 8.1kB for κ = 224, which is absolutely rea-
sonable.

5.4 Comparison to the Naive Approaches
Recall that the first naive approach given in Section 1.1

would require the originator to produce one signature for
every possible template instantiation. Let us look at the
above example, where we have 20 fixed elements and 25
exchangeable elements with 5 choices each. Note that this
is an absolutely reasonable example, which is far from being
overstated. Then, the originator would have to compute
525 ≈ 298 · 1015 signatures, which is obviously impractical.

The second naive approach we have mentioned is the use
of Merkle hash trees to reduce the number of signatures
that need to be computed by the originator at the expense
of higher computational costs and an increased size of the
signature. This means that the originator needs to build
a complete binary tree, where the number of leaves equals
the number of possible template instantiations. Further-
more, each leaf would need to include a random string as
additional input to the hash function in order to hide the
instantiations from a verifier as it is done in redactable sig-
natures [13]. In our above example, the number of leaves
would then be 525 ≈ 298 · 1015. In order to build the hash
tree, the originator would need to perform one hash evalua-
tion per node in the tree. Note that for a complete binary
tree with n leaves there would be at most 2n − 1 nodes in
the tree. For our above example, this would yield at most
2 · 525 − 1 hash evaluations and the same number of PRF
evaluations to randomize the tree (see [13] for more details
on how to compute the random strings using a PRF). Al-
though the verification of a signature for an instantiation in
this construction would be quite efficient, as it can be car-
ried in logarithmic time in the number of possible instanti-
ations, the Sign,VerifyT and Inst algorithms all require the
computation of the full hash tree rendering this approach
impractical.

We emphasize that in our approach the signature size
stays constant, regardless of the number of possible tem-
plate instantiations. This is due to the fact that the tem-
plate polynomial, whose degree grows only linearly in the
template size, is mapped to a point on the curve, which is
further mapped to a field element and then hashed. Notice
that in our construction, the computational effort is inde-
pendent of the number of potential template instantiation.
Instead, it grows only linearly with the template size, i.e.,
with the number and the cardinality of exchangeable ele-
ments and the number of fixed elements.

5.5 Security
Subsequently, we investigate the security of our construc-

tion in the proposed security model by considering all the
required security properties.

Theorem 1. Assuming the hardness of the ECDLP as
well as the existence of second preimage resistant hash func-
tions, Scheme 1 is correct with respect to Definition 8.

Proof. See Appendix A.2.



Theorem 2. Assuming the hardness of the ECDLP as
well as the existence of second preimage resistant hash func-
tions and secure digital signature schemes, Scheme 1 is un-
forgeable with respect to Definition 9.

Proof. See Appendix A.1.

Theorem 3. Assuming the hardness of the ECDLP as
well as the existence of second preimage resistant hash func-
tions and secure digital signature schemes, Scheme 1 is im-
mutable with respect to Definition 10.

Proof. See Appendix A.3.

Theorem 4. Scheme 1 is private with respect to Defini-
tion 11.

Proof. See Appendix A.4.

Taking Theorem 1-Theorem 4 together, we obtain the fol-
lowing corollary.

Corollary 1. Scheme 1 is a secure BDSS.

6. CONCLUSIONS
In this paper we have introduced a new notion of digital

signatures, namely so-called blank digital signatures. We
have provided the abstract scheme, a security model and
a concrete construction of such a scheme from any secure
digital signature scheme, pairing-friendly elliptic curves and
polynomial commitments. Moreover, we have proven the se-
curity of our construction, have analyzed its efficiency sup-
porting its practicality and have given several use cases, such
as delegated contract signing.

6.1 Future Work
Since blank digital signatures are a novel concept, there

are several open issues for future work, which we outline
subsequently. One issue for future work is to get rid of
the trusted third party for key generation. Furthermore,
it would be desirable to generalize the blank digital signa-
ture scheme and its security model to multiple designated
proxies, which seems to be straight-forward by inclusion of
multiple proxy signature verification keys into the template
signature. However, in this naive construction every proxy
and every verifier can determine the set of designated prox-
ies. This may not be desirable in practice, whereas to achieve
this goal does not seem to be that straight-forward. Another
issue is to find alternative designated constructions for blank
signatures potentially without relying on standard digital
signature schemes. Additionally, it would be desirable to
prove the security of our construction under weaker assump-
tions and to impose further restrictions on allowed template
instantiations, i.e., to further limit the allowed combinations
of choices over all exchangeable elements of templates. Also,
allowing blank fields, which can be substituted with arbi-
trary strings, would be desirable. Finally, it may be inter-
esting to investigate concepts applied in the construction of
blank digital signatures in the proxy signature setting.
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APPENDIX
A. PROOFS

This section contains the proofs of Theorem 1-Theorem 4.

A.1 Proof of Theorem 2 (Sketch)
The proof consists of two parts. The first part covers un-

forgeability of template signatures, whereas the second part
covers unforgeability of message signatures. Both parts con-
sist of two cases covering the reuse of queried signatures and
existential forging of signatures as detailed in Section 4.3.

During the query phase, A is allowed to issue an arbitrary
number of template instantiation queries for every previ-
ously queried template Ti.

Case T1. This case covers the infeasability of finding some
T ∗ �= Ti for all previously queried Ti such that T ∗ verifies
under some queried template signature σTi . If A was able
to find - with non-negligible probability - a T ∗ �= Ti for all
1 ≤ i ≤ q such that

Ci = H ′(e(
�∑

i=0

t
(i)
T ∗(α

iP ) +Ri), δP )),

for some 1 ≤ i ≤ q, then A has either

1. found a template T ∗ �= Ti such that tTi(X) = tT ∗(X),
or

2. found a second polynomial tT ∗ with deg(tT ∗) ≤ t with
tTi(α) = tT ∗(α) and the corresponding template T ∗.

In case one, A has found second preimages in H with non-
negligible probability. More precisely, skTproxy and σTi are
fixed. If A is able to generate a T ∗ �= Ti with tTi(X) =
tT ∗(X) with non-negligible probability, then he must have
found second preimages in H with non-negligible probability
for �i roots of t(Ti), whereas the suffix of each preimage must
be of the form idT ∗‖j and only the value of M is arbitrary.

In the second case, if A is able to do so, then A must
have found a polynomial tT ∗ with tTi(α) = tT ∗(α), i.e.,
having the same evaluation at the unknown point α as tTi

for some 1 ≤ i ≤ q. If A is able to extract the value α from

αP by breaking the ECDLP, for which the probability is
negligibly small, then he could construct a polynomial tT ∗

with tTi(α) = tT ∗(α). However, then A would still need
to find second preimages in H as in case 1 to construct a
corresponding template T ∗.

Taking all together, gives us the desired contradiction.

Case T2. This case covers the infeasability of computing
a valid signature σT ∗ for some T ∗ giving C∗ (which may be
computed by A), which differs from all previously queried
signatures. If A was able to find a pair (T ∗, σT ∗) �= (Ti, σTi)
for all 1 ≤ i ≤ q such that

VerifyDSS(τ, idT ∗‖C∗‖R∗
0‖R∗

2‖n∗‖pkDSS
proxy, pk

DSS
orig ) = true

then A must be able to forge signatures of the digital sig-
nature scheme DSS under skDSS

orig . This gives us the desired
contradiction.

Case M1. This case covers the infeasability of finding some
M∗ �= Mij for all previously queriedMij such thatM∗ ver-
ifies under some issued message signature σMij

. If A was

able to find - with non-negligible probability - anM∗ �= Mij

for all 1 ≤ i ≤ q and 1 ≤ j ≤ qi such that

|M∗| = |Mij | ∧ deg(mM∗) = n ∧
H ′(e(CMij

+ γijR2,i, C′
M∗) · e((1− γij )R0,i, CM∗)·

· e(P − CM∗ , R0,i)) = Ci

for some 1 ≤ i ≤ q and 1 ≤ j ≤ qi then A has found
second preimages inH with non-negligible probability. More
precisely, since due to μ all values in the verification relation
are fixed, the only way for A to output an M∗ that passes
the signature verification for an existing signature, is to find
an M∗ such that m(M∗) = m(Mij ) and |M∗| = |Mij |,
i.e.,

H(M∗
l ‖idTi‖l) = H(Mijl

‖idTi‖l)

for all n roots of the polynomial mMij
, whereas the suffix

of each preimage must be of the form idTi‖l and only the
value of M∗

l is arbitrary.

Case M2. This case covers the infeasability of computing a
valid signature σM∗ for some M∗, which differs from all pre-
viously queried signatures. A needs to find a pair (M∗, σM∗)
�= (Mij , σMij

) for all 1 ≤ j ≤ qi such that deg(mM∗) = n

and

H ′(e(CM∗ + γ∗R∗
2, C′

M∗) · e((1− γ∗)R∗
0, CM∗)·

· e(P − CM∗ , R∗
0)) = Ci

First we consider finding M∗ 	 Ti for some i, for which
σM∗ �= σMij

for all 1 ≤ j ≤ qi. In order for this to hold

for a given Ci, A must construct CM∗ . Since A knows all
templates, A can choose M∗ 	 Ti and compute CM∗ =∑�i−ni

l=0 m
(l)

M∗(α
lP ) + γ∗R1, whereas R1 can be extracted

from previous queries as γij and mMij
are known. Still,

A must be able to forge signatures of the digital signature
scheme DSS under skDSS

proxy.
Secondly, we consider finding M∗ � Ti, for which σM∗ �=

σMij
for all 1 ≤ j ≤ qi. Finding such an M∗ implies that

A has found a polynomial mM∗ such that mM∗ does not
perfectly divide tTi . This means that tTi = mM∗ ·mM∗ + ξ
with ξ �= 0. Note that the only way for A to include the



remainder ξ for the verification relation is to put ξ(α) into
CM∗ . However, since the only place where CM∗ is input
to the verification is the first pairing e(CM∗ + γR2, C′

M∗),

this will result in CM∗ =
∑�i−ni

l=0 m
(l)

M∗(α
lP ) + ξ(α)

mM∗ (α)
R1.

Furthermore, A then needs to compute γ as ξ(α)
mM∗ (α)

, as

these are the only values A can influence. However, this
requires A to have knowledge of α, which requires A to break
the ECDLP. Another strategy, A can follow is to use non-
intended perfect divisors of tTi , i.e., constructing an M∗

such that deg(mM∗) �= n and/or the elements of M∗ are
not consecutive. However, the degree n of all valid message
polynomials as well as the index values i in the message
encoding are fixed by the originator. Thus, the verification
can never be satisfied, unless A has the power to compute
second preimages.

In all cases, A must be able to forge signatures of the
digital signature scheme DSS under skDSS

proxy. This gives us
the desired contradictions.

Since all cases gave us the desired contradictions, the proof
is complete.

A.2 Proof of Theorem 1 (Sketch)
We show the signature and instantiation correctness, where

we omit showing that the DSS verification works, since it is
clear from the construction. The signature correctness is
obvious, and we now show the signature soundness. This
means that we have to show that the originator commits
to exactly one template polynomial by issuing a template
signature. Similarly to case T1 in the proof of unforge-
ability, the originator would need to find second preimages
or another polynomial having the same evaluation at the
unknown point α. Moreover, since he commits to R by sign-
ing R0 along with R2 and gives R1 to the proxy, the proxy
can check this commitment by verifying whether e(R0, P ) =
e(R1 + R2, δP ) holds, which prevents the originator from
changing R after signature generation.

It remains to show that the message signature verification
works, i.e., we have to prove the correctness of

H ′(e(CM+γR2, C′
M) ·e((1−γ)R0, CM) ·e(P−CM, R0)) = C,

whereas C = H ′(e(tT (α)P + R, δP )). The left-hand-side
yields

g(m+γr1+γr2)·δm+((1−γ)·δr)·m+(1−m)·δr =

g(δmm+γδrm)+(δrm−γδrm)+(δr−δrm) =

gδt+δr = e(tT (α)P +R, δP ),

whereas we assume R1, R2 and R to be r1P, r2P and rP
for some unknown values r1, r2 and r, respectively. Further-
more, we write t,m and m instead of tT (α), mM(α), and
mM(α), respectively. This completes the proof.

A.3 Proof of Theorem 3 (Sketch)
Case T1 & T2. The proofs for these two cases are analo-
gous to the proof in Appendix A.1, since A has exactly the
same knowledge as in the previous proof. More precisely,
this is due to the knowledge of all templates in the unforge-
ability game.

Case M2. The only difference to the power of the adver-
sary A in the proof in Appendix A.1 is that A knows R1 and
skDSS

proxy beforehand. However, as we have shown in the proof
in Appendix A.1, due to our strong adversary model, A can
obtain R1 anyway. Therefore, the proof is analogous to the
proof of case M2 above.

A.4 Proof of Theorem 4 (Sketch)
Let T be a template and let k be the depth of T . Now, we

assume that A only knows at most k− 1 instantiations and,
thus, A has not full knowledge of T . What A can try to do is
to guess the remaining choices based on C and the instanti-
ation dependent values CM. However, note that γR1 as well
as R are random values with unknown discrete logarithms,
which can not be computed using any values from signa-
tures or public keys. Thus, the values tT (α)P + R and δP
are uniformly random and, consequently, e(tT (α)P +R, δP )
as well as C = H ′(e(tT (α)P+R, δP )) are also uniformly ran-
dom. Moreover, in the same fashion also CM is a uniformly
random value. As a consequence, C and CM constitute un-
conditionally hiding Pedersen commitments. Note that the
instantiation dependent value γ guarantees that the values
γR1 in the commitments CM of different template instanti-
ations differ. Thus, an adversary can gain no knowledge by
using differences of distinct values CM. Note also that since
C is a hash value this prevents A from performing arithmetic
with values CM and thereby gaining knowledge of tT . From
this follows the privacy of Scheme 1.


