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ABSTRACT
We investigate alternative suspicion functions for Tardos
traitor tracing schemes. In the simple decoder approach
(computation of a score for every user independently) we
derive suspicion functions that optimize a performance in-
dicator related to the sufficient code length ` in the limit of
large coalition size c. Our results hold for the Restricted-
Digit Model as well as the Combined-Digit Model. The
scores depend on information that is usually not available to
the tracer – the attack strategy or the tallies of the symbols
received by the colluders. We discuss how such results can
be used in realistic contexts.

We study several combinations of coalition attack strat-
egy versus suspicion function optimized against some attack
(another attack or the same). In many of these combina-
tions the usual scaling ` ∝ c2 is replaced by a lower power
of c, e.g. c3/2. We find that the interleaving strategy is an
especially powerful attack, and the suspicion function tai-
lored against interleaving is effective against all considered
attacks.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory;
G.1 [Mathematics of Computing]: Numerical Analysis;
G.1.6 [Numerical Analysis]: Optimization—Constrained
optimization, Stochastic programming

General Terms
Design, Measurement, Security, Theory

Keywords
Traitor tracing, collusion-resistance

1. INTRODUCTION

1.1 Collusion attacks on watermarking
Forensic watermarking is a means for tracing the origin

and distribution of digital content. Before distribution, the
content is modified by embedding an imperceptible water-
mark, which plays the role of a personalized serial number.
Once an unauthorized copy of the content is found, the iden-
tities of those users who participated in its creation can be
determined. A tracing algorithm outputs a list of suspicious
users.

The most powerful attacks against watermarking are col-
lusion attacks, in which multiple attackers (the ‘coalition’)
combine their differently watermarked versions of the same
content; the observed differences point to the locations of
the hidden marks.

In the past two decades several types of collusion-resistant
codes have been developed. The most popular type in the
recent literature is the class of bias-based codes. These were
introduced by G. Tardos in 2003. The original paper [21]
was followed by a flurry of activity, e.g. improved analyses
[2, 6, 7, 10, 16, 20], code modifications [8, 14, 15], decoder
modifications [1, 5, 12] and various generalizations [4, 17,
18, 22]. The advantage of bias-based versus deterministic
codes is that they can achieve the asymptotically optimal
relationship ` ∝ c2 between the sufficient code length ` and
the coalition size c.

Two kinds of tracing algorithm can be distinguished: (i)
simple decoders, which assign a level of suspicion to single
users and (ii) joint decoders [1, 5, 12], which look at sets of
users. Joint decoders employ a simple decoder as a boot-
strapping step.

Tardos’ scheme worked with a binary code and a simple
decoder. Its ‘suspicion function’ for computing a level of sus-
picion for single users was improved [17] and the scheme was
generalized to q-ary alphabets. However, it turns out [19]
that the suspicion function yields sub-optimal fingerprint-
ing rates for q > 3, i.e. rather far below the fingerprinting
capacity [3, 9] and far below the dynamic code rate [11].

Alternative suspicion functions for the binary case were
introduced [5], where an Expectation Maximization (EM)
algorithm was used. A candidate coalition is selected, which
(if the guess is sufficiently good) makes it possible to esti-
mate the employed attack strategy; a suspicion function is
then used which is optimized against that strategy. This
leads to a new ranking of users, giving a new candidate coali-
tion, and the whole process is repeated until it converges.

1.2 Contributions
In this paper we further study suspicion functions.

• We generalize the work of Charpentier et al. [5] to q-
ary alphabets. Using functional derivation methods we
obtain suspicion functions that asymptotically (c� 1)
maximize the expected score for the coalition, allowing
the tracer to distinguish best between them and the
innocent users. We present results for the Combined-
Digit Model and the Restricted-Digit Model.



• We consider a set of often-considered attack strategies.
We substitute these attacks into the generic formulas
and obtain closed-form expressions for the optimal sus-
picion functions associated with these attacks.

• We tabulate the performance for each combination of
attack and suspicion function. For some cases we prove
theorems analytically and for all cases we have numer-
ical results. Naturally, in case of a match the suffi-
cient code length ` is small; for all considered strate-
gies but the interleaving attack we even find ` ∝ c3/2.
For the interleaving attack and its matching suspi-
cion function we find an asymptotic fingerprinting rate
(q−1)/(2c2 ln q), which is exactly the q-ary asymptotic
fingerprinting capacity.

In non-matching cases the results differ widely. In
some cases, as expected, the mismatched defense fails
completely, while in others the code length remains
` ∝ c2 (often smaller than with the Tardos suspicion

function), and in many cases we find ` ∝ c3/2 even for
a mismatch.

In Sections 3.1 and 7 we comment on possible ways to exploit
our results for the construction of improved decoders by us-
ing several suspicion functions in parallel, and/or deploying
a tally-dependent suspicion to strengthen the EM algorithm,
and/or to validate candidate coalitions in general.

This paper contains a large number of lemmas and theo-
rems. Full proofs are given in the appendix.

2. PRELIMINARIES

2.1 General notation
We denote random variables by capital letters and their

realizations in lower case. We write vectors in boldface. We
define [`] = {1, . . . , `}. The q-ary alphabet is A, which
is sometimes set to A = {0, . . . , q − 1}. We use multi-
index notation, e.g. pκ =

∏
α∈A p

κ
α, pm =

∏
α∈A p

mα
α , and(

c
m

)
= c!/

∏
α∈Amα!. We define the norm of a vector as

|p| =
∑
α∈A |pα|. For probability mass/density functions

we use abbreviated notation of the form fy|p = fY |P (y|p)
when it does not cause ambiguity. In conditional expecta-
tion values we sometimes use the abbreviation EM|p[· · · ] =
EM [· · · |P = p]. An E without subscripts is an expectation
over all probabilistic degrees of freedom. We use δx,y to de-
note the Kronecker delta function, which is 1 when x = y
and 0 when x 6= y.

2.2 Bias-based tracing; simple decoder
The content contains ` abstract ‘locations’ into which a

q-ary symbol can be embedded. For each location i ∈ [`] in-
dependently, the tracer draws a bias vector P i = (Pi,α)α∈A
from a distribution fP . The biases satisfy Pi,α ≥ 0 and
|P i| = 1. In [17] a symmetric Dirichlet distribution was
taken, with concentration parameter κ > 0,

fP (p) = pκ−1Γ(qκ)/[Γ(κ)]q. (1)

For q = 2 it is customary to set κ = 1
2
, turning (1) into

the arcsine distribution for the component p1. However, in
that case the support has to be reduced to p1 ∈ [δ, 1 − δ],
with cutoff parameter δ > 0, in order to avoid statistical
problems due to extremely unlikely events. The probability

density function then becomes

fP (p1) =
1

2 arcsin(1− 2δ)

1√
p1(1− p1)

. (2)

As the cutoff parameter is typically chosen so small that it
vanishes, we will neglect it in our analysis. The number of
users is n. For each i ∈ [`] and each j ∈ [n], the tracer draws
a random symbol Xi,j ∈ A according to the categorical dis-
tribution P i, i.e. P[Xi,j = α|P i = pi] = pi,α independent
of j. The symbol Xi,j is embedded into the content of user
j in location i.

The coalition of attackers is denoted as C ⊂ [n], with
|C| = c. In some attack models, e.g. the Combined-Digit
Model (Section 2.3), they are allowed to do signal processing
attacks such as introducing noise and fusing symbols. In
the Restricted-Digit Model (RDM) they are only allowed to
select one colluder’s symbol (denoted as yi) in location i. In
the simple decoder approach, the tracer determines a score
Sj for each user j by adding independently computed sub-
scores Si,j for each location i; these are based on pi, Xi,j
and the colluders’ output in location i. If the score exceeds
a threshold, user j is suspect.

Tardos [21] introduced a (simple decoder) score system for
he RDM at q = 2 that was later [17] symmetrized and gen-
eralized to q > 2. The sub-scores for each location are com-
puted using a ‘suspicion function’ g as Si,j = g(xi,j , yi,pi)
with

g(x, y,p) =

{ √
(1− py)/py if x = y

−
√
py/(1− py) if x 6= y.

(3)

It has the special property that the Si,j of innocent users
has expectation 0 and variance 1.

Given the symmetries present in the code generation and
accusation algorithm, it is usually assumed that the attack-
ers apply a strategy that acts at every location indepen-
dently. Furthermore, we assume that the colluders take
equal risks. In such an attack model, the colluders’ deci-
sion in location i depends only on the tallies Mi,α = |{j ∈
C|Xi,j = α}| (with α ∈ A). The tallies satisfy |M i| = c,
and they are multinomial-distributed, fm|p =

(
c
m

)
pm. The

attack strategy may be probabilistic.

2.3 Combined-Digit Model (CDM)
The CDM [18] allows colluders to mix symbols and to

introduce noise. In each location, the symbols that are
mixed are assumed to have equal power. The set of symbols
that the colluders choose to mix is denoted as Ψ ⊆ A with
mα > 0 for each α ∈ Ψ. The attack strategy is parametrized
by a set of probabilities fψ|m. The tracer has a detector that
outputs a set Φ ⊆ A of observed symbols. The joint effects
of the noise and the mixing lead to probability distributions
fΦ|Ψ, where it is possible that the noise introduces symbols
in Φ that are absent in Ψ. Simple-decoder score systems
were introduced in [18, 22].

P
code generation−−−−−−−−−−→

fM|P
M

colluder mix−−−−−−−−→
fΨ|M

Ψ
tracer detection−−−−−−−−−−→

fΦ|Ψ
Φ

Figure 1: A schematic depiction of the CDM.

The CDM reduces to the RDM when the noise strength
is sent to zero and the detector unerringly observes Φ =
Ψ, forcing the colluders to output a single symbol, Ψ =



{Y }. For the RDM, a strategy is parametrized by a set of
probabilities fy|m.

2.4 Performance; moments of the scores
The performance of bias-based tracing schemes can for a

large part be characterized by looking merely at the first
and second moment of the innocent and guilty scores. (This
holds especially at large c, where the large code length in-
duces an almost-Gaussian shape of the score probability dis-
tributions.)

For an innocent user j, we define the mean and variance
as

µ̃inn := E[Si,j ] (4)

σ̃2
inn := Var[Si,j ] = E[(Si,j − µ̃inn)2] = E[S2

i,j ]− µ̃2
inn, (5)

where the index i ∈ [`] is arbitrary. The expectation E
is taken over the random variables P i, Xi,j , and Yi (in the
CDM Ψi and Φi instead of Yi). We call a suspicion function
centered if it yields µ̃inn = 0 and normalized if σ̃2

inn = 1. For
the coalition we define Si,C :=

∑
j∈C Si,j . The moments are

µ̃C := E[Si,C ] (6)

σ̃2
C := Var[Si,C ] = E[(Si,C − µ̃C)2] = E[S2

i,C ]− µ̃2
C (7)

again with arbitrary index i. If the Gaussian approxima-
tion holds, then the sufficient code length is proportional to
(µ̃C/σ̃inn)−2c2 [20]. We will use the fraction µ̃C/σ̃inn as a
performance indicator.

3. OPTIMAL SUSPICION FUNCTIONS
We consider suspicion functions h other than the function

g given in (3). We derive suspicion functions that maximize
the performance indicator µ̃C/σ̃inn, in the CDM as well as
the RDM. Without loss of generality, we will consider only
suspicion functions that are centered (µ̃inn = 0) and normal-
ized (σ̃inn = 1). We use the standard approach of Lagrange
functionals; we use constraint multipliers λ1, λ2 ∈ R to en-
force the constraints µ̃inn = 0 and σ̃inn = 1. We define the
functional

L(h, λ1, λ2) = µ̃C − λ1µ̃inn − 1
2
λ2(σ̃2

inn − 1), (8)

where µ̃inn, σ̃inn and µ̃C depend on the function h as spec-
ified in (4-6). The optimal h is found by solving the set of
equations δL/δh = 0, ∂L/∂λ1 = 0 and ∂L/∂λ2 = 0. The
solution depends on the arguments of h: in the CDM the
sub-score of user j in location i is typically a function of
Xi,j , Φi and P i; in the RDM a function of Xi,j , Yi and P i.

3.1 ... in the Combined-Digit Model
We present a number of lemmas leading up to the main

theorem of this section, which shows the solution obtained
by the Lagrangian approach. Full proofs are given in the
appendix. The conditional probabilities that appear in the
lemmas are related as follows:
fψ|p =

∑
m fψ|mfm|p and fφ|p =

∑
ψ fφ|ψfψ|p. The num-

bers fφ|ψ are fixed parameters of the CDM independent of
the strategy.

Lemma 1. An optimal suspicion function of the form
h(x,φ,ψ,p) does not depend on φ. An optimal suspicion
function of the form h(x,φ,ψ,m,p) depends neither on φ
nor ψ.

Proof sketch. The setψ contains more information about
the attackers than the set φ. Likewise, the tallies m contain
more information than ψ.

To determine the optimal suspicion functions of the increas-
ingly general forms h(x,φ,p), h(x,φ,ψ,p), and
h(x,φ,ψ,m,p), it suffices to study the forms hΦ(x,φ,p),
hΨ(x,ψ,p), and hM (x,m,p), respectively.

Lemma 2. Let h be of the form hΦ(x,φ,p) and define

TΦ(x,φ,p) :=
EM|p[Mxfφ|M ]

cpxfφ|p
=

1

c

∂ ln fφ|p
∂px

∣∣∣∣
|p|=1

+ 1. (9)

Then µ̃C = c · E[TΦh] and E[TΦ] = 1.

The notation ∂A
∂px
||p|=1 is defined as follows. First the

derivative ∂A/∂px is taken without taking the constraint∑
α pα = 1 into account. After differentiation the constraint

is enforced.

Lemma 3. Let h be of the form hΨ(x,ψ,p) and define

TΨ(x,ψ,p) :=
EM|p[Mxfψ|M ]

cpxfψ|p
=

1

c

∂ ln fψ|p
∂px

∣∣∣∣
|p|=1

+1. (10)

Then µ̃C = c · E[TΨh] and E[TΨ] = 1.

Lemma 4. Let h be of the form hM (x,m,p) and define

TM (x,m,p) :=
mx

cpx
=

1

c

∂ ln fm|p
∂px

∣∣∣∣
|p|=1

+ 1. (11)

Then µ̃C = c · E[TMh], E[TM ] = 1, and Var[TM ] = q−1
c

.

Theorem 1. In each of the cases above, the centered and
normalized suspicion function that maximizes µ̃C is

h = (T − E[T ]) /
√

Var[T ] (12)

and the expected coalition score is µ̃C = c ·
√

Var[T ].

Proposition 5. For the function T in all three cases above
it holds that

T (x,�,p) ∝ P[j∈C|x,�,p]

P[j /∈C|x,�,p]
, (13)

and thus T is a Neyman-Pearson score.

Several things are worth noting about these results.

(i) In the proof of Theorem 1 it is not necessary to specify
the bias distribution. Though µ̃C is a functional of
both h and fP , the optimization of h does not depend
on fP .

(ii) In all three cases the result for h depends on infor-
mation that the tracer usually does not have. (The
strategy fψ|m in Lemmas 2 and 3; the tallies m in
Lemma 4.) When a function hΦ, for some guessed
strategy, is used to compute scores, there is no guar-
antee that the attackers are actually adhering to that
guessed strategy. Such ‘mismatched’ situations will be
discussed (for the RDM) in Section 5.



(iii) We can think of two ways in which the m-dependent

result of Lemma 4, h(x, y,p) = (mx
cpx
−1)

√
c
q−1

, can be

used in practice. First, it could be employed in the EM
algorithm [5]. The EM procedure estimates a strategy
based on the symbols received by the candidate coali-
tion, and then uses this estimate to adapt the suspicion
function. Our h function could be used to directly as-
sign scores to all users, skipping the strategy estimation
step. This would speed up each iteration of the EM al-
gorithm and avoid the statistical inaccuracies in the
estimation. (Of course, inaccuracies due to a wrongly
guessed coalition remain, and may even increase.)

Secondly, this h function can be used as a consistency
check in the following way. Suppose that, by some
means, a candidate coalition Ĉ has been tentatively

identified. Then one computes a score (mx
cpx
− 1)

√
c
q−1

for all users, where the tally mx is based on Ĉ and the
user’s symbol x. If Ĉ equals the actual coalition, one
should see a huge score difference between innocent
users and the colluders. Exploration of these ideas is
left for future work.

(iv) The expression ∂ ln f/∂px in all three cases has the
form of a Fisher score, being the derivative of the log-
arithm of a conditional probability with respect to the
conditioning variable. We suspect that this form is no
coincidence. However, the intuitive meaning of the as-
sociated ‘game’ (guessing p from y) is not immediately
obvious. Asymptotically m tends to cp. We hypoth-
esize that the game ‘guess p from y’ is asymptotically
equivalent to ‘guess m from y’. The latter is a known
formulation of the tracing problem.

(v) Our result in Proposition 5 is different from the Neyman-
Pearson score in [12], where the whole sequence (Yi)i∈[`]
was considered.

3.2 ... in the Restricted-Digit Model
The optimal h function in the RDM case follows straight-

forwardly from Lemma 2 and Theorem 1 by taking the limit
of zero noise and perfect detection of all mixed symbols,
leading to Φ = Ψ = {Y }, with Y ∈ A.

Corollary 6. Let h be of the form hY (x, y,p) and de-
fine

TY (x, y,p) :=
EM|p[Mxfy|M ]

cpxfy|p
=

1

c

∂ ln fy|p
∂px

∣∣∣∣
|p|=1

+ 1. (14)

Then µ̃C = c · E[TY h] and E[TY ] = 1.

In the RDM, Lemma 4 and Theorem 1 hold without change.
Note that the Marking Assumption is not invoked to obtain
Corollary 6. Hence Corollary 6 is valid in a more general set-
ting, as long as the colluders produce a single symbol which
is unerringly detected by the tracer.

Note also that (14) with q = 2 matches the expression
given by Charpentier et al. [5] (which only considered the
binary case).

4. MATCHES
From this point onward, we consider only the RDM. For a

number of often-studied strategies we compute the optimal

suspicion function. We investigate the situation where the
actual attack is indeed the one for which the h-function was
designed (a“match”). Mismatches are discussed in Section 5.

4.1 Arbitrary alphabets
Interleaving attack. The interleaving attack fy|m =

my/c randomly selects an attacker and outputs his symbol.

Proposition 7. Against the interleaving attack, the quan-
tity T is given by T (x, y,p) = 1 + (1/c)(δx,y/py − 1), and
the optimal suspicion function is

h(x, y,p) =
1√
q − 1

(
δx,y
py
− 1

)
. (15)

In case of a match it holds that µ̃C =
√
q − 1 for any fP .

When x= y, the h is positive and increasing in py (rare
events raise more suspicion). When x 6=y, it is negative and
constant, in contrast to (3). The h is independent of c.

All-high attack. The all-high attack

fy|m =

{
1 if my > 0 and my+1 = · · · = mq−1 = 0

0 else
(16)

outputs the highest symbol among those received by the
coalition.

Note that this is the only attack we consider that breaks
symbol symmetry and assumes an ordering of the alpha-
bet. This is a special case of the preferred-sequence at-
tack, in which the colluders have a predetermined rank-
ing of the symbols. The results below generalize to the
preferred-sequence attack. We will use the shorthand no-
tation ak := (p0 + · · ·+ pk−1) and aB =

∑
β∈B pβ .

Proposition 8. Against the all-high attack, the optimal
suspicion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =


(ac−1
y+1 − a

c−1
y )/(acy+1 − acy) if x < y

ac−1
y+1/(a

c
y+1 − acy) if x = y

0 if x > y.

(17)

In case of a match, it holds that

µ̃C =c

√√√√−1 + EP

[
q−1∑
y=0

A2c−1
y+1 − 2AcyA

c−1
y+1 +A2c−1

y

Acy+1 −Acy

]
. (18)

When x = y, the h is positive. When x > y, it is negative
and constant. When x < y, it might be negative or it might
not. For instance, for c = 2, we find (ay+1 − ay)/(a2y+1 −
a2y) = 1/(ay+1 + ay) = 1/(py + 2ay), in which case h is
negative if and only if py > 1 − 2ay. In particular it is
negative if ay ≥ 1

2
. Also, h is the same for all x < y.

We now analyze the behaviour of µ̃C when the symmetric
Dirichlet distribution is employed. Before we can state our
result, we will need the following Lemma:

Lemma 9. Let P be distributed according to the symmet-
ric Dirichlet distribution without cutoff. The joint distribu-
tion for the pair (Ay+1, Ay/Ay+1) is then given by

J(ay+1,
ay
ay+1

) =
a
−1+(y+1)κ
y+1 (1− ay+1)−1+(q−y−1)κ

B([y + 1]κ, [q − y − 1]κ)
×

(ay/ay+1)−1+yκ(1− ay/ay+1)−1+κ

B(yκ, κ)
.



Given this joint distribution, we can now derive our main
result for the all-high attack when the symmetric Dirichlet
distribution is used.

Proposition 10. Let fP be the symmetric Dirichlet dis-
tribution without cutoff. If the attack is the all-high attack
and the defense matches it, then, for large c,

µ̃C = c1−κ
κΓ(qκ)ζ(1 + κ)

Γ([q − 1]κ)

[
1 +O(c−min(1,κ))

]
, (19)

where ζ is the Riemann zeta function.

Random-symbol attack. The random-symbol attack
selects one of the received symbols uniformly at random.
Tallies are disregarded, but a symbol can only be chosen if
its tally is nonzero. The attack is parametrized by fy|m =
(1− δmy,0)/|{α ∈ A : mα > 0}|.

Proposition 11. For the random-symbol attack we find

|p|cfy|p =
acA − acA\{y}

q
+

∑
B(A: y∈B

acB − acB\{y}
|B|(|B|+ 1)

. (20)

The optimal suspicion function is h = (T − 1)/
√

Var[T ],
with

T (x, y,p) =
1

c

∂ ln(|p|cfy|p)

∂px

∣∣∣∣
|p|=1

= (21)

1

fy|p

1

q
+

∑
B(A: y∈B

ac−1
B

|B|(|B|+ 1)

 if x = y

1

fy|p

1− (1− py)c−1

q
+
∑
B(A
x,y∈B

ac−1
B − ac−1

B\{y}

|B|(|B|+ 1)

 if x 6= y

(22)

4.2 Binary alphabet (q = 2)
All-1 attack. The binary all-high attack is known as the

all-1 attack. It has f1|m = 1 whenever m1 > 0 and f1|m = 0
when m1 = 0.

Corollary 12. Against the all-1 attack, the optimal sus-
picion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =


(1− pc−1

0 )/(1− pc0) if (x, y) = (0, 1)

1/(1− pc0) if (x, y) = (1, 1)

1/p0 if (x, y) = (0, 0)

0 if (x, y) = (1, 0).

(23)

In case of a match it holds that

µ̃C = c

√
EP [P c−1

0 (1− P0)/(1− P c0 )]. (24)

When x < y, the h is positive for any c, in contrast to the
q-ary case.

Corollary 13. Let fP be the symmetric Dirichlet dis-
tribution with κ = 1

2
and cutoff δ = 0. Against the all-1

attack, the optimal suspicion function attains µ̃C ∝ c1/4 for
large c.

Coin-flip attack. The binary random-symbol attack is
known as the coin-flip attack, and is parametrized as fy|m =
1
2
(1− δmy,0 + δmy,c).

Proposition 14. Against the coin-flip attack, the opti-
mal suspicion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =

{
(1 + pc−1

y )/(1 + pcy − pc1−y) if x = y

(1− pc−1
1−y)/(1 + pcy − pc1−y) if x 6= y.

(25)

When x = y, the h is positive. When x 6= y, it is negative,
since −pc−1

1−y < pc−1
y , so pc−1

1−y(p1−y − 1) < pcy, and thus 1 −
pc−1
1−y < 1 + pcy − pc1−y.
Majority-vote attack. The majority-vote attack out-

puts the symbol with the highest tally. In case of a tie, a
uniform choice is made from the winners.

fy|m =


1 if my >

1
2
c

1
2

if my = 1
2
c

0 if my <
1
2
c.

(26)

Minority-vote attack. The minority-vote attack out-
puts the symbol with the lowest nonzero tally. In case of a
tie, a uniform choice is made from the winners.

fy|m =


1 if 0 < my <

1
2
c or my = c

1
2

if my = 1
2
c

0 if my = 0 or 1
2
c < my < c.

(27)

We have analytical expressions for the majority-vote and
minority-vote attack, but we do not write them down here
because of lack of space.

5. MISMATCHES
In this section, we analyze what happens when the coali-

tion mounts a different attack than the tracer expected. We
call the “optimal suspicion function against strategy A” the
A-defense. We show that even when the score function does
not match the pirate strategy, the optimal score functions
derived in the previous section remain centered but not nec-
essarily normalized. The main results of this section are an-
alytical expressions for the performance indicator in case of
a mismatch for the Tardos defense, the interleaving defense,
and the interleaving attack.

Recall that µ̃C = c ·E[T ·h]. This expression remains valid
in the case of a mismatch, where T is for the actual attack
and h is the function that is used as defense.

We call a suspicion function h(x, y,p) strongly centered if
EX|p[h(X, y,p)] = 0 and strongly normalized if

EX|p[h2(X, y,p)] = 1.

Lemma 15. Each optimal suspicion function (see Theo-
rem 1) is strongly centered. So is the symmetric Tardos
function.

5.1 Tardos Suspicion Function
We start by considering the traditional symmetric Tardos

suspicion function.

Lemma 16. If the tracer uses the symmetric Tardos sus-
picion function, then

µ̃C = c EPEY |P

[
PY

(√
1− PY
PY

−
√

PY
1− PY

)
T (Y, Y,P )

−
√

PY
1− PY

]
. (28)



Against the interleaving attack, the symmetric Tardos sus-
picion function does not perform well for large q:

Proposition 17. If the tracer uses the symmetric Tardos
suspicion function and the coalition uses the interleaving at-
tack, then µ̃C =

∑
y∈A EP [

√
Py(1− Py)]. When P has a

symmetric Dirichlet distribution with concentration param-
eter κ = 1

q
and no cutoff is used,

µ̃C =


2
π

for q = 2
1
2
(q − 2) tan(π

q
) for q > 2

π
2

as q →∞
(29)

We see that µ̃C is a slowly increasing function of q, which
is bad for the code rate.

Proposition 18. If the tracer uses the symmetric Tardos
suspicion function and the coalition uses the all-high attack,
then

µ̃C = c

q−1∑
y=0

EP

[
Py

(√
1− Py
Py

−

√
Py

1− Py

)
Ac−1
y+1 (30)

−

√
Py

1− Py
(Acy+1 −Acy)

]
.

Proposition 19. If the tracer uses the symmetric Tardos
suspicion function and the coalition uses the random-symbol
attack, then

µ̃C = c

q−1∑
y=0

EP

[

Py

[√
1− Py
Py

−

√
Py

1− Py

][
1

q
+
∑

B⊂A: y∈B

ac−1
B

|B|(|B|+ 1)

]

−

√
Py

1− Py

(
1− (1− Py)c

q
+
∑

B⊂A: y∈B

acB − acB\{y}
|B|(|B|+ 1)

)]
.

(31)

In the binary case the Tardos defense has a constant µ̃C :

Proposition 20. [17] Let q = 2 and fP be the symmetric
Dirichlet distribution with parameter κ = 1

2
without cutoff.

If the tracer uses the symmetric Tardos defense, then µ̃C =
2
π

, no matter what attack the coalition uses.

5.2 Interleaving defense
We now turn our attention to the interleaving defense.

Lemma 21. If the tracer uses the interleaving defense,
then, no matter what attack is used,

µ̃C =
c√
q − 1

(
−1 + EPEY |P [T (Y, Y,P )]

)
(32)

and

σ̃2
inn =

1

q − 1

(
−1 + EPEY |P

[
1

PY

])
. (33)

where T belongs to the attack.

We can explicitly calculate the performance against the all-
high attack:

Proposition 22. If the tracer uses the interleaving de-
fense, but the coalition uses the all-high attack, then

µ̃C =
c√
q − 1

q−2∑
y=0

EP
[
Ac−1
y+1

]
, and (34)

σ̃2
inn =

1

q − 1

(
−1 +

q−1∑
y=0

EP
[
Acy+1 −Acy

Py

])
. (35)

If the Dirichlet distribution is used µ̃C will scale as c1−κ for
large coalitions:

Proposition 23. Let fP be the symmetric Dirichlet dis-
tribution with cutoff δ = 0. If the tracer uses the interleaving
defense, but the colluders use the all-high attack, then

µ̃C =
Γ(qκ)

Γ([q − 1]κ)

c1−κ√
q − 1

[1 +O(1/c)]. (36)

We now investigate the binary case q = 2. We can then
rephrase Proposition 22 as

Corollary 24. For q = 2, if the tracer uses the inter-
leaving defense, but the coalition uses the all-1 attack, then

µ̃C = c EP
[
P c−1
0

]
and σ̃2

inn = −1 + EP
[
P c−1
0 +

1−Pc0
P1

]
.

In the binary case, we obtain explicit results for the coin-flip
attack against the interleaving defense:

Proposition 25. For q = 2, if the tracer uses the inter-
leaving defense, but the coalition uses the random coin-flip
attack, then

µ̃C = 1
2
c EP

[
P c−1
0 + P c−1

1

]
and (37)

σ̃2
inn = −1 + EP

[
1 + P c0 − P c1

2P0
+

1 + P c1 − P c0
2P1

]
. (38)

Note the similarity between the coin-flip attack and the all-1
attack. For the Dirichlet distribution, this can be analyti-
cally shown:

Proposition 26. Let q = 2 and fP be the symmetric
Dirichlet distribution with parameter κ = 1

2
without cutoff.

If the tracer uses the interleaving defense and the coalition
uses either the all-1 or the random coin-flip attack, then

µ̃C = c ·B(κ, κ+ c− 1)/B(κ, κ) and (39)

σ̃2
inn = −1 +

c

1− κ
Γ(2κ)

Γ(κ)

Γ(c+ κ− 1)

Γ(c+ 2κ− 1)
+

1− 2κ

1− κ . (40)

For large c these behave as µ̃C ∝ c1−κ and σ̃2
inn ∝ c1−κ.

5.3 Interleaving attack
Finally, we will analyze the interleaving attack.

Lemma 27. If the tracer uses a strongly centered score
function and the coalition uses the interleaving attack, then

µ̃C =
∑
y∈A

EP [Py h(y, y,P )]. (41)

The performance of the all-high defense against the inter-
leaving attack can be analyzed as

Proposition 28. If the tracer uses the all-high defense
but the coalition uses the interleaving attack, then

µ̃C =
1√

Var[T ]
EP

[
q−1∑
y=1

PyA
c−1
y+1

Acy+1 −Acy

]
(42)

where T belongs to the all-high defense.



interleaving all-1 coin-flip majority vote minority vote

Tardos defense 2/π 2/π 2/π 2/π 2/π

interleaving defense 1.0 0.61c0.23 0.61c0.23 1.2 0.75c0.25

all-1 defense 0.71 0.86c0.25 0.44c0.23 0.84 0.54c0.25

coin-flip defense 5.1c−0.71 0.72c0.25 0.72c0.25 0.0 1.1c0.25

majority vote defense 0.91 0.66c0.22 0.66c0.22 0.77c0.25 0.90c0.23

minority vote defense −0.08 3.2c−0.51 3.2c−0.51 −1.9c−0.52 1.4c0.25

Table 1: Numerical trends for the performance indicator µ̃C/σ̃inn in the binary case q = 2 for large c.

Proof.

µ̃C =
1√

Var[T ]

(
−1 + EP

[∑
y∈A

PyA
c−1
y+1

Acy+1 −Acy

])
(43)

=
1√

Var[T ]
EP

[
q−1∑
y=1

PyA
c−1
y+1

Acy+1 −Acy

]
. (44)

In the binary case this reduces to

Proposition 29. For q = 2, if the tracer uses the all-1
defense, but the coalition uses the interleaving attack, then

µ̃C =
1√

Var[T ]
EP

[
P1

∞∑
k=0

P kc0

]
. (45)

Proof.

µ̃C =
1√

Var[T ]

(
−1 + EP

[
1 +

P1

1− P c0

])
(46)

The scaling behaviour for large c is

Lemma 30. Let q = 2 and fP be the symmetric Dirich-
let distribution with parameter κ = 1

2
without cutoff. If the

tracer uses the all-1 defense, but the coalition uses the inter-
leaving attack, then

µ̃C =
Γ(κ+ 1)

B(κ, κ)
√

Var[T ]

∞∑
t=0

Γ(tc+ κ)

Γ(tc+ 2κ+ 1)
. (47)

For large c, this scales as c(κ+1)/2.

The interleaving attack against coin-flip defense behaves as
follows in the binary case:

Lemma 31. For q = 2, if the tracer uses the coin-flip
defense, but the coalition uses the interleaving attack, then

µ̃C=
1√

Var[T ]

[
−1+EP

[
P0(1 + P0)c−1

1 + P c0 − P c1
+
P1(1 + P1)c−1

1 + P c1 − P c0

]]
.

(48)

6. NUMERICAL RESULTS
To verify our theory and its practical applicability, we

ran simulations for the binary case and the arcsine distri-
bution (without cut-off). We chose to simulate the five de-
scribed attacks (interleaving, all-1, coin-flip, majority-vote,
and minority-vote) and their optimal defenses. Both the

cases where the defense matches the colluder strategy and
the mismatches were simulated to obtain the µ̃C and the σ̃inn

for 1 ≤ c ≤ 200. We then analyzed this data to obtain the
leading-order term in c. The results can be found in Table
1. The matching cases for each considered attack are shown
in Figure 2. The interleaving defense and attack values are
depicted in Figures 3 and 4. Since for mismatches the in-
nocent score is no longer normalised (σ̃inn 6= 1), we present
the numeric results for µ̃C/σ̃inn to make a fair comparison.

Looking at the diagonal elements of the table above, only
the interleaving attack keeps a constant µ̃C. For the other
four attacks analysed, µ̃C seems to grow as c1/4. We were
able to prove this only for the all-1 attack. The mismatches
bring even more surprises. As expected, in some cases the
defense fails completely against different attacks with µ̃C/σ̃inn

tending to 0 (majority-vote attack against coin-flip defense)
or even negative (interleaving and majority-vote attacks against
the minority vote defense). Other cases tend to a constant

µ̃C/σ̃inn and many cases even still grow as c1/4.
Surprisingly, we often see µ̃C/σ̃inn > 2/π, the value for

the Tardos score function. There are two exceptions seen
in the defenses: firstly, the minority vote defense is an ex-
ception to this, as it only seems to work well against the
minority vote attack, and is of little or no use against other
attacks. Secondly, the coin-flip defense also fails against the
majority-vote attack, and seems to scale as approximately
c−3/4 against the interleaving attack. We do stress that
these five attacks are by no means exhaustive, so we do ex-
pect more exceptions to this observation.

Another intriguing pattern from the numerical data is the
similarity of the all-1 and coin-flip attacks. Except against
the all-1 defense, they have the exact same numerical re-
sults. Even though for the all-1 attack against the coin-flip
defense σ̃inn 6= 1, the normalized µ̃C/σ̃inn values are again
the same. We have proven this against the interleaving de-
fense in Proposition 26. This similarity can be explained
by realizing that after the collusion attack is performed, the
tracer can flip all symbols in the positions where the coali-
tion produced a 0. This transforms the coin-flip attack into
the all-1 attack, with the caveat that the coalition then never
can receive the 0 vector. Naturally, this does apply to the
all-1 defense, as this score function is not symbol-symmetric.

We do stress that in the case of mismatches, σ̃inn 6= 1.
This means that to use our optimal score functions in a
practical Tardos traitor tracing system, we need to add an
additional step to the accusation phase. After calculating
the user scores, we will need to estimate σ̃inn and normal-
ize the scores before we can check them against the Tardos
threshold.
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ious attacks in the binary case.

7. DISCUSSION
We have investigated the optimization of the performance

indicator µ̃C/σ̃inn for bias-based traitor tracing in the simple-
decoder setting. A straightforward Lagrangian approach
yields a simple expression (Theorem 1) for the optimal sus-
picion function in a wide variety of contexts, e.g. CDM and
RDM, binary and q-ary. The result is a Neyman-Pearson
score for the hypothesis j ∈ C based on single-position in-
formation. It also has the form of a Fisher score, though
without a fully understood interpretation.

The h function we obtain with the Lagrangian method
depends either on the collusion strategy or on the coalition’s
symbol tallies m. These quantities are usually unknown to
the tracer. Our optimization approach does not allow for
deriving suspicion functions that are based purely on data
known to the tracer.

In Section 3.1 we speculated on the use of them-dependent
suspicion function in the EM algorithm or as a consistency
check for candidate coalitions. Further exploration is left for
future work.

For several binary and q-ary attacks in the RDM we have
derived the optimal suspicion function. We have investi-
gated the performance indicator µ̃C/σ̃inn in many combina-
tions of suspicion function and attack strategy. In some cases
analytic results are obtained. Notably, the matching case of
the q-ary interleaving attack gives µ̃C/σ̃inn = µ̃C =

√
q − 1,

asymptotically (c→∞) yielding a code rate precisely equal
to the channel capacity [3]. For q = 2 the results are sum-
marized in Table 1. We observe that the interleaving de-
fense, all-1 defense and majority voting defense outperform
the Tardos suspicion function for all the considered attacks.
In many cases even the power of c is changed from ` ∝ c2
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Figure 4: Interleaving attack against various de-
fenses in the binary case.

to c3/2, which is a huge reduction. It is dangerous to draw
general conclusions from the table, however, since not all
possible attacks are listed.

The results of Sections 4–6 give us hope that the strategy-
dependent suspicion functions can be used advantageously
in a practical tracing scheme. We envisage a decoder that
runs the Tardos function and a small battery of our h func-
tions in parallel (one for every known ‘basic’ strategy, e.g.
the ones discussed in this paper). Whenever the colluders
use one of the basic strategies, the associated h function
will quickly distinguish them from the innocent users; for
other strategies, the Tardos function still does the job. The
challenge is to combine the different score systems into an
effective decoder. Here it has to be borne in mind that both
the computational load and the total false positive proba-
bility grow with the number of incorporated h functions.

Future work will focus on (a) more precise performance in-
dicators such as false positive and false negative error prob-
ability; (b) attacks targeted against the special suspicion
functions derived in this paper (c) simulations using multi-
ple suspicion functions in parallel (d) iterative joint decoders
employing the m-dependent suspicion functions.
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APPENDIX
A. PROOFS

Lemma 2. Let h be of the form hΦ(x,φ,p) and de-
fine

TΦ(x,φ,p) :=
EM|p[Mxfφ|M ]

cpxfφ|p
=

1

c

∂ ln fφ|p
∂px

∣∣∣∣
|p|=1

+ 1.

(49)
Then µ̃C = c · E[TΦh] and E[TΦ] = 1.

Proof of Lemma 2.

µ̃C = EPEM|PEΦ|M
∑

x∈A
Mxh(x,Φ,P ) (50)

= EPEM|PEΦ|P
fΦ|M

fΦ|P
EX|P

MX

PX
h(X,Φ,P ) (51)

= EPEΦ|PEX|P
[
EM|P [MXfΦ|M ]

PXfΦ|P
h(X,Φ,P )

]
(52)

= c E[T · h]. (53)

Furthermore, EX|p[mX ] = cpx and fφ|p = EM|p[fφ|M ], so

EX|p[T ] = EX|p
[
EM|p[MXfφ|M ]

cpXfφ|p

]
= 1. (54)

To be able to take the partial derivative
∂ ln fφ|p
∂px

, the com-
ponents p0, . . . , pq−1 are assumed to be functionally inde-
pendent. In particular, we do not assume |p| = 1 during



differentiation. Since fm|p = 1
|p|c
(
c
m

)
pm, we find

fφ|p = EM|p[fφ|M ] =
1

|p|c
∑
m

(
c

m

)
pmfφ|m. (55)

∂ ln fφ|p
∂px

=

1
px

∑
m

(
c
m

)
pmmxfφ|m∑

m

(
c
m

)
pmfφ|m

− c

|p| (56)

=
EM|p[MXfφ|M ]

pXfφ|p
− c

|p| . (57)

So 1
c

∂ ln fφ|p
∂px

∣∣∣
|p|=1

+ 1 = TΦ(x,φ,p).

Lemma 3. Let h be of the form hΨ(x,ψ,p) and de-
fine

TΨ(x,ψ,p) :=
EM|p[Mxfψ|M ]

cpxfψ|p
=

1

c

∂ ln fψ|p
∂px

∣∣∣∣
|p|=1

+ 1.

(58)
Then µ̃C = c · E[TΨh] and E[TΨ] = 1.

Proof of Lemma 3.

µ̃C = EPEM|PEΨ|M
∑

x∈A
Mxh(x,Ψ,P ). (59)

Note the similarity between equations (59) and (50). The
proof proceeds analogously with Ψ instead of Φ.

Lemma 4. Let h be of the form hM (x,m,p) and de-
fine

TM (x,m,p) :=
mx

cpx
=

1

c

∂ ln fm|p
∂px

∣∣∣∣
|p|=1

+ 1. (60)

Then µ̃C = c ·E[TMh], E[TM ] = 1, and Var[TM ] = q−1
c

.

Proof of Lemma 4.

µ̃C = EPEM|P
∑

x∈A
Mxh(x,M ,P ) (61)

= EPEM|PEX|P
[
MX

PX
h(X,M ,P )

]
= c E[T · h]. (62)

Furthermore, EM|p[Mx] = cpx, so

E[T ] = EPEM|PEX|P
[
MX

cPX

]
= EPEX|P [1] = 1. (63)

Also

Var[T ] = EPEX|PEM|P
(
MX

cPX
− 1

)2

(64)

= EPEX|PVarM|P

[
MX

cPX

]
= EPEX|p

[
cpX(1− pX)

c2p2X

]
(65)

= (1/c)EP
∑

x∈A
(1− px) = (q − 1)/c. (66)

Also,
∂ ln fm|p
∂px

= mx
px
− c
|p| and thus 1

c

∂ ln fm|p
∂px

∣∣∣
|p|=1

+ 1 =

TM (x,m,p).

Theorem 1. In each of the cases above, the centered
and normalized suspicion function that maximizes µ̃C is

h = (T − E[T ]) /
√

Var[T ] (67)

and the expected coalition score is µ̃C = c ·
√

Var[T ].

Proof of Theorem 1. Define the Lagrangian

L(h, λ1, λ2) := c E[Th]− λ1E[h]− 1
2
λ2(E[h2]− 1). (68)

Let h be such that δL
δh

= 0. Then D(cT − λ1 − λ2h) = 0
(where D is the product of the probability densities of the
random variables), i.e. h = cT−λ1

λ2
. The first constraint,

µ̃inn = 0, implies that λ1 = c E[T ] and the second constraint,
σ̃2
inn = 1, that λ2

2 = E(cT − λ1)2 = c2Var[T ].

Lemma 1. An optimal suspicion function of the form
h(x,φ,ψ,p) does not depend on φ. An optimal suspi-
cion function of the form h(x,φ,ψ,m,p) depends nei-
ther on φ nor ψ.

Proof of Lemma 1. To determine the optimal suspicion
function of the form h(x,ψ,p) in the proof of Theorem 1 we
defined the Lagrangian

L(h, λ1, λ2) := c E[Th]− λ1E[h]− 1
2
λ2(E[h2]− 1). (69)

where E[. . .] = EPEΨ|PEX|P [. . .]. The Euler-Lagrange equa-
tion was D(cT − λ1 − λ2h) = 0 with D = fpfψ|pfx|p.

Instead, to determine the optimal suspicion function of
the form h(x,φ,ψ,p), we would define the same Lagrangian,
but now with E[. . .] = EPEΨ|PEΦ|ΨEX|P [. . .]. We obtain
the same Euler-Lagrange equation but now with
D = fpfψ|pfφ|ψfx|p.

In both cases, we draw the same conclusion: that cT −
λ1 − λ2h = 0. We therefore find that the optimal suspicion
function of the form h(x,φ,ψ,p) is the one we found in
Lemma 3 of the form h(x,ψ,p).

Likewise, the optimal suspicion function of the form
h(x,φ,ψ,m,p) is the one we found in Lemma 4 of the form
h(x,m,p).

Proposition 5. For the function T in all three cases
above (Lemma 2-4) it holds that

T (x,�,p) ∝ P[j∈C|x,�,p]

P[j /∈C|x,�,p]
, (70)

and thus T is a Neyman-Pearson score.

Proof. The Neyman-Pearson score for testing a hypoth-
esis H given evidence e is given by the likelihood ratio P[H =
True|e]/P[H = False|e]. Our hypothesis is H = (j ∈ C) for
a user j ∈ [n], and we consider the evidence e = (x,φ,p)
available in one position. (The proof for all the other cases



is analogous.) Then the Neyman-Pearson score is

P[j∈C|xφp]

P[j /∈C|xφp]
=

P[j∈C, xφp]

P[j /∈C, xφp]
=

P[j∈C]F (p)fx|pfφ|xp,j∈C
P[j /∈C]F (p)fx|pfφ|p

∝
fφ|xp,j∈C
fφ|p

=
1

fφ|p

∑
m:mx≥1

(
c− 1

m− ex

)
pm−exfφ|m

=
1

fφ|p

∑
m

mx

cpx

(
c

m

)
pmfφ|m =

1

fφ|p
EM|p[

Mx

cpx
fφ|M ].

Here ex is a length q vector containing a 1 in position x
and zero elsewhere. The a priori probability P[j ∈ C] is a
constant. It is equal for all users if the tracer has no prior
knowledge about the coalition.

Proposition 7. Against the interleaving attack, the
quantity T is given by T (x, y,p) = 1+(1/c)(δx,y/py−1),
and the optimal suspicion function is

h(x, y,p) =
1√
q − 1

(
δx,y
py
− 1

)
. (71)

In case of a match it holds that µ̃C =
√
q − 1 for any

fP .

Proof of Proposition 7.

fy|p =
1

c|p|c
∑
m

(
c

m

)
pmmy =

py
c|p|c

∂|p|c

∂py
=
py
|p| . (72)

∂ ln fy|p
∂px

∣∣∣∣
|p|=1

=
δx,y
py
− 1, (73)

so T (x, y,p) = 1 + (1/c)(δx,y/py − 1).

Var[T ] = E(T − 1)2 (74)

= 1
c2
EPEY |PEX|P

[
(δx,y/py − 1)2

]
(75)

=
1

c2
EPEY |P

PY (1− PY
PY

)2

+
∑
x 6=y

Px

 (76)

=
1

c2
EPEY |P

[
1− PY
PY

]
=

1

c2
EP [q − 1] (77)

=
q − 1

c2
. (78)

Proposition 8. Against the all-high attack, the op-
timal suspicion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =


(ac−1
y+1 − a

c−1
y )/(acy+1 − acy) if x < y

ac−1
y+1/(a

c
y+1 − acy) if x = y

0 if x > y.
(79)

In case of a match, it holds that

µ̃C =c

√√√√−1 + EP

[
q−1∑
y=0

A2c−1
y+1 − 2AcyA

c−1
y+1 +A2c−1

y

Acy+1 −Acy

]
.

(80)

Proof of Proposition 8.

fy|p = EM|p[fy|M ] (81)

= P[My > 0,My+1 = · · · = Mq−1 = 0] (82)

= P[My+1 = · · · = Mq−1 = 0] (83)

− P[My = · · · = Mq−1 = 0]

=
acy+1

|p|c −
acy
|p|c . (84)

T =
1

c

∂ ln(|p|cfy|p)

∂px

∣∣∣∣
|p|=1

(85)

=



ac−1
y+1 − ac−1

y

acy+1 − acy
if x < y

ac−1
y+1

acy+1 − acy
if x = y

0 if x > y.

(86)

E[T 2] = EPEY |PEX|P [T 2(X,Y,P )] (87)

= EPEY |P
[
PY T

2(Y, Y,P ) +AY T
2(0, Y,P )

]
(88)

= EP
q−1∑
y=0

[
Py

A
2(c−1)
y+1

Acy+1 −Acy
+Ay

(
Ac−1
y+1 −Ac−1

y

)2
Acy+1 −Acy

]
(89)

= EP
q−1∑
y=0

A2c−1
y+1 − 2AcyA

c−1
y+1 +A2c−1

y

Acy+1 −Acy
. (90)

We obtain (80) using µ̃C = c
√

Var[T ] = c
√

E[T 2]− 1.

Lemma 9. Let P be distributed according to the sym-
metric Dirichlet distribution without cutoff. The joint
distribution for the pair (Ay+1, Ay/Ay+1) is then given
by

J(ay+1,
ay
ay+1

) =
a
−1+(y+1)κ
y+1 (1− ay+1)−1+(q−y−1)κ

B([y + 1]κ, [q − y − 1]κ)
×

(ay/ay+1)−1+yκ(1− ay/ay+1)−1+κ

B(yκ, κ)
.

Proof of Lemma 9. We first derive the joint distribu-
tion J(ay, ay+1) for Ay and Ay+1:

J(ay, ay+1) = EP

[
δ

[
Ay −

y−1∑
i=0

Pi

]
δ

[
Ay+1 −

y∑
i=0

Pi

]]
(91)

∝
∫
|p|=1

dq−1p pκ−1δ

[
ay −

y−1∑
i=0

pi

]
δ

[
ay+1 −

y∑
i=0

pi

]
(92)

=

∫
dqp pκ−1δ

[
ay −

y−1∑
i=0

pi

]
δ

[
ay+1 −

y∑
i=0

pi

]
δ(1− |p|)

(93)

=

∫
dqp pκ−1δ

[
ay−

y−1∑
i=0

pi

]
δ

[
ay+1 +

q−1∑
i=y+1

pi − 1

]
δ(1− |p|).

(94)

Here δ(x) is the Dirac delta function. We perform the fol-
lowing change of variables: for i < y we define pi = aysi;



for i > y we define pi = (1− ay+1)ti. This yields dqp pκ−1=

dys dpydq−y−1t pκ−1
y ayκy s

κ−1(1− ay+1)[q−y−1]κtκ−1 and

δ(ay −
∑y−1
i=0 pi) = a−1

y δ(1− |s|), (95)

δ

[
ay+1 +

q−1∑
i=y+1

pi − 1

]
= (1− ay+1)−1δ(1− |t|), (96)

δ(1− |p|) = δ [1− py − ay|s| − (1− ay+1)|t| ] . (97)

The expression (94) becomes

J(ay, ay+1) =

∫
dys dpy dq−y−1t pκ−1

y ayκ−1
y sκ−1×

(1−ay+1)[q−y−1]κ−1tκ−1δ(1−|s|) δ(1−|t|) δ [py+ay−ay+1]
(98)

∝ ayκ−1
y (1− ay+1)[q−y−1]κ−1(ay+1 − ay)κ−1.

(99)

Finally we do a last change of variables from ay to z =
ay/ay+1. This gives day day+1 = ay+1 day+1 dz, and (99)
becomes

J(ay+1, z) ∝ a[y+1]κ−1
y+1 (1− ay+1)[q−y−1]κ−1zyκ−1(1− z)κ−1.

(100)
Inserting the normalization constants yields the result of the
lemma.

Proposition 10. Let fP be the symmetric Dirichlet
distribution without cutoff. If the attack is the all-high
attack and the defense matches it, then, for large c,

µ̃C = c1−κ
κΓ(qκ)ζ(1 + κ)

Γ([q − 1]κ)

[
1 +O(c−min(1,κ))

]
, (101)

where ζ is the Riemann zeta function.

Proof of Proposition 10. We write (80) as

µ̃2
C
c2

= −1+

q−1∑
y=0

EP [Ac−1
y+1

1− 2(Ay/Ay+1)c + (Ay/Ay+1)2c−1

1− (Ay/Ay+1)c
].

(102)
The fraction can be expanded as

1

1− (Ay/Ay+1)c
=

∞∑
t=0

(Ay/Ay+1)tc. (103)

Then we evaluate the expectation using the joint distribu-
tion J(ay+1,

ay
ay+1

) from Lemma 9. This yields

µ̃2
C
c2

= −1 +

q−1∑
y=0

B([y + 1]κ+ c− 1, [q − y − 1]κ)

B([y + 1]κ, [q − y − 1]κ)
×

[
1−

∞∑
t=1

B(yκ+ tc, κ)

B(yκ, κ)
+

∞∑
t=2

B(yκ+ tc− 1, κ)

B(yκ, κ)

]
(104)

noting that 1/B(yκ, κ) vanishes for y = 0. Further simplifi-
cation gives

µ̃2
C
c2

=
κΓ(qκ)

Γ(qκ+ c− 1)

[
q−2∑
y=0

Γ([y + 1]κ+ c− 1)

([y + 2]κ+ c− 1)Γ([y + 1]κ)

+

q−1∑
y=1

Γ([y + 1]κ+ c− 1)

Γ(yκ)

∞∑
t=2

Γ(yκ+ tc− 1)

Γ([y + 1]κ+ tc)

]
.(105)

Finally we use the identity Γ(c + a)/Γ(c + b) = ca−b[1 +
O(c−1)] to investigate the asymptotics. In the first sum-
mation over y the dominant term occurs at y = q − 2, thus
the summation can be simplified to c−κ−1[1+O(c−min(1,κ))]·
κΓ(qκ)/Γ([q−1]κ). Similarly, in the second summation over
y the dominant term occurs at y = q − 1 and thus this
summation reduces to c−κ−1[1 + O(c−min(1,κ))][ζ(1 + κ) −
1]κΓ(qκ)/Γ([q − 1]κ), where ζ is the Riemann zeta func-
tion.

Proposition 11. For the random-symbol attack we
find

|p|cfy|p =
acA − acA\{y}

q
+

∑
B(A: y∈B

acB − acB\{y}
|B|(|B|+ 1)

.

(106)

The optimal suspicion function is h = (T−1)/
√

Var[T ],
with

T (x, y,p) =
1

c

∂ ln(|p|cfy|p)

∂px

∣∣∣∣
|p|=1

= (107)

1

fy|p

1

q
+

∑
B(A: y∈B

ac−1
B

|B|(|B|+ 1)

 if x = y

1

fy|p

1− (1− py)c−1

q
+
∑
B(A
x,y∈B

ac−1
B − ac−1

B\{y}

|B|(|B|+ 1)

 if x 6= y

(108)

Proof of Proposition 11. For the random-symbol at-
tack, the probability fy|m that the symbol y is produced,
is 0 if my = 0. It is 1

q
if for all α ∈ A, mα > 0. It is

1
q−1

if my > 0 and there is exactly one symbol α1 ∈ A for

which mα1 = 0. It is 1
q−2

if my > 0 and there are exactly
two distinct symbols α1, α2 ∈ A for which mα1 = mα2 = 0,
etc. This can be written in additive form using indicator
functions:

fy|m = 1
q
1{my>0} (109)

+
(

1
q−1
− 1

q

)
1{my>0}1{∃α1:mα1=0}

+
(

1
q−2
− 1

q−1

)
1{my>0}1{∃α1:mα1

=0}1{∃α2 6=α1:mα2
=0}

+ · · ·+(
1− 1

2

)
1{my>0}1{∃α1:mα1

=0} · · ·1{∃αq−1 6=α1,...αq−2:mαq−1
=0}.

Note that

P[My > 0] = P[My ≥ 0]− P[My = 0] =
AcA −AcA\{y}

|p|c
(110)

and for each proper subset B ( A with y ∈ B, it holds that

P[∀β ∈ B,Mβ > 0] =
(
AcB −AcB\{y}

)
/|p|c. (111)

Since fy|p = EM|p[fy|M ], and for all sets V,W, it holds that



1V1W = 1V∩W , and E[1V ] = P[V], we find

|p|cfy|p =
acA − acA\{y}

q
(112)

+
∑

B(A: y∈B

(
1

|B| −
1

|B|+ 1

)(
acB − acB\{y}

)
.

which simplifies to equation 106.

Corollary 12. Against the all-1 attack, the optimal
suspicion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =


(1− pc−1

0 )/(1− pc0) if (x, y) = (0, 1)

1/(1− pc0) if (x, y) = (1, 1)

1/p0 if (x, y) = (0, 0)

0 if (x, y) = (1, 0).
(113)

In case of a match it holds that

µ̃C = c

√
EP [P c−1

0 (1− P0)/(1− P c0 )]. (114)

Proof of Corollary 12. T follows directly from Propo-
sition 8. Furthermore, equation (80) gives

Var[T ] = −1 + EP
[
P c−1
0 +

1− 2P c0 + P 2c−1
0

1− P c0

]
(115)

= EP
[
P c−1
0 +

P 2c−1
0 − P c0
1− P c0

]
= EP

[
P c0 (1− P0)

P0(1− P c0 )

]
.

(116)

Proposition 14. Against the coin-flip attack, the
optimal suspicion function is h = (T − 1)/

√
Var[T ],

with

T (x, y,p) =

{
(1 + pc−1

y )/(1 + pcy − pc1−y) if x = y

(1− pc−1
1−y)/(1 + pcy − pc1−y) if x 6= y.

(117)

Proof of Proposition 14.

fy|m = 1
2
(1− δmy,0 + δmy,c). (118)

fy|p = EM|p[fy|M ] (119)

=
1

2|p|c
c∑

my=0

(
c

my

)
p
my
y p

c−my
1−y (1− δmy,0 + δmy,c) (120)

=
1

2|p|c [(py + p1−y)c − pc1−y + pcy]. (121)

∂(|p|cfy|p)

∂px
= 1

2
c[(py + p1−y)c−1 − (1− δx,y)pc−1

1−y + δx,yp
c−1
y ]

(122)

T =
1− (1− δx,y)pc−1

1−y + δx,yp
c−1
y

1− pc1−y + pcy
. (123)

Lemma 15. Each optimal suspicion function (see
Theorem 1) is strongly centered. So is the symmetric
Tardos function.

Proof of Lemma 15. This follows directly from equa-
tion (54).

Lemma 16. If the tracer uses the symmetric Tardos
suspicion function, then

µ̃C = c EPEY |P

[
PY

(√
1− PY
PY

−
√

PY
1− PY

)
T (Y, Y,P )

−
√

PY
1− PY

]
. (124)

Proof of Lemma 16. See equation 3. Since, for fixed y,
h(x, y,p) is the same for all x 6= y, we find

µ̃C = c · E[T · h] (125)

= c EPEY |P

[
PY

√
1− PY
PY

T (Y, Y,P ) (126)

−
√

PY
1− PY

∑
x 6=Y

PxT (X,Y,P )


= c EPEY |P

[
PY

(√
1− PY
PY

−
√

PY
1− PY

)
T (Y, Y,P )

(127)

−
√

PY
1− PY

]

Proposition 17. If the tracer uses the symmetric
Tardos suspicion function and the coalition uses the in-
terleaving attack, then µ̃C =

∑
y∈A EP [

√
Py(1− Py)].

When P has a symmetric Dirichlet distribution with
concentration parameter κ = 1

q
and no cutoff is used,

µ̃C =


2
π

for q = 2
1
2
(q − 2) tan(π

q
) for q > 2

π
2

as q →∞
(128)

Proof of Theorem 17. When q = 2 and p1 follows the
arcsine distribution on [δ, 1−δ] with probability density func-
tion (2) then

µ̃C = 2 · Ep

√
p1(1− p1) =

1− 2δ

arcsin(1− 2δ)
. (129)

For δ = 0 we find µ̃C = 2
π

.
Since the marginal distribution of the symmetric Dirichlet

distribution is the Beta distribution with parameters κ and



(q − 1)κ, we find:

µ̃C =

q∑
y=1

Ep

√
py(1− py) (130)

=

q∑
y=1

1

B(κ, (q − 1)κ)

∫ 1

0

p
κ+

1
2
−1

y (1− py)(q−1)κ+
1
2
−1dpy

(131)

= q
B(κ+ 1

2
, (q − 1)κ+ 1

2
)

B(κ, (q − 1)κ)
(132)

= q
Γ(κ+ 1

2
)Γ[(q − 1)κ+ 1

2
]Γ(κq)

Γ(qκ+ 1)Γ(κ)Γ[(q − 1)κ]
(133)

=
1

κ
·

Γ(κ+ 1
2
)Γ[(q − 1)κ+ 1

2
]

Γ(κ)Γ[(q − 1)κ]
. (134)

Now we set κ = 1
q
. Using Euler’s reflection formula Γ(z)Γ(1−

z) = π
sin(πz)

, we find

µ̃C = q ·
sin(π

q
)

π
· Γ( 1

q
+ 1

2
)Γ[1− 1

q
+ 1

2
] (135)

= q ·
sin(π

q
)

π
· ( 1
q
− 1

2
) · Γ( 1

q
− 1

2
)Γ[1− 1

q
+ 1

2
] (136)

= (1− q
2
) ·

sin(π
q

)

sin[( 1
q
− 1

2
)π]

= 1
2
(q − 2) tan(π

q
). (137)

Lemma 21. If the tracer uses the interleaving de-
fense, then, no matter what attack is used,

µ̃C =
c√
q − 1

(
−1 + EPEY |P [T (Y, Y,P )]

)
(138)

and

σ̃2
inn =

1

q − 1

(
−1 + EPEY |P

[
1

PY

])
. (139)

where T belongs to the attack.

Proof of Lemma 21. Using the interleaving defense from
(71), we find

µ̃C = E[T ·h] =
c√
q − 1

(
E
[
T (X,Y,P )

δX,Y
PY

]
− 1

)
(140)

h2(x, y,p) =
1

q − 1

(
δx,y
py

(
1

py
− 2

)
+ 1

)
. (141)

σ̃2
inn = E[h2] (142)

=
1

q − 1

(
1 + EPEY |P

[
1

PY
− 2

])
. (143)

Proposition 22. If the tracer uses the interleaving
defense, but the coalition uses the all-high attack, then

µ̃C =
c√
q − 1

q−2∑
y=0

EP
[
Ac−1
y+1

]
, and (144)

σ̃2
inn =

1

q − 1

(
−1 +

q−1∑
y=0

EP
[
Acy+1 −Acy

Py

])
. (145)

Proof of Proposition 22.

EPEY |P [T (Y, Y,P )] =

q−1∑
y=0

EP
[
Ac−1
y+1

]
=

q−2∑
y=0

EP
[
Ac−1
y+1

]
+ 1.

(146)

EPEY |P
[

1

PY

]
=

q−1∑
y=0

EP
[
Acy+1 −Acy

Py

]
. (147)

Proposition 23. Let fP be the symmetric Dirichlet
distribution with cutoff δ = 0. If the tracer uses the
interleaving defense, but the colluders use the all-high
attack, then

µ̃C =
Γ(qκ)

Γ([q − 1]κ)

c1−κ√
q − 1

[1 +O(1/c)]. (148)

Proof of Proposition 23. Lemma 21 gives
µ̃C = c√

q−1
(EPEY |P [T (Y, Y,P )] − 1). Next, using Proposi-

tion 8 we get µ̃C = c√
q−1

[−1 +
∑q−1
y=0 EPA

c−1
y ] which can

be simplified to µ̃C = c√
q−1

∑q−2
y=0 EPA

c−1
y . The easiest

way to evaluate the expectation is by using the marginal
distribution of Ay, which is given by M(ay) = ayκ−1

y (1 −
ay)[q−y]κ−1/B(yκ, [q − y]κ). (See derivation at the end of
this proof.) This yields

µ̃C =
c√
q − 1

q−2∑
y=0

B([q − 1− y]κ, [y + 1]κ+ c− 1)

B([q − 1− y]κ, [y + 1]κ)

=
c√
q − 1

q−1∑
b=1

Γ(qκ)Γ(c− 1 + bκ)

Γ(bκ)Γ(c− 1 + qκ)
. (149)

Next we use the property Γ(x + α)/Γ(x + β) = xα−β [1 +
O(1/x)] which holds if x� 1, a, b� x, and a, b independent
of x. (See e.g. Lemma 7 in [16].) This gives

µ̃C =
c√
q − 1

q−1∑
b=1

Γ(qκ)

Γ(bκ)
c(b−q)κ[1 +O(

1

c
)]. (150)

The dominant term is b = q−1, yielding (148). The smaller
b values in the sum are terms of relative order 1/c or smaller.

Finally we derive the marginal distribution M(ay). We
compute M(ay) = EP δ(ay −

∑y−1
α=0 pα),

M(ay) =

∫ 1

0

dqp δ(1− |p|) pκ−1

B(κ1q)
δ(ay −

y−1∑
α=0

pα), (151)



where 1q is a vector consisting of q ones and B is the gener-
alized Beta function. We do the following change of integra-
tion variables: for α < y we write pα = aytα and for α ≥ y
we write pα = (1 − ay)sα. This gives δ(ay −

∑y−1
α=0 pα) =

a−1
y δ(1 − |t|) and δ(1 − |p|) = (1 − ay)−1δ(1 − |s|). Fur-

thermore, dqp pκ−1 = dytdq−ys ayκy (1 − ay)[q−y]κtκ−1sκ−1.
Substitution into (151) gives

M(ay) =
ayκ−1
y (1− ay)[q−y]κ−1

B(κ1q)
[

∫ 1

0

dytδ(1− |t|)tκ−1]

·[
∫ 1

0

dq−ysδ(1− |s|)sκ−1] (152)

=
ayκ−1
y (1− ay)[q−y]κ−1

B(κ1q)
B(κ1y)B(κ1q−y).(153)

Simplification of the Beta functions gives the density M(ay)
as listed earlier in this proof.

Corollary 24. For q = 2, if the tracer uses the
interleaving defense, but the coalition uses the all-1
attack, then µ̃C = c EP

[
P c−1
0

]
and σ̃2

inn = −1 +

EP
[
P c−1
0 +

1−Pc0
P1

]
.

Proof of Corollary 24. A1 = P0 and A2 = P0+P1 =
1.

Proposition 25. For q = 2, if the tracer uses the
interleaving defense, but the coalition uses the random
coin-flip attack, then

µ̃C = 1
2
c EP

[
P c−1
0 + P c−1

1

]
and (154)

σ̃2
inn = −1 + EP

[
1 + P c0 − P c1

2P0
+

1 + P c1 − P c0
2P1

]
.

(155)

Proof of Proposition 25.

EPEY |P [T (Y, Y,P )] = 1
2

∑
y∈A

EP [1 + pc−1
y ] (156)

= 1 + 1
2
EP [pc−1

0 + pc−1
1 ]. (157)

EPEY |P
[

1

PY

]
= 1

2

∑
y∈A

EP
1 + pcy − pc1−y

Py
. (158)

Proposition 26. Let q = 2 and fP be the symmetric
Dirichlet distribution with parameter κ = 1

2
without cut-

off. If the tracer uses the interleaving defense and the
coalition uses either the all-1 or the random coin-flip
attack, then

µ̃C = c ·B(κ, κ+ c− 1)/B(κ, κ) and (159)

σ̃2
inn = −1 +

c

1− κ
Γ(2κ)

Γ(κ)

Γ(c+ κ− 1)

Γ(c+ 2κ− 1)
+

1− 2κ

1− κ .

(160)

For large c these behave as µ̃C ∝ c1−κ and σ̃2
inn ∝ c1−κ.

Proof of Proposition 26. In the case of the coin-flip
attack we have

µ̃C = 1
2
cEP [P c−1

0 + P c−1
1 ] = cEP [P c−1

0 ] (161)

= cB(κ, κ+ c− 1)/B(κ, κ) (162)

since fP is symbol-symmetric.
Also, fy|p = 1

2
+ 1

2
pcy − 1

2
(1− py)c. When the interleaving

suspicion function is used, equation (139) tells us that σ̃2
inn =

−1 + E[1/PY ]. We have

E
[

1

PY

]
=

∑
y∈{0,1}

EP
[
fy|P
Py

]
(163)

=
1

2

∑
y∈{0,1}

EP
[

1

Py
+ P c−1

y − (1− Py)c

Py

]
(164)

= EP
[

1

Py
+ P c−1

y − (1− Py)c

Py

]
(165)

=
B(κ−1, κ) +B(c+κ−1, κ)−B(κ−1, c+κ)

B(κ, κ)
.

(166)

In the third line we used the fact that fP is symbol-symmetric.
Re-expressing the Beta functions in terms of Gamma func-
tions, followed by some simplification, yields

E
[

1

PY

]
=

c

1− κ
Γ(2κ)

Γ(κ)

Γ(c+ κ− 1)

Γ(c+ 2κ− 1)
+

1− 2κ

1− κ . (167)

Due to the symbol symmetry of fP , the derivations for the
all-1 attack are the same.

Lemma 27. If the tracer uses a strongly centered
score function and the coalition uses the interleaving at-
tack, then

µ̃C =
∑
y∈A

EP [Py h(y, y,P )]. (168)

Proof of Lemma 27. For the interleaving attack, cT =
δx,y
py

+ c− 1, so

µ̃C = cE[T · h] (169)

= EPEY |PEX|P
[(

δX,Y
PY

+ c− 1

)
h(X,Y,P )

]
(170)

= EPEY |PEX|P
[
δX,Y
PY

h(X,Y,P )

]
(171)

= EPEY |P [h(Y, Y,P )]. (172)

where (172) holds since E[h] = 0.


