
Secure and Constant Cost Public Cloud Storage
Auditing with Deduplication

Jiawei Yuan
Department of Computer Science

University of Arkansas at Little Rock, USA
Email: jxyuan@ualr.edu

Shucheng Yu
Department of Computer Science

University of Arkansas at Little Rock, USA
Email: sxyu1@ualr.edu

Abstract—Data integrity and storage efficiency are two im-
portant requirements for cloud storage. Proof of Retrievability
(POR) and Proof of Data Possession (PDP) techniques assure data
integrity for cloud storage. Proof of Ownership (POW) improves
storage efficiency by securely removing unnecessarily duplicated
data on the storage server. However, trivial combination of the
two techniques, in order to achieve both data integrity and
storage efficiency, results in non-trivial duplication of metadata
(i.e., authentication tags), which contradicts the objectives of
POW. Recent attempts to this problem introduce tremendous
computational and communication costs and have been proven
not secure. It calls for a new solution to support efficient
and secure data integrity auditing with storage deduplication
for cloud storage. In this paper we solve this open problem
with a novel scheme based on techniques including polynomial-
based authentication tags and homomorphic linear authentica-
tors. Our design allows deduplication of both files and their
corresponding authentication tags. Data integrity auditing and
storage deduplication are achieved simultaneously. Our proposed
scheme is also characterized by constant realtime communication
and computational cost on the user side. Public auditing and
batch auditing are both supported. Hence, our proposed scheme
outperforms existing POR and PDP schemes while providing the
additional functionality of deduplication. We prove the security of
our proposed scheme based on the Computational Diffie-Hellman
problem and the Strong Diffie-Hellman assumption. Numerical
analysis and experimental results on Amazon AWS show that
our scheme is efficient and scalable.

I. INTRODUCTION

Cloud storage has been increasingly prevalent because of its
advantages [1]. Currently, commercial cloud storage services
including Microsoft Skydrive, Amazon S3 and Google Cloud
Storage have attracted millions of users. Cloud storage stands
for not only the massive computing infrastructure but also the
economics of scale. Under such a trend, it becomes urgent to
assure the quality of data storage services which involves two
frequent concerns from both cloud users and cloud service
providers: data integrity and storage efficiency. On one hand,
due to the many data loss and corruption events reported
for those best-known cloud service providers [2], [3], [4],
data owners, who are also cloud users, have the need to
periodically audit the integrity of their outsourced data. On
the other hand, for cloud service providers it is necessary to
improve the efficiency of cloud storage to take advantage of the
economics of scale. According to a recent survey by EMC [5],
75% of today’s digital data are duplicated copies. To reduce

the unnecessarily redundant copies, the cloud storage servers
would deduplicate by keeping only one or few copies for each
file and making a link to the file for every user who asks to
store the file. Cloud users (i.e., data owners) shall always be
able to verify the integrity of the file at any time. For storage
efficiency, it is desirable to deduplicate both the file and the
metadata (e.g., authentication tags) needed for data integrity
check. Taking malicious or misbehavior users or cloud servers
into consideration, the cloud server needs to verify that the
user actually owns the file before creating a link to this file for
him/her; the user also needs to confirm that the cloud actually
has the file in its memory and audit the integrity of the file
throughout its lifetime.

Related Work. Considering only integrity auditing for data
outsourced to cloud servers, a number of POR schemes [6],
[7], [8], [9] and PDP schemes [10], [11], [12], [13] have
been proposed. Among these schemes, Ref.[6] has the best
performance which achieves public auditing at a constant
communication cost. Similar to other POR or PDP schemes,
users in Ref.[6] still need to perform O(k) multiplication and
addition operations over the underlying field, where k is the
number of checking data blocks. Batch auditing for multiple
requests scenarios is not supported in Ref.[6].

For secure storage deduplication, Halevi et al. [14] in-
troduced the first POW scheme based on the Merkle hash
tree. Pietro et al. [15] enhanced Ref.[14] and proposed a
secure POW scheme which reduces the heavy computational
cost and high I/O cost in Ref.[14] to a constant number of
pseudorandom function operations. Nevertheless, these POW
schemes did not consider data integrity auditing.

To achieve both data integrity auditing and storage dedupli-
cation, one trivial solution is to directly combine an existing
POR/PDP scheme with a POW scheme. This trivial solution,
however, will result in a O(W) storage overhead for each file,
where W is the number of owners of this file. This is because
the data owners, lacking mutual trust, need to separately
store their own authentication tags in cloud for file integrity
auditing. Since these tags are created for auditing the same file,
storing O(W) such copies represents a type of duplication
which contradicts the objective of POW for saving storage
cost. For efficient proof of storage with deduplication (POSD),
Zheng et al. [16] proposed a scheme aiming at providing both
public data integrity auditing and secure storage deduplication.

In Ref.[16] the communication cost and computational cost
on the user side are linear to the number of elements in each
data block as well as the number of checking blocks during
the integrity auditing process. With an increasing number of
mobile users, who access cloud through mobile apps (e.g.,
iAWS, iCloud, etc.) and have constrained computational re-
sources and bandwidth (e.g., mobile phones with limited data
plan), such a communication and computational complexity
could represent a barrier to accessing the cloud storage service.
Preferably, computational cost and communication cost on the
user side shall be both constant. Moreover, Ref.[16] has been
proven not secure [17]. Specifically, by setting the elements
in secret keys to some special values, a data owner who
outsources data to the cloud server is able to use the server
as a malware distribution platform. It still calls for a new
solution to support efficient and secure data integrity auditing
with storage deduplication for cloud storage.

Our Contribution. In this paper, we solve this open prob-
lem and propose the first Public and Constant cost storage
integrity Auditing scheme with secure Deduplication (PCAD)
based on techniques including polynomial-based authentica-
tion tags and homomorphic linear authenticators. The proposed
PCAD scheme is characterized by following nice properties: 1)
PCAD is able to securely “deduplicate” the authentication tags
by aggregating the tags of the same file from different owners,
and hence make the storage overhead independent to the
number of owners of the file; 2) the communication cost in our
PCAD scheme is made constant thanks to our novel design of
polynomial-based authentication tags and secure data aggrega-
tion; 3) the computational cost on cloud users is also constant
because most computational tasks can be securely offloaded to
the cloud server; 4) PCAD supports public auditing, i.e., the
data integrity auditing operation can be securely performed
by any third party other than the owner(s); 5) PCAD allows
batch auditing, i.e., multiple auditing requests can be securely
aggregated, which substantially reduces the auditing cost for
simultaneous requests; 6) in PCAD data integrity auditing and
secure deduplication operations can be separately performed
by any owner (e.g., a new user) without the help of any other
owners (e.g., existing owners). With these salient properties,
PCAD outperforms existing POR and PDP schemes while
providing an additional functionality of data deduplication.
The main idea of our scheme can be summarized as follows:
The data owner outsources the erasure-coded file to the cloud
server together with the corresponding authentication tags. To
audit the integrity of the outsourced file, a user (who may
not be the owner) challenges the cloud with a challenging
message. On receiving the message, the cloud generates the
proof information based on the public key and sends it to the
user. With the proof information, the user verifies the data
integrity using our verification algorithm. With regard to the
deduplication process, when a user wants to upload a data
file to the cloud server which already exists in the cloud, the
cloud server performs a checking algorithm to see whether
or not this user actually owns the whole file. If the user
passes the checking, he/she can directly use the file existed

on the server without uploading it again. The security of our
proposed scheme is proven based on the Computational Diffie-
Hellman problem and the Strong Diffie-Hellman assumption.
Thorough analysis and experimental results on Amazon EC2
Cloud show that our scheme is efficient and scalable. Our main
contributions can be summarized as below.
• We proposed the first public and constant cost storage in-

tegrity auditing scheme with secure deduplication, which
can also efficiently handle multiple auditing requests
scenarios with batch operations.

• We formally proved the security of PCAD based on the
CDH problem and the SDH assumption. The advantages
of PCAD are validated by both numerical analysis and
real experiments on Amazon AWS Cloud.

• Our design of polynomial based authentication tag can
be used as an independent solution for other related
applications, such as verifiable SQL search, encrypted key
word search, etc.

The rest of this paper is organized as follows: In Section II, we
introduce the models and assumptions of our scheme. Section
III provides the construction and security proof of our scheme;
Performance evaluations of our scheme are provided in Section
IV; We conclude our paper in Section V.

II. MODEL AND ASSUMPTION

A. System Model

In this work, we consider a system consisting of three major
entities: Data Owner, Cloud Server and User. The data
owner has a number of data files and stores them on the
cloud server together with the authentication tags. A user
to whom the owner shares the data files can access and
check the integrity of data files using the public key. A user
can also be a Third Party Authority (TPA), who has
capabilities/expertise and can periodically audit the integrity
of data files being stored on the behalf of data owners. When
a user wants to upload data files which are already stored
in the cloud, the cloud server just create a link to this file,
instead of storing another copy, for this user if the user has
been proven a true owner of the file with our scheme. During
the integrity auditing and deduplication processes, the user
and the cloud server only use the public key and do not need
any help from the data owner. While cloud servers are always
equipped with abundant computing resources, data owners and
users may have constrained computational power or bandwidth
(e.g., mobile phones with limited data plan).

B. Security Model

In our PCAD scheme, we consider the selfish cloud server
which may potentially misbehavior in order to save resources
(e.g., modifying or deleting data stored on it). This assumption
is consistent with the previous POSD scheme [16]. Specif-
ically, the cloud server may delete rarely accessed data on
purpose to save storage cost; the cloud server may not follow
the algorithms in our PCAD scheme to save the computational
cost or communication cost. Therefore, in our model we need
to assure that our scheme is correct and sound. In terms of

correctness, we require our scheme accepts all valid secret
keys and public keys, all valid authentication tags, all valid
proof information generated based on valid public keys and
all valid data blocks. In terms of soundness, any selfish cloud
server must actually store the right data files if it can produce
the proof information that can be accepted by the verification
algorithm in our scheme; if any user can avoid uploading a data
file existed on the cloud server and pass the checking of the
cloud server, he/she must own the whole data file. W.o.l.g., we
define the security game for soundness of our PCAD scheme
as below.

Definition II.1. Let ∇ = (KeyGen, Setup, Prove,
Auditing,Deduplication) be a PCAD scheme. Consider the
security game among a trust authority TA, a challenger Cha
and a probabilistic polynomial-time adversary Adv.

• The TA runs KeyGen(1λ)→ (PK,SK) and sends the
PK to the Adv and the Cha.

• The Adv chooses a data file F and sends it to the TA. The
TA runs Setup(F, SK,PK) → (σ, F ′) and responds
σ, F ′ to the Adv, where F ′ is the erasure coded data file
of F and σ is the authentication tags for data blocks in
F ′.

• To audit the integrity of file F , the Cha generates a
challenging message CM and sends it to the Adv.

• The Adv generates a file F ′′, F ′′ 6= F ′ since it may
modify or lost some data blocks of F ′. Instead of running
the Prove algorithm, the Adv runs an arbitrary algorithm
Art(CM,PK,F ′′, σ) → Prf and sends Prf to the
Cha.

• The Cha runs Audit(Prf, PK)→ AuditRst.
• With regard to the deduplication process, the Adv

claims that he wants to upload F ′ to the Cha,
where F ′ is already stored on the Cha. Cha runs
Deduplication(PK, σ)→ DedupRst.

• The Adv wins the game if and only if it can let Audit al-
gorithm output AuditRst as accept with F ′′, F ′′ 6= F ′ or
let Deduplication output DedupRst as accept without
the whole F ′.

We consider ∇ as sound if any Adv can win the above game
with at most a negligible probability.

C. Assumptions

Definition II.2. Computational Diffie-Hellman (CDH) Prob-
lem [18]

Let x, y be two random numbers. Given (g, gx, gy), it is
computationally intractable to compute the value of gxy , where
G is a cyclic group of order q and g is a generator of G.

Definition II.3. t-Strong Diffie-Hellman (t-SDH) Assumption
[19]

Let α
R← Z∗q . Given input as a (t + 1) − tuple

(g, gα, · · · , gαt) ∈ Gt+1, where g is the generator of a cyclic
group G of order q. For any probabilistic polynomial time
adversary (Adv), the probability Pr[Adv(g, gα, · · · , gαt) =

(c, g
1

α+c)] is negligible for any value of a ∈ Z∗q /−α.

III. CONSTRUCTION OF PCAD

A. Preliminaries and Notation

Bilinear Map: Let G and G1 be two multiplicative cyclic
groups of the same prime order q. A bilinear map is a map
that for all g, h ∈ G and x, y

R← Z∗q , e(gx, hy) = e(g, h)xy .
For a bilinear map, there exists a computable algorithm that
can compute e efficiently and e(g, g) 6= 1.

Notation: Let H(·) be the one-way hash function, G be
a multiplicative cyclic group of prime order q and g, u be
two random generators of G. F ′ is the erasure coded file to
be outsourced and is split into n blocks, each of which has s
elements: {mij}, 1 ≤ i ≤ n, 0 ≤ j ≤ s−1. f~a(x) is denoted as
a polynomial with coefficient vector ~a = (a0, a1, · · · , as−1).

B. Our Construction

In this section, we describe the construction of our PCAD
scheme as below.
• KeyGen(1λ)→ (PK,SK):

Given a scurity parameter λ, the data owner randomly
chooses a prime q (λ bits security) and generates a
signing key-pair ((spk, ssk) R← Sign()) [19]. The owner
also chooses two random numbers α, ε

R← Z∗q and
computes κ ← gε, {gαj}s−1j=0. Then the public key and
private key are:

PK = {q, κ, spk, u, {gα
j

}s−1j=0}
SK = {ε, ssk, α}

• Setup(PK,SK,F)→ (F ′, σ, τ):
To outsource a file F , the data owner first obtains
F ′ by applying erasure code (e.g., Reed-Solomon code
[20]), where F ′ consists of n data blocks and each
block has s elements: {mij}, 1 ≤ i ≤ n, 0 ≤ j ≤
s − 1. The owner then randomly chooses a file name
name ∈ Z∗q and generates the file tag τ under ssk as
τ ← name||n||Signssk(name||n). For each data block
mi, 1 ≤ i ≤ n, the owner produces an authentication tag
as:

σi = (uH(name||i) ·
s−1∏
j=0

gmijα
j

)ε (1)

= (uH(name||i) · gf ~βi (α))ε

where ~βi = {βi,0, βi,1, · · · , βi,s−1} and βi,j = mi,j .
The data owner stores F ′, file tag τ and corresponding
authentication tags σi on the cloud server.

• Challenge(PK, τ)→ CM :
To verify the integrity of F ′, A user first gets the file tag
τ from the cloud server and verifies the signature on τ
with ssk. If the signature is not valid, the user rejects and
halts; otherwise, the user recovers file name name and
n. Then the user randomly chooses a k− elements subset
K of [1, n] and a random number ρ R← Z∗q . Finally, the

user produces the challenging message CM = {K, ρ}
and sends it to the cloud server.

• Prove(PK,F ′, CM)→ Prf :
Based on the challenging message CM = {K, ρ}, the
cloud server produces a k− elements set Q = {(i, vi)},
where i ∈ K and vi = ρi mod q. Then, the cloud server
computes

σ =
∏

(i,vi)∈Q

σvii (2)

ψ = e(

s−1∏
j=0

(gα
j

)Aj , κ) = e(gf ~A(α), κ) (3)

where ~A = (
∑

(i,vi)∈Q vimi,0, · · · ,
∑

(i,vi)∈Q vimi,s−1).
The cloud server sends the proof information Prf =
{σ, ψ} to the user.

• V erify(PK,Prf)→ AuditRst:
On receiving the Prf , the user first computes

ϑ =
∑

H(name||i)vi, (i, vi) ∈ Q (4)

η = uϑ (5)

Based on η, the user verifies the integrity of F ′ together
with Prf = {σ, ψ} as:

e(η, κ) · ψ ?
= e(σ, g) (6)

If Eq.6 holds, then the user outputs AuditRst as accept;
otherwise, outputs AuditRst as reject.

• Deduplication(PK, σ)→ DedupRst:
In the Deduplication algorithm, a user claims that he has
a file F ′ and wants to store it on the cloud server, where
F ′ is already existed on the server. To check whether or
not the user actually owns the whole F ′, the cloud server
randomly chooses a d− elements subset D of [1, n] (we
discuss the size of D in Section III-E) and sends D to
the user. On receiving the set D, the user responds the
corresponding data block mi, i ∈ D to the cloud server.
The cloud server computes

σ′ =
∏
i∈D

σi η′ =
∏
i∈D

uH(name||i)

ψ′ = e(

s−1∏
j=0

(gα
j

)Bj , κ) = e(gf~B(α), κ)

where ~B = (
∑
i∈Dmi,0, · · · ,

∑
i∈Dmi,s−1). Then the

cloud server checks the integrity of uploaded data blocks
mi, i ∈ D as:

e(η′, κ) · ψ′ ?
= e(σ′, g) (7)

If Eq.7 holds, the cloud server trusts that the user has the
whole F ′.

• Correctness: We analyze the correctness of our construc-
tion based on Eq.6 and Eq.7 as:

Eq.6:

e(σ, g) (8)

= e(u
ε(
∑

(i,vi)∈Q
H(name||i)vi) · gεf ~A(α), g)

= e(u, g)
ε(
∑

(i,vi)∈Q
H(name||i)vi) · e(g, g)εf ~A(α)

= e(η, κ) · ψ

Eq.7

e(σ′, g) (9)

= e(u
ε(
∑

i∈D
H(name||i)) · gεf~B(α), g)

= e(u, g)
ε(
∑

i∈D
H(name||i)) · e(g, g)εf~B(α)

= e(η′, κ) · ψ′

From the above Eq.8 and Eq.9, it is easy to see that our
scheme is correct.

C. Auditing After Deduplication

In this section, we describe the auditing of file owned by
multiple owners after the deduplication process and show how
to aggregate authentication tags for the same file.

After the deduplication process for F ′ on the cloud server,
the user who passes ownership checking also becomes the
owner of F ′. We define such owner as ownerw, where
1 ≤ w ≤ W , owner0 as the original owner who uploads F ′

and W is the total number of ownerw. Since these ownerw
have no mutual trust with each other, they need to assure the
integrity of F ′ separately. Specifically, after the deduplication,
an ownerw, w 6= 0 runs the KeyGen algorithm and generate
the public key and the private key as

PKw = {q, κw, spkw, u, {gα
j
w}s−1j=0}

SKw = {εw, sskw, αw}

where κw = gεw , εw, αw
R← Z∗q . Then, by running the

Setup algorithm, the ownerw generates the file tag τw as
τw ← name||n||Signsskw(name||n) and authentication tags
for each block mi in F ′ as

σwi = (uH(name||i) ·
s−1∏
j=0

gmijα
j
w)εw (10)

= (uH(name||i) · gf ~βi (αw)
)εw

where ~βi = {βi,0, βi,1, · · · , βi,s−1} and βi,j = mi,j . The
file tag τw and corresponding authentication tags σwi are
outsourced to the cloud server.

Instead of storing all the tags from different ownerw for
the same F ′ separately, the cloud server aggregates tags for
each data block as:

σi =

W∏
w=0

σwi = u
∑W

w=0
H(name||i)εw · g

∑W

w=0
(f ~βi

(αw)·εw)

When a user helps an owner, say ownert, t ∈ [0,W], to
audit the integrity of F ′, it runs the Challenge algorithm to
generate the challenging message CM = {K, ρ} and sends it

to the cloud server. The server runs the Prove algorithm to
generate σ =

∏
(i,vi)∈Q σ

vi
i . After that, the server computes

ψ =
∏W
w=0 ψw, where ψw = e(gf ~A(αw), κw),0 ≤ w ≤ W .

The proof information Prf = {σ, ψ, κ′} is sent to the user,
where κ′ =

∏
κw, w ∈ W,w 6= t. To verify the integrity of

F ′, the user runs the V erify algorithm and checks

e(η, κ′ · κt) · ψ
?
= e(σ, g) (11)

If Eq.11 holds, then the user outputs AuditRst as accept;
otherwise, outputs AuditRst as reject.

Correctness: We analyze the correctness of our construction
based on Eq.11 as:

e(σ, g) (12)

= e(u

∑
(i,vi)∈Q

(ti·
∑W

w=0
εw) · g

∑W

w=0
(f ~βi

(αw)·εw)
, g)

= e(u, g)

∑
(i,vi)∈Q

(ti·
∑W

w=0
εw) · e(g, g)

∑W

w=0
(f ~βi

(αw)·εw)

= e(η, κ′ · κt) · ψ

where ti = H(name||i)vi. From the above Eq.12, it is easy
to see that our scheme is correct.

D. Batch Auditing

As the TPA has expertise and capabilities that many data
owners not have, it can help owners to audit the integrity of
their stored files on the cloud periodically. However, when
multiple owners delegate their integrity auditing requests at
the same time, it is inefficient for the TPA to process these
requests one by one. Specifically, given L integrity auditing
requests for L different encoded files F ′l = {mli,j}, 1 ≤ l ≤
L, 1 ≤ i ≤ nl, 0 ≤ j ≤ sl − 1 from L different owners,
it is desirable for the TPA to handle these requests in batch
to reduce both communication cost and computational cost,
where nl is the number of data blocks in encoded file F ′l
and sl is the number of elements in each data block. For this
purpose, we design the batch auditing algorithm based on our
single request construction as below.
• L data owners run KeyGen algorithm separately. The

public keys and private keys are

PKl = {q, κl, spkl, u, {gα
j
l }sl−1j=0 }

SKl = {εl, αl, sskl}, 1 ≤ l ≤ L

where κl = gεl , εl, αl
R← Z∗q .

• To audit the integrity of these L files, the TPA runs
Challenge algorithm and sends the challenging message
CM = {ρ,K} to the cloud server.

• On receiving the CM , the cloud server first runs Prove
algorithm for L files and generates Prfl = {ψl, σl}, 1 ≤
l ≤ L, where

ψl = e(g
f ~Al

(αl), κl) σl =
∏

(i,vi)∈Q

σvili

~Al = (
∑

(i,vi)∈Q

vimli,0, · · · ,
∑

(i,vi)∈Q

vimli,s−1)

Then the cloud server computes σ =
∏L
l=1 σl and ψ =∏L

l=1 ψl. The final proof information Prf = {ψ, σ} is
sent to the TPA.

• Based on the received Prf , the TPA first runs V erify
to get ηl = u

∑
H(namel||i)vi , (i, vi) ∈ Q, 1 ≤ l ≤ L for

each F ′l . Then the TPA checks the integrity of these L
files together as

ψ ·
L∏
l=1

e(ηl, κl)
?
= e(σ, g) (13)

If Eq.13 holds, the TPA outputs AuditRst as accept;
otherwise, outputs AuditRst as reject.

• Correctness:
We analyze the correctness of our construction based on
Eq.13 as:

e(σ, g) (14)

= e(u

∑L

l=1
εl(
∑

(i,vi)∈Q
tli) · g

∑L

l=1
εlf ~Al

(αl), g)

= e(u, g)

∑L

l=1
εl(
∑

(i,vi)∈Q
tli) · e(g, g)

∑L

l=1
εlf ~Al

(αl)

=

L∏
l=1

(e(u, g)
εl(
∑

(i,vi)∈Q
tli) · e(g, g)εlf ~Al (αl))

= ψ ·
L∏
l=1

e(ηl, κl)

where tli = H(namel||i)vi. From the above Eq.14, it is to
verify the correctness of our construction.

E. Discussion

In this section, we discuss the error detection probability of
our PCAD scheme, the selection of set K in our Challenge
algorithm and the selection of set D in our Deduplication
algorithm. As we mentioned in our Setup algorithm, we adopt
Reed-Solomon code to encode the outsourcing file. For an
` Reed-Solomon encoded file (0 < ` < 1), the original
file can be recovered from any ` fraction of encoded data
blocks. Thus, if an ` Reed-Solomon encoded file cannot be
recovered, the probability of getting an uncorrupted encoded
data block will be less than `. In this case, when a user
randomly chooses k independently encoded data blocks to
challenge, the probability that all these blocks are uncorrupted
is less than `k. When we set ` = 0.98 as previous POR
schemes [6], [21] do, the user can achieve at least 99.999%
error detection probability when he challenges 600 data blocks
for an encoded file.

With regard to the Deduplication algorithm, the cloud
server can choose a small set D to check whether the user
actually owns the file for storage. Specifically, suppose the the
user missing 1% blocks of the file F ′, as proved in[10], the
cloud server can have 99% or 95% confidence to detect that
the user does not owning the whole file F ′ only by challenging
460 blocks or 300 blocks.

F. Security Proof

In this section, we prove the security of our proposed
scheme.

Theorem III.1. If gf ~A(α) can be forged by an existed prob-
abilistic polynomial time adversary Adv, we can construct
an algorithm B to efficiently compute the solution to t-SDH
problem based on Adv.

Proof: Suppose there exists a probabilistic polynomial
time adversity Adv that can generate f ~A1

(α) such that
g
f ~A1

(α)
= gf ~A(α), where f ~A(x) and f ~A1

(x) are known to the
Adv. The Adv can construct another polynomial f ~A2

(x) =

f ~A(x) − f ~A1
(x). Therefore, gf ~A2

(α)
= gf ~A(α)/g

f ~A1
(α)

=

g
f ~A(α)−f ~A1

(α) ∈ Zq[x]. As f ~A1
(α) = f ~A(α) and f ~A2

(α) =
0, α becomes a root of polynomial f ~A2

(x). By factoring
f ~A2

(x)[22], B can easily find SK = α. Based on SK = α,
B can easily find a number c and get (c, g

1
α+c) as solution

to the instance of the t-SDH problem given by the system
parameters.

Theorem III.2. If there exists a probabilistic polynomial
time adversary Adv that can pass the verification in our
proposed scheme with fake proof information Prf ′ = (ψ′, σ′),
where Prf ′ 6= Prf and Prf = (ψ, σ) is the honest proof
information, we can construct an algorithm B that uses Adv
to solve the CDH problem.

Proof: Suppose a probabilistic polynomial time adversity
Adv can generate a Prf ′ = (ψ′, σ′), (ψ′, σ′) 6= (ψ, σ) and
pass the verification in our proposed scheme, we can get the
following two equations:

e(η, κ) · ψ = e(σ, g) (15)
e(η, κ) · ψ′ = e(σ′, g) (16)

Dividing Eq.15 with Eq.16, we obtain:

ψ

ψ′
=

e(σ, g)

e(σ′, g)
(17)

Now we do a case analysis on whether σ = σ′.
Case 1: σ 6= σ′. Since ψ

ψ′ and e(σ, g) are known values to the
Adv. We rewrite Eq.17 as

e(σ′, g) = e(σ, g) · ψ
′

ψ
= e(gεf ~A(α), g) · θ (18)

where θ = e(u
ε(
∑

(i,vi)∈Q
H(name||i)vi)

, g)/ψ
′

ψ as a known
value to the Adv. If the Adv can find σ′ with non-negligible
probability and make Eq.18 hold, we can construct an algo-
rithm B that easily extract gεfA(α). With the given information,
B can get gε, gfA(α), where ε and fA(α) are unknown, and
thus solve the CDH problem. Therefore, no Adv can find a
valid response Prf ′, P rf ′ 6= Prf and σ 6= σ′ with non-
negligible probability.
Case 2: σ = σ′. In this case, since σ = σ′, from Eq.17, we
can infer that ψ′

ψ = 1, i.e., ψ′ = ψ. Therefore, no Adv can

find a valid Prf ′ = (ψ′, σ′), P rf ′ 6= Prf with non-negligible
probability.
Theorem III.2 is proved.

Now, we prove the security of the data integrity auditing
after deduplication.

Theorem III.3. If there exists a probabilistic polynomial time
adversary Adv that can collude with W − 1 owners and pass
ownert’s integrity auditing after deduplication with fake proof
information Prf ′ = (ψ′, σ′), where Prf ′ 6= Prf and Prf =
(ψ, σ) is the honest proof information, we can construct an
algorithm B that uses Adv to solve the CDH problem.

Proof: As the proof of Theorem III.3 is similar to the
proof of Theorem III.2 above, we just give the idea and key
differences here.

Suppose a probabilistic polynomial time adversity Adv can
generate a Prf ′ and pass the integrity auditing, we can divide
the two equations generated based on Prf and Prf ′ as in
the proof of Theorem III.2. Then, we do a case analysis
on whether σ = σ′. In case σ 6= σ′, the difference between
Theorem III.2 and Theorem III.3 is the known knowledge
of the Adv. Since the Adv can collude with the rest W − 1
owners of F ′, we can use θ to denote the known knowledge
of the Adv and construct e(σ′, g) = e(gεtf ~A(αt), g) ·θ. Similar
to Theorem III.2, we can prove σ′ = σ based on the CDH
problem. ψ′ = ψ can also be proved similar to the proof of
Theorem III.2.

IV. PERFORMANCE EVALUATION

A. Numerical Analysis

In this section, we numerically analyze our PCAD scheme
and compare it with Ref.[16], [6], [15]. For simplicity, in the
rest of this paper, we use MUL and EXP 1 to denote the com-
plexity of one multiplication operation and one exponentiation
operation on Group G respectively.

1) Communication: In our PCAD scheme, the communi-
cation cost of the auditing process is caused by the chal-
lenging message CM = {K, ρ} and the proof information
Prf = {ψ, σ}. The CM consists of a set K with k block
ids and a random number ρ. As we discussed in Section
III-E, the user can randomly challenge k = 600 data blocks
to assure at least 99.999% error detection probability. If
an error detection probability a fixed parameter, the size
of K can be considered as constant and the complexity of
challenging message CM is O(1). The proof information is
composed of two group elements: ψ and σ. Therefore, the total
communication complexity of auditing process in our PCAD
scheme is also O(1). In the Deduplication process of our
scheme, the user only needs to send d encoded data blocks
to the cloud server to prove that it actually owns the whole
file. As we discussed in Section III-E, the cloud server only

1When the operation is on the elliptic curve, EXP means scalar multiplication
operation and MUL means one point addition operation.

Ref.[6] (POR) Ref.[15] (POW) Ref.[16] (POSD) Our PCAD
Public Auditing Yes No Yes Yes
Deduplication No Yes Yes Yes

Secure Yes Yes No Yes
Batch Auditing No No No Yes
Prepossessing O(sn)MUL+O(sn)EXP O(n)PRF O(sn)MUL+O(n)EXP O(sn)MUL+O(sn)EXP

Auditing Comp.Cost O(s+ k)MUL+O(s+ 2k)EXP N/A O(ks)MUL+O(k)EXP O(s+ k)MUL+O(s+ k)EXP
(Cloud)

Auditing Comp.Cost O(k)MUL+O(k)EXP N/A O(ks)MUL+O(k)EXP O(1)MUL+O(1)EXP
(User) +O(1)Pairing +O(1)Pairing

Auditing Comm.Cost O(1) N/A O(s+ k) O(1)
Deduplication Comp.Cost N/A O(n)PRF O(sk)MUL+O(k)EXP O(s)MUL+O(s)EXP

(Cloud) +O(1)Pairing
Deduplication Comp.Cost N/A O(1)PRF O(sk)MUL 0

(User)
Deduplication Comm.Cost N/A O(1) O(s) O(1)

Table.1 Complexity Summary: in this table, n is number of encoded blocks for the file, s is the number of elements in each block and k is number of blocks
selected for challenging; PRF is one pseudorandom function operation, EXP and MUL are one multiplication operation and one exponentiation operation on
Group G respectively

needs challenging 300 blocks or 460 blocks to achieve 98%
or 99% confidence whether the user actually owns the whole
data file. Therefore, the size of D can be bounded and the total
communication complexity of the Deduplication process in
our scheme is O(1).

Now, we compare our PCAD scheme with existing schemes
[16], [6], [15] and show the result in Table.1. In Ref.[16],
the Auditing process requires the cloud server to send k
authentication tags of the challenging blocks and s aggregated
data blocks to the user, where s is the number of elements
in an encoded block. Thus, its communication complexity
during the Auditing process is O(s + k). To perform the
Deduplication process, the user needs to sends 2s aggregated
data blocks to the cloud server and thus introduces the com-
munication complexity as O(s). Differently, the aggregation
of communication information in our design enables our
scheme to achieve O(1) communication complexity for both
Auditing and Deduplication processes. The POR schemes
proposed by Yuan et al. [6] achieves constant communi-
cation complexity for the Auditing process same as our
PCAD scheme. However, their scheme does not support the
Deduplication process and batch auditing, and introduces
much higher computational cost on the user side (Discuss
later in Section IV-A2). Considering the deduplication process
only, Ref.[15] requires O(1) PRF operation on the user side
that is more expensive than our PCAD scheme, where PRF is
one pseudorandom function operation. In addition, this scheme
cannot support the data integrity auditing.

2) Computation: As shown in Section III-B, our
PCAD scheme consists of 6 algorithms: KeyGen, Setup,
Challenge, Prove, V erify and Deduplication. Among
these algorithms, KeyGen and Setup are prepossessing
procedures, which are performed by the data owner off-line.
In the KeyGen algorithm, the data owner performs (s + 1)
EXP operations to generate the public key and private key.
To produce authentication tags for a encoded file with n
blocks, each of which has s elements, the data owner needs
(s+ 2)n EXP and sn MUL operations. Note that the cost in
the prepossessing of our scheme is one-time cost for the data
owner and will not influence the real-time performance of our

scheme. After these prepossessing procedures, the data owner
can go off-line. During the data integrity auditing process,
the user performs Challenge to generate the challenging
message CM by choosing a constant number of random
numbers with negligible cost. On receiving the CM , the
cloud server needs (s+ k) EXP, (s+ k) MUL and 1 Pairing
operations to produce the proof information. To verify the
integrity of the auditing file, the user performs 1 EXP, 1
MUL and 3 Pairing operations. Therefore, the computational
cost for the user to audit the data integrity of a single
file is O(1)MUL+O(1)EXP+O(1)Pairing. To perform the
Deduplication algorithm in our scheme, no computation
cost is required for the user. On the cloud server, it needs
O(s)MUL+O(s)EXP+O(1)Pairing.

We now compare our PCAD scheme with existing schemes
[16], [6], [15] and summarize the result in Table.1. In
Ref.[16], the data integrity auditing process costs a user
O(ks)MUL+O(k)EXP operations, and the deduplication pro-
cesses introduces O(sk)MUL computational complexity to
the user, where k is the number of challenging blocks
and s is the number of element in a data block. Dif-
ferently, by outsourcing most computational tasks of both
auditing and deduplication processes to the cloud server,
our PCAD scheme achieves constant computational cost
on users and thus significantly outperforms Ref.[16]. Com-
pared with Ref.[6] that only supports data integrity audit-
ing, our PCAD scheme reduces the computational com-
plexity on the user from O(k)MUL+O(k)EXP+O(1)Pairing
to O(1)MUL+O(1)EXP+O(1)Pairing as shown in Table.1.
Considering only the deduplication process, Ref.[15] requires
O(1)PRF operation on the user side that is comparable to
our PCAD scheme, where PRF is one pseudorandom function
operation. However, this scheme cannot support the data
integrity auditing process.

3) Auditing After Deduplication: In this section, we dis-
cuss the storage overhead saved by aggregation of authen-
tication tags in our proposed scheme. Suppose W owners
ownerw, 1 ≤ w ≤ W pass the deduplication checking of
the file F ′ existed on the cloud server. As these owners
have no mutual trust with each other, each ownerw needs to

store n authentication tags on the cloud server separately for
future public integrity auditing of F ′, where n is the number
of encoded data blocks in F ′. If the cloud server directly
store these authentication tags, a O(Wn) storage overhead
complexity is introduced to it. Differently, by aggregating
the tags for the same data block, the cloud server in our
scheme can reduce the storage overhead complexity to O(n).
With regard to the computational complexity and communi-
cation complexity on an auditing user, it remains the same
as the constant level of auditing before deduplication, i.e.,
O(1)MUL+O(1)EXP+O(1)Pairing computational complexity
and O(1) communication complexity.

4) Batch Auditing: In this section, we discuss the com-
munication cost and computational cost saved by our batch
auditing design for multiple requests scenarios. Suppose a TPC
is hired by L data owners to help them audit the integrity
of their outsourced files on the cloud server periodically. If
the TPA processes these L auditing requests one by one,
it needs L EXP, L MUL and 3L Pairing operations for
computation, and 2L group elements and L random numbers
for communication. With our batch auditing design, the cloud
can server can aggregate L σi into one group element and use
one random number instead of L ones. Thus, compared with
processing requests sequentially, our batch auditing design can
help the TPA and the cloud server to save at about 55%
communication cost. From the perspective of computational
cost, by aggregating σi, 1 ≤ i ≤ L, our batch auditing design
enables the TPA to reduce number of Pairing operations from
3L to L, which is much more expensive compared with MUL
and EXP operations. Therefore, more than 60% computational
tasks are saved for the TPA with our batch auditing design.

B. Experimental Result

To show that our proposed PCAD scheme is efficient and
scalable, we conducted experiments on Amazon EC2 Cloud
Platform using JAVA with Java Pairing-Based Cryptography
library (jPBC) [23]. The machine we used for the TPA is a
laptop running Mint Linux 13 with 2.50GHz Intel i5-2520M
CPU and 8GB memory. For the cloud server, we utilize nodes
that run Red Hat Enterprise Linux 6.3 with 8 Cores CPU and
16GB memory. We set the security parameter λ = 160, which
achieves 1024 bits security on Group. All experimental results
represent the mean of 10 trials.

To verify our PCAD scheme’s constant communication cost
and computational cost on the user side, we vary the number
of data blocks stored on the cloud server from 1000 to 10000.
As shown in Fig.1 (a), the computational cost of users for
performing an integrity auditing task almost keeps around
420 ms when the number of data blocks in the auditing
files increases. With regard to the communication cost, it also
remains stable as about 622 Bytes when the number of data
blocks in the auditing files increases as shown in Fig.1 (b).
Note that, although we do not perform experiment on more
large files, it is easy to obtain that both computational cost
and communication cost of our scheme are constant from the
analysis in Section IV-A2 and Section IV-A1.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
380

400

420

440

460

480

Number of Blocks
(a)

A
u

d
it

in
g

 T
im

e(
m

s)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
400

450

500

550

600

650

700

750

800

850

Number of Blocks
(b)

A
u

d
it

in
g

 C
o

m
m

u
n

ic
at

io
n

(B
yt

e)

Fig. 1. (a) Auditing Time on Users (b) Auditing Communication Cost on
Users

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

Number of Tasks
(a)

B
at

ch
 A

u
d

it
in

g
 T

im
e(

se
c)

Audit One by One
Batch Auditing

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

Number of Tasks
(b)

B
at

ch
 A

u
d

it
in

g
 C

o
m

m
u

n
ic

at
io

n
(K

B
)

Audit One by One
Batch Auditing

Fig. 2. (a) Auditing Time on TPA (b) Auditing Communication Cost on
TPA

#Tasks = 500 Average Comp.Cost Average Comm.Cost
Auditing One by One 423 ms 626 Bytes

Batch Auditing 181 ms 259 Bytes

Table.2. Average Computational Cost and Communication Cost for Batch
Auditing and Single Auditing

To show the benefits of our batch auditing design for
multiple auditing tasks scenarios, we change the number of
tasks a TPA needs to perform from 100 to 1000. As we
demonstrated above, the number of data blocks in each file
does not influence the performance of our scheme, we set the
number of data blocks to 5000 in each auditing task. Compared
with performing these auditing tasks one by one, Fig.2 (a)
shows that the TPA can save about 55% auditing time with
batch auditing. From the perspective of communication cost,
Fig.2 (b) shows our batch auditing saves about 60% bandwidth
for the TPA. Considering the average cost per task, which is
computed by dividing total auditing time and total auditing
bandwidth cost by the number of tasks respectively, Table.2
shows that our batch reduce the computation cost per task on
the TPA from 423 ms to 181 ms and the bandwidth cost per
task from 626 Bytes to 259 Bytes.

V. CONCLUSION

To securely fulfill the two important requirements of cloud
storage: data integrity and storage efficiency, a number of
schemes have been proposed based on the concepts of POR,
PDP, POW and POSD. However, most existing schemes only
focus on one aspect, because trivial combination of existing
POR/PDP schemes with POW schemes can contradict the
objects of POW. The only one that simultaneously emphasized
both aspects based on the concept of POSD suffers from
tremendous computation and computational costs and has been
proven not secure. In this work, we filled the gap between POR
and POW and proposed a constant cost scheme that achieves
secure public data integrity auditing and storage deduplication

at the same time. Our proposed scheme enables the dedu-
plication of both files and their corresponding authentication
tags. In addition, we extend our design to support batch
integrity auditing, and thus substantially save computational
cost and communication cost for multiple requests scenarios.
The security of our PCAD scheme is proved based on the CDH
problem and the SDH assumption. We validate the efficiency
and scalability of our scheme through numerical analysis and
experimental results on Amazon EC2 Cloud. Our proposed
polynomial based authentication tag can also be used as an
independent solution for other related applications, such as
verifiable SQL search, encrypted key word search, etc.

REFERENCES

[1] G. Timothy and M. M. Peter, “The nist definition of cloud computing,”
vol. NIST SP - 800-145, September 2011.

[2] “Amazon forum. major outage for amazon s3 and
ec2,” https://forums.aws.amazon.com/thread.jspa?threadID
=19714&start=15&tstart=0.

[3] “Business insider. amazon’s cloud crash disaster permanently destroyed
many customers’ data,” http://www.businessinsider.com/amazon-lost-
data-2011-4.

[4] “Dropbox. dropbox forums on data loss topic,”
http://forums.dropbox.com/tags.php?tag=data-loss.

[5] J. Gantz and D. Reinsel, “The digital universe decade - are
you ready?” http://www.emc.com/collateral/analyst-reports/idc-digital-
universe-are-you-ready.pdf, May 2010.

[6] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability
and constant communication cost in cloud,” Proceedings of the ACM
ASIACCS-SCC’13, 2013.

[7] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proceedings of the 14th International Conference on the Theory and
Application of Cryptology and Information Security, ser. ASIACRYPT
’08, Berlin, Heidelberg, May 2008, pp. 90–107.

[8] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security, ser. CCS ’07. New York, NY, USA: ACM,
2007, pp. 584–597.

[9] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via hardness
amplification,” in Proceedings of the 6th Theory of Cryptography Con-
ference on Theory of Cryptography, ser. TCC ’09, Berlin, Heidelberg,
2009, pp. 109–127.

[10] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Pro-
ceedings of the 14th ACM conference on Computer and communications
security, ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 598–609.

[11] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proceedings of the 4th
international conference on Security and privacy in communication
netowrks, ser. SecureComm ’08. New York, NY, USA: ACM, 2008.

[12] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proceedings of the 16th ACM conference
on Computer and communications security, ser. CCS ’09. New York,
NY, USA: ACM, 2009, pp. 213–222.

[13] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859, 2011.

[14] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 491–500.

[15] R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in
proof of ownership for deduplication,” in Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’12. New York, NY, USA: ACM, 2012, pp. 81–82.

[16] Q. Zheng and S. Xu, “Secure and efficient proof of storage with
deduplication,” in Proceedings of the second ACM conference on Data
and Application Security and Privacy, ser. CODASPY ’12. New York,
NY, USA: ACM, 2012, pp. 1–12.

[17] K. K. Youngjoo Shin, Junbeom Hur, “Security weakness in the proof
of storage with deduplication,” Cryptology ePrint Archive, Report
2012/554, 2012, http://eprint.iacr.org/.

[18] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theor., vol. 22, no. 6, pp. 644–654, Sep. 1976.

[19] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
EUROCRYPT, 2004, pp. 56–73.

[20] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[21] X. Jia and C. Ee-Chien, “Towards efficient provable data possession,”
in Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS ’12, Seoul, Korea, 2012.

[22] V. Shoup, A computational introduction to number theory and algebra.
New York, NY, USA: Cambridge University Press, 2005.

[23] jPBC, “http://gas.dia.unisa.it/projects/jpbc/.”

