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Abstract：Basing on Learning with errors over rings (RLWE) assumption, we provide a new 
multi-bit somewhat homomorphic encryption scheme. We introduce canonical embedding to 
transform a ring element into a vector, such that polynomial multiplication can be performed in 

Ο~ (nlog n) scalar operations, and ciphertext size is reduced at the same time. The CPA security of 

this scheme can be reduced into RLWE assumption. 
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1. Introduction   

The idea of homomorphic encryption can be traced back to 1978 by Ridest et al.[1]

If an encryption scheme can compute any function of the ciphertexts, then it is called a Fully 
Homomorphic Encryption (FHE) scheme. Otherwise, if it can only evaluate a limited set of 
circuits about ciphertexts, then it is called a Somewhat Homomorphic Encryption (SHE) scheme. 
The existence and construction of FHE schemes remains an open problem in cryptography. The 
substantial progress was achieved by Gentry in STOC’2009

, it means 
that an entity can carry out computations on encrypted data without decryption. This trait of 
encryption scheme sounds appealing in network services. People need to conduct various kinds of 
operations, such as search, sum up or computing the average value, on data stored in a remote 
server. Suppose every operation requires a series of works including downloading the ciphertext, 
decryption, compute the target value, encryption and upload the new ciphertext, the 
communication and computation cost may grow very large and become unbearable. 
Homomorphic encryption permits operations on ciphertext directly, and thus reduce 
communication and computation cost. The most prominent application of homomorphic 
encryption is the outsourcing of data and computation on clouds. Besides these, there are some 
other interesting applications including private information retrieval (PIR), electronic voting, 
database encryption delegate computation and secure multiparty computation. 

[2]. Basing on hard problems on ideal 
lattices, Gentry proposed the first FHE scheme. Following this work, there have appeared some 
improvements with higher efficiency and better performance. In 2010, Smart and Vercauteren 
improved Gentry’s scheme by shorten the key size and ciphertext size[3]. In Asiacrypt’2010, Stehle 
and Steinfeld also proposed an improved scheme of Gentry’s scheme[4]

In the past years, people also proposed new schemes, some of which are quite potential in 
improving the performance and thus suitable for applications. In Eurocrypt 2010, Dijk, Gentry and 
Halevi et al.

, which introduced 
decryption errors to reduce computation cost.  

 [5] promoted another construction of fully homomorphic encryption scheme, called 
DGHV. Using a Somewhat homomorphic encryption scheme on integers other than on ideal lattice, 
DGHV scheme was more succinct than Gentry’s scheme. In 2011, Brakerski et al. [6] proposed two 
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schemes that are based on Learning with Errors problem over Rings (RLWE). They also presented 
new techniques called re-linearization and dimension-modulus reduction to control noise and the 
length of encrypted data. 

In the year 2011, Bogdanov et.al.[7] proposed an algorithm based on codes, this work has both 
a clear concept and a concise technique to bootstrapping without squashing the decryption 
algorithm. More recent studies by Rothblum[8] and Goldwasser[9]

However, all of the algorithms are far away from practical uses. There are still a lot of works 
to do in this area. In order to promote performance and make homomorphic encryption practical, 
some researchers try a different way from the existing works. Other than designing a perfect 
scheme that is ideal in theory but not practical, they prefer to construct encryption schemes that 
can only evaluate low-degree polynomials about the ciphertexts, namely, Somewhat homomorphic 
encryption schemes. The predominance of SHE lies in a higher performance and efficiency. 
However, most of the existing schemes, including Gentry’s SHE scheme, are designed on message 
space {0,1}, this means that the scheme can only encrypt one bit in each encryption. In 2011, 
Gentry et al. 

 deals with changing a private 
key homomorphic encryption scheme into a public key one. 

[10] presented a practical SHE scheme based on BGN scheme that was constructed by 
Gentry, Peikert and Vaikuntanathan in 2008[11]

Although any feasible computation can be expressed as a Boolean circuit in theory, we still 
need to design homomorphic encryption schemes for larger message spaces for practical uses, and 
at the same time, allowing more multiplication so as to evaluate a larger set of circuits. Following 
the idea of SHE and aiming at encryption on a larger message space, we present a multi-bit SHE 
scheme that is basing on RLWE (Learning With Error over Rings) problem. Compared to existing 
schemes, our scheme has the following advantages: 

. The new scheme was based on RLWE assumption, 
it allows any times of addition and one multiplication, and can also operate in a larger message 
space. But it has a deficiency that can only allow one multiplication. 

(1) Most of the existing works can only encrypt one bit in an encryption operation, while our 
scheme can encrypt multi-bits, this is suitable for a large message space.  

(2) The scheme is constructed basing on RLWE assumption, RLWE assumption is tighter than 
standard LWE assumption, so schemes basing on RLWE has a higher performance with same 
security requirements. Among the existing schems, BV11 was constructed on RLWE, but it 
can only encrypt one bit. Moreover, we use canonical embedding to reduce key size and 
computation cost, thus can achieve a more time efficient scheme and also small key length. 

(3) The scheme allow any times of addition and more than one times of multiplication.  
 
 
2. Preliminaries 
2.1  Homomorphic encryption schemes 

Definition 1 A Homomorphic Encryption  scheme (HE) can be described as a 
4-tuple of algorithms HE=( KeyGen, Enc, Dec, Eval). The algorithms are 
probabilistic polynomial time and satisfy the following properties: 

KeyGen(1λ

Enc(pk, m): input the encryption key pk and a message m, the encryption 

)：input a security parameter λ, output (pk, sk, evk), where pk and sk 
are the public encryption key and private decryption key, and evk is the public 
homomorphic evaluation key. 



algorithm outputs a ciphertext c, denoted as c=Enc(pk, m). 
Dec(sk, c): input a ciphertext c and decryption key sk, output a plaintext m. 
Eval(evk, f, c1, c2…, cl): input the homomorphic evaluation key hk, a function f 

and l ciphertexts c1, c2…, cl, output a ciphertext cf

c
, satisfing 

f =Enc(pk, f(Dec(sk, c1), Dec(sk, c2),……, Dec(sk, cl

The above definition is a generic description of homomorphic encryption 
schemes, and the material of function f is omitted. Usually f can be expressed as a 
Boolean circuit on field GF(2

))) 

n

We say an encryption scheme is strongly homomorphic if a homomorphicly 
evaluated ciphertext c* is indistinguishable with a normal ciphertext c which is output 
by the Enc algorithm. We say an encryption scheme is weakly homomorphic if the 
length of c* only depends on the depth of the circuit to be evaluated. 

), and only contains ADD and OR operations. This 
means that f is made up of addition and multiplication of ciphertexts.  

2.2  LWE and RLWE assumptions 
As a widely used tool for constructing cryptographic schemes on lattices, the 

Learning With Errors (LWE) problem has gained a universal notice since it is being 
introduced by Regev in 2005[12]

Definition 2  (Decisional LWE assumption) Let n be security parameter, 

q=poly(n) is a prime, and 

. LWE assumption is defined as the following:  

n
qZs∈  is a secret vector. Then any linear combination of 

elements of s are computational indistinguishable with a uniformly random element in 
Zq

{ } ( ) { } ( )npoly
iii

Cnpoly

iiiii uaesaba 11
,,, ==

≈+=

, namely 

 

where n
qi Za ∈ , ei qen i <<≤are sampled from some error distribution, . A typical 

error distribution is the discrete Gauss distribution on Zq

nq 2>α

 with expectation being 0 and 

standard deviation being . 

The search version of LWE is to find s from several given pairs ( )ii ba , . 

In 2005, Regev has proved that LWE problem is at least as hard as the shortest 
vector problem in any lattice. Since then, LWE assumption has been used to construct 
public key encryption schemes, identity based encryption schemes, oblivious transfer 
protocol, key dependent message security encryption schemes and homomorphic 
encryption schemes[13]

In Eurocrypt 2010, Lyubashevsky, Peikert and Regev
. 

[14] discussed the efficiency 
of LWE assumptions. For a standard LWE assumption, getting one pseudorandom 
scalar bi∈Zq

Definition 3 (RLWE assumption) Let f(x) be an n-degree polynomial with integer 

coefficients, q is a prime, and define a ring R

  requires an n-dim inner production computation. They propose a more 
compact version of LWE called RLWE assumption, that is, LWE assumptions on a 
given ring, where conducting an n-dim inner production can get another n-dim vector. 
Thus make an efficiency improvement by n times. 

q [ ] ( )xfxZR qq /= as . Let χ  be an 



error distribution on Rq qRs
$
←, , qi Ra

$
← , k=poly(n). For any given k pairs 

( )kiiiii esaba 1, =+= , where ie  abide distribution χ , then ib  is computational 

indistinguishable with a random uniformly chosen element from Rq

Lyubashevsky, Peikert and Regev
. 

[14]

Lemma 1 Let K be the mth cyclotomic number field having dimension n=φ(m) 

and 

 have proven that, the Shortest Independent 
Vector Problem (SIVP) or Shortest Vector Problem(SVP) in the worst case on ideal 
lattices can be reduced into RLWE. Their main result is described in the following 
lemma 1.   

KR Ο=  be its ring of integers. Let ( ) 0>= nαα , and let ( ) 2≥= nqq , q=1 mod 

m be a poly(n)-bounded prime such that ( )nq logωα ≥ . Then there is a 

polynomial-time quantum reduction from ( )α/~ nΟ -approximate SIVP (or SVP) to 

αγ,
DLWER q− . Alternatively, for any l≥1, we can replace the target problem by the 

problem of solving 
ξDq,DLWER −  given only l samples, 

where ( )( ) 4/1log/ nlnl⋅= αξ  is the standard deviation of Gauss distribution ξD . 

From lemma 1 we can immediately get to a conclusion: with error distribution be 

ξD  and ( )( ) 4/1log/ nlnl⋅= αξ , given l samples, the RLWE problem is at least as 

hard as SIVP problem in a lattice. 

In the above conclusion, f(x) is the mth cyclotomic polynomial ( )xmΦ  with 

m=2n. While if let f(x)=xn

[ ] 1/ += n
q xxZR

+1 then we can make the a slower norm increase when 
conducting multiplication of ring elements. On account of a more clear description, 

we only use RLWE assumption on a special polynomial  where n 

is a power of 2 and q=1 mod 2n. 
2.3 Canonical embedding in polynomial rings 
    Let n=2k, q=1 mod 2n is a prime, there are two ways to map a polynomial in Rq

Coefficient embedding is a “naive” method, let 

 
into a Ring vector: coefficient embedding and canonical embedding. 

( ) 1
110

−
−+++= n

n xaxaaxa  , 

then coefficient embedding can be simply defined as: 

( ) ( ) n
qn Zaaxa ∈−10 ,,  

This is a mapping from ring element to element in an ideal lattice. The demerit of 
coefficient embedding is quite clear: add operation can be conducted coefficient-wise, 
while multiplication is miscellaneous. 



Canonical embedding was first proposed by Minkowski[14] ( )ni /exp πω =. Let , 

then we can define canonical map as  

( ) ( ) ( ) ( )( ) nn Caaaxa ∈−1231 ,,, ωωω   

Here C is the complex number field. When a polynomial is mapped into a vector in Cn

12 −iω

, 
both add and multiplication can be conducted coordinate-wisely, thus make 

computation more convenient. Especially when q is a prime and q=1 mod 2n, , 

i=1,…,n-1 are just the n roots of xn+1 in Zq ( ) [ ] 1/ +∈ n
q xxZxa, so a polynomial  

can be mapped into an elements in n
qZ  or a n-dim vector on Zq

Example1:  Let n=4, q=17, x

.  

4+1 has 4 roots in Z17
753 ,,, ωωωω: . In fact, we 

can let ω=2, then the 4 roots are: 2, 8, 15 and 9.  
Let a(x)=x3+3x2+1, b(x)=2x3

[ ] 1/ 4
17 += xxZR

+6x+9 be polynomials chosen from 

, through canonical embedding, they can be mapped into two 

factors: 

( )( ) ( ) ( ) ( ) ( )( ) )4,5,8,4(,,, 753 == ωωωωσ aaaaxa  

( )( ) ( ) ( ) ( ) ( )( ) ( )8,15,10,3,,, 753 == ωωωωσ bbbbxb  

Next, we compute add and multiply in R and n
qZ  respectively. 

Computations in R are the generic polynomial operation, that is  
a(x)+ b(x)=3x3+3x2

a(x)* b(x)=2x
+6x+10 

6+6x5+6x4+12x3+10x2+6x+9=12x3+8x2

Computing in 

+3 
n
qZ  are coordinate-wise add and multiply, that is  

( )( ) ( )( ) ( )12,15,8,7=+ xbxa σσ  

( )( ) ( )( ) ( )15,0,0,12=⋅ xbxa σσ  

It can be easily validated that σ is a homomorphic mapping from R to n
qZ , namely 

satisfying: 

( ) ( )( ) ( )( ) ( )( )xbxaxbxa σσσ +=+  

And 

( ) ( )( ) ( )( ) ( )( )xbxaxbxa σσσ ⋅=*  

For a given ( )( ) ( ) ( ) ( )( ) n
q

n Zaaaxa ∈= −1231 ,,, ωωωσ  , we can get to its preimage 



a(x) through solving a linear equation set of n variables. 
 
3. Multi-bit homomorphic encryption schemes based on the original Regev scheme 
3.1 The basic scheme 

The first single-bit public key encryption scheme basing on LWE assumption was 
proposed by Regev in 2005[12]

Scheme 1  (Regev’s original LWE based multi-bit encryption scheme) 

, and basing on this scheme, people have promoted 
some other constructions and applications. The multi-bit version of Regev’s scheme is 
denoted as the following scheme1. 

Parameters: Suppose n is an integer and q a prime, satisfying 

( ) 22, 22 ≥∈ nnq , ( )( ) qnk log11 ++= ε , here ε>0 is a constant, the error distribution is 

discrete Gauss distribution, noted by qαχ Ψ= , and ( )( )nnO log/1=α . Define a set 




























−=

2
,,

2
rrZDr  , 1≥r . Let the plaintext length be l bits. 

 Private key: ln
qZS ×←

$
, the private key S is a ln×  matrix on qZ , |S|=nllogq. 

 Public key: kn
qZA ×←

$
, lk

q
t ZESAP ×∈+= , where E is error matrix, and 

lkE ×← αχ , in practical use, to reduce key length, we can make all users share the same 

A, and transform B into its Hermit standard form, thus the length of public key is 

( ) qlnk 2log−  bits. 

 Encryption: A message lZm 2∈  is encrypted into a pair ( )10 ,cc , where  

n
qZAac ∈=0 , mqaPc t

2
1

1
−

+=  

and k
rDa

$
← . The ciphertext has a length of ( ) qln 2log+  bits. 

  Decryption: mqcSc t

2
1

01
−

≈− . 

The above scheme can be implemented in a polynomial ring, which is depicted in 

[15] 

Scheme 2  (Polynomial ring implementation of scheme 1) 
by Rückert   and Schneider as the following scheme 2. 

Parameters: let q be a prime, nq 2mod1≡ , [ ] 1/ += n
q xxZR , χ is discrete 

Gauss distribution. A sample that abides to χ is noted by ( ) Rxe ∈  with r≥1. Define a 

set Dr

1/
2

,,
2

+


























−= n

r xrrZD 

 as 

 



For a natural number k, define two operations on kR : 

(1) Multiplication of two polynomial vectors: For any kRyx ∈ˆ,ˆ , 

RRR kk →×⊗ : , 

∑
=

=⊗
k

i
ii yxyx

1

ˆˆ  

(2) Multiplication of one polynomial vector and one polynomial: for any kRx∈ˆ , 

Ry∈ ,  

( ) k
k Ryxyxyx ∈= ,,ˆ 1   

 Private key: Randomly choose Rs
$
← , the length of s is nlog2

 Public key: Randomly choose a k-dim vector 

q bits 

kRa
$

ˆ← , choose error vector 

k
Re αχ ,ˆ ← , k

R αχ ,  is a k-dim discrete Gauss distribution with its value come from 

Rk 








+



≤ 1
2

/1 rnktαand with 0 as the expectation and  as the standard deviation. 

Computing a vector kResab ∈+= ˆˆˆ , and the public key is ( )ba ˆ,ˆ . To decrease key 

length, we can also let all of the users share the same â , and the length of public key 
is knlog2

 Plaintext: 

q bits. 

1/][21 +=∈ nxxZDm , the length of plaintext is n bits. 

 Encryption: Randomly choose k
rDr

$
ˆ← , compute a pair ( )10,cc  as the 

ciphertext, here Rrac ∈⊗= ˆˆ0  and Rqmrbc ∈
−

+⊗=
2

1ˆˆ
1 , the length of ( )10,cc  is 

2nlog2

 Decryption: Compute 

q bits. 

2
1ˆˆ

2
1

01
−

≈⊗+
−

=−
qmreqmscc . 

The correctness of scheme2 is shown in [15]





≤
2

30/1 rnkα

, the authors also have pointed out that 

when , the scheme can decrypt correctly. We give a brief discussion 

in the following. 

To decrypt correctly, it is required that 
4

ˆˆ qre ≤⊗
∞

, here ê  is the initial error, 



abides to k
R αχ , , k

rDr
$

ˆ←  and obviously 
2
rri ≤ . On account of Chebyshev

( )2,σµNXi ←

’s law, for 

n independent samples that abiding the same Gauss distribution , 

1≤i≤n, the summation ( )∑
=

←
n

i
i nnNX

1

2, σµ . So every coefficient of re ˆˆ⊗  abides 

the same Gauss distribution with 0 as the expectation and 

t
rnkrnknrk

i

1
2221

2

≤



≤=








∑
=

ααα  as the standard deviation. Utilizing the 

truncated inequality of Gauss distribution, the probability that all of the coefficients of 

re ˆˆ⊗  is greater than q /4 is 32

2

24 t

e
t

−

π
. When t≥30, this value can be neglected. So  

4
ˆˆ qre ≤⊗
∞

 will sure to happen, and thus scheme 2 can decrypt correctly. 

 
3.2  A somewhat homomorphic encryption scheme basing on scheme 2 

We propose a somewhat homomorphic encryption scheme that is constructed 
basing on scheme 2. 
3.2.1  Add operation 

Given two ciphertext pairs ( )10 ,ccC =  and 




 ′′=′ 10 ,ccC , the add operation is 

simple and quite directly. 
( )

( ) ( ) ( )

( )1,0,

212121

221121

1100

,
2

1ˆˆˆ,ˆˆˆ

2
1ˆˆ

2
1ˆˆ,ˆˆˆˆ

,

,

addadd

add

cc

qmmrrbrra

qmrbqmrbrara

cccc

CCCCC

=







 −

+++⊗+⊗=







 −

+⊗+
−

+⊗⊗+⊗=






 ′+′+=

′+=′

 

The decryption process includes computing ( )
2

1
210,1,

−
+≈−

qmmscc addadd , and 

get the plaintext of the sum of two plaintexts. This adding operation does not increase 
the length of ciphertext and the amount of coordinates. Here the error may have a 
slight increase after adding, but it has little impact on decryption.  
3.2.2  Multiply operation 

Firstly, we multiply two initial ciphertexts.  
Taking into account the decryption process: 

reqmscc ˆˆ
2

1
01 ⊗+

−
=−  



reqmscc ′⊗+
−′=′−′ ˆˆ
2

1
01  

From the above formula, we can get  

( )

2
00100111

0101ˆˆ
2

1ˆˆ
2

1

sccscccccc

sccsccreqmreqm

′+




 ′+′−′=






 ′−′⋅−=






 ′⊗+

−′⋅





 ⊗+

−

    （3-1） 

Let ( ) ( )2,1,0, ,,, multmultmultmult cccCCC =′ , where 

′= 110, cccmult  

01011, cccccmult
′−′−=  

′= 002, cccmult  

So after one multiplication, the ciphertext is changed into a three-tuple 

( )2,1,0, ,, multmultmultmult cccC = . To decrypt this new ciphertext, we need to compute: 

( ) ( ) ( )

( )

M

qmm

rerereqmreqmqmm

reqmreqm

scscc multmultmult

=

∆+
−′=

′⊗⋅⊗+⊗
−′+′⊗

−
+

−′=







 ′⊗+

−′⋅





 ⊗+

−
=
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4
1
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2

1ˆˆ
2

1
4
1

ˆˆ
2

1ˆˆ
2

1

2

2

2
2,1,0,

 

Next we discuss the value of m and m’. 

(1) When m=0 and m’=0, ( ) ( )rereM ′⊗⋅⊗= ˆˆˆˆ  is the product of two 

polynomials in R, and each coefficient of M is less than 
1644

2qqq
=⋅ ;  

(2) When m=1and m’=0 (or m=0, m’=1), ( ) ( ) ( )rerereqM ′⊗⋅⊗+′⊗
−

= ˆˆˆˆˆˆ
2

1 , 

each coefficient of M is less than 
16

3
1642

1 22 qqqqq −
=+⋅

− ; 

(3) When m=1and m’=1, each coefficient of M is greater than ( )
4

1 2−q , but is 

less than  



( ) ( )
16

4129
4

1
44

1 222 +−
=

−
+






+

− qqqqqq . 

According to the above discussion, in order to decrypt correctly, we should take 
the coefficients of M into consideration, when the value of a certain coefficient is 

within ( )







 +−−
16

4129,
4
1 22 qqq , then the decryption result will be 1, else it will be 0. 

It should be noted that the last operation of decryption is done in 1/2 +=′ n
q xZR , 

but not R, thus doubles the length of ciphertext, that is qn 2log4 .  

Through the above method, after one multiplication, the amount of ciphertext 

elements will increase by 1. So given two generic ciphertexts: ( )110 ,,, −= lcccC   

and 




 ′′′=′ −110 ,,, tcccC  , without generality, we can let l ≥ t. When doing addition, 

can pad C′  with l – t zeros, namely, let 




 ′′′′′=′ −− 1110 ,,,,,, ltt cccccC  . When doing 

multiplication, use the method similar to formula （3-1）, we could get to a polynomial 
about s with a degree of l + t-2. In decryption, it needs to compute this polynomial, 
and then compare each coefficient. While the discussion domain is changed into 

2−+tlqZ , and the length of ciphertext is now ( ) qtln 2log22 −+ . 

This scheme has two shortcomings in efficiency: 
(1) The length of ciphertext is doubled after multiplication, and will be 

qn 2log4 . 

(2) The amount of ciphertext elements is increased in multiplication. 
In brief, multiplication will cause a great decrease in efficiency, so multiplication 

can only be conducted by a limited times in this scheme. 
 
4. Homomorphic encryption scheme basing on an improved scheme. 

In this section, we make some important mortification to scheme2, and put 
forward a new homomorphic encryption scheme noted as scheme3 . 
4.1 Mortification to scheme 2 

We use canonical mapping to construct a new scheme basing on scheme2, in this 
new shceme, the operation is quite time-efficient and the amount of ciphertext 
elements will not increase after homomorphic evaluations. 
4.1.1  An elaborated description of the new scheme 
Scheme 3 

- Parameters: q is a prime and nq 2mod1≡ , let ω  be a root of xn+1 in Zq, and 



ω  is not a divisor of 
2

1−q , error distribution k
R αχ ,  is still a discrete Gauss 

distribution on Rk








+



≤ 1
2

/1 rnktα, with expectation 0 and standard deviation . 

Definition of Dr

- Private key: 

 and polynomial vector operations are the same as in scheme2. 

Rs
$
← , satisfying that s(0) is not a divisor of 

2
1−q . The length of 

private key is nlog2

- Public key: Randomly choose a k-dim polynomial vector 

q bits. 

kRa
$

ˆ← . Choose 

error vector k
Re αχ ,ˆ ←  and compute kResab ∈+= ˆˆˆ . To shorten the key length, we 

can also make all of the users share a same â , and the public key is ( )ba ˆ,ˆ  with 

length of knlog2

- Encryption: Encryption includes three steps. 
q bits. 

(1) For any given n-bits plaintext 1Dm∈ , let m=(m0, m1, …, mn-1

k
rDr

$
ˆ←

) and 

randomly choose ;  

(2) Compute rbc ˆˆ
0 ⊗= , rac ˆˆ1 ⊗= . Noticing that c0, c1

n
qZ

 are two polynomials in 

R, we can use canonical mapping to change them into vectors in , namely  

( ) ( ) ( )( ) 0
12

0
3

000 ,,, Ccccc n =−ωωω   

( ) ( ) ( )( ) 1
12

1
3

111 ,,, Ccccc n =−ωωω   

(3) Compute ( )1002 ,
2

1
−

−
+= nmmqCC  , and output the ciphertext ( )21,CC . 

- Decryption: Also includes three steps. 
(1) Use the inverse mapping of canonical mapping to change C1 

( ) raxc ˆˆ1 ⊗=

into a 

polynomial ;  

(2) Compute ( ) ( )xcrerbsrasxc 01 ˆˆˆˆˆˆ ≈⊗−⊗=⋅⊗=⋅ , and change ( ) sxc ⋅1  into 

a vector S; 

(3) Compute ( ) mqSC
2

1mod2
−

≈− ω  

4.1.2 Correctness  
Theorem 1  When the parameters are chosen properly, Scheme 3 can decrypt 

correct. 
Proof:  



Consider the decryption process,  

( )( )sxcmqCSC ⋅−
−

+=− 102 2
1 σ  

( )( ) ( )( )sxcmqxc ⋅−
−

+= 10 2
1 σσ  

( ) ( )( ) ( ) ( )( )12
11

12
00 ,,

2
1,, −− −

−
+= nn scscmqcc ωωωω   

( )( ) ( )( )( ) ( )( ) ( )( )( ) mqsrasrarbrb nn

2
1ˆˆ,,ˆˆˆˆ,,ˆˆ 1212 −

+⊗⊗−⊗⊗= −− ωωωω   

    We only discuss the first item, and conclusions about other items are the same. 
The first item of the above formula is  

( )( ) ( )( ) ( )( ) ( )( ) 00 2
1ˆˆ

2
1ˆˆˆˆˆˆ mqremqsraresra −

+⊗=
−

+⊗−⊗+⊗ ωωωω  

Here ( )( )ωre ˆˆ⊗  is a polynomial about ω in R, and after a mod operation, it only 

remain the constant term. Let ( )keee ,,ˆ 1 = , ( )krrr ,,ˆ 1 = , then ∑
=

=⊗
k

i
iirere

1

ˆˆ . And 

because k
Re αχ ,ˆ ← , following the discussion of section 4.1, ∑
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k

i
iire

1
 abides a Normal 

distribution with expectation 0 and standard deviation 
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ααα . According to the truncated inequality of 

Normal distribution， ( ) 32
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∑ π
. When t≥30, this value can be 

ignored, so ( ) 1
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0Pr
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∑
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i
i . 

According to the parameter requirement of scheme3, ω  is not a divisor of 

2
1−q , so the first item of ( ) ωmod2 SC −  is not greater than 02

1
4

mqq −
+ . This 

completes the correctness proof of scheme3.  
4.1.3  Security  

Here we give a reduction about the CPA security of scheme3 into the difficulty of 
decisional RLWE assumption.  

Theorem 2  For any 0>ε  and ( )( ) qnm log11 ++≥ ε , if there exists a PPT 

algorithm that can attack the CPA security of scheme 3 with advantage є, then there 
exist a poly-time distinguisher V that for any possible private key s, can distinguish 

distribution ( )






 ←←←+ RsDeRaesaa R

k
$

,

$
,ˆ,ˆ|ˆˆ,ˆ ξ  and the uniform distribution U on 



kk RR × , here ( )( ) 4/1log/ nknk⋅=αξ . 

Proof:  
We only discuss the first bit m0 of a plaintext. Suppose there exists a CPA attacker 

A that can distinguish the ciphertext of m0=0 and m0

( ) ( ) ( )






 =←←==←+ 10,,ˆ,,,1,10,ˆ|ˆˆ,ˆ

$

,

$
sRsDekiaRaesaa Ri

k
ξ

=1 with advantage є. We 
construct a distinguisher V which can distinguish these two distributions with 
advantage at least є/2: 

 

and Uniform distribution U on kk RR × . 
The distinguisher V is constructed as following: 

Input of V are two polynomial vectors ( )ba ˆ,ˆ  in kk RR × , and satisfying that 

each constant term of â  is 1. Now V will call for A to judge that whether ( )ba ˆ,ˆ  is 

abide to uniform distribution or is a RLER vector. 

Using ( )ba ˆ,ˆ  as private key, V invokes A, the latter generate two message bits m0, 

m1 { }1,0∈iand send to V. V randomly choose , encrypt mi 

Let the challenging ciphertext be 

and send the ciphertext 

back to A. If A can return the correct I, then V will output 1, else output 0. 

( )21,CC , if σ is canonical mapping, then the 

first bit of C1 and C2 ( )( )ωra ˆˆ ⊗are  and ( )( ) 02
1ˆˆ mqrb −

+⊗ ω  respectively. If b̂  is 

chosen randomly and uniformly in kR  and is independent with â , then the first bit 

of the challenging ciphertext is also random and uniform. In this situation, the 

probability of V output 1 is at most 1/2. On the other hand，if esab ˆˆˆ +=  and the 

parameters are chosen according to the requirement, then by assumption, probability 
of A correctly guess i is (1+є)/2, so V can output 1 with the same probability. Thus 
completes the proof, namely, V can distinguish two distributions with advantage є/2.                                                                         
■ 
 
4.2  Homomorphic evaluations  

Given two ciphertexts ( )21,CC  and 
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4.2.1  Addition 
When computing the sum of two ciphertexts, we could simply add them 

coordinate-wise, and get  

( ) 




 ′+′+= 221121 ,, CCCCCC addadd  

Where  
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are exactly the encryption of the sum of two plaintexts. 
4.2.2  Multiplication 

According to the features of canonical mapping, multiplication of two vectors 
could also done coordinate-wisely. Let “*” denote the multiplication of vectors 
coordinate-wise, then  

( ) 
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and  
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We discuss the decryption of the first item. 

The first item of ′
22 *CC  is  

( ) ( ) ( ) ( ) ( ) ′−
+′−

+′−
+′
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2

000000 4
1

2
1

2
1 mmqcmqcmqcc ωωωω  

In the decryption process, we need to change ′
11 *CC  into a polynomial, multiply it 

with s2 and then transform into a vector Smult

( ) ( ) ( ) ( ) ( ) ( ) ( )ωωωωωωω srasraccs ′⊗⋅⊗=′ ˆˆˆˆ11
2

, the first item of which is  

          （4-1） 



Noticing that  

( ) ( ) ( )( ) ( ) ( )( )[ ] ( )( ) ( ) ( )( )[ ]ωωωωωωωω resraresracc ′⊗+′⊗⊗+⊗=′ ˆˆˆˆˆˆˆˆ00     （4-2） 

Subtract （4-2） by （4-1）,  we can get  

( )( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ) Dresraresrarere =⊗′⊗+′⊗⊗+′⊗⊗ ωωωωωωωω ˆˆˆˆˆˆˆˆˆˆˆˆ  

The last decryption step in scheme 3 is compute C2

multSCC −′22 *

-S,  and after a homomorphic 

multiplication, it needs to compute . Then the first item is  
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Where  

( ) ( )( ) ( ) ( )( )ωωωω resrac ˆˆˆˆ0 ⊗+⊗=  

( ) ( )( ) ( ) ( )( )ωωωω resrac ′⊗+′⊗=′ ˆˆˆˆ0  

Noticing that in the first item, besides the first item, all of the other items are 

multiples of ω , at the same time, ω  is not a divisor of ( )
4
1 2−q , so we can divide 

the first item by ω , and get the residue: 

( )( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )
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Also noticing that s(0) is not a divisor of 
2

1−q , dividing the above formula by 

s(0) and get the residue, the first item is turned into 

( )( )( )( ) ( )( ) ( )( ) ( )
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+′⊗⊗ 00
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Here ( )( )0ˆˆ re⊗  and ( )( )0ˆˆ re ′⊗  are the constant items of re ˆˆ⊗  and re ′⊗ ˆˆ  

respectively. According to the discussion in section 3.1, the probability of each 

coefficient in re ˆˆ⊗  greater than q /4 is 32

2

24 t

e
t

−

π
, when t≥30, this value can be 

ignored. So 
4

ˆˆ qre ≤⊗
∞

 holds with a probability close to 1. Consulting also the 

discussion in 4.2.2, when Δ> ( )
4

1 2−q  the decryption result is 1 in 2qZ , else, is 0. 

Thus obtain the multiplication of two bits. This argument can be extended to other 



elements of the ciphertext, and we could soon get to the result that in scheme 3, 
′

22 *CC  can be correctly decrypted and get to the multiplication of two plaintexts. 

4.3  Efficiency of scheme 3 
The advantage of scheme3 lies in a shorter key length and small computation cost, 

we give a detailed analysis below. 

Length of public key: the public key is a pair of polynomial vectors ( )ba ˆ,ˆ  in Rk

â

, 

if  is shared by all users, then it only need to take into consideration of b̂ , and the 

length of public key is knlog2

Length of private key: the private key is a polynomial in R with constant item 1, 
and the length of private key is nlog

q bits. 

2

Length of ciphertext: In scheme3, an n bits plaintext is encrypted into a 
ciphertext of 2nlog

q bits. 

2

Computation cost of encryption: It needs to compute a polynomial convolution, 

then two canonical mapping and finally a vector addition on 

q bits. 

n
qZ . Here the 

computing cost of polynomial convolution can be reduced through a fast Fourier 

transformation ( )nn log~Ο. And the total computation cost of encryption is . 

Computation cost of decryption: It needs to compute the inverse of canonical 

mapping, namely to solve a linear equation set on qZ , then compute a polynomial 

multiplication and one canonical mapping, finally a vector subtraction. And the total 

computation cost of encryption is ( )nn log~Ο . 

Homomorphic addition: The addition of two ciphertexts is simply vector 

addition by coordinate wise, the computation cost is ( )nΟ~ . After an addition, the 

length of ciphertext is not increased, and accordingly the computation cost of 
decryption remains the same. 

Homomorphic multiplication: When multiplying two ciphertexts, it needs to 

directly compute vector multiplication on n
qZ  coordinate-wise, the computing cost is 

( )nn log~Ο . After one multiplication, the length of ciphertext is increased to 4nlog2

( )2~ nΟ

q 

bits, namely doubled. In decryption phase, for each ciphertext element, it needs to 
solve a linear equation set, then compute one polynomial multiplication and one 

subtraction, the total computation cost of decryption is . 

To sum up, we confirm that comparing with scheme 2, scheme 3 has an obvious advantage in 
efficiency. The key length and computation cost is controlled in a rational bound, and, after one 
multiplication, the ciphertext vector still remains two elements, though there is an increase in 



length. We believe that scheme 3 is a practical homomorphic encryption scheme. 
 
5. Conclusion 

This paper provides a somewhat homomorphic multi-bit encryption scheme that is basing on 
RLWE assumption. We use canonical mapping to change polynomial computation into vector 
operation that is coordinate-wise. Due to this technique, the computation cost of our scheme is 
very limited, and the key length is short. We give a security proof to show that the scheme is CPA 
secure on condition that RLWE assumption holds. 

Homomorphic encryption scheme is a new hot point in cryptography. There has been 
abundant works in recent years focusing on scheme construction and application, and new 
methods and new ideas have appeared continuously. However there still leaves a lot of problems 
to solve in this area, both in theoretical and practical.  

Aiming on performance improvement, we use a new technique to construct scheme, and our 
scheme is practical due to its computation cost and key length, while because homomorphic 
multiplication can cause an increase in ciphertext length, the scheme is somewhat but not fully 
homomorphic. However, scheme 3 in this paper can be a potential somewhat homomorphic 
encryption scheme. Further studies on controlling ciphertext length and ultimately constructing 
fully homomorphic encryption schemes will be our target in the future. 
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