
A note on the behaviour of the NFS in the
medium prime case: Smoothness of Norms

Naomi Benger1, Manuel Charlemagne2?, and Kefei Chen3

1 University of Adelaide, Australia
naomi.benger@adelaide.edu.au

2 Shanghai Jiao Tong University, China
charlem@sjtu.edu.cn

3 Hangzhou Normal University, China
chen-kf@cs.sjtu.edu.cn

Abstract. During an ongoing examination of the behaviour, in practice,
of the Number Field Sieve (NFS) in the medium prime case we have no-
ticed numerous interesting patterns. In this paper we present findings on
run-time observations of an aspect of the sieving stage. The contributions
of these observations to the computational mathematics community are
twofold: firstly, they bring us a step closer to understanding the true
practical effectiveness of the algorithm and secondly, they enabled the
development of a test for the effectiveness of the polynomials used in
the NFS. The results of this work are of particular interest to cryptogra-
phers: the run-time of the NFS determines directly the security level of
some discrete logarithm problem based protocols, such as those arising
in pairing-based cryptography.

1 Introduction and Motivation

In cryptography the computational behaviour of particular algorithms is used
to determine the security level of a protocol. More specifically, as the security
of cryptographic protocols is based on the hardness of underlying mathematical
problems, it follows that the security is reliant on the computational behaviour
of solving those problems in the given implementation context. It is therefore im-
portant that we have a sound knowledge of the behaviour of the algorithms used
to solve these problems in practice in order to implement cryptographic proto-
cols with reliable security settings. One particular hard problem, the Discrete
Logarithm Problem, is the basis of security in numerous cryptographic protocols
instantiated in two groups: in the additive group of points on an elliptic curve
(ECDLP) and in a multiplicative group of a prime field or finite extension field
(DLP). The most efficient known algorithms to solve the ECDLP have been
thoroughly examined and the behaviour of these algorithms in practice is well
understood, for example see [18, 20, 3, 4, 2]. For the DLP in the medium prime

? Founded by the National Natural Science Foundation of China (Grant 61133014) and
the State Key Laboratory of Mathematical Engineering and Advanced Computing.

case, however, the situation is quite different; it has received comparably less
attention and so the understanding of the behaviour of the algorithm is thus less
profound. The result of this is that we are not able to give precise implementa-
tion guidelines for protocols with security dependent on the DLP. In particular,
in Pairing-Based Cryptography (PBC) often the underlying problems that form
the basis for security are related to variations of both the ECDLP and DLP –
the hardness of the first problem is well understood but hardness of the second
still remains elusive; this complicates parameter selection.

There are various known algorithms for solving the DLP, the most appropri-
ate depends on the context of the problem. According to the complexity analysis
in [12], the Number Field Sieve (NFS) in the medium prime case is the most
efficient algorithm to solve the instances of finite field DLP occurring in PBC;
these instances are in the “small prime” category [12, Section 3.1]. We are ex-
amining aspects of the execution of this NFS; there are two motivating factors
for examining this particular context:

1. It has been indicated that the behaviour of the NFS used for factorising varies
widely depending on the particular implementation and that the asymptotic
complexity rarely gives a good indication of how the algorithm will perform
in practice [21, 8]; this justifies a closer examination of other NFS versions.

2. Many Identity-based protocols use cryptographic pairings and given that it
is desirable for such protocols to be implemented on small devices, such as
smart cards and other embedded devices, it is important to have a more
accurate measure of the required parameter sizes for a particular security
level. In this particular setting, simply taking a larger field to compensate
for “unknown capabilities” of the NFS is not a viable option, due to lim-
ited memory and processing power, so we need to better understand the
capabilities of the NFS to make more precise security estimates.

To summarise our motivation: little is known about the practical effectiveness
of the NFS in the medium prime case which limits our understanding of the
security of protocols which are based on the associated DLP instances. The
ultimate goal of this continuing project is to increase the general understanding
of the behaviour of the NFS. The analysis of the NFS algorithm in [12] is given
for finite fields Fpk as both p and k tend to infinity which necessitates loss of
detail and generalisation to limiting cases. We wish to fine-tune this analysis to
the cases relevant to cryptography, retaining as much detail as possible and with
the aid of experimental results. One direct and important use of this information
is to determine more precise estimates for appropriate PBC parameter sizes at
a given security level. To contribute to this goal we outline here some of the
practical observations made during our analysis. Using these observations we
have developed a “pre-NFS” polynomial test on the effectiveness of a particular
NFS instance. We also introduce a variation in the NFS polynomial selection.
The results of our work will be of interest to implementers of the NFS and
pairing-based protocols alike. The remainder of this paper is organised as follows:
In section 2 we give a brief introduction to the NFS. In section 3 we examine
one aspect of the theoretical complexity analysis, which solidifies our motivation

2

and introduce the particular aspect of the NFS that this work focuses on. In
section 4 we explain our experiment setting and the process of our investigation,
presenting the results of this undertaking in section 5. Conclusions and open
problems are presented in section 6.

Acknowledgments

The authors thank Mike Scott and Kefei Chen for their continual advice and
support, Nigel Bean and Jono Tuke for helpful discussions.

2 NFS in a nutshell

In this section we give a brief introduction to the NFS. The NFS can be con-
sidered a sequence of stages for which we assess the complexity separately. The
two main parts of the NFS are the sieving stage and the linear algebra stage.
Suppose we wish to solve a DLP instance in the finite field Fpk .

Sieving

The goal of the sieving stage is to find a set of linear relations in the logarithms of
a fixed set of elements. This is done by selecting two isomorphic representations
of a number field of dimension k over Q, say K1 and K2, and fixing a subset of
elements in each of the representations, called the Factor Base, denoted by F1

and F2 respectively. The factor bases contain the ideals of small norm, bounded
by a smoothness bound Bi, i = [1, 2]. Field elements are then ‘sieved’ to find pairs
(α, β), α ∈ K1 and β ∈ K2, with α ∼= β, and α and β smooth over their respective
factor bases; that is, α and β can be completely decomposed into a product of
elements from their respective factor bases. Such pairs are called doubly smooth.
The sieving continues until enough relations

α =
∏
γi∈F1

γaii
∼=
∏
δj∈F2

δ
bj
j = β

are found, that is, at least the sum of the number of elements in the factor
bases. These relations are converted to linear equations in the logarithms of
the factor base elements by taking the discrete logarithms of each side with
respect to fixed (isomorphic) elements in each representation. In the particular
variation of the NFS we are concerned with here, the two number fields are
constructed by adjoining to Q roots θ1 and θ2 of two different polynomials (f1
and f2 respectively, considered in Z[x]) which have common root modulo p. The
elements of these number fields are thus considered as polynomials of degree
t < n in θi. To compute the norm of an element a = a(θi) in Ki we consider a
as a polynomial in x and take the resultant of a(x) with fi(x).

3

Linear Algebra

The system of linear equations obtained in the sieving stage is solved using linear
algebra to find the logarithms of the elements in the factor bases. Solving the
linear equations is no trivial task. Though the matrix of equations is originally
sparse, after only a few operations it becomes congested. There are a few meth-
ods for reducing this matrix and solving for the unknown logarithms: Lanczos
algorithm, Wiederman algorithm and structured Gaussian elimination (all with
complexity ≤ L(1/3)), some algorithms use a combination of these methods [15].

3 Smoothness probability of norms

The run time of the sieving stage of the NFS is determined by the probability of
finding doubly smooth relations. There exist varying methods in the literature
to predict smoothness probabilities in different contexts. Let Ψ(x, y) denote the
number of integers ≤ x with no prime factor exceeding y; assuming that we
are dealing with random integers, the probability of a given number of size
approximately the size of x being y-smooth is therefore Ψ(x, y)/x. In [11] a
comprehensive survey of estimates for Ψ(x, y) is given; in the more recent [7]
we are presented with a method for computing Ψ within an arbitrarily tight
bound. The results of [14] are extensions of some of the theorems in [11] to the
context of algebraic numbr fields – the relevant case for the NFS. The formulæ
for calculating the probability is directly obtained from the ΨK(x, y) estimate
(number of integral ideals with norm < x, all of whose prime divisors have norm
< y in a number field K) [14, Satz 3] but computation of this probability is not
feasible in practice and therefore can not be used in the complexity analysis of
the NFS algorithm. The computation relies on knowledge of the class number
of K and a result of the Dedekind Zeta function, both of which are known to
be hard to compute in practice. This presents a major set back when trying to
estimate the computational behaviour of the NFS: are we unable to check the
accuracy of the estimate (that is, for a given polynomial selection we can not
know if the rate of smooth relation occurrence is as expected). Indeed, being
able to compute the probability of smoothness of norms in a given number field
(that is, for a given choice of f1 and f2) could be used to explain some of the
behaviour noticed by Zajac [21] and therefore aid polynomial selection and enable
optimisation of the factoring NFS. The smoothness probability estimate used for
the complexity analysis in [12] is from a corollary [10, page 15]; this formula is
the most appropriate choice, given that the algorithm is presented for extension
degrees k and primes p both tending to infinity. The probability estimate formula
is ‘compacted’ for use in the complexity analysis – as is common practice – which
poses further issues when trying to estimate the run-time for a particular context.
Much information is absorbed into an O(1) or O(k) term, thus obscuring factors
which have a substantial effect on the run time of the algorithm. A concrete
example of this: in [12] the authors specify that a constant factor of 6/π2 from the
original estimate is absorbed into the L-notation for the asymptotic complexity.
This can not be neglected when assessing the practical behaviour of the sieving

4

stage, this factor of ∼ 2/3 means that we would overestimate the number of
doubly-smooth relations found by %50, assuming we will find m relations when
in fact we would only have 2

3m after a given number of trials, this stage would
have to run %50 longer then expected to reach completion.

As a result of these practices, the theoretical complexity is not an accurate
estimate of the computational behaviour; this issue is not isolated to this NFS
algorithm, similar techniques are commonplace and the problem of the gap be-
tween theoretical complexity and computational behaviour was noted in [8] for
the NFS used for factorisation. The main result presented in section 5 of this
work is the examination of the computational behaviour in this aspect of the
NFS.

4 Experimental Context

In this section we outline our experimental context including a variation on the
polynomial selection process.

Parameter sizes

As the contextual focus is PBC, we used the current field size suggestions in
literature (from resources such as [17, 16, 1]) for the security levels 80, 128 and
192 which fixes the types of elliptic curves which can be used and therefore also
fixes k. We used the complexity analysis of [12] to compute the corresponding
values for t (degree of elements sieved) for each of the 3 instances. That gives
us:

80 bit security 128 bit security 192 bit security
curve MNT6 BN KSS18

size of p 160 256 512
k 6 12 18
t 2 3-4 4

We present our results using a working example of the MNT6 case; the methods
are directly adaptable to the BN and KSS18 cases.

4.1 Selecting polynomials with coefficients of size around
√
p

In order to have the NFS polynomials of simple structure, we find two numbers
a1, a2 of size ∼ √p of such that a1 · a2 = p + i, where i is some small integer.
We define the polynomials f1 and f2 to be:

f1 = xn + a2

f2 = a1x
n + i

when both are irreducible. It is straightforward to show that these polynomials
have a common zero modulo p (in fact have the same set of zeros) and are

5

therefore appropriate for use in the NFS. Using this polynomial selection means
that the sieving space did not need to be skewed to balance the sizes of the
norms of the elements in each number field (see [12] for details). One important
detail supporting the use of binomials in this context is that for implementation
ease the prime p is usually chosen such that p ≡ 1 mod k (or the prime factors
of k)[13] and thus it is always possible to find irreducible binomials for the
NFS polynomial selection in this context. (For the BN case we were able to use
irreducible polynomials as used for the tower constructions in [5].) Initial results
showed that this new method is more likely to find smooth elements than the
original polynomial selection; the reasons for this are still yet to be thoroughly
investigated.

5 Norm Smoothness Analysis

In this section we present our experimental methodology and the results of our
work; the process is divided into three sections:

5.1 We used empirical data to compute the cumulative distribution function of
the norms; we make observations about which parameters influence the dis-
tribution; we illustrate how the cumulative distribution affects the smooth-
ness probability.

5.2 We show how to compute a closer estimate of the smoothness probability
using the cumulative distribution function and the results of [7].

5.3 We present a test for the effectiveness of the f1 and f2 polynomials against
the expected outcome.

5.1 Cumulative Distribution of Norms

Once the polynomials f1 and f2 have been selected, the computation of the
norms can be reduced to the evaluation of a polynomial in the coefficients of
the number field elements. The coefficients are taken from a fixed interval [0, S]
for a sieving bound S, computed following the instructions in [12], as is the
smoothness bound B. We can therefore consider the coefficients as independent
random variables X0, . . . , Xt randomly selected from [0, S] following a uniform
distribution. The norm is also a random variable, N , which takes values in the
range of the function on the random variables X0, . . . , Xt defined by the deter-
minant of the Sylvester matrix; we denote this function n(X0, . . . , Xt). We are
interested in the cumulative distribution of N = n. The reason for focussing on
the cumulative distribution is that the estimates for the probability of smooth-
ness are in fact cumulative probabilities: Ψ(x, y)/x where Ψ(x, y) is the number
of integers ≤ x with no prime factor exceeding y. We will use the cumulative
distribution of N to weight the smoothness probability estimate of the integers
to find a more appropriate smoothness probability estimate for the norms. The
resultant of polynomials of the form Ax6 +B with X0 +X1x+X2x

2 (the MNT6
setting) is given by the evaluation of the function

n(X0, X1, X2, X3) = A2X6
0−2ABX3

0X
3
2+9ABX2

0X
2
1X

2
2−6ABX0X

4
1X2+ABX6

1+B2X6
2 ,

6

where A = 1 for f1. Such a number clearly has much structure and numbers
generated using this equation will have a distribution very different from the
uniform, which is used in the complexity analysis. Trialling various theoretical
methods to determine the probability distribution of this N from this function of
uniform random variables was unfruitful due to the complexity and large number
of variables. We therefore use the empirical data directly to determine the cu-
mulative distribution. In the following graph we see the cumulative distribution
function as generated for the norms for the MNT6 case. Intuitively, we expect a
“clumping” effect in the centre of the probability distribution of the norms due
to the fact that we are repeatedly summing 6th powers of uniform variables from
a bounded interval, which will increase the proportion (and therefore probabil-
ity) of the low to middle range norm values. The result of this clumping effect
in the probability distribution translates to a very steep cumulative distribution
function over the low and middle range (plentiful) values, which tapers down to
very small slope over the larger (rarer) values. This is exactly the result that
the data presented. In figure 5.1 we see the cumulative distribution function as
generated for the norms for the MNT6 case compared with the uniformly dis-
tributed variable. It is clear that this central clumping as discussed above results
in the “mid-range” values being more probable in the norm distribution than
for the integers: The number of integers in a particular interval increases con-
stantly with the upper bound of the interval whereas the norms have a higher
concentration in the mid-range of the same interval, a direct result of the range
of the variables X0, X1, X2.

Another interesting observation we made, by varying the size of p for more tests,
is that the distribution of the norms depends only on k and t. The size of p
only dictates the placement of the distribution, as it directly determines the
interval from which the variables X0, X1, X2 are taken, not the shape. This is
not surprising given that the shape of the elements of interest are the output
of the above function n(X0, . . . , Xt), a degree k function in t variables, with
constants A and B being altered with each function. For this reason we use a
smaller example case than would be used in practice: the MNT6 setting and a
50-bit prime (with k = 6 and t = 2). This allows us to perform more thorough
and varied tests. W recalculated the sieving bound to correspond with the new
field size, following the instructions in [12].

Fitting a line to the cumulative distribution The line which depicts the
cumulative distribution as presented in figure 5.1 was generated using 2 million
norm values for X0, X1, X2 chosen uniformly at random within the given bounds
as outlined in [12] for our working example with parameters as used for the
generation of figure 5.1 (we used a range of primes and polynomials obtaining
concurring results). To obtain the equation of this line we performed curve fitting
using R, a language package for statistical computing [19]. Initial experiments
indicated that this is not an exponential curve prompted us to use the Box-Cox

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m
u
la
ti
ve

P
ro
b
a
b
il
it
y

Norms
Integers

Fig. 5.1. Comparison of the cumulative distribution of norms and uniform integers in
the MNT6 case. This particular graph generated using p = 1125909838976401 (s =
349879).

method [9]. This method aids us in identifying a suitable power transformation
on the response variable (in this case y, the proportion of norm values ≤ x) to
obtain a linear relationship between the explanatory variable (in this case x)
and the modified response variable; that is, we wish to find a value λ such that
yλ = ax+b. Often the initial test range for λ is [−5, 5] and the default setting in R
is [−2, 2] incrementing in steps of 0.1. The graph in fig 5.1 represents the density
of norm values and as the norms are sums of monomials of degree 6 we expect λ
to be close to 6 and therefore set our test range to be [0, 10]. Instead of using all
2 million points (which would have made the tests very slow) we repeated the
test numerous times on random samples of 10000 points. The results for each of
the tests gave clear indication that λ = 6, as indicated by the figure in appendix
A.1. We then proceed to fit a linear model to the full data set of points of the
transformed data (x, y6) to find that Y 6 = aX + b where a = 2.171E − 106 and
b = −1.868E − 5. From a statistical perspective the fit is incredibly accurate as
there is no noise in the data, given the smoothness of the curve generated from
our empirical values we expect to have little error. Exact output of the linear
model fitted in R is given in appendix A.1

How the cumulative distribution affects the smoothness probability
To illustrate why the probability of smoothness is affected by the differing prob-
ability distributions we use the law of total probability. Let us examine the
problem in terms of random variables: Let Z be a random variable which takes
integer values (without loss of generality we assume that the interval is [0, U]

8

for some bound U). Let N be a randomly selected norm (also from the interval
[0, U]) and let SZ (resp. SN) be a binomial random variable such that

SZ =

{
1 if Z = z is smooth;
0 if Z = z is not smooth.

(5.1)

We define SN similarly where smooth in both cases is with respect to some
fixed bound S. Now the probability that a random integer (z) selected from the
defined interval uniformly at random is smooth is expressed as

P (SZ = 1|Z = z).

Following the law of total probability we partition the interval [0, U] into s
equally sized sections, of width U/s = a, we can now write this probability as a
summation:

P (SZ = 1) =

s∑
i=1

P (SZ = 1|z ∈ [(i− 1)a, ia])P (z ∈ [(i− 1)a, ia]).

Using the same method we can rewrite P (SN = 1):

P (SN = 1) =

s∑
i=1

P (SN = 1|n ∈ [(i− 1)a, ia])P (n ∈ [(i− 1)a, ia]).

Assuming initially that the probability of a norm being smooth is equal to the
probability of an integer of the same size being smooth4 the left probability value
in each of the summations will be identical for every value of i and can be com-
puted using the method of [7] (a free implementation is available at [6] courtesy
of the author). From the different distributions of the norms and integers we
know that the right hand values are quite different and so the sums will clearly
not be equal. The probabilities on the right in the P (SZ = 1) expression are
exactly the s-quantiles (s is the number of partitions); as P (Z ≤ ia) = ia

U and
so for all i we have:

P (z ∈ [(i− 1)a, ia]) = P (Z ≤ ia)− P (Z ≤ (i− 1)a) =
(i− 1)a− ia

U
=

a

U
.

That is, the right probabilities in the P (SZ = 1) expression are constant and
the expression becomes

P (SZ = 1) =
a

U

n∑
i=1

P (SZ = 1|z ∈ [(i− 1)a, ia])

=
a

U

n∑
i=1

#smooth ∈ [(i− 1)a, ia]

a

= Ψ(S, U)/U.

4 The validity of this assumption will be discussed further in section 5.2.

9

Examining figure 5.1 we see that the probabilities P (n ∈ [(i − 1)a, ia]) will be
quite different. Using the law of total probability we not only highlight how the
distribution of the norms affects the probability of smoothness, but present a
method for computing the smoothness probability for the norms.

5.2 Smoothness probability of norms

To compute P (SN = 1) we use the same approach as above, this alters the
position of the partitions used; instead of having the partitions evenly spaced
(as above) we use the s-quantiles of the distribution of the norms (that is, we
fix the intervals such that the probability that n is in any interval is fixed at 1

s).
Fixed probability and even spacing are synonymous for the uniform distribution,
but not for the distribution of the norms. Using R we easily compute the 100-
quantiles of the norms, that is, we find the values a0, . . . , a100, given in appendix
A.2, such that P (n ∈ [ai, ai+1]) = 0.01 for i ∈ [0, 99]. It remains now, following
from our assumption that P (SN = 1|n ∈ [ai, ai+1]) = P (SZ = 1|z ∈ [ai, ai+1]),
to compute

0.01

99∑
i=0

P (SN = 1|n ∈ [ai, ai+1])

to have the probability of smoothness of the norms. Using the implementation
[6] we computed the probabilities in the summation to obtain an estimate of the
smoothness probability:

P (SN = 1) = 0.0001699201 = r̂ compared to P (SZ = 1) = 0.00005777868.

The probability of smoothness of the norms is higher by a factor of almost 3
(2.94). This is no surprise as, intuitively, smaller numbers are more likely to
be smooth and the norms have a higher concentration of ‘small’ numbers than
the integers do. These results also reflect the experimental results obtained by
selecting integers at random, following the distribution of the norms, and testing
for smoothness; almost 3 times as many smooth integers were obtained using this
method compared to selecting integers uniformly at random.

The probability above is an optimistic-case probability; we have made the
assumption that the probability of a norm being smooth is equal to the proba-
bility that an integer of the same size is smooth. That is, for some integers b0
and b1 we assumed that

P (SN = 1|n ∈ [b0, b1]) = P (SZ = 1|z ∈ [b0, b1]).

This is, however, not necessarily the case. In any given interval, the integers are
denser than norm values (approximately 1/6 for the MNT6 case), and the norms
will not necessarily coincide with the same proportion of smooth integers; the
norms may coincide with a lesser proportion of smooth integers. On the other
hand, the norms may in fact fall on more smooth integers than the ratio of in-
tegers to norms in that interval; it is in this scenario that the NFS sieving stage
will execute faster. In the following table are examples of polynomials found for

10

an example MNT6 prime for which the calculated rate r1 (from 1000/r̂ ≈ 5mil
tests).

11

p = 1125909838976401

polynomial # smooth r = smooth rate factor difference from r̂ (β)
f = 35374332x6 + 11 633 0.0001266 0.7451

f = 11791444x6 + 11 1370 0.0002740 1.6125

f = 17687166x6 + 11 652 0.0001304 0.7674

f = x6 + 8264689 1379 0.0002758 1.6231

f = 1069214x6 + 37 1320 0.0002640 1.5537

The values of β in the fourth column can be compared with the value 0.333̂
which is used in the complexity analysis. We see the second, fourth and fifth
polynomials produce smooth norms at a rate over %50 faster than the prediction
(and so 4.5 times the estimate used in the complexity analysis). There are, in
fact, numerous polynomials for which the rate of smooth norm collection is higher
than the predicted rate and we were able to find many examples, though the
average case differs from r̂ by a factor of 0.5526999 (i.e. the mean value of β)
shown in Figure 5.2. The long tail of the graph distorts the standard deviation,
but examining the quantiles, half of the values are between 0.28 and 0.71 with 1
being near the end of the main peak which is why we use the term optimistic-case
probability. In figure 5.2 the value given by the asymptotic complexity is shown
and it is indeed the the value which occus with the highest probability, but it is
also clear that a much larger proportion of the cases perform significantly better
than this case. We see clearly now that considering only the complexity analysis
in this case would lead to a misleading evaluation of the rate of smooth relation
collection for a given pair of polynomials: the polynomials may exhibit smooth
norms at a higher rate than the complexity analysis suggests, but still at a rate
well below the average, this could lead to less efficient pairs of polynomials being
selected.

The goal of an implementer of the NFS is to find a polynomial pair such
that the rate of smooth relation collection in each number field is as close to r̂ as
possible: that is, we want to find pairs (f1, f2) such that r1 ·r2 ≈ r̂2 (ri = smooth
rate of norms computed using fi, i ∈ {1, 2}); this is no straightforward task. We
denote r1·r2 = δr̂2 and recognise that the possible values for δ will be the product
of independently selected values from the distribution of β and will therefore have
mean value β2. From our empirical data we computed 0.3320898 very close to
the predicted 0.3062898 = 0.55269992 (graph of distribution in appendix B). We
can compare this to the estimate used in the complexity analysis which would
give a value of δ = 1/9 = 0.111̄. Even if we use the median of this distribution,
0.2118865, to remove some of the influence of the large, rare cases, it is still

12

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

1.
2

Rate factor, k=6

β

D
en

si
ty

Complexity
Median
Mean

Fig. 5.2. The probability density function of the multiple by which the rate of smooth
relation collection differs from the estimated rate.

approximately twice the probability used in the complexity analysis and reflects
more closely he observed behaviour.

5.3 Polynomial Selection Test

The mean value of δ gives us the benchmark to aim to obtain, or improve on,
when selecting our polynomials for the NFS. For a given instance of the DLP in
a finite field Fpk we perform the following test before launching the NFS sieving
stage:

1 Compute the r̂, the upper estimate on the smoothness probability of norms
as done in section 5.2.

2 Find polynomial pair f1 and f2 following the method given in section 4.1 or
[12].

3 Generate 1000/r̂ [8] norm values randomly using both f1 and f2 and test for
smoothness to approximate the rates of smooth norm occurrence for each
number field.

4 Compare the product of the approximate rates of smooth norms to r̂2: if it
is “large enough”, proceed with sieving, otherwise return to step 1.

In step 4 by large enough we want to find δ̂ ≥ 0.3320898 (the mean value).

13

This differs to how the results in [21] would be used, we have given a bench-
mark to compare the rate of smooth norm collection against, whereas previous
methods would have required the generation of numerous pairs of polynomials to
mutually compare the rate of smooth relation collection. Thus, our method re-
sults in fewer tests necessary to distinguish if a pair of polynomials is performing
at least as well as the average case.

To illustrate, we have generated various f1 and f2 pairs for our example case
of MNT6 with prime around 50 bits. Our experiments resulted in polynomial
pairs for which smooth norms occurred at a much higher rate than others. The
following tables show some example cases of polynomial pairs for MNT6 case:

p = 1125909838976401

polynomial pair # smooth rate smooth rate double smooth δ̂
f1 = 35374332x6 + 11 633 1.266E-4 7.54536E-9 0.2613
f2 = x6 + 31828441 298 5.96E-5

f1 = 11791444x6 + 11 1370 2.740E-4 1.17272E-8 0.4062
f2 = x6 + 95485323 214 4.28E-5

f1 = 17687166x6 + 11 652 1.304E-4 5.42464E-9 0.1879
f2 = x6 + 63656882 208 4.16E-5

f1 = x6 + 8264689 1379 2.758E-4 1.147328E-8 0.3974
f2 = 136231362x6 + 17 208 4.16E-5

f1 = 1069214x6 + 37 1320 2.64E-4 4.9632E-9 0.1719
f2 = x6 + 1053025717 94 1.88E-5

Interestingly, these examples highlight that simply taking a small value for
i (11 in this case) does not ensure a good polynomial pair, the rate of smooth
relation collection for the first three polynomial pairs is vastly different. Though
the rate is comparable in the number fields defined using the f2, using the first
and third pairs we found smooth relations at less than half the rate of the second
pair, for which the value δ̂ = 0.4062 exceeds the mean value of 0.3320898.

14

p = 1126169969103937

polynomial pair # smooth r =est. double smooth rate δ̂
f1 = x6 + 4747150 476 1.014832E-8 0.3515
f2 = 237230753x6 + 13 533

f1 = x6 + 186474550 139 6.52744E-9 0.2261
f2 = 6039269x6 + 13 1174

f1 = x6 + 516240070 118 5.1212E-9 0.1774
f2 = 2181485x6 + 13 1085

f1 = x6 + 20871667 202 4.7268E-9 0.1637
f2 = 53956877x6 + 22 585

f1 = x6 + 27201934 251 6.68664E-9 0.2316
f2 = 41400364x6 + 39 666

Again in this table we see great variation in the rate of smooth element collection
in the first three cases, for which the same value i = 13 was used to construct
the polynomial pairs. For this prime the value of δ̂ = 0.3515 slightly exceeds the
mean value 0.3320898.

6 Conclusion and Open Problems

In theoretical complexity of algorithms it is common practice that many constant
factors are hidden in the O and L notations. As a result, the theoretical com-
plexity does not give a good reflection of how the algorithm will run in practice.
In cryptography, the security of protocols is directly related to the practicality of
solving hard mathematical problems. Until now the practical behaviour of the
number field sieve in the medium prime case has received relatively little atten-
tion. Due to its relevance to the security of pairing-based protocols in particular
we are examining the run-time behaviour of this algorithm in the given context;
the motivation of this work was to deepen the understanding of the NFS in
general, in the hope that this would help determining more precise estimates for
appropriate parameter sizes for a fixed security level for PBC protocols.

In this work we presented some observations on the behaviour of the NFS
in practice. We focussed on the smoothness probability of the norms of num-
ber field elements as it determines the practical run-time of the sieving stage.
Our observations and analysis have resulted in a pre-sieving test that can be
performed on the selected polynomials. This test ensures as efficient a set up
and execution of the sieving stage as possible. The new revelation about the
probability of smooth norm occurrence is a step towards a more precise run-
time estimate of the sieving stage. We also gave a variation of the polynomial

15

selection method given in [12] used to conduct our experiments, which shows
promising behaviour.

This work covers the initial progress in the examination of the NFS sieving
stage; in order to compute the expected run-time of this stage it remains to
investigate the true cost of smoothness test (relative to computing power). Other
tasks include a thorough comparison of the polynomial selection methods as
given in section 4.1 and [12].

References

1. ECRYPT II Yearly Report on Algorithms and Key Lengths, 2011.

2. S. Bai and R. P. Brent. On the efficiency of pollards rho method for discrete
logarithms. Australian Computer Society, pages 125–131, 2008.

3. D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, G. V.
Damme, G. Meulenaer, J. Fan, T. Güneysu, F. Gurkaynak, T. Kleinjung, T. Lange,
N. Mentens, C. Paar, F. Regazzoni, P. Schwabe, and L. Uhsadel. The Certicom
Challenges ECC2-X, 2009.

4. D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, C. Chen, G. V.
Damme, G. Meulenaer, L. J. Dominguez-Perez, J. Fan, T. Güneysu, F. Gurkay-
nak, T. Kleinjung, T. Lange, N. Mentens, R. Niederhagen, C. Paar, F. Regazzoni,
P. Schwabe, L. Uhsadel, A. V. Herrewege, and B. Yang. Breaking ECC2K-130.
Cryptology ePrint Archive, (541), 2009.

5. N. Benger and M. Scott. Constructing Tower Extensions for the implementation
of Pairing-Based Cryptography, 2010.

6. D. J. Bernstein. implementation of ψ estimation method of “arbitrarily tight
bounds on the distribution of smooth integers”.

7. D. J. Bernstein. Arbitrarily tight bounds on the distribution of smooth integers.
Number theory for the Millennium, 1:49–66, 2002.

8. D. J. Bernstein. Predicting NFS time, 2008. Slides of a talk given at Cado Work-
shop on Integer Factorization October 7, 2008. LORIA, Nancy, France.

9. G.E.P. Box and D.R. Cox. An analysis of transformations (with discussion). Jour-
nal of the Royal Statistical Society, 26:211–252, 1964.

10. E. R. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim con-
cerning “Factorisatio Numerorum”. 17:1–28, 1983.

11. A. Hildebrand and G. Tenenbaum. Integers without large prime factors. 5:411–484,
1993.

12. A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The Number Field Sieve in
the Medium Prime Case. In C. Dwork, editor, Advances in Cryptology – Crypto
2006, number 4117 in Lecture Notes in Computer Science, pages 323–341, 2006.

13. N. Koblitz and A. Menezes. Pairing-Based Cryptography at high security levels.
IMA Int. Conf., 3796:13 – 36, 2005.

14. U Krause. Abschätzungen für die funktion ψk(x, y) in algebraischen zahlkörpern.
Manuscripta Mathematica, 69:319 – 331, 1990.

15. B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over
finite fields. In A. Menezes and S. A. Vanstone, editors, Advances in Cryptology -
Crypto 1990, number 537 in Lecture Notes in Computer Science, pages 109–133.
Springer-Verlag, 1990.

16

16. A. K. Lenstra. Unbelievable Security: Matching AES Security Using Public Key
Systems. In C. Boyd, editor, Advances in Cryptology – Asiacrypt ’01, volume 2248
of Lecture Notes in Computer Science, pages 67–86, London, UK, 2001. Springer-
Verlag.

17. A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. In H. Imai and
Y. Zheng, editors, Public-Key Cryptography 2000, volume 1751 of Lecture Notes in
Computer Science, pages 446–465, London, UK, 2000. Springer-Verlag.

18. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of Computation, 32:918–924, 1978.

19. R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria, 2010.

20. E. Teske. Speeding up pollards rho method for computing discrete logarithms. In
Algorithmic Number Theory Symposium (ANTS IV), number 1423 in LNCS, pages
541–553. Springer-Verlag, 1998.

21. P. Zajac. Basic remarks on the NFS complexity. Cryptology ePrint Archive, Report
2008/064, 2008. http://eprint.iacr.org/.

17

A MNT6 output

Diagram from Box-Cox method clearly indicating that for the MNT6 case that
λ = 6.

0 2 4 6 8 10

−
80

00
0

−
60

00
0

−
40

00
0

−
20

00
0

λ

lo
g−

Li
ke

lih
oo

d
 95%

Comparison of the experimental data and the fitted line.

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+105 2e+105 3e+105 4e+105

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

data$x

da
ta

$y

18

A.1 Output of the linear model

Output from R:

Residuals:
Min 1Q Median 3Q Max
-8.589e-04 -7.149e-05 3.580e-06 1.868e-05 7.928e-04

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −1.868e− 05 1.701e− 07 −109.8 < 2e− 16
x 2.171e− 0106 1.331e− 112 1630932.3 < 2e− 16

Residual standard error: 0.0002061 on 1999998 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 2.66e+ 12 on 1 and 1999998 DF, p-value: < 2.2e− 16

A.2 MNT6 100-quantiles

a0 =71058 96343 98717 100100 101069 101816 102434 103022 103837 104597
a10 =105289 105918 106496 107028 107524 107984 108412 108814 109192 109551
a20 =109893 110222 110534 110829 111113 111383 111644 111894 112137 112371
a30 =112596 112816 113027 113235 113434 113629 113817 114000 114180 114353
a40 =114522 114687 114848 115002 115154 115304 115449 115594 115735 115871
a50 =116004 116136 116265 116392 116517 116641 116762 116881 116997 117110
a60 =117221 117331 117440 117546 117650 117754 117856 117956 118055 118152
a70 =118249 118342 118435 118527 118618 118707 118795 118884 118971 119056
a80 =119140 119224 119306 119386 119465 119544 119622 119698 119775 119850
a90 =119925 119999 120073 120144 120215 120286 120356 120424 120493 120561
a100 =120628

When N is a random value takes values from the range of the function
n(X0, X1, X2, X3) = A2X6

0 − 2ABX3
0X

3
2 + 9ABX2

0X
2
1X

2
2 − 6ABX0X

4
1X2 +

ABX6
1 + B2X6

2 where Xi are uniformly distributed discrete random variables
in the interval [0, 349879] then the above values are such that for N = n,
P (n ∈ [ai, ai+1]) = 0.01 for i ∈ [0, 99].

19

B Rate multiple (doubly smooth) distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Rate factor (doubly smooth), k=6

δ

D
en

si
ty

Complexity
Median
Mean

Again, as in figure 5.2 the value given by the asymptotic complexity is shown, it
is indeed the the value which occus with the highest probability. We see again
that a much larger proportion of the cases perform significantly better than this
case, including the mean case, which the empirical data more closely reflects.
We reach the same conclusion that the complexity analysis gives a misleading
estimate of the average case.

20

