
Practical (Second) Preimage Attacks on
TCS SHA-3

Gautham Sekar1 and Soumyadeep Bhattacharya2

1 Indian Statistical Institute, Chennai Centre,
SETS Campus, MGR Knowledge City, CIT Campus, Taramani,

Chennai 600113, India.
2 Institute of Mathematical Sciences,

CIT Campus, Taramani,
Chennai 600113, India.

sgautham@isichennai.res.in,sbhtta@imsc.res.in

Abstract. TCS SHA-3 is a family of four cryptographic hash functions
that are covered by an US patent (US 2009/0262925). The digest sizes
are 224, 256, 384 and 512 bits. The hash functions use bijective func-
tions in place of the standard, compression functions. In this paper we
describe first and second preimage attacks on the full hash functions. The
second preimage attack requires negligible time and the first preimage
attack requires O(236) time. In addition to these attacks, we also present
a negligible-time second preimage attack on a strengthened variant of
the TCS SHA-3. All the attacks have negligible memory requirements.

Keywords: Cryptanalysis, hash function, (second) preimage attack

1 Introduction

A hash function H takes an arbitrary length bit string M as input and outputs
a fixed length bit string h (called hash value or digest). A cryptographic hash
function is meant to satisfy certain security properties, the most important of
which are listed below.

– First preimage resistance: given h, it is computationally infeasible to find
an M such that H(M) = h.

– Second preimage resistance: given an M and H(M), it is computation-
ally infeasible to find an M ′ 6= M such that H(M) = H(M ′).

– Collision resistance: it is computationally infeasible to find an M and an
M ′, with M ′ 6= M , such that H(M) = H(M ′).

The general model for cryptographic hash functions involves what is called
a compression function. The function transforms a fixed-length bit string into
a shorter, fixed-length bit string. The input message of a hash function, that
is of arbitrary length, is partitioned into blocks of a fixed length (called the
block length). But before this could be done, it is required that the length of the

message is a multiple of the block length. Given this and some security consid-
erations, the message is ‘padded’ with bits in one of several ways (some padding
schemes can be found in [4, Sect. 2.4.1]). The message blocks are sequentially
processed, with the compression function acting on the message blocks until
all the blocks are processed. The end result is output as the digest. The gen-
eral model for describing hash functions can be found in greater detail in [4,
Sect. 2.4.1].

A cryptographic hash function family is proposed by Vijayarangan of the
Tata Consultancy Services (hereinafter called “TCS”) in [10]. The family com-
prises four hash functions, as four digest sizes – 224, 256, 384 and 512 bits – are
allowed. In [10], the hash functions are all actually called SHA-3, except in one
or few instances (see e.g. Clause 0095 of [10], where a member hash function is
called TCS SHA-3). However, as the name SHA-3 has been in use by the NIST
[2], we use the less common ‘TCS SHA-3’ to denote the SHA-3 of [10]. Further,
we denote by TCS SHA-3-d the member that produces d-bit digests.

The design of TCS SHA-3 deviates from the general model in that the com-
pression function is replaced by a bijective function. This function uses a linear
feedback shift register (LFSR) and a T-function. The design goals, as stated in
[10], are to “prevent hash collisions” and to “provide a secure hash function”.
This paper establishes that the design goals are not met.

Motivation behind this work : The TCS, headquartered in India, is among the
largest IT services providers in the world, with an annual revenue of more than
$10 billion for 2011–2012 [6]. In May 2012, the company was named the fourth
most valuable IT services brand worldwide based on image, reputation and in-
tellectual property assessments [8]. The company’s annual research report for
2008–2009 mentions the following [7]:

In the current year, major work has been done on cryptographic algo-
rithms and hash functions which form the basis of all data security today.
Past research products from [the E-Security group of the TCS Innova-
tion Labs, Hyderabad, India,] ... are in active use around the country
[(India)] by various customers in the banking and financial services in-
dustry. Organisations using our technology, directly or indirectly, include
the RBI [(Reserve Bank of India)], National Securities Depositories [sic]
Limited (NSDL), Ministry of Company [sic] Affairs (MCA), and many
public sector banks.

Since TCS SHA-3 is a product of the above mentioned E-Security group of the
TCS Innovation Labs (see [7]), there appears to be sufficient motivation to eval-
uate the security of the hash function family.

Contributions of this paper : There are three contributions. First, we report a
second preimage attack that requires negligible time and negligible memory for
nearly guaranteed success. Second, we describe a first preimage attack on the
TCS SHA-3-d that requires O(227 · d) time and negligible memory. Third, we

present a second preimage attack, which also requires negligible time and neg-
ligible memory for nearly guaranteed success, on a strengthened variant of the
TCS SHA-3. To the best of our knowledge, there is no prior published attack on
the (strengthened) TCS SHA-3.

Organisation of this paper : Section 2 describes the TCS SHA-3 family of hash
functions. A second preimage attack and the first preimage attack are respec-
tively described in Sects. 3 and 4. In Sect. 5, we present the second preimage
attack on the strengthened TCS SHA-3. We conclude in Sect. 6. Appendix A
provides the results of our simulations of the first preimage attack.

2 Specifications

We first list the notation and conventions, followed in the rest of this paper, in
Table 1.

Table 1. Notation and conventions

Symbol/notation Meaning

LSB least significant bit

MSB most significant bit

Γi(ω) ith 32-bit word (i = 0 denotes the least
significant word) of d-bit ω

|x| length, in bits, of x

x(i) ith bit (i = 0 denotes the LSB) of x

x‖y concatenation of two 32-bit words, x and y

⊕ exclusive OR

The TCS SHA-3-d takes as input a message M of arbitrary length and re-
turns a digest h (also denoted TCS SHA-3-d(M)) of size d bits after the following
sequence of processes that includes six “rounds”.

1. Padding: The input M is partitioned into k = ⌈|M |/d⌉ blocks (denoted M1,
. . .,Mk), each of length d bits. Clause 0068 of [10] states that an initialization
vector (IV) of length d is added to a message if and only if the size of
the message is less than d. The designer should have evidently meant the
following: if and only if |Mk| < d, for any k ≥ 1, then Mk is added with the
IV. Otherwise, the TCS SHA-3 can only be applied to single block messages
or multiple block messages each of which satisfies the condition d||M |. For
the simulations of Appendix A, we make the assignments IV = 12‖{02}

d−1,
d = 224, 256, 384, 512. The assignments are motivated by a case provided in
[10, Clause 0068] where the IV is chosen to be 12‖{02}

223 when the size of
the message is less than 224 bits. In our simulations as well as the aforesaid

example case, the IV is XORed with the corresponding message block. In
summary, the padding rule is defined as follows: for any k ≥ 1,

Mk → M∗

k :=

{

Mk ⊕ IV if |Mk| < d ,
Mk if |Mk| = d .

An implicit assumption in the above discussion is that |Mk| is nonzero.
Further, when |Mk| = d, we infer that there is no extra ‘padding block’ that
is appended to M . This is because, in such a case, there is no message block
to which the IV (= 12‖{02}

d−1) could be “added”.
2. Round 1 : The first round has k steps ; the steps are as follows:

(a) Step 1 when k > 1: An arbitrarily chosen d′-bit (such that d′ ≤ d)
constant c is XORed with M1. The output, c⊕M1, is input to a bijective
function F (defined later in this Sect.). Thus, a d-bit string, F (c⊕M1),
is output.
Step 1 when k = 1: The arbitrarily chosen constant c is XORed with
M∗

1 . The output, c⊕M∗

1 , is input to F . Thus, a d-bit string, F (c⊕M∗

1),
is output.

(b) Steps 2–k (i.e., when k ≥ 2): Step i, 2 ≤ i ≤ k − 1, is given by the
following recursion:

z1i = F (z1i−1 ⊕Mi) , z11 := F (c⊕M1) ;

z1ℓ denotes the output of step ℓ, 1 ≤ ℓ ≤ k − 1, of round 1.
Step k is given by:

z1k = F (z1k−1 ⊕M∗

k) ,

where z1k denotes the output of step k of round 1.

3. Round 2 : Like round 1, round 2 also proceeds iteratively. The number of
steps, s, is such that k “is not always the same as” s (see [10, Clause 0070]).
The input to round 2 is z1k, the final output of round 1. The steps are as
follows:

(a) Step 1 : The d′-bit constant c is XORed with z1k. The output, c⊕ z1k, is
input to the bijective function F . Thereby, a d-bit string, F (c ⊕ z1k), is
generated as output.

(b) Steps 2–s (i.e., when s ≥ 2): Step i, 2 ≤ i ≤ s, is given by the following
recursion:

z2i = F (z2i−1 ⊕ z1k) , z21 := F (c⊕ z1k) ;

z2ℓ denotes the output of step ℓ, 1 ≤ ℓ ≤ s, of round 2.

4. Rounds 3–6 : These rounds are similar to round 2. The number of steps in
each of these rounds is, again, s. The input to round j, 3 ≤ j ≤ 6, is zj−1

s

(i.e., the final output of round j − 1 when zj−1
ℓ denotes the output of step

ℓ, 1 ≤ ℓ ≤ s, of round j − 1). The steps are as follows:

(a) Step 1 : Constant c is XORed with zj−1
s . The output, c⊕zj−1

s , is input to
the bijective function F . Thereby, a d-bit string, F (c⊕zj−1

s), is generated
as output.

(b) Steps 2–s (i.e., when s ≥ 2):1 Step i, 2 ≤ i ≤ s, is given by the following
recursion:

zji = F (zji−1 ⊕ zj−1
s) , zj1 = F (c⊕ zj−1

s) ;

zjℓ denotes the output of step ℓ, 1 ≤ ℓ ≤ s, of round j.

The d-bit digest h is simply the final output, z6s . Figure 1 shows the working
of TCS SHA-3. As remarked earlier, [10, Clause 0070] only says that k is not
always the same as s. Therefore, s may be greater than k. We make this clarifi-
cation because Figure 1 may misleadingly suggest that s is always less than k.2

Algorithm 1 describes the function F : {02, 12}
d → {02, 12}

d.

Algorithm 1 The bijective function F : {02, 12}
d → {02, 12}

d

Require: d-bit input α
Ensure: d-bit output λ
1: Partition: α→ α1‖α2‖ . . . ‖αd/32 such that |αi| = 32 for all 1 ≤ i ≤ d/32;
2: Shuffle: αi → βi, for all 1 ≤ i ≤ d/32, such that βi(j) = αi(j/2) if 2|j and βi(j) =

αi(16+(j−1)/2) otherwise;
3: Apply T-function: βi → γi := 2β2

i + βi mod 232, for all 1 ≤ i ≤ d/32;
4: Apply LFSR: γi → λi, for all 1 ≤ i ≤ d/32, such that |λi| = 32;3

5: Concatenate: λ := λ1‖λ2‖ . . . ‖λd/32;

Note: The TCS SHA-3 may be strengthened by introducing cipher block chain-
ing in Algorithm 1. This point is further explained in Sect. 5.

1Perhaps the only criterion that s must satisfy is s ≥ 1; otherwise the TCS SHA-3-d
will have only one round.

2The (second) preimage attacks that we report in this paper are independent of the
value of s due to reasons that would be understood from Sects. 3 and 4.

3We omit the full description of the LFSR as it is elaborate and not relevant to
our analysis (to be understood from Sects. 3 and 4). In [10], the LFSR is described in
Clauses 0078–0083.

F

c

M1

z11

Round 1 F

M2

z12

b b b

F

M∗

k
b b b

z1k

F

c

Round 2

z21

F

b b b

z2s

F

c

Round 6

b

b

b

z61

F

b

b

b

z6s = h (digest)

Fig. 1. The working of TCS SHA-3 (k ≥ 2)

3 Second Preimage Attack on TCS SHA-3

F

y1

c

M1

z11

F

y2

M2

z12

b b b

F

yk

M∗

k
b b b

z1k

Fig. 2. Round 1 of TCS SHA-3

Let M = M1‖M2‖M3‖ · · · ‖M
∗

k , k ≥ 2 (when k = 2, M = M1‖M
∗

2 ; in general,
when k = ℓ > 2, M = M1‖M2‖ · · · ‖M

∗

ℓ), denote the given message and h its
hash value. Let yi denote the input to the ith invocation of the function F (see
Figure 2). Let M ′ = M ′

1‖M
′

2‖M3‖ · · · ‖M
∗

k , withM ′

1 6= M1 andM ′

2 6= M2, denote
another message, h′ its hash value, and y′i the corresponding input to the ith
invocation of F . It immediately follows from Figure 2 that if y′2 = y2, then the
outputs of round 1 are identical. This, in turn, implies that h′ = h (see Figure 1)
and we have a second preimage. The condition y′2 = y2 implies that:

F (M1 ⊕ c)⊕M2 = F (M ′

1 ⊕ c)⊕M ′

2 . (1)

It is straightforward to see that the conditions:

M ′

2 = F (M ′

1 ⊕ c)⊕M ′

1 , (2)

M ′

1 = M2 ⊕ F (M1 ⊕ c) , (3)

satisfy (1) and when M ′

1 6= M1, we have a second preimage.4 Under reasonable
assumptions of uniformity, the eventM ′

1 = M1 occurs with negligible probability.

4 First Preimage Attack on TCS SHA-3

Figure 3 illustrates Algorithm 1 for the (sample) case when d = 256.
From Figure 3, we see that the TCS SHA-3-256 (and the TCS SHA-3 per

se) has poor diffusion properties. A difference in αi, for any i ∈ {1, 2, . . . , d/32},
affects λi alone. A single-bit difference in αi, for any i ∈ {1, 2, . . . , d/32}, is
ideally expected to affect 16 bits of λi.

4A similar correcting block attack on the hash function Khichidi-1 [9] has been
reported by Mouha [1, Sect. 2.6.3].

α1 α2 α3 α4 α5 α6 α7 α8

S S S S S S S S

β1 β2 β3 β4 β5 β5 β7 β8

T T T T T T T T

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

L L L L L L L L

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Shuffle function

T-function

LFSR function

Fig. 3. The bijective function F of TCS SHA-3-256; S, T and L are 32-bit to
32-bit functions

Let us consider the case when k = 1. Then, given an input difference∆Γi(M
∗

1)
for some i ∈ {0, 1, . . . , d/32− 1}, the differential characteristic is shown in Fig-
ure 4. Algorithm 2 exploits this differential characteristic to recover M1 from
its corresponding digest value. In step 3 of this algorithm, in place of {02}

32i

and {02}
32(d/32−i−1), one can respectively have any 32i- and 32(d/32− i−1)-bit

value. We have used {02}
32i and {02}

32(d/32−i−1) for ease of understanding how
the attack works.

Algorithm 2 requires that the attacker knows whether |M1| = d or |M1| <
d. However, even without this information the attacker can, at the very least,
recover all but the MSB of M1 by simply computing M1 = M∗

1⊕ IV. This is
explained as follows. Suppose that |M1| < d. Then, by computing M1 = M∗

1⊕
IV the attacker correctly recovers M1. Now suppose that |M1| = d. This time,
the attacker is supposed to compute M1 = M∗. Nevertheless, by computing
M1 = M∗

1⊕ IV, the attacker is still able to correctly recover d − 1 LSBs of M1

because the IV is simply 12‖{02}
d−1.

As we can see, Algorithm 2 has d/32 · 232 = d · 227 iterations. Since d ≤ 512,
single block messages can be recovered from their respective hash values in
O(512 · 227) = O(236) time. It may therefore be extremely risky to use the
TCS SHA-3 for, say, password hashing (a well-known application of crypto-
graphic hash functions – see [5]).

For the case when k > 1, if the message blocks M1, . . . ,Mk−1 are available
to the attacker, then she may recover Mk. The attack procedure is now given by

Γd/32−1(·) Γi(·) Γ0(·)b b b

b b b

b b b

b b b∆M∗

1

∆z11

∆z21
b b b ∆z2s

∆z31
b b b ∆z3s

∆z41
b b b ∆z4s

∆z51
b b b ∆z5s

∆z61
b b b ∆z6s

(∆h)

b b bb b b

Γd/32−1(·) b b b Γi(·) b b b Γ0(·)

Fig. 4. Differential characteristic for TCS SHA-3-d when k = 1; non-zero differ-
ences are confined to the grey boxes

Algorithm 2 Recovering M1 from h when k = 1

Require: Whether |M1| = d or |M1| < d
Ensure: d-bit output M1

1: for i = 0→ d/32− 1 do
2: for j = {02}

32 → {12}
32 do

3: ℓ← {02}
32(d/32−i−1)‖j‖{02}

32i;
4: Compute ~ := TCS SHA-3-d(ℓ);
5: if Γi(~) = Γi(h) then
6: Γi(M

∗

1)← j;
7: break;
8: else
9: j ← j + 1;
10: i← i+ 1;
11: Compute M∗

1 = Γd/32−1(M
∗

1)‖Γd/32−2(M
∗

1)‖ . . . ‖Γ0(M
∗

1);
12: if |M1| < d then
13: Output M1 = M∗

1⊕ IV;
14: else
15: Output M1 = M∗;

Algorithm 2 with M1 replaced by Mk and M∗

1 by M∗

k . Here again the attacker
is able to recover, at the very least, all but the MSB of Mk.

5 Cipher Block Chaining in Algorithm 1: Impact on
Security

In Algorithm 1, the 32-bit words α1, α2, . . ., αd/32 are processed independently
of one another (see Figure 3). This is an inference that we draw from [10] which
has no explicit mention of any dependence between the processing of αi and the
processing of αi+1, 1 ≤ i ≤ d/32− 1. Besides, [10] provides several implementa-
tion results but the corresponding implementation is missing. We were therefore
unable to verify the correctness of the implementation results of [10]. If the im-
plementation results are correct, then the processing of αi and the processing
of αi+1, 1 ≤ i ≤ d/32− 1, may not be independent (see e.g. [10, Clauses 0094–
0095]). But even in such a case, the existence of dependence must have been
clearly mentioned in [10], in any of the clauses preceding Clause 0087.

When there is dependence in the form of chaining, given the structural simi-
larities between TCS SHA-3 and Khichidi-1 (see [9, Sect. 6]), it appears reason-
able to expect the chaining mechanisms in the two cases to be identical. From [9,
Sect. 6] then, we see that Figure 2 changes to Figure 5 when k = 2.5, 6 Clearly
this would also mean that FIGURE 3 of [10] is incorrect.

Note: If one goes by [9, Sect. 6], then in Figure 5, Γ0(z
1
1) is not XORed with α2,1,

instead Γd/32−1(c) is assigned the value of Γ0(z
1
1) onceM1 is processed. This may

be inferred, for example, from the statement, “H
(i)
0 = H

(i)
7 ” in [9, Sect. 6.1.2]

(which, in fact, happens to be the only statement in the Khichidi-1 algorithms of
[9] to describe the chaining process in 224-bit Khichidi-1). If, on the other hand,

the statement had read, “H
(i+1)
0 = H

(i)
7 ”, then the chaining process would have

appeared meaningful. We therefore presume that the chaining statements in the
Khichidi-1 algorithms of [9] are typographically flawed in the manner described
above. ⊓⊔

The case of the aforementioned independent processing of the 32-bit blocks,
however, complies with [10, FIGURE 3] and thereby enhances our belief in the
correctness of the above mentioned inference of independent processing of the
αi’s (1 ≤ i ≤ d/32). Yet we shall now examine the impact of cipher block
chaining in Algorithm 1.

LetM = M1‖M2‖M3‖ · · · ‖M
∗

k , k ≥ 2 (when k = 2,M = M1‖M
∗

2 ; in general,
when k = ℓ > 2, M = M1‖M2‖ · · · ‖M

∗

ℓ), denote the given message and h its
hash value. Let M ′ = M ′

1‖M
′

2‖M3‖ · · · ‖M
∗

k , with M ′

1 6= M1 and M ′

2 6= M2,

5The bijective function g : {02, 12}
32 → {02, 12}

32 of Figure 5 is given by Algo-
rithm 3.

6See Figure 5. Clause 0069 of [10] states that |c| ≤ d. If |c| = e < d, then c ←
{02}

d−e‖c. We find no mention in [10] that it is the most significant word of c that is
XORed with α1,1 – we simply make such an assumption without loss of generality.

Algorithm 3 The bijective function g : {02, 12}
32 → {02, 12}

32

Require: 32-bit input α
Ensure: 32-bit output λ
1: Shuffle: α→ β such that β(j) = α(j/2) if 2|j and β(j) = α(16+(j−1)/2) otherwise;
2: Apply T-function: β → γ := 2β2 + β mod 232;
3: Apply LFSR: γ → λ such that |λ| = 32;

denote another message and h′ its hash value. We now define the following for
all j ∈ {1, 2, . . . , d/32}:

αi,j :=

{

Γd/32−j(Mi) when i < k ,
Γd/32−j(M

∗

k) when i = k .

Suppose that the conditionsM ′

1 6= M1 andM ′

2 6= M2 are such that α1,i = α′

1,i

for all i ∈ {1, 2, . . . , d/32 − 1} and α2,i = α′

2,i for all i ∈ {2, . . . , d/32}. Then,
from Figure 5, it follows that h′ = h when the following condition is satisfied:

g(α1,d/32 ⊕ θ)⊕ α2,1 = g(α′

1,d/32 ⊕ θ)⊕ α′

2,1 . (4)

It is straightforward to see that the conditions:

α′

2,1 = g(α′

1,d/32 ⊕ θ)⊕ α′

1,d/32 , (5)

α′

1,d/32 = α2,1 ⊕ g(α1,d/32 ⊕ θ) , (6)

satisfy (4) and when α′

1,d/32 6= α1,d/32, we have a second preimage. Under reason-

able assumptions of uniformity, the event α′

1,d/32 = α1,d/32 occurs with negligible
probability.

6 Conclusions and Open Problems

In this paper, we have presented practical (second) preimage attacks on the
TCS SHA-3 family of patented cryptographic hash functions. The second preim-
age attack requires negligible time and negligible memory for nearly guaranteed
success. The attack works when the number of message blocks is at least two.
The first preimage attack requires O(236) time and negligible memory. This at-
tack is the most efficient (going by data requirements) on single block messages
– negligible data is required in such cases. We have also reported a negligible-
time/memory second preimage attack on the TCS SHA-3 that is strengthened
with 32-bit cipher block chaining. This attack also works only when the number
of message blocks is at least two. Our findings establish, among others, that the
TCS SHA-3 may be particularly unsuitable for password hashing (unless, say, it
is strengthened with 32-bit cipher block chaining).

It may be an interesting exercise to find countermeasures to our attacks.

g

Γd/32−1(c)

α1,1

Γd/32−1(z
1
1)

g

α1,2

Γd/32−2(z
1
1)

b b b

g

θ

α1,d/32b b b

Γ0(z
1
1)

M1

M∗

2

g

α2,1

Γd/32−1(z
1
2)

g

α2,2

Γd/32−2(z
1
2)

b b b

g

α2,d/32b b b

Γ0(z
1
2)

Fig. 5. Round 1 of TCS SHA-3 (k = 2) with 32-bit cipher block chaining; α1,j =
Γd/32−j(M1) and α2,j = Γd/32−j(M

∗

2), for all j ∈ {1, 2, . . . , d/32}

References

1. Nicky Mouha. Automated Techniques for Hash Function and Block Cipher Crypt-

analysis. PhD thesis, Katholieke Universiteit Leuven, 2012. Available at: http://
www.cosic.esat.kuleuven.be/publications/thesis-203.pdf.

2. National Institute of Standards and Technology . Cryptographic Hash Al-
gorithm Competition. Available at: http://csrc.nist.gov/groups/ST/hash/

sha-3/index.html.

3. National Institute of Standards and Technology . FIRST ROUND CANDIDATES,
5 June 2012 (last updated). Khichidi-1 package available at: http://csrc.nist.
gov/groups/ST/hash/sha-3/Round1/documents/Khichidi-1.zip.

4. Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD the-
sis, Katholieke Universiteit Leuven, 1993. Available at: http://homes.esat.

kuleuven.be/~preneel/phd_preneel_feb1993.pdf.

http://www.cosic.esat.kuleuven.be/publications/thesis-203.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-203.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Khichidi-1.zip
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Khichidi-1.zip
http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf
http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf

5. Bart Preneel. The State of Cryptographic Hash Functions. In Ivan Damg̊ard, edi-
tor, Lectures on Data Security, volume 1561 of Lecture Notes in Computer Science,
pages 158–182. Springer, 1998.

6. Tata Consultancy Services. Annual Report 2011–12. Available at: http://

www.tcs.com/investors/Documents/Annual%20Reports/TCS_Annual_Report_

2011-2012.pdf.
7. Tata Consultancy Services. Annual Research Report 2007–08. Avail-

able at: http://www.tcs.com/SiteCollectionDocuments/White%20Papers/

TCS-Annual-Research-Report-2007-08.pdf.
8. Tata Consultancy Services Press Release. TCS recognized as Big Four IT Services

brand, 07 May 2012. Available at: http://www.tcs.com/news_events/press_

releases/Pages/TCS_recognized_Big_Four_IT_Services_brand.aspx.
9. Natarajan Vijayarangan. A NEW HASH ALGORITHM: Khichidi-1. Submission

to Cryptographic Hash Algorithm Competition organised by the NIST, USA, 2008.
Available at: http://ehash.iaik.tugraz.at/uploads/d/d4/Khichidi-1.pdf.

10. Natarajan Vijayarangan. Method for Designing a Secure Hash Function and
a System Thereof. Patent US 2009/0262925, 22 October 2009. Available at:
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&

d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20090262925.

PGNR.

A Experiments

We took a few sample outputs of TCS SHA-3 and attempted to verify their first
preimages. Simulations were performed on an Nvidia GeForce GT 540M GPU
having 96 CUDA cores (2 multiprocessors × 48 CUDA cores/ multiprocessor)
and a clock rate of 1.34 GHz. The CUDA C compiler nvcc 4.2 was used. Table 2
lists the assignments made for the simulations. This set of assignments is justified
by footnotes 1–3, footnote 6, Sect. 2, Sect. 4, and the following points:

– See footnote 6. As the value of c does not affect the analysis or the experi-
ments, we assign the value {02}

d to c.
– The IV is 12‖{02}

d−1 (see Sect. 2).
– The value of s is taken to be the value of s in Khichidi-1 (see [9, Sect. 6] and

khichidi.c in the URL provided in [3]), and therefore equal to 2.
– The value of ηi, 1 ≤ i ≤ 6, is taken to be the number of LFSR shifts in round

i of Khichidi-1 (see [9, Sect. 6] and khichidi.c in the URL provided in [3]).

The system time taken to find the first preimage for each output, given the
set of assignments in Table 2, is provided in Table 3. These system times are
expected to remain unaltered when a different IV or c is used.

From Sects. 2 and 4, it follows that the time/memory complexity of our
first preimage attack does not change when one or more of the above listed
assignments are altered.

http://www.tcs.com/investors/Documents/Annual%20Reports/TCS_Annual_Report_2011-2012.pdf
http://www.tcs.com/investors/Documents/Annual%20Reports/TCS_Annual_Report_2011-2012.pdf
http://www.tcs.com/investors/Documents/Annual%20Reports/TCS_Annual_Report_2011-2012.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/TCS-Annual-Research-Report-2007-08.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/TCS-Annual-Research-Report-2007-08.pdf
http://www.tcs.com/news_events/press_releases/Pages/TCS_recognized_Big_Four_IT_Services_brand.aspx
http://www.tcs.com/news_events/press_releases/Pages/TCS_recognized_Big_Four_IT_Services_brand.aspx
http://ehash.iaik.tugraz.at/uploads/d/d4/Khichidi-1.pdf
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20090262925.PGNR.
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20090262925.PGNR.
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20090262925.PGNR.

Table 2. Assignments for the simulations

Parameter Value

c {02}
d

IV 12‖{02}
d−1

s 2

LFSR shifts in round i (ηi), 1 ≤ i ≤ 6 1

Table 3. Sample first preimages

Digest
length
(in
bits)

Output of hash function (in hex) Preimage

Time
taken
(in

seconds)

224 F18DE455 827C1EE6 00000000 00000000
00000000 00000000 00000000

“password” 28.66

256 F18DE455 827C1EE6 00000000 00000000
00000000 00000000 00000000 00000000

“password” 28.67

384
F18DE455 827C1EE6 00000000 00000000

00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000

“password” 28.74

512

F18DE455 827C1EE6 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000

00000000 00000000

“password” 28.80

224 2C2B32B7 305056B5 709FF3A9 7A99955B
3D271585 78E21E7E 2848DD92

“The quick brown fox
jumps”

91.28

256 2C2B32B7 305056B5 709FF3A9 7A99955B
3D271585 78E21E7E CC1779EB A3ED2089

“The quick brown fox
jumps over”

103.80

384
2C2B32B7 305056B5 709FF3A9 7A99955B
3D271585 78E21E7E CC1779EB 37407107
89D12C8B EA6630B4 3929A26F 00000000

“The quick brown fox
jumps over the lazy

dog”
141.08

512

2C2B32B7 305056B5 709FF3A9 7A99955B
3D271585 78E21E7E CC1779EB 37407107
89D12C8B EA6630B4 3929A26F 00000000
00000000 00000000 00000000 00000000

“The quick brown fox
jumps over the lazy

dog”
141.14

	Practical (Second) Preimage Attacks on TCS_SHA-3

