
Keep Calm and Stay with One (and p > 3)

Armando Faz-Hernández1, Patrick Longa2, and Ana H. Sánchez1

1 Computer Science Department, CINVESTAV-IPN, México
{armfaz,asanchez}@computacion.cs.cinvestav.mx

2 Microsoft Research,
One Microsoft Way, Redmond, WA 98052, USA

plonga@microsoft.com

Abstract. We demonstrate the high-speed computation of core elliptic curve operations with full
protection against timing-type side-channel attacks. We use a state-of-the-art GLV-GLS curve in twisted
Edwards form defined over a quadratic extension field of large prime characteristic, which supports a
four dimensional decomposition of the scalar. We present highly optimized algorithms and formulas
for speeding up the different arithmetic layers, including techniques especially suitable for high-speed,
side-channel protected computation on GLV-based implementations. Analysis and performance results
are reported for modern x64 and ARM processors. For instance, on an Intel Ivy Bridge processor we
compute a variable-base scalar multiplication in 94,000 cycles, a fixed-base scalar multiplication in
53,000 cycles using a table of 6KB, and a double scalar multiplication in 118,000 cycles using a table
of 3KB. Similarly, on an ARM Cortex-A15 processor we compute a variable-base scalar multiplication
in 244,000 cycles, a fixed-base scalar multiplication in 116,000 cycles (table of 6KB), and a double
scalar multiplication in 285,000 cycles (table of 3KB). All these numbers and the proposed techniques
represent a significant improvement of the state-of-the-art performance of elliptic curve computations.
Most remarkably, our optimizations allow us to reduce the cost of adding protection against timing
attacks in the computation of variable-base scalar multiplication to around or below 10%.

Keywords. Elliptic curves, scalar multiplication, GLV-GLS curves, twisted Edwards form, side-channel
protection, prime fields.

1 Introduction

Given points P and Q on an elliptic curve subgroup of prime order r and integers k, l ∈ [1, r − 1], there are
three core scalar multiplication variants that are the basis of most elliptic curve-based protocols: kP with
P not known in advance (variable-base scenario), kP with P known in advance (fixed-base scenario), and
kP + lQ with P not known in advance and Q known in advance (variable/fixed-base double scalar scenario).

Based on work by Gallant-Lambert-Vanstone [11] and Galbraith-Lin-Scott [10], Longa and Sica proposed
in ASIACRYPT 2012 [20] a new family of curves, known as GLV-GLS, which are defined over a quadratic
extension field and enable a four-dimensional decomposition of the scalar. They also showed how to model
the curves in the efficient twisted Edwards form [3] to improve performance even further. The results in [20]
set new speed records in the computation of scalar multiplication on x64 processors, specifically in the
representative variable-base scenario and for two cases: when protection against timing-type side channel
attacks is required and when it is not.

In this work, we push the envelope further and show how to compute core curve operations very efficiently
using GLV-GLS curves in twisted Edwards form on x64 and ARM processors for all the fundamental scenarios
above and including full protection against timing attacks [15, 6, 2, 24]. Moreover, our scalar multiplication
algorithms exhibit regular execution, providing a first layer of protection against certain simple side-channel
analysis (SSCA) attacks such as simple power analysis (SPA) [16]. We have not included yet countermeasures
against other sophisticated attacks such as differential power analysis (DPA). To showcase the efficiency of
our techniques, we specifically target a 251-bit prime order subgroup on an efficient GLV-GLS twisted
Edwards curve over Fp2 , where p is the pseudo-Mersenne prime 2127−5997, which was proposed in [20]. This
curve is referred to as Ted127-glv4.

1

2 A. Faz-Hernández, P. Longa, A.H. Sánchez

Our main contributions can be summarized as follows:

– We revisit the comb method by Feng et al. [7], which was originally intended for the fixed-base scenario,
and present an optimized variant intended for GLV-based variable-base scalar multiplication that is based
on a modified representation that we refer to as GLV-based LSB-set. The new method is shown to be
superior to the best methods for computing side-channel protected variable-base scalar multiplication.

– We propose the technique of interleaving ARM and NEON-based field operations to speed up the curve
arithmetic on modern ARM processors. We demonstrate the efficacy of new algorithms based on this
approach on the underlying quadratic extension field layer of curve Ted127-glv4.

– We present efficient algorithms for implementing field and quadratic extension field operations target-
ing our 127-bit pseudo-Mersenne prime on x64 and ARM platforms. We combine and exploit in novel
ways incomplete reduction [27] and lazy reduction [26], expanding techniques by [19]. These optimized
operations are then applied to state-of-the-art formulas in the twisted Edwards model [3, 14] to speed up
computations in the setting of curves over Fp2 .

– We present benchmark results for curve Ted127-glv4 for all three core computations covering fixed-base,
variable-base and double scalar multiplication on x64 and ARM processors. Remarkably, we show that
the improved algorithms and formulas dramatically reduce the cost of adding protection against timing
attacks and set new speed records for protected software for all three core operations.

For instance, a protected variable-based elliptic curve scalar multiplication on curve Ted127-glv4 runs in
98,000 cycles on an Intel Sandy Bridge machine. This is 28% faster than the state-of-the-art implementation
by [20] that computes the same operation in 137,000 cycles. Most notoriously, this is only 7% slower than the
state-of-the-art unprotected computation by the same authors, which runs in 91,000 cycles. This result not
only represents a new speed record for protected software but also marks the first time that a constant-time
computation of variable-base scalar multiplication is performed under 100K cycles on an Intel processor.
Similar results are obtained for fixed-base and double scalar multiplication, and for ARM processors using
the NEON vector engine (see Section 6 for full details).

We remark that, although one of the objectives of this paper is to achieve the highest speed in protected
computations on curve Ted127-glv4, many optimized techniques and algorithms have broader applicability.
For example, algorithms in Section 3 can be used to speed up GLV-based implementations in general,
including the recent genus 2 implementations using the GLV method by Bos et al. [5] and the implementation
of a GLV-based binary GLS curve by Oliveira et al. [23].

This paper is organized as follows. In Section 2, we describe curve Ted127-glv4. In Section 3, we present
the optimized algorithms for side-channel protected variable-base, fixed-base and variable/fixed-base double
scalar multiplication. We describe our optimized algorithms for field and extension field operations targeting
x64 and ARM platforms in Section 4, and our optimized formulas for twisted Edwards point operations
over Fp2 in Section 5. Finally, in Section 6, we perform an analysis of the different methods and present
benchmark results of the core scalar multiplication scenarios on the targeted x64 and ARM processors.

2 The Curve

For complete details about the GLS method and the 4-dimensional GLV method using GLV-GLS curves,
the reader is referred to [9] and [21], respectively.

In our implementations, we use the following GLV-GLS curve in twisted Edwards form [20], referred to
as Ted127-glv4:

E′TE/Fp2 : −x2 + y2 = 1 + dx2y2, (1)

where Fp2 is defined as Fp[i]/(i2 − β), β = −1 is a quadratic non-residue in Fp and u = 1 + i is a
quadratic non-residue in Fp2 . Also, p = 2127 − 5997, d = 170141183460469231731687303715884099728 +
116829086847165810221872975542241037773i and #E′TE(Fp2) = 8r, where r is the 251-bit prime 2251 −
255108063403607336678531921577909824432295. E′TE is isomorphic to the Weierstrass curve E′W /Fp2 :
y2 = x3 − 15/2 u2x − 7u3, which is the quadratic twist of a curve isomorphic to the GLV curve

Keep Calm and Stay with One (and p > 3) 3

EW /Fp : y2 = 4x3 − 30x − 28 (see [20, Section 5]). E′TE/Fp2 is equipped with two efficiently computable
endomorphisms Φ and Ψ defined over Fp2 , which enable a four-dimensional decomposition for any scalar
k ∈ [1, r− 1] in the subgroup generated by a point P of order r and, consequently, enable a four-dimensional
scalar multiplication given by

kP = k1P + k2Φ(P) + k3Ψ(P) + k4ΨΦ(P), with max
i

(|ki|) < C r1/4

for some explicit C > 0 [20].
Let ζ8 = u/

√
−2a′, where a′ = 27u3(

√
2
2 − 1), be a primitive 8th root of unity. The affine formulas for

Φ(x, y) and Ψ(x, y) are given by

Φ(x, y) =

(
− (ζ38 + 2ζ28 + ζ8)xy2 + (ζ38 − 2ζ28 + ζ8)x

2y
,

(ζ28 − 1)y2 + 2ζ38 − ζ28 + 1

(2ζ38 + ζ28 − 1)y2 − ζ28 + 1

)
and

Ψ(x, y) =

(
ζ8x

p,
1

yp

)
,

respectively. It can be verified that Φ2 + 2 = 0 and Ψ2 + 1 = 0. The formulas in homogeneous projective
coordinates can be found in Appendix A.

Note that curve Ted127-glv4 has a = −1 (in the twisted Edwards equation; [3]), corresponding to the
most efficient set of formulas proposed by Hisil et al. [14]. Although GLV-GLS curves with suitably chosen
parameters when transformed to twisted Edwards form offer roughly the same performance, as discussed
in [20], there are certain differences in the cost of formulas for computing the endomorphisms Φ and Ψ .
Curve Ted127-glv4 exhibits relatively efficient formulas for computing the endomorphisms in comparison
with other GLV-GLS curves presented in [20]. On the other hand, our selection of the pseudo-Mersenne prime
p = 2127− 5997 enables efficient field arithmetic by exploiting lazy and incomplete reduction techniques (see
Section 4 for full details). Also, since p ≡ 3 (mod 4), −1 is a quadratic non-residue in Fp, which minimizes
the cost of multiplication over Fp2 by transforming multiplications by β to inexpensive subtractions.

3 Scalar Arithmetic

In this section, we introduce an efficient algorithm for computing side-channel protected variable-base scalar
multiplication in the GLV setting. We also detail the chosen algorithms and our optimizations for the fixed-
base and double scalar scenario. The methods for variable and fixed bases are based on the clever signed
representations by Feng et al. [7] and Hedabou et al. [13], in combination with Lim-Lee’s comb method. The
reader is referred to [17] for complete details on the original comb technique.

3.1 Variable-Base Scalar Multiplication

Let t be the bitlength of a given scalar k. Assume that k is partitioned in w consecutive parts of d =
dt/we bits each, padding k with (dw − t) zeros to the left. Let the updated binary representation of k be
(kl−1, kl−2, . . . , k0), where l = dw. Feng et al. [7] proposed a signed representation based on the equivalence
1 ≡ 11̄ . . . 1̄. Feng et al.’s representation, called least significant bit-set (LSB-set), consists of first applying
such transformation to the least significant part of d bits in the scalar and, then, every remaining bit ki
is converted in such a way that output digits bi for d ≤ i ≤ (l − 1) be in the digit set {0, bi mod d}. This
representation is then used in a comb-style execution for computing kP , when P is known in advance. The
method offers a first layer of protection against certain SSCA attacks such as SPA since every “digit-column”
is nonzero.

In the following, we adapt the fixed-base LSB-set comb method to the computation of side-channel
protected variable-base scalar multiplication in the GLV setting. First, we propose a variant of the LSB-set
representation for this scenario that we call GLV-based LSB-set. In this representation, the first sub-scalar

4 A. Faz-Hernández, P. Longa, A.H. Sánchez

is recoded to nonzero digits b0i using the equivalence 1 ≡ 11̄ . . . 1̄. Remaining sub-scalars are then recoded
in such a way that output digits at position i are in the set {0, b0i }, i.e., nonzero digits at the same relative
position share the sign. An algorithm to obtain this representation is shown as Algorithm 1. Note also that,
in contrast to [7, Alg. 4] and [8, Alg. 2], our recoding is simpler and exhibits a regular and constant time
execution, making the algorithm resilient to timing attacks.

Algorithm 1 Protected Recoding with Fixed Length for the GLV-based LSB-Set Representation.
Input: m l-bit integers kj = (kjl−1, . . . , k

j
0)2 for 0 ≤ j < m, where k0 is odd and l = dr/me+ 1.

Output: kj = (bjl−1, . . . , b
j
0)LSB-set for 0 ≤ j < m, where b0i ∈ {1,−1}, and bji ∈ {0, b

0
i } for 1 ≤ j < m.

1: b0l−1 = 1
2: for i = 0 to (l − 2) do
3: b0i = 2k0i+1 − 1
4: for j = 0 to (m− 1) do
5: for i = 0 to (l − 1) do
6: bji = b0i · kj0
7: kj = bkj/2c − bbji/2c
8: return (bjl−1, . . . , b

j
0)LSB-set for 0 ≤ j < m.

The analysis of the correctness of Algorithm 1 follows. First, note that for our recoding to work in the
GLV setting with dimension m, each sub-scalar needs to be padded with zeros to the left until reaching the
bitlength l, where l = dr/me+ 1 and r is the order of the elliptic curve subgroup. Since the sub-scalar k0 is
odd, converting all bit sequences 00 . . . 01 to 11̄ . . . 1̄1̄ produces a signed nonzero representation with digits
in the set {1,−1}, without changing the original value. Given a sequence 00 . . . 01 of b bits, the recoding is
equivalent to set the (b − 1)-th bit of the output to 1 and then set to 1̄ the i-th position of the output per
each 0 in the (i+1)-th position of the input, for 0 ≤ i < b−1. Observe that this transformation is equivalent
to set b0l−1 = 1 and compute b0i = 2k0i+1−1 for 0 ≤ i < l−1 (Steps 1-3). Now, we analyze k1 (the explanation
easily extends to other sub-scalars). In this case, we want b1i ∈ {0, b0i }. One can proceed by scanning bit by
bit from right to left, dividing by two every time. There are three possible cases to analyze. If k10 = 0 in
any given iteration i, the original value remains unchanged by outputting b1i = b0i · k10 = 0. If k10 = 1 and
b0i = 1 in any given iteration i, the original value remains unchanged by outputting b1i = b0i · k10 = 1. Finally,
if k10 = 1 and b0i = −1 in any given iteration i, the original value remains unchanged by replacing 1 by 11̄.
This is accomplished by outputting b1i = b0i · k10 = −1 and adding 1 to the remaining value of the sub-scalar,
i.e., performing k1 = bk1/2c+ 1 at Step 7. Note that only in this last case there is a carry that increases the
intermediate value of k1, converting to 0 subsequent bits 1 until the first 0 is hit. By definition the MSB of
k1 is 0, so if there is a carry bit in the (l− 2)-th iteration (i.e., k10 becomes 1 in the last iteration) the output
digit at iteration (l − 1) would be b1l−1 = b0l−1 · k10 = 1 · 1 = 1, otherwise, it would be 0.

We highlight that Algorithm 1 can be implemented very efficiently by exploiting the fact that the only
purpose of the recoded digits from the first sub-scalar is to determine the sign of their corresponding digit-
columns (see details of Alg. 2 below). Since k0i+1 = 0 and k0i+1 = 1 indicate that the corresponding output
digit-column i will be negative and positive, respectively, Step 3 of Algorithm 1 can be reduced to b0i = k0i+1

by assuming the convention b0i = 0 to indicate negative and b0i = 1 to indicate positive, for 0 ≤ i < l.
Following this convention, further efficient simplifications are possible for Steps 6 and 7.

We now present Algorithm 2 for computing variable-base scalar multiplication with the GLV method. The
basic idea is to arrange the sub-scalars in matrix form, with sub-scalar k0 in the least significant row, and then
run a simultaneous multi-scalar execution scanning digit-columns from left to right. By using the GLV-based
LSB-set representation, every digit-column i would be nonzero and have any of the possible combinations
[bm−1i , . . . , b2i , b

1
i , b

0
i], where b

0
i ∈ {1,−1}, and bji ∈ {0, b0i } for 1 ≤ j < m. Since digits in the same column

have the same sign, one only needs to precompute all the positive combinations P0 +u1P1 + . . .+um−1Pm−1
with uj ∈ {0, 1}, where Pj are the base points of the sub-scalars, and to leave the computation of the negative
values to the evaluation stage. The cost of Alg. 2 is given by (l − 1) doublings and l additions during the
evaluation stage using 2m−1 points, where l = d rme+ 1. Naively, precomputation costs 2m−1 − 1 additions.

Keep Calm and Stay with One (and p > 3) 5

So the total cost is given by (l − 1) doublings and (l + 2m−1 − 1) additions. Compare this cost with the
method presented in [20] based on a regular windowed recoding that requires m · (l − 1)/(w − 1) doublings
and m · (l− 1)/(w− 1) + 2m− 1 additions during the evaluation stage and m doublings with m · (2w−2 − 1)
additions for precomputation usingm·(2w−2+1) points (naive approach without exploiting endomorphisms).
If, for example, m = 4 and w = 5, the new method costs (l − 1) doublings and (l + 7) additions using 8
points, whereas the windowed method costs (l + 3) doublings and (l + 34) additions using 36 points. Thus,
the new method improves performance while reduces dramatically the number of required precomputations.

Algorithm 2 Protected m-GLV Variable-Base Scalar Multiplication using the GLV-Based LSB-Set Repre-
sentation.
Input: Base point P0 of order r and (m−1) points Pj for 1 ≤ j < m corresponding to the endomorphisms, m scalars
kj = (kjtj−1, . . . , k

j
0)2 for 0 ≤ j < m, l = d r

m
e+ 1 and max(tj) = d r

m
e.

Output: kP .

Precomputation stage:
1: Compute P [u] = P0 + u0P1 + . . .+ um−2Pm−1 for all 0 ≤ u < 2m−1, where u = (um−2, . . . , u0)2.
Recoding stage:
2: even = k0 mod 2
3: if even = 0 then k0 = k0 − 1
4: Pad each kj with (l − tj) zeros to the left for 0 ≤ j < m and convert them to the GLV-based LSB-
set representation using Algorithm 1 s.t. kj = (bjl−1, . . . , b

j
0)LSB-set. Set digit-columns Ki = [bm−1

i , . . . , b2i , b
1
i] ≡

|bm−1
i 2m−2 + . . .+ b2i 2 + b1i | and digit-column signs si = b0i for 0 ≤ i ≤ l − 1.

Evaluation stage:
5: Q = sl−1P [Kl−1]
6: for i = l − 2 to 0 do
7: Q = 2Q
8: Q = Q+ siP [Ki]
9: if even = 0 then Q = Q+ P0

10: return Q

Since our recoding algorithm requires that the first sub-scalar k0 be odd, in Step 3 of Algorithm 2 k0 is
subtracted by one if it is even. The correction is then performed at the end of the evaluation stage at Step
9. These computations, as well as the accesses to the precomputed table, should be performed in constant
time to guarantee protection against timing attacks. For example, to perform Step 9 in our implementation
we always carry out the computation Q′ = Q − P0. Then, we perform a linear pass over the points Q and
Q′ using conditional move instructions to transfer the correct value to the final destination.

Note that Algorithm 2 assumes a decomposed scalar as input. This is sufficient in some settings, in which
randomly generated sub-scalars could be provided. However, in others settings, one requires to calculate the
sub-scalars in a decomposition phase. This can be accomplished by using the lattice reduction described in [20]
together with a standard decomposition based on Babai’s rounding method. In practice, the computation
is inexpensive since most operations can be performed offline. An additional issue is that some sub-scalars
obtained from the decomposition can be negative. In this case, to work with Algorithm 1 and 2, negative
sub-scalars should be converted to positive with the corresponding base point negated.

3.2 Fixed-Base Scalar Multiplication

Consider the same set up as at the beginning of §3.1. Similar to Feng et al. [7], Hedabou et al. [13] proposed
the use of a signed odd-only representation with digits {1,−1} by converting 1 to 11̄ . . . 1̄. The main difference
is that Hedabou et al.’s representation, referred to as signed all-bit-set (SAB-set), uses the transformation
above to convert the whole scalar k to digits {1,−1}. As in [7], this representation is used in a comb-
style execution for computing kP , when P is known in advance. The method is also resistant to SPA
attacks since every “digit-column” is nonzero. In this case, the method requires to precompute all points
(bw−12(w−1)d + . . .+ b12d + b0)P for all (bw−1, . . . , b1, b0) ∈ {1,−1}w. An important observation is that both

6 A. Faz-Hernández, P. Longa, A.H. Sánchez

Feng et al. and Hedabou et al. used a simple version of the Lim-Lee’s comb method that is restricted to
only one table (see [17] for more details). Recently, Hamburg [12] precisely proposed to combine the original
multi-table Lim-Lee’s comb approach with Hedabou et al.’s SAB-set representation. In this work, we exploit
this optimized approach to compute fixed-base scalar multiplication. The full details are next.

First, we propose an alternative odd-only recoding algorithm to obtain the SAB-set representation that is
simple and runs in constant time, making it resilient to timing attacks. The details are shown in Algorithm 3.
Note that the recoding can be implemented very efficiently using, for example, the computation bi = (ki+1−
1) | 1, where | represents a logical OR operation.

Algorithm 3 Protected Odd-Only Recoding for the SAB-Set Representation.
Input: An odd positive integer k = (kl−1, . . . , k0)2.
Output: k = (bl−1, . . . , b0)SAB-set, where bi ∈ {1,−1} for 0 ≤ i ≤ l − 1.

1: bl−1 = 1
2: for i = 0 to (l − 2) do
3: bi = 2ki+1 − 1
4: return (bl−1, . . . , b0)SAB-set

Now we give the full algorithm (shown as Algorithm 4) for computing fixed-base scalar multiplication
using the SAB-set representation, since this is not presented in [12]. Note that for dealing with an even scalar,
we take advantage that our setting works on a subgroup of prime order r. Hence, −k (mod r) = r− k gives
an odd result. When computing fixed-base scalar multiplication, precomputation is assumed to be performed
offline. Hence, the method requires e− 1 = ddv e− 1 = d l

w·v e− 1 doublings and ev− 1 = vd l
w·v e− 1 additions,

using v ·2w−1 precomputed points. The main loop of Algorithm 4 computes kP using the regular pattern one
doubling, v additions, . . . , one doubling, v additions and, hence, it provides the first step to protect against
timing and SPA attacks. Moreover, the recoding, via Algorithm 3, is also protected. Similar to Alg. 2, to
be fully resistant, conditional statements (e.g., Steps 3 and 9) and table accesses should also be carried out
securely and in constant time.

Algorithm 4 Protected Fixed-Base Scalar Multiplication using the SAB-Set Comb Method.
Input: A point P ∈ E(Fq) of prime order r, a scalar k = (kt−1, . . . , k0)2 ∈ [1, r − 1], window width w ≥ 2, table
parameter v ≥ 1, d = dt/we and e = dd/ve.
Output: kP .

Precomputation stage:
1: Compute P [(u−1)/2][v′] = 2ev

′
(u0+u12

d+ . . .+uw−12
(w−1)d)P for all u ∈ {1, 3, 5, . . . , 2w−1} and 0 ≤ v′ < v,

where u = (uw−1, . . . , u0)SAB-set.
Recoding stage:
2: odd = k mod 2
3: if odd = 0 then k = r − k
4: Pad k with (dw − t) zeros to the left and convert it to the SAB-set representation using Algorithm 3 s.t. k =

(bl−1, . . . , b0)SAB-set, where l = dw. Set k = Kw−1 || . . . || K1 || K0, where each Kw′
consists of v strings of e digits

each. Let the v′-th string in a given Kw′
be denoted by Kw′

v′ , and the e′-th digit in a given Kw′

v′ be denoted by Kw′
v′,e′ ,

s.t. Kw′
v′,e′ = bdw′+ev′+e′ . Set digit-columns Kv′,e′ = [Kw−1

v′,e′ , . . . ,K
1
v′,e′ ,K

0
v′,e′] ≡ |Kw−1

v′,e′ 2
w−1+. . .+K1

v′,e′2+K
0
v′,e′ |,

and digit-column signs sv′,e′ s.t. sv′,e′ = 1 if Kw−1
v′,e′ 2

w−1 + . . .+K1
v′,e′2 +K0

v′,e′ ≥ 0, else sv′,e′ = −1.
Evaluation stage:
5: Q = s0,e−1P [(K0,e−1 − 1)/2][0] + s1,e−1P [(K1,e−1 − 1)/2][1] + . . .+ sv−1,e−1P [(Kv−1,e−1 − 1)/2][v − 1]
6: for i = e− 2 to 0 do
7: Q = 2Q
8: Q = Q+ s0,iP [(K0,i − 1)/2][0] + s1,iP [(K1,i − 1)/2][1] + . . .+ sv−1,iP [(Kv−1,i − 1)/2][v − 1]
9: if odd = 0 then Q = −Q
10: return Q

We note that for the GLV-setting Algorithm 4 does not exploit endomorphisms. It is an open problem
to find a scalar multiplication method that exploits endomorphisms efficiently in the fixed-base case.

Keep Calm and Stay with One (and p > 3) 7

3.3 Double Scalar Multiplication with Fixed and Variable Bases

This computation can be efficiently computed using wNAF with interleaving [11, 22]. Since precomputation
for the fixed base is performed offline, one may arbitrarily increase the window size for this case, only taking
into consideration any memory restriction. When using the m-dimensional GLV, the two scalars can be split
in two sets of m sub-scalars with maximum bitlength l = dr/me each. The cost is given by m · (l

w1+1) − 1

additions, m · (l
w2+1) mixed additions and (l − 1) doublings using m · (2w1−2 + 2w2−2) precomputed points,

where w1 is the window size for the variable base and w2 is the window size for the fixed base. The cost of
online precomputation is naivily m doublings and m ·(2w1−1) additions, without exploiting endomorphisms.
Note that it is possible to choose different window sizes for each sub-scalar, giving more flexibility in the
selection of the optimal number of precomputations. This is proven to be useful in the cost analysis in §6.

Since this scenario is typical for signature verification, the cost ofm-GLV decomposition of the two scalars
and the cost of recoding to wNAF representation should be added. Also, one could employ unprotected
versions of field multiplication, squaring and inversion, which are somewhat faster than protected ones.

4 Field and Quadratic Extension Field Arithmetic

Next, we describe implementation details and optimized algorithms for field and extension field operations.

4.1 Field Arithmetic

For field inversion, we use the modular exponentiation ap−2 (mod p) ≡ a−1 using a fixed and short addition
chain. This method is simple to implement and is naturally protected against timing attacks.

In the case of a pseudo-Mersenne prime of the form p = 2m − c, with c small, field multiplication can be
efficiently performed by computing an integer multiplication followed by a modular reduction exploiting the
special form of the prime. This separation of operations also enables the use of lazy reduction in the extension
field arithmetic. For x64, integer multiplication is implemented in product scanning form (a.k.a Comba’s
method), mainly exploiting the powerful 64-bit unsigned multiplier instruction. Let 0 ≤ a, b < 2m+1. To
exploit the extra room of one bit in our targeted prime 2127−5997, we first computeM = a·b = 2m+1MH+ML

followed by the reduction step R = ML+2cMH ≤ 2m+1(2c+1)−2. Then, given R = 2mRH+RL, we compute
RL + cRH (mod p), where RL, cRH < 2m. This final operation can be efficiently carried out by employing
the modular addition proposed by Bos et al. [5] to get the final result in the range [0, p− 1]. Note that the
computation of field multiplication above naturally accepts inputs in unreduced form without incurring in
extra costs, enabling the use of additions without correction or operations with incomplete reduction (see
below for more details). We follow a similar procedure for computing field squaring. For ARM, we implement
the integer multiplication using the schoolbook method. In this case, and also for modular reduction, we
extensively exploit the parallelism of ARM and NEON instructions. The details are discussed in Section 4.3.

Let 0 ≤ a, b < 2m − c. Field subtraction is computed as (a − b) + borrow · 2m − borrow · c, where
borrow = 0 if a ≥ b, otherwise borrow = 1. Notice that in practice the addition with borrow · 2m can be
efficiently implemented by clearing the (m+ 1)-th bit of a− b.

Incomplete Reduction. Similar to [19], we exploit the form of the pseudo-Mersenne prime in combination
with the incomplete reduction technique to speedup computations. We also mix incompletely reduced and
completely reduced operands in novel ways.

Let 0 ≤ a < 2m − c and 0 ≤ b < 2m. Field addition with incomplete reduction is computed as (a+ b)−
carry · 2m + carry · c, where carry = 0 if a+ b < 2m, otherwise carry = 1. Again, in practice the subtraction
with carry · 2m can be efficiently implemented by clearing the (m + 1)-th bit of a + b. The result is correct
modulo p but falls in the range [0, 2m − 1]. Thus, this addition operation with incomplete reduction works
with both operands in completely reduced form or with one operand in completely reduced form and one in
incompletely reduced form. A similar observation applies to subtraction. Consider two operands a, b such that
0 ≤ a < 2m and 0 ≤ b < 2m−c. Then, the standard field subtraction (a−b) mod (2m−c) described above will

8 A. Faz-Hernández, P. Longa, A.H. Sánchez

produce an incompletely reduced result in the range [0, 2m−1], since a−b with borrow = 0 produces a result
in the range [0, 2m− 1] and a− b with borrow = 1 produces a result in the range [−2m + c+ 1,−1], which is
then fully reduced by adding 2m−c. Thus, performance can be improved by using incomplete reduction in an
addition preceding a subtraction. For example, this technique is exploited in the point doubling computation
(see Steps 7-8 of Algorithm 10). Note that, in contrast to addition, only the first operand is allowed to be in
incompletely reduced form for subtraction.

To guarantee correctness in our software, and following the previous description, incompletely reduced
results are always fed to one of the following: one of the operands of an incompletely reduced addition, the
first operand of a field subtraction, a field multiplication or squaring (which ultimately produces a completely
reduced output), or a field addition without correction preceding a field multiplication or squaring.

In the targeted setting, there are only a limited number of spots in the curve arithmetic in which in-
completely reduced numbers cannot be efficiently exploited. For these few cases, we require a standard field
addition. We use the efficient implementation proposed by Bos et al. [5]. Again, let 0 ≤ a, b < 2m − c. Field
addition is then computed as ((a+ c) + b)− carry · 2m − (1− carry) · c, where carry = 0 if a+ b+ c < 2m,
otherwise carry = 1. Similar to previous cases, the subtraction with carry·2m can be efficiently carried out by
clearing the (m+1)-th bit in (a+ c)+ b. As we discussed it, this efficient computation is also advantageously
exploited in the modular reduction for multiplication and squaring.

4.2 Quadratic Extension Field Arithmetic

For the remainder, we use the following notation: (i) I,M, S,A and R represent field inversion, field multi-
plication, field squaring, field addition and modular reduction, respectively, (ii)Mi and Ai represent integer
multiplication and integer addition, respectively, and (iii) i,m, s, a and r represent analogous operations over
Fp2 . When representing registers in algorithms, capital letters are used to allocate operands with “double
precision” (in our case, 256 bits). For simplification purposes, in the operation counting an integer operation
with double-precision is considered equivalent to two integer operations with single precision. We assume
that addition, subtraction, multiplication by two and negation have roughly the same cost.

Let a = a0+a1i ∈ Fp2 and b = b0+b1i ∈ Fp2 . Inversion over Fp2 is computed as a−1 = (a0−a1i)/(a20+a21).
Addition and subtraction over Fp2 consist in computing (a0 + b0) + (a1 + b1)i and (a0 − b0) + (a1 − b1)i,
respectively. We compute multiplication over Fp2 using the Karatsuba method. In this case, we fully exploit
lazy reduction and the room of one bit that is gained by using a prime of 127 bits. The details for the x64
implementation are shown in Algorithm 5. Remarkably, note that only the subtraction in Step 3 requires a
correction to produce a positive result. No other addition or subtraction requires correction to positive or
to modulo p. That is, ×, + and − represent operations over the integers. In addition, the algorithm accepts
inputs in completely or incompletely reduced form and always produces a result in completely reduced form.
Optionally, one may “delay” the computation of the final modular reductions (by setting reduction = FALSE
in Alg. 5) if lazy reduction could be exploited in the curve arithmetic. This has been proven to be useful to
formulas for the Weierstrass form [1], but unfortunately the technique cannot be advantageously exploited in
the most efficient formulas for Twisted Edwards (in this case, one should set reduction = TRUE). Squaring
over Fp2 is computed using the complex method. The details for the x64 implementation are shown in
Algorithm 6. In this case, all the additions are computed as integer operations since, again, results can be
let to grow up to 128 bits, letting subsequent multiplications take care of the reduction step.

4.3 Field Arithmetic on ARM: Efficient Interleaving of ARM and NEON Instructions

The ARM architecture comes equipped with 16 32-bit registers and an instruction set including 32-bit
operations which in most cases can be executed in one cycle. To boost performance in some applications, the
targeted ARM platforms include the powerful vector set of instructions NEON. This consists of a 128-bit
Single Instruction Multiple Data (SIMD) engine that includes 16 128-bit registers, which can be seen as 32
64-bit registers or as 16 128-bit registers.

In [25], the authors show how to take advantage of NEON instructions to perform independent multi-
plications inside operations over Fp2 . In the following, we give a step further and show how to exploit the

Keep Calm and Stay with One (and p > 3) 9

Algorithm 5 Multiplication in Fp2 with reduction (m = 3Mi + 9Ai + 2R) and without reduction (mu =
3Mi + 9Ai), using completely or incompletely reduced inputs (x64 platform).
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ≤ a0, a1, b0, b1 ≤ 2127 − 1, p = 2127 − c, c small.
Output: a · b ∈ Fp2 .

1: T0 ← a0 × b0 [0, 2254 >
2: T1 ← a1 × b1 [0, 2254 >
3: C0 ← T0 − T1 < −2254, 2254 >
4: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
5: if reduction=TRUE, then c0 ← C0 mod p [0, p >
6: t0 ← a0 + a1 [0, 2128 >
7: t1 ← b0 + b1 [0, 2128 >
8: T2 ← t0 × t1 [0, 2256 >
9: T2 ← T2 − T0 [0, 2256 >
10: C1 ← T2 − T1 [0, 2256 >
11: if reduction=TRUE, then c1 ← C1 mod p [0, p >
12: return if reduction=TRUE then a · b = (c0 + c1i), else a · b = (C0 + C1i) .

Algorithm 6 Squaring in Fp2(s = 2M + 1A+ 2Ai), using completely reduced inputs (x64 platform).
Input: a = (a0 + a1i) ∈ Fp2 , where 0 ≤ a0, a1 ≤ p− 1, p = 2127 − c, c small.
Output: a2 ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: c0 ← t0 × t1 mod p [0, p >
4: t0 ← a0 + a0 [0, 2128 >
5: c1 ← t0 × a1 mod p [0, p >
6: return a2 = (c0 + c1i).

increasingly efficient capacity of modern ARM processors for executing ARM and NEON instructions “simul-
taneously” to implement field operations. In other words, we exploit the fact that when ARM code produces
a data hazard in the pipeline, the NEON unit may be ready to execute vector instructions, and viceversa.
Note that loading/storing values from ARM to NEON registers still remains relatively expensive, so in order
to achieve an effective performance improvement, one should carefully interleave independent operations
while minimizing the loads and stores from one unit to the other. Hence, operations such as multiplication,
squaring and reduction over Fp2 are particularly friendly to this technique, given the availability of internal
independent multiplications in their formulas. Thus, using this approach, we implemented:

– a double integer multiplier (double_mul_neonarm) detailed in Algorithm 8, which interleaves a single
128-bit multiplication using NEON and a single 128-bit multiplication using ARM,

– a triple integer multiplier (triple_mul_neonarm) detailed in Algorithm 7, which interleaves two single
128-bit multiplication using NEON and one single 128-bit multiplication using ARM, and

– a double reduction algorithm, denoted by double_red_neonarm and detailed in Algorithm 9, that inter-
leaves a single modular reduction using NEON and a single modular reduction using ARM.

Note that integer multiplication is implemented using the schoolbook method, which requires one mul-
tiplication, two additions, one shift and one bit-wise AND operation per iteration. These operations were
implemented using efficient fused instructions such as UMLAL, UMAAL, VMLAL and VSRA[18], which
add the result of a multiply or shift operation to the destination register in one single operation, reducing
code size.

10 A. Faz-Hernández, P. Longa, A.H. Sánchez

Algorithm 7 Triple 128-bit integer product with ARM and NEON interleaved (triple_mul_neonarm).
Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, e = {ei}, f = {fi}, i ∈ {0, . . . , 3}.
Output: (F,G,H)← (a× b, c× d, e× f).
1: (F,G,H)← (0, 0, 0)
2: for i = 0 to 3 do
3: (C0, C1, C2)← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Gi+j)← (Fi+j + ajbi + C0, Gi+j + cjdi + C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2, Hi+j)← Hi+j + ejfi + C2 {done by ARM}
8: (Fi+4, Gi+4, Hi+4)← (C0, C1, C2)
9: return (F,G,H)

Algorithm 8 Double 128-bit integer product with ARM and NEON interleaved (double_mul_neonarm).
Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, i ∈ {0, . . . , 3}.
Output: (F,G)← (a× b, c× d).
1: (F,G)← (0, 0)
2: for i = 0 to 1 do
3: (C0, C1, C2)← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Fi+j+2)← (Fi+j + aibj + C0, Fi+j+2 + ai+2bj + C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2, Gi+j)← Gi+j + cjdi + C2 {done by ARM}
8: (Fi+4, Fi+6, Gi+4)← (Fi+4 + C0, C1, C2)
9: for i = 2 to 3 do
10: for j = 0 to 3 do
11: (C2, Gi+j)← Gi+j + cjdi + C2 {done by ARM}
12: Gi+4 ← C2

13: return (F,G)

Algorithm 9 Double modular reduction with ARM and NEON interleaved (double_red_neonarm).
Input: A prime p = 2127 − c, a = {ai}, b = {bi}, i ∈ {0, . . . , 7}.
Output: (F,G)← (a mod p, b mod p).

1: (Fi, Gi)← (ai, bi)i∈{0,...,3}
2: (C0, C1, C2)← (0, 0, 0)
3: for j = 0 to 1 do
4: (C0, Fj , C1, Fj+2)← (Fj + aj+4c+ C0, Fj+2 + aj+6c+ C1) {done by NEON}
5: for j = 0 to 3 do
6: (C2, Gj)← Gj + bj+4c+ C2 {done by ARM}
7: (F2, F4, G4)← (F2 + C0, C1, C2)
8: (F0, G0)← (F4c+ F0, G4c+G0)
9: return (F,G)

To validate the efficiency of our approach, we compared the interleaved algorithms above with standard
implementations using NEON or ARM. In all the cases, we observed a reduction of costs in favor of our
novel interleaved ARM/NEON implementations.

Keep Calm and Stay with One (and p > 3) 11

Triple_mul_neonarm is nicely adapted to the computation of multiplication over Fp2 , since this operation
requires three integer multiplications of 128 bits (Steps 1, 2 and 8 of Algorithm 5). For the case of squaring
over Fp2 , we use double_mul_neonarm to compute the two independent integer multiplications (Steps 3 and
5 of Algorithm 6). Finally, for each case we can efficiently use a double_red_neonarm. The final algorithms
for ARM are shown as Algorithms 12 and 13 in Appendix B.

5 Point Arithmetic

In this section, we describe implementation details and our optimized formulas for the point arithmetic. We
use as basis the most efficient set of formulas proposed by Hisil et al. [14], corresponding to the case a = −1,
that uses a combination of homogeneous projective coordinates (X : Y : Z) and extended homogeneous
coordinates of the form (X : Y : Z : T), where T = XY/Z.

The basic algorithms for computing point doubling and addition are shown in Algorithms 10 and 11,
respectively. In these algorithms, we extensively exploit incomplete reduction, following the details given in
Section 4 (operations with incomplete reduction are represented with ⊕,). To ease coupling of doubling and
addition in the main loop of the scalar multiplication computation, we make use of Hamburg’s “extensible”
strategy and output values {Ta, Tb}, where T = Ta · Tb, at every point operation, so that a subsequent
operation may compute coordinate T if required. Note that the cost of doubling is given by 4m+3s+5a. We
do not apply the usual transformation 2XY = (X+Y)2−(X2+Y 2) because in our case it is faster to compute
one multiplication and one incomplete addition than one squaring, one subtraction and one addition. In the
setting of variable-base scalar multiplication (see Alg. 2), the main loop of the evaluation stage consists of
a doubling-addition computation, which corresponds to the successive execution of Algorithms 10 and 11.
For this case, precomputed points are more efficiently represented as (X + Y, Y −X, 2Z, 2T) (corresponding
to setting EXT_COORD = TRUE in Alg. 11), so the cost of addition is given by 8m + 6a. In the fixed-
base scenario, the main loop of the evaluation stage consists of one doubling and v mixed additions. In this
case, we consider two possibilities: representing precomputations as (x, y) or as (x + y, y − x, 1, 2t), where
t = xy. The latter case (also corresponding to setting EXT_COORD = TRUE, but with Z = 1) allows saving
four additions and one multiplication per iteration (Steps 2, 8 and 11 of Alg. 11), but increases the memory
requirements to store the additional coordinate. Hence, each option ends up being optimal for certain storage
values. We evaluate these options in Section 6. For the case (x, y), mixed addition costs 8m + 10a and, for
the case (x+ y, y− x, 1, 2t), mixed addition costs 7m+ 7a. In the variable/fixed-base double scalar scenario,
precomputed points corresponding to the variable base are stored as (X + Y, Y − X, 2Z, 2T) and, thus,
addition with these points costs 8m+ 6a; whereas points corresponding to the fixed base can again be repre-

Algorithm 10 Twisted Edwards point doubling over Fp2 (DBL = 4m+ 3s+ 5a).
Input: P = (X1, Y1, Z1).
Output: 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

1: Ta ← X2
1 (X2

1)
2: t1 ← Y 2

1 (Y 2
1)

3: Tb ← Ta ⊕ t1 (X2
1 + Y 2

1)
4: Ta ← t1 − Ta (Y 2

1 −X2
1)

5: Y2 ← Tb × Ta (Y2 = (X2
1 + Y 2

1)(Y
2
1 −X2

1))
6: t1 ← Z2

1 (Z2
1)

7: t1 ← t1 ⊕ t1 (2Z2
1)

8: t1 ← t1 	 Ta (2Z2
1 − (Y 2

1 −X2
1))

9: Z2 ← Ta × t1 (Z2 = (Y 2
1 −X2

1)[2Z
2
1 − (Y 2

1 −X2
1)])

10: Ta ← X1 ⊕X1 (2X1)
11: Ta ← Ta × Y1 (2X1Y1)
12: X2 ← Ta × t1 (X2 = 2X1Y1[2Z

2
1 − (Y 2

1 −X2
1)])

13: return 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

12 A. Faz-Hernández, P. Longa, A.H. Sánchez

sented as (x, y) or as (x+y, y−x, 1, 2t), following the same trade-offs and costs for mixed addition discussed
above. These options are also evaluated in Section 6.

Algorithm 11 Twisted Edwards point addition over Fp2 (ADD = 8m+6a, mADD = 7m+7a or 8m+10a).
Input: P = (X1, Y1, Z1) and {Ta, Tb} such that T1 = Ta · Tb. If EXT_COORD=FALSE then Q = (x2, y2), else
Q = (X2 + Y2, Y2 −X2, 2Z2, 2T2).
Output: P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

1: T1 ← Ta × Tb (T1)
2: if EXT_COORD=FALSE then T2 = x2 ⊕ x2, T2 = T2 × y2 (2T2)
3: t1 ← T2 × Z1 (2T2Z1)
4: if Z2 = 1 then t2 ← T1 ⊕ T1 else t2 ← T1 × Z2 (2T1Z2)
5: Ta ← t2 − t1 (Ta = α = 2T1Z2 − 2T2Z1)
6: Tb ← t1 ⊕ t2 (Tb = θ = 2T1Z2 + 2T2Z1)
7: t2 ← X1 ⊕ Y1 (X1 + Y1)
8: if EXT_COORD=TRUE then Y3 = Y2, else Y3 = y2 − x2 (Y2 −X2)
9: t2 ← Y3 × t2 (X1 + Y1)(Y2 −X2)
10: t1 ← Y1 −X1 (Y1 −X1)
11: if EXT_COORD=TRUE then X3 = X2, else X3 = x2 ⊕ y2 (X2 + Y2)
12: t1 ← X3 × t1 (X2 + Y2)(Y1 −X1)
13: Z3 ← t2 − t1 β = (X1 + Y1)(Y2 −X2)− (X2 + Y2)(Y1 −X1)
14: t1 ← t1 ⊕ t2 ω = (X1 + Y1)(Y2 −X2) + (X2 + Y2)(Y1 −X1)
15: X3 ← Tb × Z3 (X3 = βθ)
16: Z3 ← t1 × Z3 (Z3 = βω)
17: Y3 ← Ta × t1 (Y3 = αω)
18: return P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

6 Performance Analysis and Experimental Results

In this section, we carry out the performance analysis of the different methods discussed in this work and
present benchmark results of our constant-time implementations of curve Ted127-glv4 on x64 and ARM
platforms. For our experiments, we targeted a 3.4GHz Intel Core i7-2600 Sandy Bridge processor and a
3.4GHz Intel Core i7-3770 Ivy Bridge processor, from the Intel family, and a Samsung Galaxy Note with a
1.4GHz Exynos 4 Cortex-A9 processor and an Arndale Board with a 1.7GHz Exynos 5 Cortex-A15 processor,
from the ARM family, both equipped with the NEON vector unit. The x64 implementation was compiled with
Microsoft Visual Studio 2012 and ran on 64-bit Windows (Microsoft Windows 8 OS). In our experiments,
we turned off hype threading and Intel’s Turbo Boost; and we averaged the cost of 104 operations which
were measured with the timestamp counter instruction rdtsc. The ARM implementation was developed and
compiled with the Android NDK (ndk8d) toolkit. In this case, we averaged the cost of 104 operations which
were measured with the clock_gettime() function and scaled to clock cycles using the processor frequency.

First, in Table 1 we present timings for all the fundamental operations that are necessary to implement
the different cases of scalar multiplication. Implementation details for quadratic extension field operations
and point operations over Fp2 can be found in Section 4 and 5, respectively. “IR” stands for incomplete
reduction and “extended” represents the use of the extended coordinates (X+Y, Y −X, 2Z, 2T) to represent
precomputed points.

Next, we analyze the different scalar multiplication scenarios on curve Ted127-glv4.

Variable-Base Scenario. Based on Algorithm 2, scalar multiplication on curve Ted127-glv4 involves
the computation of one Φ endomorphism, 2 Ψ endomorphisms, 3 additions and 4 mixed additions in the
precomputation stage; 63 doublings, 63 additions, one mixed addition and 64 protected table lookups in the
evaluation stage; and one inversion and 2 multiplications over Fp2 for converting the final result to affine:

Keep Calm and Stay with One (and p > 3) 13

Table 1. Cost (in cycles) of basic operations on curve Ted127-glv4.

Operation
ARM ARM Intel Intel

Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

Fp2

ADD with IR 20 19 12 12

ADD 39 37 15 15

SUB 39 37 12 12

SQR 223 141 59 56

MUL 339 185 78 75

INV 13,390 9,675 6,060 5,890

ECC

DBL 2,202 1,295 545 525

ADD 3,098 1,831 690 665

mADD (Z1 = 1) 2,943 1,687 622 606

φ endomorphism (Z1 = 1) 3,118 1,724 745 712

ψ endomorphism (Z1 = 1) 1,644 983 125 119

Misc

8-point LUT (extended) 291 179 83 79

GLV-based LSB-set recoding 1,236 873 482 482

4-GLV decomposition 756 430 305 290

COSTvariable_kP = 1i+ 833m+ 191s+ 769a+ 64LUT8 + 4M + 9A.

This operation count does not take into account other additional computations, such as the recoding to
the GLV-based LSB-set representation, which are relatively inexpensive. Also, for settings in which a full
scalar is provided, one needs to add the cost of decomposition to 4-GLV. Compared to [20], the optimized
method for variable-base scalar multiplication introduces a reduction in about 181 multiplications, 26
squarings and 228 additions over Fp2 . Additionally, it only requires 8 precomputed points which involve 64
protected table lookups over 8 points (denoted by LUT8) during scalar multiplication, whereas the method
in [20] requires 36 precomputed points which involve 68 protected table lookups over 9 points.

Fixed-Base Scenario. In this case, we analyze costs when using the SAB-set comb method (Algorithm 4)
with 32, 64, 128, 256 and 512 precomputed points. Recalling Section 3.2, and given d = d251/we and l = dw,
the method costs (l

w·v −1) doublings and (lw −1) additions (assuming that v|d) using v ·2w−1 points. Again,
there are two options: storing points as (x, y) (affine coordinates) or as (x + y, y − x, 2t) (“extended” affine
coordinates). We show in Table 3, Appendix C, the costs in terms of multiplications over Fp2 per bit for
curve Ted127-glv4. Best results for a given memory requirement are highlighted. And, as can be seen, on
the target platforms each precomputation representation is optimal for determined storage values. The lat-
ter is true in most cases; however, for high memory values, the results are mixed and depend on the platform.

Variable/Fixed-Base Double Scalar Scenario. In this case, we analyze the cost of Ted127-glv4 for
different values of w2,j (corresponding to each of the j sub-scalars of the fixed base, where 0 ≤ j < 4),
with the optimal value w1 = 4 for the sub-scalars of the variable base. This value for w1 was determined
during experimentation on the targeted platforms. Let l = 63 be the maximum bitlength of the eight
sub-scalars. The computation approximately involves 62 doublings, 48 additions and (

∑3
j=0

63
w2,j+1) + 3

mixed additions in the evaluation stage using 16 “ephemeral” precomputed points and
∑3
j=0 2w2,j−2

“permanent” precomputed points; 2 doublings, 6 additions, 8 Ψ endomorphisms and one Φ endomorphism
in the online precomputation stage; and one inversion with 2 multiplications over Fp2 to convert the final
result to affine. Again, we examine storing points as (x, y) or as (x + y, y − x, 2t). We show in Table 4,
Appendix D, the costs in terms of multiplications over Fp2 per bit for curve Ted127-glv4. In this case,
extended coordinates offer a higher performance in all cases. This is mainly due to the reduced cost for
extracting points from the precomputed table, which is not required to be performed in constant time in

14 A. Faz-Hernández, P. Longa, A.H. Sánchez

this scenario.

Finally, in Table 2 we summarize benchmark results for all the core scalar multiplication operations:
variable-base, fixed base and variable/fixed-base double scalar scenario. The results for the representative
variable-base scenario set a new speed record for protected elliptic curve scalar multiplication on x64 and
ARM processors. In comparison with the previously fastest x64 implementation by Longa and Sica [20],
which runs in 137,000 cycles, the presented result injects a cost reduction of 28% on a Sandy Bridge machine.
Likewise, in comparison with the state-of-the-art genus 2 implementation by Bos et al. [5], which runs in
117,000 cycles, our result is 20% faster on an Ivy Bridge machine. It is also 14% faster than the very recent
protected implementation by Oliveira et al. [23] based on a binary GLS curve using the GLV method,
which runs in 114,000 cycles on a Sandy Bridge machine. Moreover, our results also demonstrate that
the proposed techniques bring a dramatic reduction in the overhead for protecting against timing attacks.
An unprotected version of our implementation computes a scalar multiplication in 87,000 cycles on the
Sandy Bridge processor, which is only 11% faster than our protected version. In the case of ARM, our
implementation of variable-base scalar multiplication on curve Ted127-glv4 is 27% faster than Bernstein
and Schwabe’s curve25519 implementation, which runs in 568,000 on a Cortex-A9 [4].

We achieve similar results in the fixed-base and double scalar scenarios. For instance:

– Hamburg [12] computes key generation (dominated by a fixed-base scalar multiplication) in 60K cycles on
a Sandy Bridge and 254K cycles on a Cortex-A9 (without NEON) using a table of size 7.5KB. Using only
6KB, our software runs a fixed-base scalar multiplication in 54K cycles and 204K cycles, respectively.

– Hamburg [12] computes signature verification (dominated by a double scalar multiplication) in 169K
cycles on a Sandy Bridge and 618K cycles on a Cortex-A9 (without NEON) using a table of size 3KB.
Our software runs a double scalar multiplication in only 123K cycles and 495K cycles, respectively, using
the same table size.

Table 2. Cost (in 103 cycles) of core scalar multiplication operations on curve Ted127-glv4 with full protection
against timing-type side-channel attacks at approximately 128-bit security level. Results are approximated to the
nearest 1000 cycles.

Scalar Multiplication ARM ARM Intel Intel

Type Parameters Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

kP , variable base 8 points (computed online) 417 244 98 94

kP , fixed base

v = 4, w = 5, 64 points, 6KB, extended 204 116 54 53

v = 4, w = 6, 128 points, 12KB, extended 181 106 50 49

v = 8, w = 6, 256 points, 24KB, extended 172 100 48 46

kP + lQ

w2 = 3, 8 points, 768 bytes, extended 560 321 136 130

w2 = 5, 32 points, 3KB, extended 495 285 123 118

w2 = 7, 128 points, 12KB, extended 463 266 116 111

Acknowledgements: We would like to thank Francisco Rodríguez-Henríquez for his useful comments and
for giving us access to the Arndale board for the development of the ARM implementation.

References

1. D.F. Aranha, K. Karabina, P. Longa, C. Gebotys, and J. López. Faster explicit formulas for computing pairings
over ordinary curves. In Advances in Cryptology - EUROCRYPT, volume 6632, pages 48–68. Springer, 2011.

2. D. Bernstein. Cache-timing attacks on AES. 2005. http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
3. D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards curves. In S. Vaudenay, editor,

Proceedings of Africacrypt 2008, volume 5023 of LNCS, pages 389–405. Springer, 2008.

Keep Calm and Stay with One (and p > 3) 15

4. D. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems, accessed on February
02, 2013. http://bench.cr.yp.to/results-dh.html.

5. J.W. Bos, C. Costello, H. Hisil, and K. Lauter. Fast cryptography in genus two (two is greater than one). In
Advances in Crytology - EUROCRYPT (to appear), 2013. Also in Cryptology ePrint Archive, Report 2012/670,
http://eprint.iacr.org/2012/670.

6. D. Brumley and D. Boneh. Remote timing attacks are practical. In S. Mangard and F.-X. Standaert, editors,
Proceedings of the 12th USENIX Security Symposium, volume 6225 of LNCS, pages 80–94. Springer, 2003.

7. M. Feng, B.B. Zhu, M. Xu, and S. Li. Efficient comb elliptic curve multiplication methods resistant to power
analysis. In Cryptology ePrint Archive, Report 2005/222, 2005. Available at: http://eprint.iacr.org/2005/222.

8. M. Feng, B.B. Zhu, C. Zhao, and S. Li. Signed MSB-set comb method for elliptic curve point multiplication.
In K. Chen, R. Deng, X. Lai, and J. Zhou, editors, Proceedings of Information Security Practice and Experience
(ISPEC 2006), volume 3903 of LNCS, pages 13–24. Springer, 2006.

9. S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class of
curves. In J. Cryptology, volume 24(3), pages 446–469, 2011.

10. S.D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class
of curves. In A. Joux, editor, Advances in Cryptology - EUROCRYPT, volume 5479 of LNCS, pages 518–535.
Springer, 2009.

11. R.P. Gallant, J.L. Lambert, and S.A. Vanstone. Faster Point Multiplication on Elliptic Curves with Efficient
Endomorphisms. In J. Kilian, editor, Advances in Cryptology - CRYPTO, volume 2139 of LNCS, pages 190–200.
Springer, 2001.

12. M. Hamburg. Fast and compact elliptic-curve cryptography. In Cryptology ePrint Archive, Report 2012/309,
2012. Available at: http://eprint.iacr.org/2012/309.

13. M. Hedabou, P. Pinel, and L. Beneteau. Countermeasures for preventing comb method against SCA attacks. In
R. Deng, F. Bao, H. Pang, and J. Zhou, editors, Proceedings of Information Security Practice and Experience
(ISPEC 2005), volume 3439 of LNCS, pages 85–96. Springer, 2005.

14. H. Hisil, K. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. In J. Pieprzyk, editor, Advances
in Cryptology - ASIACRYPT, volume 5350 of LNCS, pages 326–343. Springer, 2008.

15. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In
N. Koblitz, editor, Advances in Cryptology - CRYPTO, volume 1109 of LNCS, pages 104–113. Springer, 1996.

16. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances in Cryptology -
CRYPTO, volume 1666 of LNCS, pages 388–397. Springer, 1999.

17. C.H. Lim and P.J. Lee. More flexible exponentiation with precomputation. In Y. Desmedt, editor, Advances in
Cryptology - CRYPTO, volume 839 of LNCS, pages 95–107. Springer, 1994.

18. ARM Limited. ARM Architecture Reference Manual: ARMv7-A and ARMv7-R edition, 2012.

19. P. Longa and C. Gebotys. Efficient techniques for high-speed elliptic curve cryptography. In S. Mangard and
F.-X. Standaert, editors, Proceedings of CHES 2010, volume 6225 of LNCS, pages 80–94. Springer, 2010.

20. P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In X. Wang and K. Sako,
editors, Advances in Cryptology - ASIACRYPT, volume 7658 of LNCS, pages 718–739. Springer, 2012.

21. P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In Journal of Cryptology
(to appear). Springer-Verlag, 2013.

22. B. Möller. Algorithms for multi-exponentiation. In S. Vaudenay and A.M. Youssef, editors, Proceedings of SAC
2001, volume 2259 of LNCS, pages 165–180. Springer, 2001.

23. T. Oliveira, D.F. López, J. Aranha, and F. Rodríguez-Henríquez. Two is the fastest prime. In Cryptology ePrint
Archive: Report 2013/131, 2013. Available at: http://eprint.iacr.org/2013/131.

24. D.A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the case of AES. In D. Pointcheval,
editor, Topics in Cryptology - CT-RSA 2006, volume 3860, pages 1–20. Springer, 2006.

25. A.H. Sánchez and F. Rodríguez-Henríquez. NEON implementation of an attribute-based encryption scheme.
In Technical Report CACR 2013-07, 2013. Available at: http://cacr.uwaterloo.ca/techreports/2013/

cacr2013-07.pdf.

26. D. Weber and T.F. Denny. The solution of McCurley’s discrete log challenge. In H. Krawczyk, editor, Advances
in Cryptology - CRYPTO, volume 1462 of LNCS, pages 458–471. Springer, 1998.

27. T. Yanik, E. Savaş, and Ç.K. Koç. Incomplete reduction in modular arithmetic. In IEE Proc. of Computers and
Digital Techniques, volume 149(2), pages 46–52, 2002.

16 A. Faz-Hernández, P. Longa, A.H. Sánchez

A Formulas for Endomorphisms Φ and Ψ on Curve Ted127-glv4

Let P = (X1, Y1, Z1) be a point in homogeneous projective coordinates on a Twisted Edwards curve with
eq. (1), u = 1 + i be a quadratic non-residue in Fp2 , and ζ8 = u/

√
−2a′ be a primitive 8th root of unity,

where a′ = 27u3(
√
2
2 − 1). Then, we can compute Φ(P) = (X2, Y2, Z2, T2) as follows

X2 = −X1

(
αY 2

1 + θZ2
1

) [
µY 2

1 − φZ2
1

]
, Y2 = 2Y1Z

2
1

[
φY 2

1 + γZ2
1

]
,

Z2 = 2Y1Z
2
1

[
µY 2

1 − φZ2
1

]
, T2 = −X1

(
αY 2

1 + θZ2
1

) [
φY 2

1 + γZ2
1

]
,

where α = ζ38 + 2ζ28 + ζ8, θ = ζ38 − 2ζ28 + ζ8, µ = 2ζ38 + ζ28 − 1, γ = 2ζ38 − ζ28 + 1 and φ = ζ28 − 1.
For curve Ted127-glv4, we have the fixed values

ζ8 = 1 +Ai, α = A+ 2i, θ = A+Bi,

µ = (A− 1) + (A+ 1)i, γ = (A+ 1) + (A− 1)i, φ = (B + 1) + i,

whereA = 143485135153817520976780139629062568752, B = 170141183460469231731687303715884099729.
Computing an endomorphism Φ with the formula above costs 12m + 2s + 5a or only 8m + 1s + 5a if

Z1 = 1. Similarly, we can compute Ψ(P) = (X2, Y2, Z2, T2) as follows

X2 = ζ8X
p
1Y

p
1 , Y2 = Zp

2

1 , Z2 = Y p1 Z
p
1 , T2 = ζ8X

p
1Z

p
1 .

Given the value for ζ8 on curve Ted127-glv4 computing an endomorphism Ψ with the formula above
costs approximately 3m+ 1s+ 2M + 5A or only 1m+ 2M + 4A if Z1 = 1.

B Algorithms for Quadratic Extension Field Operations exploiting
Interleaved ARM/NEON Operations

Below are the algorithms for multiplication and squaring over Fp2 , with p = 2127 − c, for ARM plat-
forms. They exploit functions interleaving ARM/NEON-based operations, namely triple_mul_neonarm,
double_mul_neonarm and double_red_neonarm, detailed in Algorithms 7, 8 and 9, respectively.

Algorithm 12 Multiplication in Fp2 using completely or incompletely reduced inputs, m = 3Mi+ 9Ai+ 2R
(ARM platform).
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ≤ a0, a1, b0, b1 ≤ 2127 − 1, p = 2127 − c, c small.
Output: a · b ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← b0 + b1 [0, 2128 >
3: (T0, T1, T2)← triple_mul_neonarm(a0, b0, a1, b1, t0, t1) [0, 2256 >
4: C0 ← T0 − T1 < −2254, 2254 >
5: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
6: T2 ← T2 − T0 [0, 2256 >
7: C1 ← T2 − T1 [0, 2256 >
8: return (c0, c1)← double_red_neonarm(C0, C1) [0, p >

Keep Calm and Stay with One (and p > 3) 17

Algorithm 13 Squaring in Fp2 using completely reduced inputs, s = 2M + 1A+ 2Ai (ARM platform).
Input: a = (a0 + a1i) ∈ Fp2 , where 0 ≤ a0, a1 ≤ p− 1, p = 2127 − c, c small.
Output: a2 ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: t2 ← a0 + a0 [0, 2128 >
4: (C0, C1)← double_mul_neonarm(t0, t1, t2, a1) [0, p2 >
5: return a2 = double_red_neonarm(C0, C1) [0, p >

18 A. Faz-Hernández, P. Longa, A.H. Sánchez

C Cost of Fixed-Base Scalar Multiplication using the SAB-Set Comb Method

Below, we present estimated costs in terms of multiplications over Fp2 per bit for fixed-based scalar mul-
tiplication on curve Ted127-glv4 using the SAB-set comb method (Algorithm 4). Precomputed points are
stored as (x, y) coordinates (“affine”) or as (x+ y, y − x, 2t) coordinates (“extended”).

Table 3. Cost (in Fp2 multiplications per bit) of fixed-base scalar multiplication using the SAB-set comb method on
curve Ted127-glv4.

v, w, # of points, memory
precomp ARM ARM Intel Intel

coordinates Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

1, 6, 32 points, 2KB 2.88 3.24 3.05 3.08

2, 5, 32 points, 2KB affine 2.66 2.97 2.81 2.83

4, 4, 32 points, 2KB 2.77 3.06 2.91 2.93

1, 6, 32 points, 3KB 2.76 3.11 2.92 2.94

2, 5, 32 points, 3KB extended 2.46 2.73 2.58 2.60

4, 4, 32 points, 3KB 2.47 2.71 2.58 2.60

2, 6, 64 points, 4KB 2.33 2.63 2.46 2.49

4, 5, 64 points, 4KB affine 2.32 2.59 2.45 2.47

8, 4, 64 points, 4KB 2.56 2.83 2.68 2.70

2, 6, 64 points, 6KB 2.21 2.50 2.33 2.35

4, 5, 64 points, 6KB extended 2.12 2.35 2.22 2.24

8, 4, 64 points, 6KB 2.26 2.48 2.36 2.38

2, 7, 128 points, 8KB 2.26 2.60 2.40 2.43

4, 6, 128 points, 8KB affine 2.07 2.34 2.18 2.21

8, 5, 128 points, 8KB 2.17 2.42 2.28 2.30

2, 7, 128 points, 12KB 2.25 2.60 2.37 2.40

4, 6, 128 points, 12KB extended 1.95 2.20 2.05 2.07

8, 5, 128 points, 12KB 1.96 2.17 2.05 2.07

4, 7, 256 points, 16KB 2.02 2.34 2.14 2.18

8, 6, 256 points, 16KB affine 1.94 2.19 2.04 2.07

16, 5, 256 points, 16KB 2.09 2.33 2.19 2.21

4, 7, 256 points, 24KB 2.02 2.34 2.12 2.15

8, 6, 256 points, 24KB extended 1.82 2.06 1.91 1.93

16, 5, 256 points, 24KB 1.88 2.09 1.96 1.98

8, 7, 512 points, 32KB 1.92 2.22 2.03 2.06

16, 6, 512 points, 32KB affine 1.86 2.10 1.96 1.98

32, 5, 512 points, 32KB 2.04 2.27 2.14 2.16

8, 7, 512 points, 48KB 1.91 2.22 2.00 2.04

16, 6, 512 points, 48KB extended 1.75 1.97 1.82 1.85

32, 5, 512 points, 48KB 1.83 2.03 1.91 1.93

Keep Calm and Stay with One (and p > 3) 19

D Cost of Variable/Fixed-Base Double Scalar Multiplication on Curve
Ted127-glv4 using wNAF with Interleaving

Below, we present estimated costs in terms of multiplications over Fp2 per bit for variable/fixed-base double
scalar multiplication on curve Ted127-glv4 using wNAF with interleaving. Precomputations for the fixed
base are stored as (x, y) coordinates (“affine”) or as (x+y, y−x, 2t) coordinates (“extended”). The window size
w2,j for each sub-scalar j, number of points and memory listed in the first column correspond to requirements
for the fixed base. For the variable base, we fix w1 = 4, corresponding to the use of 16 precomputed points
(see §3.3 and §6).

Table 4. Cost (in Fp2 multiplications per bit) of variable/fixed-base double scalar multiplication on curve Ted127-glv4

using wNAF with interleaving, w1 = 4, 16 “ephemeral” precomputed points.

w2,j , # of points, memory
precomp ARM ARM Intel Intel

coordinates Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

2/2/3/3, 6 points, 384 bytes affine 6.66 7.28 7.11 7.14

2/2/2/2, 4 points, 384 bytes extended 6.57 7.14 7.00 7.03

3/3/4/4, 12 points, 768 bytes affine 6.07 6.64 6.51 6.53

3/3/3/3, 8 points, 768 bytes extended 5.95 6.47 6.36 6.38

4/4/5/5, 24 points, 1.5KB affine 5.71 6.24 6.13 6.15

4/4/4/4, 16 points, 1.5KB extended 5.58 6.07 5.98 6.00

5/5/6/6, 48 points, 3KB affine 5.42 5.92 5.82 5.84

5/5/5/5, 32 points, 3KB extended 5.33 5.80 5.72 5.74

6/6/7/7, 96 points, 6KB affine 5.20 5.68 5.59 5.61

6/6/6/6, 64 points, 6KB extended 5.08 5.53 5.46 5.48

7/7/8/8, 192 points, 12KB affine 5.05 5.52 5.44 5.46

7/7/7/7, 128 points, 12KB extended 4.95 5.40 5.33 5.35

8/8/9/9, 384 points, 24KB affine 4.98 5.44 5.37 5.39

8/8/8/8, 256 points, 24KB extended 4.83 5.26 5.20 5.22

