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Abstract
In this paper it is shown that the use of Jordan normal form instead of

Hermite normal form would improve substantially the efficiency and the secu-
rity of the lattice based signature scheme. In this scheme we also use a new
hash function in such a way that the efficiency improved is obtain without
decreasing the security of the function.
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1 Introduction

In the advent of quantum computers, todays widespread signature schemes-
most importantly RSA and DSAare rendered utterly insecure due to the sem-
inal work of Shor [6]. Digital signatures, however, have become a supporting
pillar of the worlds economy. Thus, endangering their security results in a
potential collapse of electronic commerce and secure Internet communication
as a whole.

Due the conjectured intractability of lattice problems, like approximating
the shortest lattice vector (SVP), even in the quantum-era and because of their
computational efficiency, lattice-based signature schemes seem to be one of the
most promising replacements for current constructions.

The first proposal for a lattice-based signature was given at CRYPTO 1997
by Goldreich et al. [2]. Their idea was to use a lattice for which a bad basis,
whose vectors are long and almost parallel is public, and a good basis with short
and nearly orthogonal vectors is private. To employ their scheme, messages
need to be hashed into the space spanned by the lattice, and the signature
for a given hash in this space is the closest lattice point. The scheme did not
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come with a formal proof of security and was broken in its basic variant in
1999 by Nguyen [4]. In 2006 a modified variant was broken again by Nguyen
and Regev [5].

In this paper we give a new type of signature scheme using the Jordan
Normal form , for this we organized our paper as follows ,first we define some
basic notation.than we define a new hash function that significantly improves
the security and efficiency of the new signature scheme,in our next section we
describe the new signature scheme using the jordan normal form, in our last
section we describe the security and efficiency of the new signature scheme.

2 Preliminaries

2.1 Lattice

Let B={b1, b2, b3......} be a set of n linearly independent vectors in Rm The
lattice generated by B is the set L{B}= {

∑
i xibi|xiεZ} of all integer linear com-

binations of the vectors in B. The set B is called basis and it is usually identified
with the matrix B=[b1,b2,b3.....bn] εRm×n having the vectors.bias columns.

The matrix L{B} is full rank if n=m,i.e. if B spans the entire vector space
Rm. over the reals for simplicity, in the rest of this paper we will consider only
full rank lattices.

2.2 Jordan Normal Form

A Jordan normal form (often called Jordan canonical form) of a linear operator
on a finite-dimensional vector space is an upper triangular matrix of a particu-
lar form called a Jordan matrix, representing the operator on some basis. The
form is characterized by the condition that any non-diagonal entries that are
non-zero must be equal to 1, be immediately above the main diagonal (on the
superdiagonal), and have identical diagonal entries to the left and below them.

An n×n matrix A is diagonalizable if and only if the sum of the dimensions
of the eigenspaces is n.there is an invertible matrix P such that A = PJP−1,
where The matrix J is almost diagonal This is the Jordan normal form of A.
Every square matrix A can be put in Jordan normal form is equivalent to the
claim that there exists a basis consisting only of eigenvectors and generalized
eigenvectors of A



3

2.3 Digital Signature Scheme

A digital signature scheme DS is a triple (Kg, Sig, V f) where Kg(n) outputs
a private signing key sk and a public verification key pk; Sig(sk, M) outputs
a signature σ on a message M from the message spaceM under sk;

V f(pk, σ, M) outputs 1
if σ is a valid signature on M under pk and otherwise 0. Signature schemes

are complete if for all
(sk, pk)←− Kg(n), all messages.
Signature schemes are complete if for all (sk, pk)←− Kg(n), all messagesMεM

, and any σ ←− Sig(sk, M), we haveV f(pk, σ, M) = 1.

2.4 One-time signatures

A OTS scheme is defined in the same manner as a regular signature scheme.
The only difference is that each key pair is not allowed to be used more than
once. Otherwise, the security of the scheme would be reduced. The notion
of (strong) unforgeability can be reused, when the number of queries to the
signature oracle is restricted to one.

3 The New Hash Function

we now put all pieces together and define a new hash function.Let R be a
private key choose in such a way that ρ = 1

2
mini ‖ r∗i ‖ is relatively big key is

the jordan normal form of R.one can see the basis that the public basis B and
the corresponding orthogonalized parallelepiped P(B∗) are very skewed .The
public basis B defines a new hash function with domain the set of vectors of
length at most ρ. The result applying the function to vector r is the point in

the parallelepiped P(B∗) congruent to r modulo the lattice.Notice that even if
we always start from a vector r close to the origin, the result of performing the
reduction operation is a point of P(B∗) possibly closet to some other lattice
point. Notice that recovering the input vector r from f(r) involves finding the

lattice point closet to f(r),which is conjectured to be infeasible using only the
public key B.However the lattice vector closet to rmodB can be computed using
the private key R because dis(f(r), L) = dis(r, L) ≤ ρ. the orthogonalized
parallelepiped P(B∗) centered at every lattice point.Notice that the lattice
point closet to f(r) is just the center of the parallelepiped P(B∗) containing
f(r) which can be found using the private key R.



4

4 New Signature Scheme Using The Jordan

Normal Form

We will give a formal description of the scheme. The security parameter is
n. We will describe the key generation with security improvements due to
Micciancio [3]

4.1 Key generation

The main security parameter is an integer n. Both the public key B and private
key R in the scheme are matrices in Zn×n. Two distributions for choosing the
private key were suggested by Goldreich et al [2]

random lattice: choose R uniformly at random from −l, ..., ln×n, for some
integer l. In [2], the authors suggest using l = 4. , In [3] Micciancio suggests

almost rectangular lattice: choose R’ uniformly at random from .l, ..., ln×n

and add a multiple of the identity matrix R = R′ + kIn. In [3], the authors
suggest l = 4, k = dl

√
nc.Micciancio notes in [3] that this distribution discloses

the rough direction of the vectors in R to an attacker.
In this paper we use the Jordan Normal form B = JNFR as public key.
Choose a public threshold parameter τεR . Two possibilities are outlined

by Goldreich et al. [2] :
no signing failure: let γ be the maximum l1-norm of the rows in R. Chooseτ =

γ
√

n/2.
low-probability signing failure: let nmax be the entry in R with largest

absolute value. In order to guarantee that signing failures have probability
less than ε, choose τ = ρmaxln(2N

ε
)
√

n
2

.

4.2 Signing

Hash the message from the new hash function into mεZn. A signature s is com-
puted via a CVP approximation algorithm, e.g. Babai’s round-off algorithm,

s = RdR−1mc
If signing failures are possible due to a small threshold parameter, we need

to check whether‖s−m‖ ≤ τ , and fail if this is not the case.

4.3 Verification

First check that the signature is a lattice vector with the public key sεΛ(B)
using basic linear algebra. Then check whether‖s −m‖ ≤ τ . If both checks
pass, the signature is valid.
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5 Security Considerations

We now discuss the security of the new lattice signature using the jordan
normal form under passive attacks.

5.1 Computing a Private Key

For the first attack, we simply run a lattice basis reduction algorithm on the
public basis B′.If we are lucky then it will output a basis B′′ that is good
enough to allow the efficient solution of the required closest vector instances.

To prevent such an attack it is necessary that the dimension of the lattice
be sufficiently large.since we consider dimension of new signature scheme n≥
200 so the new scheme is secure from first attack.

5.2 Solving The CVP Directly

For the third attack, one can consider Babai [1] nearest plane algorithm or the
embedding technique for solving the CVP. To face such attacks it is necessary
that the lattice dimension should be sufficiently large and that the solution
to the CVP instance is not too special. In particular, the error vector should
not be too short compared with the vectors the lattice. Finally, we remark
that none of the above techniques are possible with polynomial asymptotic
complexity as the dimension n grows. Hence, the new signature schemes cannot
be broken.

5.3 Existential Forgery

Security of digital signature schemes is typically proven against existential
forgery under a chosen message attack (EU-CMA),where an adversary wins
if he outputs a signature on a new message M∗. after accessing a signature
oracle on a polynomial number of different messages. For the described con-
structions,we need the notion of strong unforgeability under a chosen message
attack (SU-CMA),where the adversary even wins if he is able to output a new
pair (M∗, σ∗.), i.e. he is not forced to output a signature on a new message. In
the random oracle model, the adversary has access to the new hash functions
H(n). The described concept is formalized in the following experiment

5.4 Nguyen Attack

Let mεZn be the message and sεΛ(R) the corresponding signature, which
approximates CVP by use of the secret basis R. Then

s−mεP1/2(R) = {Rx : xε[−1/2, 1/2]n}.
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We will refer to the set P 1
2
(R)as the hidden parallelepiped.We make an

experimentally justified assumption at this point that for randomly chosen m,
the difference s − m is uniformly distributed overP 1

2
(R) . The algorithmic

problem is, given enough independent samples from U(P 1
2
(R)), recover the

columns of ±R or an approximation thereof.

6 space efficiency

If we now analyze the size of the keys and the signature of the new cryp-
tosystem.we conclude that the size of the private key can be bounded by
O(n2logn).Using the Hadamard’s inequality we can be also restrict the size
of the determinant by O(n)logn and using the restriction mentioned in [3] ,
we obtain O(n2logn) as the size of the public basis and has O(n)logn as the
cipher text size. These estimates are based on the GGH challenges.

7 Conclusion

We have presented a new signature scheme replacing Hermite normal form
by Jordan normal form. The new signature scheme is shown as secure as old
one. Because the security of the new hash function reduces both the time and
space requirements by a factor O(n). At this point, we tried to answer the
main question in the lattice based cryptography. how to choose the private key
i.e. finding families of easily decodable lattices for which decoding becomes
infeasible. This is answered by the lattice replacing Hermite normal form to
Jordan normal form. A simple counting argument shows that the number
of lattices in a certain dimension is exponential in its bit size representation
of their Jordan normal form and thus the JNF representation is essentially
optimal if one considers arbitrary lattices. The improved efficiency allows even
bigger value of the security parameter while maintaining the scheme reasonably
practical. One of the important advantages of the proposed scheme is its
simplicity. The earlier scheme computes the public key and the function value
using a substantial amount of randomness where as in the proposed system
these operations are made simple by the deterministic procedure. This is
important both from theoretical and practical point of view because it makes
the algorithm easier to implement and also easier to analyze.
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