
Completeness Theorems for All Finite Stateless 2-Party Primitives

Daniel Kraschewski

Institute of Cryptography and Security, Department of Informatics,
Karlsruhe Institute of Technology, Germany

kraschew@ira.uka.de

Abstract

Since Kilian showed in 1988 that oblivious transfer (OT) is complete in the sense that every
secure multi-party computation can be realized from this primitive, cryptographers are working
on reductions of OT to various other primitives. A long-standing open question in this context is
the classification of finite stateless 2-party primitives (so-called “cryptogates”), i.e. trusted black
boxes that can be jointly queried by two parties, have finite input and output alphabets, and do
not change behavior depending on time or input history. Over the decades, completeness criteria
have been found for deterministic cryptogates (i.e. primitives without internal randomness),
noisy channels, and symmetric (i.e., both parties receive the same output) or asymmetric (i.e.,
only one party receives any output at all) randomized cryptogates. However, the known criteria
for randomized primitives other than noisy channels only hold in presence of passive adversaries
(i.e., even corrupted parties still follow the protocol).

We complete this line of research by providing simple but comprehensive combinatorial
completeness criteria for all finite stateless 2-party primitives. I.e., for the first time there are
completeness criteria for randomized primitives that are neither symmetric nor asymmetric (but
give different outputs to the querying parties), and we overcome the limitation that previous
results for randomized primitives with input from both parties only regarded passive adversaries.
A fundamental tool of our approach is a powerful lemma from real algebraic geometry, which
allows us to base a cryptographic security proof on a rather “game-theoretic” approach.

As a corollary of our work, every non-complete example of a finite stateless 2-party primitive
is essentially symmetric. This relationship between non-completeness and symmetric output
behavior was previously only known for deterministic cryptogates.

Keywords: oblivious transfer, complete primitives, information-theoretic security, universal
composability, secure function evaluation.

Contents

1 Introduction 1
1.1 Related work . 1
1.2 Our contribution . 2
1.3 Organization of this paper . 2

2 Presentation of our results 2
2.1 Notion of security . 3
2.2 Basic concepts . 4
2.3 Completeness criteria for all finite randomized 2-party functions 6
2.4 Comparison with criteria from the literature . 6

3 How to prove the Classification Theorem 7
3.1 Secure generation of correlated data . 8

3.1.1 The protocol for generating correlated data 9
3.1.2 Idealized attack strategies . 10
3.1.3 Robust OT-cores . 12
3.1.4 Robust OT-cores in real protocol runs . 15

3.2 Reduction of OT to correlated data . 19
3.2.1 Refining the correlated data . 19
3.2.2 Building OT from the refined correlated data 22

4 Formal part 23
4.1 Basic notions and notations . 23
4.2 Linear properties of cheating situations . 25
4.3 Cheating situations for redundant input symbols . 27
4.4 Existence of robust OT-cores . 31
4.5 Protocol for generation of correlated data . 35
4.6 Real protocol runs versus idealized cheating situations 36
4.7 Secure generation of correlated data . 43
4.8 Conclusion of the formal part . 45

Acknowledgements 46

References 46

1 Introduction

Oblivious transfer was introduced in [Rab81] as a trusted erasure channel. Later, in [Cré88] it
was proven to be equivalent to

(
2
1

)
-OT, its currently most used variant, which allows a designated

receiver Bob to learn only one of two bits sent by a designated sender Alice. Since the OT primitive
turned out to be complete in the sense that it allows for arbitrary secure multi-party computation
[Kil88, GL91, CGT95, IPS08], for numerous primitives it has been investigated whether OT can
be reduced to them. In our work we exhaustively treat this question for a class of primitives
that we call “finite randomized 2-party functions”. Each such primitive is characterized by some
finite alphabets ΥA,ΥB,ΩA,ΩB, a probability distribution R with finite support R and a mapping
f : ΥA×ΥB×R → ΩA×ΩB. Upon input x ∈ ΥA from Alice and y ∈ ΥB from Bob, the primitive
internally samples a random r ← R, computes (a, b) = f(x, y, r) and outputs a to Alice and b to
Bob. Equally, one can characterize any finite randomized 2-party function by its input and output
alphabets ΥA,ΥB,ΩA,ΩB and a family {φx,y}x∈ΥA,y∈ΥB

of probability mass functions over ΩA×ΩB,
such that on input x ∈ ΥA from Alice and y ∈ ΥB from Bob the primitive with probability φx,y(a, b)
outputs a to Alice and b to Bob. Regarding our work, the latter notation turns out much more
convenient and therefore will be used throughout the body of this paper.

Our work generalizes the results of [KMQ11], where the completeness question was solved for
the special case of deterministic 2-party functions, i.e. f(x, y, r) is independent of the randomness r,
or alternatively {φx,y}x∈ΥA,y∈ΥB

⊆ {0, 1}ΩA×ΩB . Although some general ideas from the deterministic
case do carry over straightforwardly, crucial techniques do not—cf. [KMQ10, Section 5]. In addition
to an appropriate representation of randomized functions, we need to develop an entire tool set of
technical lemmata, some of which may be of independent interest.

1.1 Related work

General related work. In the literature one finds OT protocols for bounded-classical-storage
[CCM98] and bounded-quantum-storage models [DFR+07] as well as noisy classical [CK88, DKS99,
DFMS04, CMW05, Wul09, IKO+11] and quantum channels [Yao95, May95, May96], the latter tak-
ing commitments for granted. An entire line of research deals with implementing OT from tamper-
proof hardware assumptions [BOGKW88, GKR08, CGS08, Kol10, GIMS10, GIS+10, DKMQ11,
CKS+11]. There are reductions of

(
2
1

)
-OT to weaker OT versions that leak additional information

[CK90, DKS99, Wul07] and to Rabin-OT [Cré88]. OT-combiners implement OT from granted sets
of OTs with faulty members [MPW07, HIKN08]. For reversing the direction of

(
2
1

)
-OT a protocol

is known with optimal number of OT queries [WW06]. Relative to computational assumptions,
all-or-nothing laws have been shown [BMM99, HNRR06, MPR10], i.e. all considered non-trivial
primitives are complete.

Precursory results to our work. The line of research we deal with in this paper was initiated by
[Kil91], where completeness criteria for deterministic symmetric 2-party functions (i.e., both par-
ties receive the same output, computed deterministically from their inputs) without any additional
computational assumptions were provided. This line of research was continued by [Kil00], providing
completeness criteria for deterministic asymmetric 2-party functions (i.e., only one party receives
any meaningful output, computed deterministically from both parties’ inputs). Randomized sym-
metric and asymmetric 2-party functions (i.e., a single output symbol, computed from both parties
inputs and some secret randomness, is handed over either to both parties or only to one party) were
also treated in [Kil00], but only with respect to passive adversaries (i.e., even corrupted parties still
follow the protocol). Rather recently, the completeness criteria of [Kil91, Kil00] for deterministic
2-party functions were unified and generalized by [KMQ11], now covering all deterministic 2-party

1

functions, what for the first time in the literature also included 2-party functions that give different
outputs to Alice and Bob. Meanwhile, [CMW05] also provided exhaustive completeness criteria
with respect to active adversaries (i.e., corrupted parties may arbitrarily deviate from the protocol)
for a special class of randomized asymmetric 2-party functions, namely noisy channels. We now
complete this line of research. Our main theorem unifies and generalizes all known completeness
criteria for symmetric, asymmetric, deterministic and randomized 2-party functions.

Independently of our work, a unified and generalized formulation of the completeness criteria
from [Kil91, Kil00, CMW05, KMQ11] was found by [MPR12]. Their result is equivalent to our
criteria, but they only give a proof with respect to passive adversaries. Proving their conjecture
for active adversaries was left as an open problem.

1.2 Our contribution

Results. We give a complete characterization of all finite randomized 2-party functions that
allow for information-theoretically secure implementation of OT. For the reduction we provide a
protocol scheme, which is universally composable—cf. [Can01]. Our characterization is based on
surprisingly simple combinatorial criteria and our results are tight: Necessity of our criteria still
holds, even if only correctness and privacy of the implemented OT are required. As a remarkable
corollary of our work all non-complete finite 2-party functions turn out essentially symmetric.

Our work exceeds known completeness criteria in two ways. Firstly, we overcome the limitation
that previous results for randomized primitives with input from both parties only regarded passive
adversaries. Secondly, our results also cover randomized primitives that are neither symmetric nor
asymmetric (but give different meaningful outputs to Alice and Bob).

Techniques. Our starting point is a very generic protocol scheme, such that all perfectly unde-
tectable attack strategies do comply with certain polynomial equations and hence form an algebraic
variety. One major part of our work consists in finding protocol parameters, such that this algebraic
variety collapses to trivial attack strategies that do not affect security at all. Using powerful tools
from real algebraic geometry (namely the Lojasiewicz Inequality) and probability theory (namely
the Hoeffding Inequality), we can then link real protocol runs to idealized attack strategies and
thereby prove cryptographic security of our construction. This approach for protocol design and
proving security might be of further interest, independently of our concrete classification results.

1.3 Organization of this paper

The basic structure of this paper follows [KMQ11], though nearly all technical details in our case
are way more complex. We briefly present our results in Section 2, where we first refer to the used
notion of security (Section 2.1), then introduce the basic concepts needed for formulation of our
results (Section 2.2), state our classification results (Section 2.3), and finally give a short overview
about how our approach matches former completeness criteria in the literature (Section 2.4). In
Section 3 we give an exposition of how one can prove our results. All formal proofs of our main
technical contribution are located in Section 4; to make it self-contained, all needed definitions,
notations and lemmata from the rest of the paper are also restated there.

2 Presentation of our results

Before we get started, we introduce two handy notations, which will make things much easier in
the upcoming sections.

2

Functionality: F (F)
SFE

Let F be characterized by a family of probability mass functions {φx,y}x∈ΥA,y∈ΥB
⊆ pmf(ΩA×ΩB), where

ΥA,ΩA are Alice’s input and output alphabet and ΥB,ΩB are Bob’s input and output alphabet.

• Upon receiving input (x, i) from Alice, verify that (x, i) ∈ ΥA×N and that there is no recorded tuple
(x̃, i, Alice); else ignore that input. Next, record (x, i, Alice) and send (processing, Alice, i) to
the adversary.

• Upon receiving input (y, i) from Bob, verify that (y, i) ∈ ΥB×N and that there is no recorded
tuple (ỹ, i, Bob); else ignore that input. Next, record (y, i, Bob) and send (processing, Bob, i) to the
adversary.

• As soon as there are recorded tuples (x, i, Alice) and (y, i, Bob) for the same index i, generate
randomly (a, b) ∈ ΩA× ΩB according to the distribution specified by φx,y, and store (a, b, i).

• Upon receiving a message (Delivery, Alice, i) from the adversary, verify that there is a stored tuple
(a, b, i); else ignore that message. Next, output (a, i) to Alice and henceforth ignore all messages
(Delivery, Alice, i) with the same index i.

• Upon receiving a message (Delivery, Bob, i) from the adversary, verify that there is a stored tuple
(a, b, i); else ignore that message. Next, output (b, i) to Bob and henceforth ignore all messages
(Delivery, Bob, i) with the same index i.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F (F)
SFE and

the corrupted party, including the ability of deleting and/or forging arbitrary messages; i.e., the adversary
can arbitrarily send and receive messages on behalf of the corrupted party.

Figure 1: The ideal functionality for secure evaluation of a 2-party function F . Adapted and
simplified version of the Secure Function Evaluation functionality in [Can01]. Note that via the
parameter i only the same multi-session ability is achieved as in [Can01] by multiple session IDs.

Finite sums of function values: Given any set T with finite subset S ⊆ T and some mapping
g : T → R, let g(S) :=

∑
ω∈S g(ω). For functions with more arguments we use the canonical

extension of this notation, e.g. h(a,B,C, d) :=
∑

β∈B, γ∈C h(a, β, γ, d).
Spaces of probability mass functions: Given some finite alphabet Ω, we denote the set of all

probability mass functions over Ω by pmf(Ω), i.e. pmf(Ω) =
{
ρ : Ω→ R≥0

∣∣ ρ(Ω) = 1
}

.

We also use the following standard notions.

Negligibility: A function µ : N→ R≥0 is negligible (in the parameter k), if limk→∞ µ(k)·f(k) = 0
for every polynomial f ∈ R[X].

Indistinguishability: Two random variables X,Y are (statistically) indistinguishable, if their
statistical distance 1

2

∑
α

∣∣P[X = α]−P[Y = α]
∣∣ is negligible in some security parameter.

2.1 Notion of security

Our main contribution is the construction and security proof of a generic reduction protocol that
implements OT from any appropriate 2-party function. For the definition what “security” means,
we lean on one of the strongest commonly used notions of security: the Universal Composability
(UC) framework of [Can01]. However, our results also hold with respect to all weaker security
notions that still require secure function evaluation to be private (i.e., no party can learn anything
that cannot be learned from its function input and function output) and correct (i.e., if all parties
follow the protocol, the desired function value is evaluated correctly).

3

In the UC framework, security is defined by comparison of an ideal model and a real model.
The protocol of interest is running in the latter, where an adversary A coordinates the behavior
of all corrupted parties. In the ideal model, which is secure by definition, an ideal functionality
F implements the desired protocol task and a simulator S tries to mimic the actions of A. An
environment Z is plugged either to the ideal or the real model and has to guess, which model it
is actually plugged to. When Z cannot distinguish between ideal and real model, the protocol is
considered UC-secure. More formally, UC-security requires that for every adversary A there exists
a simulator S, such that for all environments Z the view of Z in the real model (with adversary
A) is indistinguishable from the view of Z in the ideal model (with simulator S). Since all our
results are of information-theoretic nature, the adversarial entities A,S and the environment Z
are computationally unbounded (but nonetheless the running time of a simulator S will always be
polynomial in the running time of the according adversary A, as it is usually desired).

If the views of Z in the ideal model and the real model are distributed identically, we speak
of perfect security; if there is some negligible statistical distance between these views, we have
only statistical security. As already mentioned, one also differentiates between passive adversaries
(i.e., corrupted parties still follow the protocol) and active adversaries (i.e., corrupted parties may
deviate from the protocol arbitrarily). For further details we refer to [Can01].

Since our protocol scheme implements
(

2
1

)
-OT from some given 2-party function, we also need

a so-called hybrid functionality in the real model that provides access to the latter. See Figure 1
for a formal definition of the hybrid functionality used. As

(
2
1

)
-OT itself is just a special 2-party

function that on input (b0, b1) ∈ {0, 1}2 from Alice and c ∈ {0, 1} from Bob with probability 1
outputs bc to Bob and a special “nothing” symbol ⊥ to Alice, we can omit an explicit definition of
the ideal OT functionality and instead use an accordingly instantiated version of the functionality
from Figure 1.

2.2 Basic concepts

Finite randomized 2-party functions. A finite randomized 2-party function can be character-
ized by its input and output alphabets and output distributions (cf. Figure 1). By Ffin we denote
the set of all tuples (ΥA,ΥB,ΩA,ΩB, φ), where ΥA,ΥB,ΩA,ΩB are non-empty finite alphabets and
φ := {φx,y}x∈ΥA,y∈ΥB

is a family of probability mass functions over ΩA×ΩB, i.e. φ ⊆ pmf(ΩA×ΩB).
The intuition behind this is that the considered 2-party function on input x ∈ ΥA from Alice and
y ∈ ΥB from Bob outputs a to Alice and b to Bob with probability φx,y(a, b).

For convenience we will not always differentiate pedantically between the mathematical object

F ∈ Ffin and the corresponding primitive F (F)
SFE, but from the context should always be clear what

is meant.

Canonical and condensed canonical representations. Our notion of Ffin turns out a bit too
detailed, since Alice and Bob can always locally relabel their input-output tuples without any side
effects. For our purposes there is no need to distinguish between some F ∈ Ffin and any relabeled
version of F . Therefore, we introduce the concept of canonical representations. Given any F ∈ Ffin,
we cannot just write down a function table for F , since each input tuple only specifies an output
distribution rather than a concrete output tuple. However, for each individual input tuple we can
represent the respective joint output distribution by a probability matrix with rows labeled by
Alice’s output symbols and columns labeled by Bob’s output symbols. Then, we can arrange these
“inner” probability matrices in an “outer” block matrix with rows labeled by Alice’s input symbols
and columns labeled by Bob’s input symbols (see first two tables in Figure 2 for an example).

Moreover, we also want to abstract from the fact that, e.g., Bob could always concatenate the
result of a local coin toss to his output, thus formally doubling the size of his output alphabet just by

4

0 1 2
0 1 0 1 0 1

0
0 1

4
1
4

1
4

1
4 0 1

2

1 1
4

1
4

1
4

1
4 0 1

2

1
0 1

4
1
4 0 1

3 0 0

1 1
4

1
4

1
3

1
3 0 1

1
4

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
4

1
2

1
4

1
4

1
3

1
4

1
4

1
3

1
3 1

1 1
2

1
2 1

1
2

1
3

1
2

1
3

1
3 1

Figure 2: Different representations of a 2-party function that on input x ∈ {0, 1} from Alice and
y ∈ {0, 1, 2} from Bob outputs some uniformly random a, b ∈ {0, 1}, subject to the condition
that a + b ≥ x · y and b ≥ y − 1. To the left, inputs (bold) and outputs (italic) are displayed
grayed out. The matrix in the middle is a canonical representation of the same 2-party function
with zero probabilities omitted for better readability; the right matrix is a condensed canonical
representation.

an easily reversible local computation. Such local coin tosses appear in a canonical representation as
pairwise linearly dependent columns within the same block column, or pairwise linearly dependent
rows within the same block row respectively. However, we can easily get rid of them just by adding
up the respective linearly dependent rows or columns. If all local coin tosses are removed from a
canonical representation this way, we call it condensed (cf. last table in Figure 2).

Isomorphism. Note that the condensed canonical representation of a finite 2-party function is
unique up to permutations of rows within single block rows, permutations of columns within single
block columns, and permutation of rows and/or columns of the outer block matrix. Now, if two
given 2-party functions F, F ′ ∈ Ffin have the same (set of) condensed canonical representations,
we call them isomorphic. Obviously, isomorphism is an equivalence relation on Ffin and any two
isomorphic 2-party functions F, F ′ ∈ Ffin can be straightforwardly implemented from each other
with perfect security.

Redundancy and equivalence. Our notion of isomorphism will turn out very handy for formu-
lation of our classification results with respect to passive adversaries, but for active adversaries we
need one additional concept. In particular, there may exist input symbols that a corrupted party
never needs to use, since one can always learn strictly more by inputting something else. Given
any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, we call an input symbol y′ ∈ ΥB redundant, if a corrupted
Bob instead of sending y′ to F can always replace this input by an appropriately distributed ran-
dom choice from ΥB\{y′} and still perfectly simulate honest behavior. This is possible, if Alice’s
output distribution is not changed at all and Bob can reconstruct an appropriately distributed
output b′ ∈ ΩB from his actual input-output tuple (y, b). Formally, y′ ∈ ΥB is redundant, if
there exist an “input replacement strategy” ι ∈ pmf(ΥB) and an “output reconstruction strategy”
{λy,b}y∈ΥB,b∈ΩB

⊆ pmf(ΩB), such that ι(y′) = 0 and for all x ∈ ΥA, a ∈ ΩA, b
′ ∈ ΩB it holds:

φx,y′(a, b
′) =

∑
y∈ΥB, b∈ΩB

ι(y) · φx,y(a, b) · λy,b(b′)

For input symbols x ∈ ΥA, redundancy is defined analogously. If neither ΥA nor ΥB contains any
redundant input symbols, we say that F is redundancy-free.

W.l.o.g., malicious parties never use redundant input symbols, since they can gather exactly
the same or even strictly more information by the respective input replacement and output recon-
struction strategies. Also, there is no need to constrain what honest parties may learn. Therefore,
regarding active adversaries we can consider any 2-party functions equivalent when they only differ
in some redundant input symbols. Formally, any 2-party functions F, F ′ ∈ Ffin are equivalent, if

5

they can be made isomorphic by successive removal of redundant input symbols. Note that a step-
by-step removal of one symbol at a time is crucial here: There may exist two input symbols that are
both redundant, but after removing one of them, the other one is not redundant any more—e.g.,
ΥB = {y, y′} with φx,y(a, b) = φx,y′(a, b) for all x ∈ ΥA, a ∈ ΩA, b ∈ ΩB.

It will turn out that the redundancy-free version of any given F ∈ Ffin is unique up to isomor-
phism and thus equivalence of 2-party functions in the sense above is indeed an equivalence relation
on Ffin. However, due to lack of some required technical tools at this point, we postpone the proof
to Section 4.3 (see Corollary 19).

2.3 Completeness criteria for all finite randomized 2-party functions

With the concepts from Section 2.2 we can now formulate our classification results. We just state
the mere assertions here; for an outline of the proof we refer to Section 3.

Definition (OT-cores). Given F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, an OT-core of F is a non-diagonal
full-rank 2×2-submatrix of the canonical representation; i.e., for the corresponding input-output
tuples (x, a), (x′, a′) ∈ ΥA×ΩA and (y, b), (y′, b′) ∈ ΥB×ΩB we have the following inequation with
at most one zero factor:

φx,y(a, b) · φx′,y′(a′, b′) 6= φx′,y(a
′, b) · φx,y′(a, b′)

In this situation, we also call
{

(x, a), (x′, a′)
}
×
{

(y, b), (y′, b′)
}

an OT-core of F .

Theorem (Classification Theorem). For every F ∈ Ffin it holds:

1. OT can be implemented from F (F)
SFE statistically secure against passive adversaries, iff F has

an OT-core.
2. OT can be implemented from F (F)

SFE statistically secure against active adversaries, iff the
redundancy-free version of F has an OT-core.

Definition (Symmetric 2-party functions). A 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin is
symmetric, if φx,y(a, b) = 0 for all x ∈ ΥA, y ∈ ΥB, a ∈ ΩA, b ∈ ΩB with a 6= b.

Lemma (Symmetrization Lemma). Every 2-party function F ∈ Ffin that has no OT-core (and thus
by our Classification Theorem is not complete) is isomorphic to a symmetric 2-party function.

2.4 Comparison with criteria from the literature

The latest known completeness criteria1 for finite 2-party functions can be subsumed by the fol-
lowing four theorems.

[KMQ11, Theorem 1]: A deterministic 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin allows
for implementation of OT statistically secure against passive adversaries, iff for the mappings
fA : ΥA×ΥB → ΩA defined by fA(x, y) = a :⇔ φx,y(a,ΩB) = 1 and fB : ΥA×ΥB → ΩB

defined by fB(x, y) = b :⇔ φx,y(ΩA, b) = 1 there exist x, x′ ∈ ΥA and y, y′ ∈ ΥB, such that
fA(x, y) = fA(x, y′), fB(x, y) = fB(x′, y), and

(
fA(x′, y), fB(x, y′)

)
6=
(
fA(x′, y′), fB(x′, y′)

)
.

A deterministic 2-party function F ∈ Ffin allows for implementation of OT statistically secure
against active adversaries, iff its redundancy-free version allows for implementation of OT
statistically secure against passive adversaries by the criterion above.

1Meanwhile, a unification and generalization of these criteria has been found by an independent work [MPR12].
Their criteria are equivalent to ours, but they give only a proof with respect to passive adversaries.

6

[CMW05, Main result]: A noisy channel allows for implementation of OT statistically secure
against active adversaries, iff its redundancy-free version is no parallel composition of noiseless
and/or capacity-zero channels.

[Kil00, Theorem 1.3]: An asymmetric F := (ΥA,ΥB, {⊥},Ω, φ) ∈ Ffin allows for implementation
of OT statistically secure against passive adversaries, iff there exist x, x′ ∈ ΥA, y, y

′ ∈ ΥB and
z, z′ ∈ Ω, such that φx,y(⊥, z) > φx′,y(⊥, z) > 0 or it holds that φx,y(⊥, z) > 0, φx′,y(⊥, z) > 0,
φx,y′(⊥, z′) > 0 and φx′,y′(⊥, z′) = 0.

[Kil00, Theorem 1.2]: A symmetric F := (ΥA,ΥB,Ω,Ω, φ) ∈ Ffin allows for implementation of
OT statistically secure against passive adversaries, iff there exist x, x′ ∈ ΥA, y, y

′ ∈ ΥB, z ∈ Ω,
such that φx,y(z, z) > 0, φx,y′(z, z) > 0 and φx,y(z, z) · φx′,y′(z, z) 6= φx,y′(z, z) · φ′x,y(z, z).

It is straightforward to verify that all these completeness criteria are direct corollaries of our Classi-
fication Theorem. However, the literature cited above differs substantially in the used protocol con-
structions and also the proof techniques. Our approach is most comparable with that of [KMQ11],
who also provided a Symmetrization Lemma for deterministic 2-party functions. We generalize their
notions of “redundancy” (q.v. Section 2.2), “OT-cores” (q.v. Section 2.3) and “cheating situations”
(q.v. Section 3.1.2), and we also adopt their basic protocol scheme for generation of correlated data
(q.v. Section 3.1.1). However, due to increased complexity the similarities are limited to a fairly
abstract level. Core proof techniques of [KMQ11] are strictly bound to the deterministic case—cf.
[KMQ10, Section 5]—and therefore new solutions (including a powerful lemma from real algebraic
geometry, q.v. Section 4.6) are needed for randomized primitives.

3 How to prove the Classification Theorem

Necessity of our criteria. By our Symmetrization Lemma and [Kil00, Theorem 1.2] it directly
follows that OT-cores are necessary for completeness with respect to passive adversaries. Moreover,
the proof in [Kil00, Section 4.1] for necessity of OT-cores holds in the same way with respect to
active adversaries. So, at this point we only need to give a proof for the Symmetrization Lemma.

Proof-sketch. Let some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given that has no OT-core. We
have to show that F is symmetric up to isomorphism. Our first observation is that we can replace
Bob’s output symbols by normalized versions of the respective column vectors in the condensed
canonical representation of F , i.e. upon Bob’s input y we replace his function output b by the
following RΥA×ΩA-vector:

1

φΥA,y(ΩA, b)
·
(
φx,y(a, b)

)
x∈ΥA,a∈ΩA

Since by construction there are never any two linearly dependent columns within the same block
column of a condensed canonical representation, this replacement of output symbols is an isomor-
phism of 2-party functions. Analogously, we can replace Alice’s output symbols; let Ω̂A ⊆ RΥB×ΩB

and Ω̂B ⊆ RΥA×ΩA denote the new output alphabets.
Now we exploit that F has no OT-core. Given any â ∈ Ω̂A and b̂, b̂′ ∈ Ω̂B with φΥA,ΥB

(â, b̂) > 0

and φΥA,ΥB
(â, b̂′) > 0, it must hold that b̂ = b̂′, as otherwise the two-column matrix (b̂, b̂′) would

contain a non-diagonal full-rank 2×2-matrix and thereby we had an OT-core. Analogously, for all
â, â′ ∈ Ω̂A and b̂ ∈ Ω̂B with φΥA,ΥB

(â, b̂) > 0 and φΥA,ΥB
(â′, b̂) > 0 it must hold that â = â′. Thus,

Alice and Bob have always full information about each other’s output and the function can as well
announce the complete output tuple (â, b̂) to both of them in the first place.

7

Sufficiency in the passive case. Given some F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin that has an OT-
core, and given that there is only a passive adversary, we can easily implement a non-trivial noisy
channel (shown to be complete in [CMW05, Wul09, IKO+11]) by the following protocol:

0. Alice’s channel input alphabet S is the set of all her possible input-output tuples for F , i.e.,
S =

{
(x, a) ∈ ΥA×ΩA

∣∣ φx,ΥB
(a,ΩB) > 0

}
. Let k denote the security parameter.

1. Alice and Bob query F for k times with uniformly random input, thus generating input-output
tuples (x1, a1), . . . , (xk, ak) ∈ ΥA×ΩA and (y1, b1), . . . , (yk, bk) ∈ ΥB×ΩB respectively.

2. Alice announces some i ∈ {1, . . . , k}, chosen such that (xi, ai) is her intended channel input.
3. Bob’s noisy channel output is (yi, bi).

Since F has an OT-core and even corrupted parties still follow the protocol, the implemented
channel is not completely decomposable into noiseless channels and/or channels with zero capacity.
This is straightforward to verify and suffices to implement OT by the abovementioned literature.

Sufficiency in the active case. As we are already done with necessity of our criteria in the active
and passive case and also sufficiency in the passive case, so to speak “75%” of our Classification
Theorem are proven. However, the vastly major part still lies ahead of us. For proving sufficiency
in the active case, i.e. proving that in presence of an active adversary OT can still be reduced to
any redundancy-free 2-party function that has some OT-core, we need an entire new tool set of
technical lemmata and several sophisticated results from the literature. The high level idea of the
reduction approach is as follows. First, Alice and Bob generate some amount of correlated data by
repeatedly querying the given 2-party function with random input. Within a subsequent test step
each party has to partially unveil its data, so that significant cheating can be detected. Then, in a
similar approach as in the passive case, the remaining data is used for implementation of non-trivial
noisy channels: Alice just announces her channel inputs one-time-pad encrypted with her part of
the correlated data, and Bob, since his view gives him only partial information about the used
one-time pads, can only recover noisy versions of Alice’s channel inputs. However, things will turn
out a bit more complicated than in the passive case, since corrupted parties can try to gather some
additional information by occasionally deviating from the protocol.

The first part (secure generation of correlated data, q.v. Section 3.1) is much more challenging
than the second part (building OT from correlated data, q.v. Section 3.2). The former needs
numerous novel techniques (see Section 4 for the formal proofs), whereas the latter mainly consists
in rather straightforward adaptions of nowadays folklore techniques from the literature.

3.1 Secure generation of correlated data

In this section we explain how one can securely generate non-trivially correlated data from any
redundancy-free 2-party function that has some OT-core. The main idea, borrowed from [KMQ11],
is to use inputs belonging to a specific OT-core with relatively high probability and all other inputs
only with relatively low probability—the latter will just serve for test purposes. In the first instance,
we refer to [KMQ11, Section 3.1] for a discussion why an all-over uniform input distribution is
not suitable and why still all input symbols have to be used with some significant probability.
Since deterministic 2-party functions are only a special case of randomized 2-party functions, their
arguments especially hold for our situation. However, note that our example in Figure 3.a also
illustrates the problem with all-over uniform input distributions. In this example, a corrupted
Bob can substitute a query on the first input symbol and a query on the second input symbol
by two queries on the third input symbol. So, instead of uniformly choosing from his complete
input alphabet, he can always input the last input symbol and thereby always get full information
about Alice’s input-output tuple. Furthermore, note that our example in Figure 3.b also illustrates

8

a)

1
3

2
3

1
2

2
3

1
3

1
2

1 1
2

1 1
2

b)

1
2

1
2 1

1
2

1
2 1

1
2

4
9 1

1
2

5
9 1

Figure 3: a) Example for illustration that not every OT-core is useful for us: The first two block
columns contain an OT-core, but can be subsumed by the last block column.
b) Example for illustration that redundancy here is more complex than in the deterministic case:
The first block column is redundant (it can be subsumed by the last two), but the second is not.

that in general one cannot completely neglect all input symbols that do not belong to the chosen
OT-core. In this example, if Alice only uses one of her input symbols all the time, this means that
effectively we can remove one of the block rows and all of a sudden the redundancy-free version of
the remaining part even has no OT-core any more.

3.1.1 The protocol for generating correlated data

Basic scheme. Basically, our protocol for generation of correlated data follows the very generic
construction of [KMQ11]. It roughly proceeds as follows (for a formal description see Section 4.5).

1. Invocation of F : Alice and Bob query the underlying 2-party function F with random input
for k times (k being the security parameter) and record their respective input-output tuples.
A protocol parameter assigns what concrete input distributions are to be used.

2. Check A: Alice challenges Bob on some polynomial subset of the recorded data, where he
has to reveal his input-output tuples. Alice aborts the protocol, if the joint distribution of
her own input-output tuples and Bob’s claimed input-output tuples appears faulty. The test
set is then removed from the recorded data.

3. Check B: This step equals the previous one with the roles of Alice and Bob interchanged.
4. Output: Both parties announce where they have used input symbols that were only for test

purposes. All corresponding elements are removed from the recorded data. When too much
of the recorded data has been deleted, the protocol is aborted; else each party outputs its
remaining string of recorded input-output tuples.

The crucial difference to the protocol scheme of [KMQ11] is in the check steps Check A and
Check B. In the scheme of [KMQ11], Alice checked in Check A that each of Bob’s claimed input-
output tuples (y′, b′) was consistent with her own respective input-output tuple (x, a) in the sense
that φx,y′(a, b

′) 6= 0, and that each of Bob’s claimed input symbols occurred with the right frequency
independently of her own input. This does not suffice in the randomized setting any more, as one
can also see from the example in Figure 3.b. In this example, the redundant first block column
and the non-redundant second block column differ only very slightly in their output distributions.
Thus, if Alice only checked that Bob’s claimed input-output tuples do not directly contradict her
own input-output tuples, then Bob could substitute his second input symbol in this example right
the same way he can already substitute the first input symbol. For this reason, in the check steps
Check A and Check B of our protocol scheme described above each party must examine the joint
distribution of its own input-output tuples and the other party’s claimed input-output tuples.

Parameter choice. We have the following wish list to our protocol scheme:

• The challenge sets in the protocol steps Check A and Check B must be sufficiently large, so
that any significant deviation from the prescribed input distributions can be detected.

9

• We want that even a malicious choice of the challenge sets does not substantially influence
the joint distribution of the recorded input-output tuples.
• All input symbols must be used with sufficiently high probability, so that the problem illus-

trated in Figure 3.b does not emerge.
• In the last protocol step, where all data is deleted that does not belong to the chosen OT-core

inputs, no corrupted party should be able to modify the recorded data’s joint distribution
more than by a vanishingly small amount.

Obviously, the first two objectives conflict with each other, and so do the last two. However, what
might first sound like a paradox, can be achieved by a polynomially vanishing lower bound for
the input probabilities and also a polynomially vanishing relative size of the challenge sets. More
concretely, for every input symbol that is only for test purposes we choose an input probability of
magnitude O(k−α) with constant α > 0, and the challenge sets have size O(k

1
2

+β) with constant
β < 1

2 (cf. Section 4.5)—for technical reasons we even choose β < 1
6 . Thus, there exists some

constant ε > 0, such that k−k1−ε recorded input-output tuples from the first protocol step remain
untouched throughout the rest of the protocol and are finally part of the output.

3.1.2 Idealized attack strategies

In the step Check A of the protocol scheme introduced in Section 3.1.1, instantiated with any
F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, a corrupted Bob can of course try to pretend to have used another
input distribution than he actually did. Analogously, a corrupted Alice can try to cheat in Check B,
but for symmetry reasons it will suffice to consider the case of a corrupted Bob. We start our security
considerations by introducing a very idealized notion of attack strategies. This notion comprises
only perfectly undetectable attacks, but it will turn out later that every possible attack strategy is
close to such a perfect strategy.

Cheating strategies. A cheating strategy of Bob is a triple (ι, λ, ω), consisting of
• an “actual input distribution” ι ∈ pmf(ΥB),
• a “lying strategy” λ := (λy,b)y∈ΥB,b∈ΩB

⊆ pmf(ΥB×ΩB) in the sense that in the protocol step
Check A an input-output tuple (y, b) is claimed as (y′, b′) with probability λy,b(y

′, b′),
• and a “claimed input distribution” ω ∈ pmf(ΥB),

such that for all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB and with υ ∈ pmf(ΥA) denoting Alice’s input
distribution it holds:

υ(x) · ω(y′) · φx,y′(a, b′)︸ ︷︷ ︸
expected joint probability of (x, a) and (y′, b′)

=
∑

y∈ΥB, b∈ΩB

υ(x) · ι(y) · φx,y(a, b) · λy,b(y′, b′)︸ ︷︷ ︸
claimed joint probability of (x, a) and (y′, b′)

Note that we can cancel υ(x) on both sides, since Alice uses her complete input alphabet and thus
υ(x) > 0 for all x ∈ ΥA. I.e., Bob’s cheating strategies are actually independent of Alice’s input
distribution; they either work for all of them or for none. Further note that ω is no arbitrarily
selectable parameter but already completely fixed by ι and λ. In particular, for all x ∈ ΥA, y

′ ∈ ΥB

it holds:

ω(y′) = ω(y′) · φx,y′(ΩA,ΩB) =
∑

y∈ΥB, b∈ΩB

ι(y) · φx,y(ΩA, b) · λy,b(y′,ΩB)

Last but not least, an easily verifiable but very important feature of cheating strategies lies in their
relation to redundancy: An input symbol y′ ∈ ΥB is redundant, iff there exists a cheating strategy
(ι, λ, ω), such that ι(y′) = 0 and ω(y′) = 1. This directly follows from our definitions.

Cheating situations. Our notion of cheating strategies turns out a bit cumbersome for the
following reason. Obviously, a corrupted Bob can follow a mixed strategy, e.g. by following half the

10

time some cheating strategy (ι, λ, ω) and half the time some other cheating strategy (ι′, λ′, ω′). For
the resulting cheating strategy (ῑ, λ̄, ω̄) it is intuitively clear that ῑ = 1

2 ·ι+
1
2 ·ι
′ and ω̄ = 1

2 ·ω+ 1
2 ·ω

′.
On first glance one might also expect that λ̄ = 1

2 ·λ+ 1
2 ·λ

′, but this will not be true in general! E.g.,
if ι(y) = 0 < ι′(y) for some y ∈ ΥB, then we have that λ̄y,b = λ′y,b for all b ∈ ΩB. To circumvent
this inconvenience, we introduce the equivalent but more practical notion of cheating situations.
Given Bob’s cheating strategy (ι, λ, ω) and Alice’s input distribution υ ∈ pmf(ΥA), we define the
corresponding cheating situation η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2

)
as follows:

η
(
(x, a), (y, b), (y′, b′)

)
:= υ(x) · ι(y) · φx,y(a, b) · λy,b(y′, b′)

The intuition behind this is that instead of focusing on the cheating party’s plan, we just count
how often which kind of situation occurs during the protocol step Check A. More precisely, the
value η

(
(x, a), (y, b), (y′, b′)

)
is the relative frequency of the event that Alice’s input-output tuple

is (x, a), Bob’s actual input-output tuple is (y, b), and Bob’s claimed input-output tuple is (y′, b′).
Consequently, we can write:

η|A(x) := η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= υ(x)

η|true
B (y) := η

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
= ι(y)

η|fake
B (y′) := η

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
= ω(y′)

Our definition directly implies that every cheating situation η fulfills the following four conditions.

1. For all x ∈ ΥA it holds that η|A(x) > 0.

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= η|A(x) · η|true

B (y) · φx,y(a, b)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= η|A(x) · η|fake

B (y′) · φx,y′(a, b′)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
·

η
(
(x, a), (y, b), (ΥB,ΩB)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Note that these conditions basically are a polynomial equation system, of which we will take great

advantage later. Let N
(F)
B denote the set of all η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2

)
that fulfill them. We

show now that actually N
(F)
B is just the set of all cheating situations. Given any η ∈ N

(F)
B , we find

some ι, ω ∈ pmf(ΥB) and λ := (λy,b)y∈ΥB,b∈ΩB
⊆ pmf(ΥB×ΩB), such that for all y, y′ ∈ ΥB, b, b

′ ∈ ΩB

we have:

ι(y) = η|true
B (y)

ω(y′) = η|fake
B (y′)

λy,b(y
′, b′) =

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

) if η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0

Since η meets the four conditions above, we have that (ι, λ, ω) is a cheating strategy:∑
y∈ΥB, b∈ΩB

ι(y) · φx,y(a, b) · λy,b(y′, b′) =
∑

y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (ΥB,ΩB)

)
· λy,b(y′, b′)

η|A(x)

= 1
η|A(x) ·

∑
y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (y′, b′)

)
= ω(y′) · φx,y′(a, b′)

11

Likewise, η is a corresponding cheating situation:

η|A(x) · ι(y) · φx,y(a, b) · λy,b(y′, b′) = η
(
(x, a), (y, b), (ΥB,ΩB)

)
· λy,b(y′, b′) = η

(
(x, a), (y, b), (y′, b′)

)
Advantages of our notion of cheating situations. In contrast to the more intuitive notion of
cheating strategies, our definition of cheating situations enjoys some very handy structure: When
we fix Alice’s input distribution, the remaining set of cheating situations is a bounded convex
polytope in the affine space R(ΥA×ΩA)×(ΥB×ΩB)2

, spanned by finitely many vertices (cf. Lemma 10).
Furthermore, cheating situations inherit two important features from cheating strategies. Firstly,
cheating situations can be considered independent of (honest) Alice’s input distribution, since they
can be rescaled canonically to any input distribution that assigns non-zero probability to every
x ∈ ΥA (q.v. Lemma 8). Secondly, an input symbol y′ ∈ ΥB is redundant, iff there exists a cheating

situation η ∈ N
(F)
B , such that η|true

B (y′) = 0 and η|fake
B (y′) = 1. For redundancy of y′ it even suffices

that η|true
B (y′) < η|fake

B (y′) and η|true
B (y) ≥ η|fake

B (y) for all y ∈ ΥB\{y′}. This results from some useful

decomposability features of the algebraic structure N
(F)
B , but for now we skip all the technical

details and instead just refer to Section 4.3.
Last but not least, cheating situations are also unaffected by another disadvantage of cheating

strategies that misleads intuition: If λy,b(y
′, b′) > 0, this does not necessarily mean that Bob ever

really replaces an input-output tuple (y, b) by (y′, b′); as well, it might be the case that ι(y) = 0
(i.e., Bob did not use the input symbol y at all). In contrast, if η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
> 0, then

Bob has in fact replaced the corresponding portion of actual input-output tuples (y, b) by claimed
input-output tuples (y′, b′).

3.1.3 Robust OT-cores

We aim at an instantiation of the protocol scheme described in Section 3.1.1, such that the inputs
belonging to some chosen OT-core of the underlying 2-party function F are used with relatively
high probability and all other inputs have relatively low probability. However, if ỹ, ỹ′ are Bob’s

OT-core inputs and there exists a cheating situation η ∈ N
(F)
B , such that η|true

B ({ỹ, ỹ′}) = 0 and
η|fake

B ({ỹ, ỹ′}) = 1, then we have no security guarantee (cf. Figure 3.a). We need at least that

η|true
B ({ỹ, ỹ′}) = 1 for all η ∈ N

(F)
B with η|fake

B ({ỹ, ỹ′}) = 1; otherwise a corrupted Bob can always
substitute a substantial fraction of his OT-core queries by other inputs. Surprisingly, this is not
only a necessary precondition for security, but it will even turn out sufficient. The key idea is to
choose protocol parameters, such that the prescribed probability of non-OT-core inputs is high
enough for cheating detection, but still so small that only cheating strategies (ι, λ, ω) with ω(y) = 0
for all non-OT-core inputs y may work. This might first sound like a paradox, but can be achieved
by polynomially vanishing probabilities for the non-OT-core inputs (cf. Section 3.1.1).

However, first and foremost we need to show that there always exists an OT-core fulfilling the
abovementioned criterion, if only the redundancy-free version of the considered 2-party function
has any OT-core at all (see Figure 3.a for a negative example). Moreover, we also need analogous
security against a possibly cheating Alice, and we must rule out that every OT-core found secure
against a cheating Bob is insecure against a cheating Alice and vice versa. We achieve this all at
once by the next lemma (cf. Lemma 25).

Lemma. Let some F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given that is redundancy-free and has an
OT-core. Then there also exists an OT-core within the same rows of the canonical representation

of F , such that for Bob’s corresponding input symbols ȳ, ȳ′ and every cheating situation η ∈ N
(F)
B

with η|fake
B ({ȳ, ȳ′}) = 1 we have that η|true

B ({ȳ, ȳ′}) = 1.

12

By this lemma, given any OT-core, we find an OT-core within the same rows of the canonical rep-
resentation, such that this new OT-core is secure against a potentially cheating Bob. Analogously,
starting from the OT-core secure against Bob, we find an OT-core within the same columns of the
canonical representation, such that this new OT-core is secure against a potentially cheating Alice.
Since in the second step Bob’s involved input symbols stay the same, the finally found OT-core is
also still secure against a cheating Bob.

Now, we give a proof-sketch for this lemma, which is a core element of our line of argument. Note
that, although our notion of cheating situations can be seen as a generalization of the corresponding
concept in [KMQ11], this proof is independent—cf. [KMQ10, Section 5].

Proof-sketch. Let (x̃, ã), (x̃′, ã′) ∈ ΥA×ΩA and (ỹ, b̃), (ỹ′, b̃′) ∈ ΥB×ΩB denote Alice’s and Bob’s input-
output tuples belonging to the initially given OT-core. W.l.o.g., φx̃,ỹ(ã, b̃) > 0 and φx̃′,ỹ(ã

′, b̃) > 0.
If ỹ = ỹ′, i.e. the initially given OT-core lies within a single block column of the canonical rep-

resentation, then existence of a cheating situation η ∈ N
(F)
B with η|fake

B ({ȳ, ȳ′}) = 1 > η|true
B ({ȳ, ȳ′})

would imply that the input symbol simultaneously denoted by ỹ and ỹ′ is redundant (cf. Corol-
lary 18). So, in this case things are easy. Else, i.e. if ỹ 6= ỹ′, we need a more abstract view of cheating

situations to keep arguments traceable. Let X
(F)
B denote the set of all mappings ξ : ΥB → R for

that there exist some η ∈ N
(F)
B and γ ∈ R>0, such that γ · ξ(y) = η|fake

B (y)− η|true
B (y) for all y ∈ ΥB.

The intuition behind this is merely that ξ(y) > 0 if Bob claims to have input y more often than he
actually did, and ξ(y) < 0 if Bob claims to have input y less often than he actually did. We will
make use of the following properties of this notation:

• The set X
(F)
B is closed under positive linear combination, i.e. γ · ξ + γ′ · ξ′ ∈ X

(F)
B for all

γ, γ′ ∈ R>0 and ξ, ξ′ ∈ X
(F)
B . This straightforwardly follows from the fact that Alice’s input

distribution η|A of every cheating situation η ∈ N
(F)
B can be canonically rescaled, and the fact

that the set of all cheating situations with the same input distribution of Alice is convex.

• If for some y′ ∈ ΥB there exists a ξ ∈ X
(F)
B with ξ(y′) > 0 and ξ(y) ≤ 0 for all y ∈ ΥB\{y′},

then y′ is redundant. This is just a reformulation of the redundancy criterion that there exists

an η ∈ N
(F)
B with η|true

B (y′) < η|fake
B (y′) and η|true

B (y) ≥ η|fake
B (y) for all y ∈ ΥB\{y′}.

Further, for any Y ⊆ ΥB let ΨF (Y) denote the set of all input symbols y that a corrupted Bob can
use although the protocol prescribes to use only input symbols from Y , i.e.:

ΨF (Y) =
{
y ∈ ΥB

∣∣ there exists an η ∈ N
(F)
B , such that η|true

B (y) > 0 and η|fake
B (Y) = 1

}
Note that by the convex combinability of cheating situations we always find some η ∈ N

(F)
B , such

that η|fake
B (Y) = 1 and η|true

B (y) > 0 for all y ∈ ΨF (Y). Thus, we also always have some ξ ∈ X
(F)
B ,

such that ξ(y) = 0 for all y /∈ ΨF (Y) and ξ(y) < 0 for all y ∈ ΨF (Y)\Y . Further note that always
ΨF (Y) ⊆ ΨF (Y ′) for all Y ⊆ Y ′, that ΨF (ΨF (Y ′)) = ΨF (Y ′), and that hence ΨF (Y) ⊆ ΨF (Y ′)
for all Y ⊆ ΨF (Y ′) (cf. Lemma 23).

Now we can start with our argumentation. First of all, we divide ΨF (ỹ, ỹ′) into the following
three subsets (cf. Figure 4):

• Let Ỹ ′ denote the set of all y′ ∈ ΨF (ỹ, ỹ′), such that for some b′ ∈ ΩB the {(x̃, ã), (x̃′, ã′)}×
{(ỹ, b̃), (y′, b′)}-submatrix of the canonical representation of F is an OT-core; i.e., since by
assumption φx̃,ỹ(ã, b̃) > 0 and φx̃′,ỹ(ã

′, b̃) > 0, we just need:

φx̃,ỹ(ã, b̃) · φx̃′,y′(ã′, b′) 6= φx̃′,ỹ(ã
′, b̃) · φx̃,y′(ã, b′)

13

ỹ ỹ′ Ỹ Ỹ ′ Ỹ0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

· · · 1
4

1
4

1
6

1
2

1
6

1
6

1
6

1
24

1
12

1
8

1
6

1
8

5
9 1 1

4 0 0 0 0 0 · · ·
· · · 1

4
1
4

1
2

1
2

1
6

1
6

1
6

1
24

1
12

1
8

1
3

1
4

4
9 0 0 1

3
1
4 0 0 0 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 4: Illustration of the construction of the input sets Ỹ , Ỹ ′, Ỹ0. Input symbols from Ỹ have an
OT-core together with ỹ′, but not with ỹ; inputs from Ỹ ′ have an OT-core together with ỹ; inputs
from Ỹ0 cannot be completed by ỹ or ỹ′ to have an OT-core. Note that always ỹ ∈ Ỹ and ỹ′ ∈ Ỹ ′,
which is not displayed in order to keep the graphic simple.

• Let Ỹ denote the set of all y ∈ ΨF (ỹ, ỹ′)\Ỹ ′, such that for some b ∈ ΩB the {(x̃, ã), (x̃′, ã′)}×
{(y, b), (ỹ′, b̃′)}-submatrix of the canonical representation of F is an OT-core; i.e., φx̃,y(ã, b) >

0 and φx̃′,y(ã
′, b) > 0 and for all b̂ ∈ ΩB we have:

φx̃,ỹ(ã, b̃) · φx̃′,y(ã′, b̂) = φx̃,y(ã, b̂) · φx̃′,ỹ(ã′, b̃)

• Let Ỹ0 denote the set of all y0 ∈ ΨF (ỹ, ỹ′), such that for all b0 ∈ ΩB neither the {(x̃, ã), (x̃′, ã′)}×
{(ỹ, b̃), (y0, b0)}-submatrix nor the {(x̃, ã), (x̃′, ã′)}×{(y0, b0), (ỹ′, b̃′)}-submatrix of the canon-
ical representation of F is an OT-core; i.e., φx̃,y0(ã,ΩB) = φx̃′,y0(ã′,ΩB) = 0.

Our proof is by contradiction and hence w.l.o.g. we assume that ΨF (y, ỹ′) = ΨF (ỹ, ỹ′) for all
y ∈ Ỹ and ΨF (ỹ, y′) = ΨF (ỹ, ỹ′) for all y′ ∈ Ỹ ′—keep in mind that ΨF (Z) ⊆ ΨF (ỹ, ỹ′) for all
Z ⊆ ΨF (ỹ, ỹ′) as mentioned above. Now we pick some arbitrary y′ ∈ ΨF (ỹ, ỹ′); w.l.o.g. y′ ∈ Ỹ ′.
By assumption we find some ξ′, ξ′′ ∈ X

(F)
B , such that for all y ∈ ΥB it holds:

ξ′(y) > 0 if y ∈ {ỹ, y′} ξ′′(y) > 0 if y ∈ {ỹ, ỹ′}
ξ′(y) = 0 if y /∈ ΨF (ỹ, ỹ′) ξ′′(y) = 0 if y /∈ ΨF (ỹ, ỹ′)

ξ′(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ỹ, y′} ξ′′(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ỹ, ỹ′}

Let ξ := ξ′(y′) · ξ′′ − ξ′′(y′) · ξ′, whereby for all y ∈ ΥB we get:

ξ(y) > 0 if y = ỹ

ξ(y) = 0 if y /∈ ΨF (ỹ, ỹ′) or y = y′

ξ(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ỹ, ỹ,′ y′}

Moreover, it must hold that ξ(ỹ′) > 0, since otherwise ξ(y) ≤ 0 for all y ∈ ΥB\{ỹ} and hence ỹ

would be redundant. Iteration of this construction yields some ξ̂ ∈ X
(F)
B , such that for all y ∈ ΥB

we have:

ξ̂(y) > 0 if y ∈ {ỹ, ỹ′}
ξ̂(y) = 0 if y /∈ {ỹ, ỹ′} ∪ Ỹ0

ξ̂(y) < 0 if y ∈ Ỹ0

Switching back to cheating situations or cheating strategies respectively, this means that Bob can
use his input symbols ỹ, ỹ′ less frequently than prescribed and substitute them by input symbols
from Ỹ0. However, this cannot be (the following arguments can probably be followed best through
a concrete example, e.g. Figure 4): Since φx̃,Y0(ã,ΩB) = 0 and φx̃′,Y0(ã′,ΩB) = 0, but φx̃,ỹ(ã, b̃) > 0
and φx̃′,ỹ(ã

′, b̃) > 0 and also φx̃,ỹ′(ã, b̃
′)+φx̃′,ỹ′(ã

′, b̃′) > 0, this substantially decreases Alice’s overall
frequency of input-output tuples (x̃, ã) and (x̃′, ã′) and thus cannot be an undetectable cheating
strategy.

14

3.1.4 Robust OT-cores in real protocol runs

In this section we consider real protocol runs of the protocol scheme introduced in Section 3.1.1,
instantiated with some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. Unfortunately, there is no guar-
antee that a corrupted Bob always follows exactly a cheating strategy in the idealized sense of
Section 3.1.2. For instance, he can as well try to exploit that Alice has to tolerate some statistical
noise in the protocol step Check A. However, we show now that indeed our notion of cheating
situations is a very suitable approximation of what may happen during a real protocol run. To
make formulas more readable, we use the following self-suggesting notation.

Notation (Almost equality). For any a, b, c ∈ R, by “a = b± c” we denote that |a− b| ≤ c.

Linking real protocol runs to idealized attack strategies. Our starting point for linking real
protocol runs to idealized attack strategies is the Hoeffding Inequality. We need it in the following
form, which directly follows by [Hoe63, Theorem 1].

Lemma (Hoeffding Inequality). Let any n ∈ N, c ∈ R>0 and a binomially distributed random
variable X with expected value E(X) be given. Further let P[0 ≤ X ≤ n] = 1. Then it holds:

P
[
|X −E(X)| ≥ c

]
≤ 2 · exp

(
−2c2

n

)
By [Hoe63, Section 6], this lemma also holds true if X is distributed hypergeometrically.

Following [KMQ10, Lemma 15], we instantiate the Hoeffding Inequality with n := k and c := k∆,
where k denotes our security parameter and ∆ > 1

2 is constant. Thereby we get that the probability
P
[
|X − E(X)| ≥ k∆

]
is upper bounded by 2 · exp

(
−2k2∆−1

)
. I.e., it vanishes exponentially in k

and hence is negligible, or in other words, X = E(X)± k∆ with overwhelming probability.
The most apparent application of the Hoeffding Inequality is Alice’s choice of the challenge

set in the protocol step Check A. This random choice is a hypergeometric sampling process and
by the hypergeometric version of the Hoeffding Inequality it follows that the joint distribution of
Alice’s and Bob’s input-output tuples in the challenge set is a good approximation of their overall
joint distribution of input-output tuples. Moreover, for any x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB and
with υ ∈ pmf(ΥA) denoting Alice’s input distribution it holds: Whenever in the first protocol step
Bob inputs y, then with probability υ(x) · φx,y(a, b) this counts to the number of events where
Alice’s input-output tuple is (x, a) and Bob’s input-output tuple is (y, b). Therefore, Bob’s input
strategy can be seen as a binomial sampling process, and thus the binomial version of the Hoeffding
Inequality applies. Analogously, the hypergeometric version of the Hoeffding Inequality applies to
Bob’s lying strategy in the step Check A. Skipping some further details, in the end this yields: If
for each (x, a, y, b, y′, b′) ∈ ΥA×ΩA×ΥB×ΩB×ΥB×ΩB we count the relative frequency of the event
that Alice’s input-output tuple is (x, a), Bob’s actual input-output tuple is (y, b) and Bob’s claimed
input-output tuple is (y′, b′), then with overwhelming probability the resulting R(ΥA×ΩA)×(ΥB×ΩB)2

-
vector ν fulfills the defining conditions of cheating strategies as introduced in Section 3.1.2, up to
some error of magnitude k−ε with constant ε > 0 (cf. Lemma 34). In particular, with υ ∈ pmf(ΥA)
denoting Alice’s prescribed input distribution, we have:

1. For all x ∈ ΥA it holds that ν|A(x) := ν
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= υ(x)± k−ε.

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

ν
(
(x, a), (y, b), (ΥB,ΩB)

)
= ν|A(x) · ν

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
· φx,y(a, b)± k−ε

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

ν
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= ν|A(x) · ν

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
· φx,y′(a, b′)± k−ε

15

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with ν
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

ν
(
(x, a), (y, b), (y′, b′)

)
= ν

(
(ΥA,ΩA), (y, b), (y′, b′)

)
·

ν
(
(x, a), (y, b), (ΥB,ΩB)

)
ν
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

) ± k−ε
The last three items2 above can be seen as a polynomial equation system over R(ΥA×ΩA)×(ΥB×ΩB)2

,
such that the defining multivariate polynomials solely depend on F , the cheating situations from
Section 3.1.2 are always in the zero locus of these polynomials, and all these polynomials evaluate
on ν to something bounded by k−ε. Now, we are going to exploit the latter and derive an estimation

for the distance of ourR(ΥA×ΩA)×(ΥB×ΩB)2
-vector ν from N

(F)
B . This is where real algebraic geometry

comes into play.

Lemma (Lojasiewicz Inequality [Loj59, Theorem 17]). Let some n ∈ N, an open set U ⊆ Rn, a
compact set K ⊂ U , and a real analytic function h : U → R with non-empty zero locus Z be given.
Then, there exist some constants c, d ∈ R>0, such that for all ν ∈ K it holds:

infη∈Z ‖ν − η‖ ≤ c ·
∣∣h(ν)

∣∣d
Unfortunatley, the Lojasiewicz Inequality is not directly applicable in our case. The primary reason

is that each cheating strategy η ∈ N
(F)
B does not only have to fulfill the abovementioned polynomial

equations (which translates to η ∈ Z in terms of the Lojasiewicz Inequality), but it must also hold
that η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2

)
. Therefore, we need the following adaption of the Lojasiewicz

Inequality (q.v. Lemma 35).

Lemma. Let n ∈ N and some polynomial f ∈ R[X1, . . . , Xn] be given, such that the variety
V :=

{
ν ∈ Rn

∣∣ f(ν) = 0
}

is not empty. Furthermore, let a bounded convex polytope P ⊂ Rn be
given, such that V ∩ P 6= ∅. Then for every norm there exist some constants c, d ∈ R>0, such that
for all ν ∈ P it holds:

minη∈V ∩P ‖ν − η‖ ≤ c ·
∣∣f(ν)

∣∣d
We instantiate this lemma with P := pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2

)
and f :=

∑
p∈S p

2, where the set
S just contains the polynomials from our polynomial equation system above. Thereby, we can show
that with overwhelming probability either the considered protocol run is aborted or the vector ν

described above is
(
c · |S| ·k−2εd

)
-close to a cheating strategy η ∈ N

(F)
B . We skip all further technical

details here (q.v. Section 4.6), but a final caveat seems in place: In general, the last lemma above
is not true without the condition that P is a polytope, even if P is still assumed to be convex
and compact! Also note that our whole line of argument would be vastly more complicated with
cheating strategies instead of cheating situations, what again proves usefulness of the latter concept.

Exploiting decomposability of cheating situations. So far, we have reached two essential
insights. On the one hand, by Section 3.1.3 we can find OT-cores, such that for Bob’s corresponding

input symbols ȳ, ȳ′ and every cheating situation η ∈ N
(F)
B with η|fake

B ({ȳ, ȳ′}) = 1 we have that
η|true

B ({ȳ, ȳ′}) = 1 (cf. left diagram in Figure 5). On the other hand, by the considerations above
we know that a real protocol run with overwhelming probability is either aborted or there exists

a cheating situation η ∈ N
(F)
B , such that η|true

B is k−ε-close to Bob’s actual input distribution and
η|fake

B is k−ε-close to Bob’s claimed input distribution. Since otherwise Alice aborts the protocol,
the latter also implies that η|fake

B is k−ε-close to Bob’s prescribed input distribution.

2We shall just ignore the first item in this more intuitive overview. It will be formally needed to estimate
minx∈ΥA ν|A(x), but it plays a somewhat special role, since Alice’s input distribution υ depends on the security
parameter k (cf. Section 3.1.1). All other equations are independent of k, except for the respective error terms k−ε.

16

OT-core OT-core

1
2

ϑF

k−δ

OT-core

Figure 5: What we know (left), what we have (middle), and what we can conclude (right). Filled
bars stand for claimed input probabilities, non-filled bars stand for actual input probabilities.
Left diagram: When Bob claims to have used only inputs that belong to the chosen OT-core, we
know that he actually has done so.
Middle diagram: In real protocol runs we must tolerate that Bob sometimes claims to have used
inputs not belonging to the chosen OT-core.
Right diagram: Decomposition of the claimed input distribution from the middle diagram into a
large part, where the guarantee from the left diagram applies, and a polynomially vanishing rest.

Now we want to tie these two things together, but we have the following problem. As discussed
right at the start of Section 3.1, the support of Bob’s prescribed input distribution must be his
complete input alphabet ΥB. Hence, we must also tolerate in the protocol step Check A that
Bob sometimes claims to have used an input symbol that does not belong to the chosen OT-core.
Thereby, we only get that η|fake

B (y′) ≤ k−δ for all y′ ∈ ΥB\{ȳ, ȳ′} with constant δ > 0, rather than
η|fake

B (ΥB\{ȳ, ȳ′}) = 0 (cf. middle diagram in Figure 5).
We solve this problem by exploiting the fact that, up to rescaling of Alice’s input distribution

η|A, the set N
(F)
B is the convex hull of a finite spanning set {η̇1, . . . , η̇n} ⊆ N

(F)
B . Since k−δ becomes

arbitrarily small for increasing security parameter k, but there exists some constant ϑF > 0 with
η̇i|fake

B (y′) /∈ (0, ϑF) for all y′ ∈ ΥB, i ∈ {1, . . . , n}, we can conclude that our initially given cheating
situation η consists only in small part of cheating situations η̇i with η̇i|fake

B (ΥB \{ȳ, ȳ′}) > 0 (cf.
right diagram in Figure 5). Thus, we only introduce an additional error of magnitude O(k−δ), if we

approximate a cheating Bob’s behavior by a cheating situation η ∈ N
(F)
B with η|fake

B ({ȳ, ȳ′}) = 1. So,
after all we can utilize that our chosen OT-core does not allow for non-trivial cheating situations,
and we can conclude that Bob has to play honestly up to some polynomially vanishing fraction of
his inputs.

Secure generation of correlated data. Putting things together, we have shown that in the
protocol scheme introduced in Section 3.1.1, if instantiated appropriately, even corrupted parties
cannot deviate too much from the prescribed input distributions without being caught cheating.
Furthermore, the final protocol output consists for the most part of such “almost honestly” gener-
ated data (cf. the final discussion of Section 3.1.1), even if a corrupted party chooses a challenge set
maliciously in one of the check steps, and/or lies in the final output step about which inputs did
not belong to the chosen OT-core. Altogether, our protocol produces some “slightly manipulable
correlated data” (SMCD). We want to grasp this by defining an according functionality, which is
implemented by our protocol in the UC sense, but first we need to introduce some suitable notation.

Notation. Given a finite string s over some alphabet Ω, let |s| denote the length of s. By |s|α with
α ∈ Ω we denote the number of appearances of α in s. By s[i] with i ∈ {1, . . . , |s|} we denote the
i-th element of s. For some given strings sA and sB of the same length, we define the compound
string sA×sB, whose i-th element is just the tuple

(
sA[i], sB[i]

)
.

17

Functionality F (G,ε)
SMCD

Parametrized by a constant ε > 0 and G := (ΛA,ΛB, ψ), where ΛA and ΛB are finite alphabets and
ψ ∈ pmf(ΛA×ΛB), such that ψ(α,ΛB) > 0 for all α ∈ ΛA and ψ(ΛA, β) > 0 for all β ∈ ΛB. Let k denote
the security parameter and let ∆ := 1− ε.

• Wait for the adversary to send a compound string tA×tB, such that k− k1−ε ≤ |tA×tB| ≤ k and for
all α ∈ ΛA, β ∈ ΛB it holds:

|tA×tB|(α,β) = k · ψ(α, β)± k∆

Further, if Alice is uncorrupted, it must hold that tA ∈ Λ∗A (but not necessarily tB ∈ Λ∗B). Analo-
gously, if Bob is uncorrupted, it must hold that tB ∈ Λ∗B (but not necessarily tA ∈ Λ∗A).

If such a compound string tA×tB is sent for the first time, resample each tA[i] and/or tB[i] as follows:

– If no party is corrupted, resample the complete tuple
(
tA[i], tB[i]

)
according to ψ.

– If only Alice is corrupted and tA[i] ∈ ΛA, then resample tB[i], s.t. P
[
tB[i] = β

]
= ψ(tA[i],β)

ψ(tA[i],ΛB) .

– If only Bob is corrupted and tB[i] ∈ ΛB, then resample tA[i], s.t. P
[
tA[i] = α

]
= ψ(α,tB[i])

ψ(ΛA,tB[i]) .

– If both parties are corrupted or
(
tA[i], tB[i]

)
/∈ ΛA× ΛB, then neither resample tA[i] nor tB[i].

Next, record the resulting compound string tA×tB. Henceforth, ignore any further tA×tB-messages
from the adversary.

• Upon receiving a message (Delivery, Alice) from the adversary, verify that there is a stored com-
pound string tA×tB; else ignore that message. Next, output tA to Alice and henceforth ignore all
messages (Delivery, Alice).

• Upon receiving a message (Delivery, Bob) from the adversary, verify that there is a stored compound
string tA×tB; else ignore that message. Next, output tB to Bob and henceforth ignore all messages
(Delivery, Bob).

• Upon receiving any message from Alice or Bob, just forward it to the adversary, inclusive the original
sender ID.

Figure 6: Ideal functionality for correlated data generation by our protocol scheme based on finite
randomized 2-party functions. Corrupted parties have full control over the order of their output
string, since order is nowhere checked in our protocol scheme. The resampling just ensures that
corrupted parties have no information about honest parties’ outputs, other than what they learn
by their own output. The condition that ψ(α,ΛB) > 0 and ψ(ΛA, β) > 0 for all α ∈ ΛA, β ∈ ΛB is
needed to avoid division by zero during the resampling process. The constant ∆ is motivated by
the Hoeffding Inequality (q.v. Section 3.1.4); w.l.o.g. we always have that ε < 1

2 and thus ∆ > 1
2 .

Now, let us consider the protocol scheme from Section 3.1.1, instantiated as follows.

• The underlying 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin is redundancy-free.
• The canonical representation of F has an OT-core that is robust in the sense of Section 3.1.3.
• Alice and Bob each have to use their respective OT-core inputs x̄, x̄′ and ȳ, ȳ′ with equal

probability, and all other input symbols with some polynomially vanishing probability.
• There exists some constant ε > 0, such that k− k1−ε elements of the final output strings are

generated honestly, even if one party is corrupted (cf. the final discussion in Section 3.1.1).

Given such a setting, our protocol implements the functionality F (G,ε)
SMCD defined in Figure 6, where

G = (ΛA,ΛB, ψ), instantiated as follows (cf. Section 4.8):

ΛA = {x̄, x̄′}×ΩA ΛB = {ȳ, ȳ′}×ΩB ψ
(
(x, a), (y, b)

)
=

φx,y(a, b)∣∣{x̄, x̄′}×{ȳ, ȳ′}∣∣
18

a)
1
6

1
3

1
2

1
6

1
3

1
2

b)
1
12

1
6

1
4

1
12

1
6

1
4

c)
1
4

1
4

1
4

1
4

Figure 7: Canonical representation of a 2-party function (a), the resulting correlated data distri-
bution (b), and condensed version of the latter (c).

3.2 Reduction of OT to correlated data

In Section 3.1 we have seen how to securely generate non-trivially correlated data from any
redundancy-free 2-party function that has some OT-core. Now we have to implement OT from

such data, i.e. we have to construct an OT protocol based on the functionality F (G,ε)
SMCD in Figure 6.

This protocol construction is only a minor contribution, since in large part the used techniques are
just adopted from the standard literature (cf. Section 1.1) and in particular from [CMW05].

Note that in a straightforward manner we can identify G := (ΛA,ΛB, ψ) with a special 2-party

function F := ({ε}, {ε},ΛA,ΛB, φ) ∈ Ffin with φε,ε = ψ, although the functionality F (G,ε)
SMCD works

completely different from F (F)
SFE. However, our notions of canonical representations, condensed

canonical representations, isomorphism (q.v. Section 2.2) and OT-cores (q.v. Section 2.3) directly
carry over (cf. also Figure 7). Our notion of redundancy does not apply, since there are no mean-

ingful inputs anymore. In the upcoming subsections we always consider the functionality F (G,ε)
SMCD,

where G = (ΛA,ΛB, ψ) and G has some OT-core. W.l.o.g., G is always given in condensed form,
meaning that the rows of its canonical representation are pairwise linearly independent and so are
the columns.

3.2.1 Refining the correlated data

Removal of unnecessary output symbols. The joint distribution ψ can still be fairly com-
plex, but by the following protocol we can iteratively remove specific symbols from ΛA and also
analogously from ΛB, until |ΛA| = |ΛB| = 2 and thus w.l.o.g. ΛA = ΛB = {0, 1}. Let α̂ denote the
symbol to be removed from ΛA. W.l.o.g., G is given in condensed form, i.e. there is no other row
in the canonical representation that linearly depends on the α̂-row. For our upcoming protocol we
will also need that the α̂-row in the canonical representation of G is no convex combination of any
other rows. And since we do not want to destroy the last OT-core of G by removal of α̂, there must
exist some OT-core outside of the α̂-row. However, as one verifies straightforwardly, α̂ can always
be chosen this way, if only |ΛA| > 2 (remember that we assumed G to be given in condensed form)
and G has an OT-core at all. The protocol for removing α̂ now just proceeds as follows.

1. Alice announces the index set I :=
{
i ∈ N

∣∣ tA[i] = α̂
}

.
2. Bob verifies that

∣∣tB[I]
∣∣
β

= k ·ψ(α̂, β)± k∆ for all β ∈ ΛB, where tB[I] denotes the substring
of tB indexed by I; otherwise he aborts the protocol. If there exists any β ∈ ΛB, such that
ψ
(
ΛA\{α̂}, β

)
= 0 and

∣∣tB[I]
∣∣
β
<
∣∣tB∣∣β, he also aborts the protocol.

3. Alice and Bob remove the elements indexed by I from tA and tB respectively.

Note that Alice cannot lie substantially often, if only the α̂-row in the canonical representation

is no convex combination of other rows. Thus, we can implement this way FG
′,ε′

SMCD from FG,εSMCD,
where 0 < ε′ < ε and G′ is obtained from G just by removing α̂ from ΛA and some rescaling
of ψ. In particular, we have that G′ = (Λ′A,ΛB, ψ

′), where Λ′A = ΛA\{α̂} and ψ′(α, β) = ψ(α,β)
1−ψ(α̂,ΛB)

for all α ∈ Λ′A, β ∈ ΛB. Note that this also linearly scales down the security parameter by the
factor 1 − ψ(α̂,ΛB). Moreover, after removing the α̂-row from the canonical representation of G,
several columns may become pairwise linearly dependent, what results in a considerably smaller

19

condensed canonical representation of G′. However, as long as the canonical representation of G
without the α̂-row still contains an OT-core, G′ will also have one—full-rank submatrices cannot
be completely destroyed by just adding up pairwise linearly dependent columns. So, by iterated
removal of single input symbols, we end up with a condensed canonical representation that just is
an OT-core. Finally, if ψ(α,ΛB) > ψ(α′,ΛB) for some α, α′ ∈ ΛA, we let Alice analogously remove
some α-elements from tA, so that afterwards ψ(α,ΛB) = ψ(α′,ΛB) for all α, α′ ∈ ΛA.

This removal of unnecessary output symbols and balancing of Alice’s output distribution is UC-
secure; the simulator construction and security proof can be sketched as follows. Talking in terms of

the UC framework, we are in the F (G,ε)
SMCD-hybrid model and want to implement the ideal functionality

FG
′,ε′

SMCD. If no party is corrupted, the simulator basically needs to send a compound string of correct

length to the ideal functionality FG
′,ε′

SMCD, and he can produce such a string simply by simulating a
complete protocol run with honest parties. If Alice is corrupted, basically all she can do is trying to

choose the index set I maliciously. Note that |tA|ΛA
≥ k−|ΛA×ΛB|·k∆ by the construction of F (G,ε)

SMCD,
i.e. tA[i] /∈ ΛA for at most |ΛA×ΛB| · k∆ indices i. Further, by the Hoeffding Inequality we have for

every β ∈ ΛB that with overwhelming probability
∣∣tA×tB[I]

∣∣
ΛA×{β}

=
∑

α∈ΛA

∣∣tA[I]
∣∣
α
· ψ(α,β)
ψ(α,ΛB) ±k

∆,

and hence
∣∣tB[I]

∣∣
β

=
∑

α∈ΛA

∣∣tA[I]
∣∣
α
· ψ(α,β)
ψ(α,ΛB) ±

(
1 + |ΛA×ΛB|

)
k∆. Since otherwise Bob aborts the

protocol, this implies that
∑

α∈ΛA

∣∣tA[I]
∣∣
α
· ψ(α,β)
ψ(α,ΛB) = k · ψ(α̂, β) ±

(
2 + |ΛA×ΛB|

)
k∆, or in other

words: ∑
α∈ΛA

|tA[I]|α
k·ψ(α,ΛB) · ψ(α, β) = ψ(α̂, β)±

(
2 + |ΛA×ΛB|

)
k−ε

Since by assumption the α̂-row in the canonical representation of G is bounded away from the
convex hull of all other rows, this eventually yields that Alice must choose the index set I correctly

up to some O(k1−ε)-error. This is simulatable, since the ideal functionality FG
′,ε′

SMCD even tolerates
k1−ε′-errors, and we have chosen ε′ < ε. Finally, a corrupted Bob can just maliciously abort the
protocol, which can be simulated trivially.

Balancing of Bob’s output distribution. By the method above we have implemented F (G,ε)
SMCD

with G = (ΛA,ΛB, ψ), such that w.l.o.g. ΛA = ΛB = {0, 1} and ψ(0,ΛB) = ψ(1,ΛB). Moreover,
w.l.o.g. we have that ψ(0, 0) · ψ(1, 1) > ψ(1, 0) · ψ(0, 1); otherwise we just have to interchange
the meaning of “0” and “1” on either Alice’s or Bob’s side. We now further refine the correlated
data, such that afterwards the joint distribution is completely balanced in 0 and 1. Therefor, we
need to extend Bob’s alphabet ΛB by a special erasure symbol “⊥”. In particular, we implement

something similar to F (G′,ε′)
SMCD with G′ = ({0, 1}, {0, 1,⊥}, ψ′), such that ψ′(0,⊥) = ψ′(1,⊥) > 0 and

ψ′(0, 0) = ψ′(1, 1) > ψ′(1, 0) = ψ′(0, 1). However, in doing so we will halve the security parameter.

1. Alice deletes
∣∣|tA|0 − |tB|1∣∣ elements from tA, such that afterwards |tA|0 = |tB|1. She an-

nounces the corresponding indices to Bob, who deletes the according elements from tB, too.
If afterwards |tB| is not an even number or Alice announced more than k∆ indices, Bob aborts.

2. Alice randomly permutes tA subject to the condition that afterwards tA[i] 6= tA[i+ 1] for all
odd indices i. She announces the permutation to Bob, who permutes tB the same way.

3. Alice and Bob locally generate new strings t′A ∈ {0, 1}∗ and t′B ∈ {0, 1,⊥}∗ of half length as
follows:

t′A[i] := 0 if
(
tA[2i− 1], tA[2i]

)
= (0, 1) t′B[i] := 0 if

(
tB[2i− 1], tB[2i]

)
= (0, 1)

t′A[i] := 1 if
(
tA[2i− 1], tA[2i]

)
= (1, 0) t′B[i] := 1 if

(
tB[2i− 1], tB[2i]

)
= (1, 0)

t′B[i] := ⊥ if tB[2i− 1] = tB[2i]

20

4. Bob aborts the protocol, if it holds:

|t′B|⊥ >
k

2
· ψ(0, 0) · ψ(1, 0) + ψ(0, 1) · ψ(1, 1)

ψ(0,ΛB) · ψ(1,ΛB)
+ k∆

5. Alice outputs t′A and Bob outputs t′B.

This way we get:

ψ′(0, 0) =
ψ(0, 0) · ψ(1, 1)

2 · ψ(0,ΛB) · ψ(1,ΛB)
ψ′(0,⊥) =

ψ(0, 0) · ψ(1, 0) + ψ(0, 1) · ψ(1, 1)

2 · ψ(0,ΛB) · ψ(1,ΛB)

ψ′(0, 1) =
ψ(0, 1) · ψ(1, 0)

2 · ψ(0,ΛB) · ψ(1,ΛB)
ψ′(1,⊥) =

ψ(1, 0) · ψ(0, 0) + ψ(1, 1) · ψ(0, 1)

2 · ψ(0,ΛB) · ψ(1,ΛB)

ψ′(1, 0) =
ψ(1, 0) · ψ(0, 1)

2 · ψ(0,ΛB) · ψ(1,ΛB)

ψ′(1, 1) =
ψ(1, 1) · ψ(0, 0)

2 · ψ(0,ΛB) · ψ(1,ΛB)

Note that Bob just cannot cheat at all, but he must prevent Alice from maliciously choosing a
permutation that yields tA[i] = tA[i+ 1] for substantially many odd indices i in the first step. This
is what the fourth protocol step is needed for. According to the Hoeffding Inequality, |t′B|⊥ is raised
asymptotically by Ω(n̄ − k∆), where n̄ denotes the number of odd indices i with tA[i] = tA[i + 1]
after the permutation. Thus, a corrupted Alice is caught cheating with overwhelming probability,
if n̄ /∈ O(k∆). Moreover, a corrupted Bob has no control over the order of the final output strings
any more, due to Alice’s random permutation in the first protocol step. Putting things together,

there exist some constants ε′, ε′′, ε̃, ν̃ ∈ (0, 1), particularly ν̃ = ψ′({0, 1},⊥) and ε̃ = ψ′(0,1)+ψ′(1,0)
1−ν̃ ,

such that we have now the following situation with κ denoting the new security parameter.

• Alice’s output is a uniformly random string t′A ∈ {0, 1}κ.
• Bob’s output t′B ∈ {0, 1,⊥}κ is randomly generated according to the following probabilities:

P
[
t′B[i] = t′A[i]

]
= (1− ν̃) · (1− ε̃)

P
[
t′B[i] = ¬t′A[i]

]
= (1− ν̃) · ε̃

P
[
t′B[i] = ⊥

]
= ν̃

• If Alice is corrupted, she may choose her output t′A ∈ {0, 1}κ arbitrarily and afterwards learn
some additional information about up to κ1−ε′ arbitrarily chosen elements of t′B.
• For up to κ1−ε′′ random indices i ∈ {1, . . . , κ}, a corrupted Bob my learn some additional

information about t′A[i].

Note that ε̃ < 1
2 , since ψ′(0, 0) = ψ′(1, 1) > ψ′(1, 0) = ψ′(0, 1) by construction. The implemented

functionality is different from F (G′,ε′)
SMCD , insofar as a corrupted Bob has no longer control over his

output order or for which indices i he gets additional information about t′A[i], but a corrupted Alice
can now arbitrarily choose her output string t′A provided that |t′A|{0,1} ≥ κ−κ1−ε′ . Nonetheless, we

still have a UC-secure implementation of this modified version of F (G′,ε′)
SMCD . The respective simulator

construction and security proof are pretty similar to those for our protocol above for removal of
unnecessary output symbols.

21

3.2.2 Building OT from the refined correlated data

Let ε′, ε′′, ε̃, ν̃, κ, t′A, t
′
B as above. If Alice is honest, we can easily implement from this a non-trivial

binary symmetric erasure channel (BSEC) that allows Alice to send κ bits and then shuts down:
To send the i-th bit, say m[i], Alice just has to announce m̃[i] := m[i]⊕ t′A[i] to Bob. Bob then can
recover a noisy version m′[i] of m[i] by computing m′(i) = m̃[i] ⊕ t′B[i] with the convention that
0⊕⊥ = 1⊕⊥ = ⊥. Obviously, the implemented BSEC has the following properties:

• If Bob is honest, the erasure probability is ν̃.
• If Bob is corrupted, the erasure probability is still lower bounded by ν̃ − κ−ε′′ .
• If Bob is honest, the error probability is (1− ν̃) · ε̃.
• If Bob is corrupted, the error probability is still lower bounded by (1− ν̃) · ε̃− κ−ε′′ .

I.e., the differences between the channel characteristics for an uncorrupted and a corrupted Bob
are polynomially vanishing in the security parameter. Especially, the channel parameters for a
corrupted Bob do converge to the corresponding parameters of the honest case. This is good enough,
so that our BSEC can be transformed into OT statistically secure against a corrupted receiver party
Bob just by applying one of the protocols from the literature [CMW05, Wul09, IKO+11]. Note
that although only [IKO+11] is explicitly stated in the UC framework, the security proofs of the
other approaches can also be turned into UC proofs rather simply.

However, we still have to take care of a corrupted Alice, who can additionally learn t′B[i] for
up to κ1−ε′ arbitrarily chosen indices i. We deal with this as follows. Instead of implementing a
single BSEC that can be used κ times, we implement ` := bκ1−ε′ + 1c BSECs that each can be
used λ := bκ/`c times. We just use the first λ elements of t′A and t′B for the first BSEC, the next
λ elements of t′A and t′B for the second BSEC, and so on. Analogously to above, this gives us `
OTs with polynomially downscaled security parameter λ, each of which is statistically UC-secure
against a corrupted receiver Bob. But now, since a corrupted Alice can cheat at most κ1−ε′ times,
at last one of these OTs is also statistically UC-secure against Alice. Finally, we can use a simple
standard combiner to achieve a fully (i.e. against both parties) UC-secure OT instance:

0. Let (b0, b1) denote Alice’s respective sender input and let c denote Bob’s choice bit.
1. Alice chooses two `-bit strings b̂0, b̂1 ∈ {0, 1}` uniformly at random, subject to the condition

that
⊕`

i=1 b̂0[i] = b0 and b̂0[i]⊕ b̂1[i] = b0 ⊕ b1 for all i ∈ {1, . . . , `}.
Bob chooses ĉ ∈ {0, 1}` uniformly at random, subject to the condition that

⊕`
i=1 ĉ[i] = c.

2. For each i ∈ {1, . . . , `}, Alice and Bob run OT with sender input
(
b̂0[i], b̂1[i]

)
from Alice and

choice bit ĉ[i] from Bob, such that all ` OT instances are secure against Bob and at least one
instance is secure against Alice.

3. Bob computes and outputs bc =
⊕`

i=1 b̂ĉ[i][i].

It is not hard to verify that this protocol is correct, hides c from Alice, and Bob may learn at most
one of the bit values b0, b1. Even if Alice maliciously chooses (b̂0, b̂1) such that b̂0[i]⊕ b̂1[i] is not the
same for all i ∈ {1, . . . , `}, this means no security violation: It only randomizes Bob’s final output,
which she could as well achieve by choosing her protocol input (b0, b1) just uniformly at random in
the first place.

This whole construction can easily be proven UC-secure, since by UC-security of the ` OT sub-
protocols in step 2 of our combiner even for corrupted parties the corresponding inputs

(
b̂0[i], b̂1[i]

)
and ĉ[i] are always well-defined. We only have to take into account that a corrupted Alice may
additionally learn up to ` − 1 bits of ĉ. However, this is just pure randomness, uncorrelated with
everything else. The general idea of how the simulation in the ideal model works can be described
as follows.

22

• If Alice is corrupted, the simulator lets her run the protocol with a simulated instance of Bob,
whose choice bit c is just uniform randomness. After step 2 the simulator can easily extract
bc =

⊕`
i=1 b̂ĉ[i][i], compute b¬c = bc ⊕ b̂o[j] ⊕ b̂1[j] with j corresponding to an OT instance

that were secure against Alice, and finally send (b0, b1) to the ideal functionality.

• If Bob is corrupted, the simulator lets him run the protocol with a simulated instance of Alice,
whose sender input (b0, b1) is just uniform randomness. At the beginning of the final iteration
of step 2 the simulator can easily extract c =

⊕`
i=1 ĉ[i], send c to the ideal functionality, and

thus learn bc. Then, if bc 6=
⊕`

i=1 b̂ĉ[i][i], he just has to flip the bit values of b̂0[`] and b̂1[`]
in the simulated Alice’s memory before he resumes simulating the rest of step 2. This is
perfectly indistinguishable from a real protocol run, unless a corrupted Bob can gather some
information about b̂0[i] ⊕ b̂1[i] for any i ∈ {1, . . . , `}. However, the latter is ruled out by
security against Bob of the underlying ` OT instances.

Once again, we omit the fully detailed UC proof, since it does not contain any additional technical
insights. This concludes our more informal exposition of how one can prove the Classification
Theorem from Section 2.3.

4 Formal part

In this section, we formally prove that secure generation of correlated data (in the sense of Figure 6)
can be implemented from any redundancy-free 2-party function F ∈ Ffin that has some OT-core.
This is our main technical contribution, since OT can be reduced to such correlated data by rather
standard techniques (q.v. Section 3.2).

4.1 Basic notions and notations

We start off with a collective (re)statement of all definitions and notations that are used throughout
the rest of this paper.

Notation 1 (Finite sums of function values). Given a set T with finite subset S ⊆ T and some
mapping g : T → R, we set g(S) :=

∑
ω∈S g(ω). For functions with more arguments we use the

canonical extension of this notation, e.g. h(a,B,C, d) :=
∑

β∈B, γ∈C h(a, β, γ, d).

Notation 2 (Spaces of probability mass functions). Given some finite alphabet Ω, we denote the
set of all probability mass functions over Ω by pmf(Ω), i.e. pmf(Ω) =

{
ρ : Ω→ R≥0

∣∣ ρ(Ω) = 1
}

.

Notation 3 (Finite randomized 2-party functions). Let Ffin denote the set of all quintuples (ΥA,ΥB,
ΩA,ΩB, φ), where ΥA,ΥB,ΩA,ΩB are non-empty finite alphabets and φ = {φx,y}x∈ΥA,y∈ΥB

is a
family of probability mass functions over ΩA×ΩB, i.e. φ ⊆ pmf(ΩA×ΩB).

Definition 4 (Redundancy). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. An input symbol y′ ∈ ΥB

is called redundant, if there exist some ι ∈ pmf(ΥB) and a family of probability mass functions
{λy,b}y∈ΥB,b∈ΩB

⊆ pmf(ΩB), such that ι(y′) = 0 and for all x ∈ ΥA, a ∈ ΩA, b
′ ∈ ΩB it holds:

φx,y′(a, b
′) =

∑
y∈ΥB, b∈ΩB

ι(y) · φx,y(a, b) · λy,b(b′)

For input symbols x ∈ ΥA redundancy is defined analogously. If neither ΥA nor ΥB contains any
redundant input symbols, F is called redundancy-free.

Definition 5 (Cheating situations). For F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin let N
(F)
B denote the set of

all probability mass functions η ∈ pmf
(
(ΥA×ΩA)×(ΥB×ΩB)2

)
that meet the following conditions.

23

1. For all x ∈ ΥA it holds that η|A(x) := η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
> 0.

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB, with η|true
B (y) := η

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
, it

holds:
η
(
(x, a), (y, b), (ΥB,ΩB)

)
= η|A(x) · η|true

B (y) · φx,y(a, b)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB, with η|fake
B (y′) := η

(
(ΥA,ΩA), (y′,ΩB), (ΥB,ΩB)

)
, it

holds:
η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= η|A(x) · η|fake

B (y′) · φx,y′(a, b′)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
·

η
(
(x, a), (y, b), (ΥB,ΩB)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
The mappings η ∈ N

(F)
B are called Bob’s cheating situations for F . The set N

(F)
A of Alice’s cheating

situations for F is defined analogously.

Definition 6 (Special cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. We define the

following subsets of N
(F)
B .

Normalized cheating situations: A cheating situation η ∈ N
(F)
B is called normalized, if η|A(x) = 1

|ΥA|
for all x ∈ ΥA.

Trivial cheating situations: A cheating situation η ∈ N
(F)
B is called trivial, if for all y, y′ ∈ ΥB and

b, b′ ∈ ΩB the following implication holds true:

(y, b) 6= (y′, b′) ⇒ η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
= 0

Direct cheating situations: A cheating situation η ∈ N
(F)
B is called direct, if for each (y, b) ∈ ΥB×ΩB

at least one of the following two equalities holds true:

η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η

(
(ΥA,ΩA), (y, b), (y, b)

)
η
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η

(
(ΥA,ΩA), (y, b), (y, b)

)
Straight cheating situations: A cheating situation η ∈ N

(F)
B is called straight, if for each y ∈ ΥB at

least one of the following two equalities holds true:

η̂|true
B (y) = 0 or η̂|fake

B (y) = 0

Definition 7 (Cheating characteristics). For F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin let X
(F)
B denote the

set of all mappings ξ : ΥB → R for that exist some cheating situation η ∈ N
(F)
B and some γ ∈ R>0,

such that for all y ∈ ΥB it holds:

γ · ξ(y) = η|fake
B (y)− η|true

B (y)

24

4.2 Linear properties of cheating situations

In this section we show that cheating situations can be considered independent from the honest
party’s input distribution, since they can be canonically rescaled (Lemma 8 and Corollary 9).

Further, we show how the algebraic structures N
(F)
B and X

(F)
B allow for basic composition and/or

decomposition of mixed strategies (Lemma 10 and Corollary 11).

Lemma 8 (Rescalability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and η ∈ N
(F)
B .

Further, let τ : ΥA → R>0, such that
∑

x∈ΥA
τ(x) · η|A(x) = 1. Then, the following mapping is a

cheating situation for F :

η̃ : (ΥA×ΩA)×(ΥB×ΩB)2 → R≥0,
(
(x, a), (y, b), (y′, b′)

)
7→ τ(x) · η

(
(x, a), (y, b), (y′, b′)

)
Proof. We just have to check the conditions of Definition 5.

0. First note that η̃ ∈ N
(F)
B , since Image(η̃) ⊆ R≥0 and by construction we have:

η̃
(
(ΥA,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
=
∑

x∈ΥA

τ(x) · η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= 1

1. For all x ∈ ΥA it holds that η̃|A(x) = τ(x) · η|A(x) > 0.

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

η̃
(
(x, a), (y, b), (ΥB,ΩB)

)
= τ(x) · η|A(x) · η|true

B (y) · φx,y(a, b)

By taking the sum over x, a, b it follows that η̃|true
B = η|true

B . This yields:

η̃
(
(x, a), (y, b), (ΥB,ΩB)

)
= τ(x) · η|A(x)︸ ︷︷ ︸

η̃|A(x)

· η|true
B (y)︸ ︷︷ ︸
η̃|true

B (y)

·φx,y(a, b)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

η̃
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= τ(x) · η|A(x) · η|fake

B (y) · φx,y(a, b)

By taking the sum over x, a, b′ it follows that η̃|fake
B = η|fake

B . This yields:

η̃
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= τ(x) · η|A(x)︸ ︷︷ ︸

η̃|A(x)

· η|fake
B (y)︸ ︷︷ ︸
η̃|fake

B (y)

·φx,y(a, b)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with η
(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
η
(
(x, a), (y, b), (ΥB,ΩB)

) =
η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Thereby for all y, y′ ∈ ΥB, b, b

′ ∈ ΩB we can conclude:

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
·
∑

x∈ΥA, a∈ΩA

τ(x) · η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∑

x∈ΥA, a∈ΩA

τ(x) · η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
· η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∑

x∈ΥA, a∈ΩA

τ(x) · η
(
(x, a), (y, b), (y′, b′)

)
· η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η

(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
·
∑

x∈ΥA, a∈ΩA

τ(x) · η
(
(x, a), (y, b), (y′, b′)

)
25

In other words, for all y, y′ ∈ ΥB, b, b
′ ∈ ΩB with η

(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

) =

∑
x∈ΥA, a∈ΩA

τ(x) · η
(
(x, a), (y, b), (y′, b′)

)∑
x∈ΥA, a∈ΩA

τ(x) · η
(
(x, a), (y, b), (ΥB,ΩB)

)
For all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB with η̃

(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 now follows:

η̃
(
(x, a), (y, b), (y′, b′)

)
η̃
(
(x, a), (y, b), (ΥB,ΩB)

) =
τ(x) · η

(
(x, a), (y, b), (y′, b′)

)
τ(x) · η

(
(x, a), (y, b), (ΥB,ΩB)

)
=

η
(
(x, a), (y, b), (y′, b′)

)
η
(
(x, a), (y, b), (ΥB,ΩB)

)
=

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
=

∑
x′∈ΥA, a′∈ΩA

τ(x′) · η
(
(x′, a′), (y, b), (y′, b′)

)∑
x′∈ΥA, a′∈ΩA

τ(x′) · η
(
(x′, a′), (y, b), (ΥB,ΩB)

)
=

η̃
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Corollary 9 (Normalizability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let

η ∈ N
(F)
B . Then there exists a unique normalized cheating situation η̃ ∈ N

(F)
B , such that for all

x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB it holds:

η((x, a), (y, b), (y′, b′))

η|A(x)
=

η̃((x, a), (y, b), (y′, b′))

η̃|A(x)

Proof. This directly follows by Lemma 8, instantiated as follows:

τ : ΥA → R>0, x 7→
1

|ΥA| · η|A(x)

Lemma 10 (Convex combinability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin

and υ ∈ pmf(ΥA), such that υ(x) > 0 for all x ∈ ΥA. Then the set of all cheating situations
η ∈ NB(F) with η|A = υ is the convex hull of some finite set of vertices in the affine space

R(ΥA×ΩA)×(ΥB×ΩB)2
. In particular, for all η, η′ ∈ N

(F)
B with η|A = η′|A = υ and each s ∈ R the

mapping η̃ := s · η + (1− s) · η′ is a normalized cheating situation for F , if only Image(η̃) ⊆ R≥0.

Proof. It suffices to give a proof for the case that υ is the uniform distribution, i.e. υ(x) = 1
|ΥA| for

all x ∈ ΥA and thus all considered cheating situations are normalize (q.v. Definition 6). Everything
else then follows straightforwardly by Corollary 9.

We just have to adapt the four conditions of Definition 5 to normalized cheating situations. As
one verifies quite straightforwardly, the set of all normalized cheating situations for F is the set of
all η ∈ pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2

)
that meet the following conditions.

1. For all x ∈ ΥA it holds that η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
= 1
|ΥA| .

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= 1
|ΥA| · η

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
· φx,y(a, b)

26

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= 1
|ΥA| · η

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
· φx,y′(a, b′)

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with φΥA,y(ΩA, b) > 0 it holds:

η
(
(x, a), (y, b), (y′, b′)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· φx,y(a, b)

φΥA,y(ΩA, b)

Since all these conditions are linear, they define a convex polytope inR(ΥA×ΩA)×(ΥB×ΩB)2
. Note that

this polytope is a subset of the bounded set pmf
(
(ΥA×ΩA)×(ΥB×ΩB)2

)
and hence also is bounded.

Further, as the polytope is described by a finite number of linear constraints, it is the convex
hull of a finite set of vertices. Finally, the only inequation that normalized cheating situations

must fulfill, is that they have non-negative image space. Thus, for all normalized η, η′ ∈ N
(F)
B and

each s ∈ R the mapping η̃ := s · η + (1 − s) · η′ is a normalized cheating situation for F , if only
Image(η̃) ⊆ R≥0.

Corollary 11 (Positive linearity of cheating characteristics). Let any F ∈ Ffin and ξ, ξ′ ∈ X
(F)
B ,

γ, γ′ ∈ R>0 be given. Then it holds that γ · ξ + γ′ · ξ′ ∈ X
(F)
B .

Proof. This directly follows by Definition 7 and the combination of Corollary 9 and Lemma 10.

4.3 Cheating situations for redundant input symbols

We expose now the inherent structure of cheating strategies by decomposing them into more easily
understandable parts. This decomposition consists of two steps.

1. Every cheating situation η ∈ N
(F)
B is equivalent to a direct cheating situation η̃ ∈ N

(F)
B , in

the sense that η|true
B (y) = η̃|true

B (y) and η|fake
B (y′) = η̃|fake

B (y′) for all y, y′ ∈ ΥB, and for each
(y, b) ∈ ΥB×ΩB at least one of the following two equalities holds true:

η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
η̃
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
The intuition behind calling a cheating situation “direct” is that Bob does not sometimes
claim an actual input-output tuple (y, b) to be (y′, b′) and also sometimes claim an actual
input-output tuple (y′, b′) to be (y′′, b′′), but instead always goes the direct way: He claims
(y, b) to be (y′′, b′′) in the first place and is just honest about (y′, b′).

2. Every direct cheating situation η̃ ∈ N
(F)
B is a convex combination of a trivial and a straight

cheating situation η̄, η̂ ∈ N
(F)
B , in the sense that η̄

(
(ΥA,ΩA), (y, b), (y′, b′)

)
= 0 for all distinct

(y, b), (y′, b′) ∈ ΥB×ΩB, and for each y ∈ Υ at least one of the following two equalities holds
true:

η̂|true
B (y) = 0 or η̂|fake

B (y) = 0

The intuition behind trivial cheating situations is that Bob is simply always honest, and the
intuition behind straight cheating situations is that Bob always claims to have used some
input symbol that he actually did never use at all.

This yields a more abstract redundancy criterion (Corollary 18), which plays a major role in proving
existence of appropriate OT-cores for secure generation of correlated data. Moreover, this insight
also helps proving that the redundancy-free version of any F ∈ Ffin is unique up to isomorphism
(Corollary 19).

27

Notation 12 (Equivalent cheating situations). Let any F ∈ Ffin be given and η, η′ ∈ N
(F)
B , such that

η|true
B = η′|true

B and η|fake
B = η′|fake

B . Then η and η′ are called equivalent, what we denote by η ∼ η′.
Remark 13. As a direct consequence of the conditions 2 and 3 of Definition 5, every cheating
situation is equivalent to its normalized version (cf. Corollary 9).

Notation 14 (Containedness). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let η, η′ ∈ N
(F)
B , such that

for all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB the following implication holds true:

η′
(
(x, a), (y, b), (y′, b′)

)
> 0 ⇒ η

(
(x, a), (y, b), (y′, b′)

)
> 0

Then we say that η contains η′ and we denote that by η w η′. Let η A η′ denote that η w η′ 6w η.

Lemma 15 (Generality of direct cheating situations). Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and

η̃ ∈ N
(F)
B be given. Then there exists a direct cheating situation η̂ ∈ N

(F)
B , such that η̂ ∼ η̃.

Proof. First note that by Remark 13, w.l.o.g. η is normalized. Since otherwise we just can set
η̂ := η̃, w.l.o.g. we find some ỹ, ỹ′ ∈ ΥB, b̃, b̃

′ ∈ ΩB, such that (ỹ, b̃) 6= (ỹ′, b̃′) and:

η̃
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
> η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
η̃
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
> 0

We will now construct a normalized cheating situation η̃′ ∈ N
(F)
B with the following properties.

(a) It holds that η̃′ ∼ η̃.

(b) At least one of the following two equalities does hold true:

η̃′
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
= η̃′

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
η̃′
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
= 0

(c) For all y′ ∈ ΥB, b
′ ∈ ΩB with (ỹ, b̃) 6= (y′, b′) and η̃

(
(ΥA,ΩA), (ỹ, b̃), (y′, b′)

)
= 0 it still does

hold that η̃′
(
(ΥA,ΩA), (ỹ, b̃), (y′, b′)

)
= 0.

(d) For all y ∈ ΥB, b ∈ ΩB with η̃
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
it still

does hold that η̃′
(
(ΥA,ΩA), (ΥB,ΩB), (y, b)

)
= η̃′

(
(ΥA,ΩA), (y, b), (y, b)

)
.

Our lemma then follows by induction. For our construction of η̃′ we first define the auxiliary values
γ, γ′, δ ∈ R>0 as follows:

γ := η̃
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
− η̃
(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
γ′ := η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
δ := min(γ, γ′)

Now we define the mapping ∆ : ΥA×ΩA×(ΥB×ΩB)2 → R by:

∆
(
(x, a), (y, b), (y′, b′)

)
:=

− δ·η̃((x,a),(y,b),(ỹ,b̃))
γ if (y, b) 6= (ỹ, b̃) and (y′, b′) = (ỹ, b̃)

δ·η̃((x,a),(y,b),(ỹ,b̃))
γ if (y, b) 6= (ỹ, b̃) and (y′, b′) = (ỹ′, b̃′)

− δ·η̃((x,a),(ỹ,b̃),(ΥB,ΩB))

η̃((ΥA,ΩA),(ỹ,b̃),(ΥB,ΩB))
if (y, b) = (ỹ, b̃) and (y′, b′) = (ỹ′, b̃′)

δ·η̃((x,a),(ỹ,b̃),(ΥB,ΩB))

η̃((ΥA,ΩA),(ỹ,b̃),(ΥB,ΩB))
if (y, b) = (ỹ, b̃) and (y′, b′) = (ỹ, b̃)

0 else

28

Since η̃ is normalized, it is straightforward to verify that ∆
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= 0 and

∆
(
(x, a), (y, b), (ΥB,ΩB)

)
= 0 for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB. Hence, the map-

ping η̃′ := η̃ + ∆ fulfills the conditions 1–3 of Definition 5, and η̃′ ∼ η̃. Further, by Condition 4 of
Definition 5 one can conclude quite easily that ∆

(
(x, a), (y, b), (y′, b′)

)
≥ −η̃

(
(x, a), (y, b), (y′, b′)

)
for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB and therefore η̃′

(
(x, a), (y, b), (y′, b′)

)
≥ 0. Finally,

by a simple case analysis one can show that for all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with
η̃
(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 it holds:

∆
(
(x, a), (y, b), (y′, b′)

)
η̃
(
(x, a), (y, b), (ΥB,ΩB)

) =
∆
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Thereby, since ∆

(
(x, a), (y, b), (ΥB,ΩB)

)
= 0, for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB with

η̃′
(
(x, a), (y, b), (ΥB,ΩB)

)
> 0 follows:

η̃′
(
(x, a), (y, b), (y′, b′)

)
η̃′
(
(x, a), (y, b), (ΥB,ΩB)

) =
η̃′
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η̃′
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
Thus, η̃′ is a normalized cheating situation for F with η̃′ ∼ η̃. Yet, there are just the properties
(b), (c) and (d) left to prove.

Proof for (b): The property (b) follows by our choice of δ. In the case that δ = γ, we have
that ∆

(
(ΥA,ΩA), (y, b), (ỹ, b̃)

)
= −η̃

(
(ΥA,ΩA), (y, b), (ỹ, b̃)

)
for all (y, b) ∈ (ΥB×ΩB)\

{
(ỹ, b̃)

}
,

whereby follows that η̃′
(
(ΥA,ΩA), (ΥB,ΩB), (ỹ, b̃)

)
= η̃′

(
(ΥA,ΩA), (ỹ, b̃), (ỹ, b̃)

)
. In the case

that δ = γ′, we have that ∆
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
= −η̃

(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
, whereby

follows that η̃′
(
(ΥA,ΩA), (ỹ, b̃), (ỹ′, b̃′)

)
= 0.

Proof for (c): By construction of ∆, for all x ∈ ΥB, a ∈ ΩB, y
′ ∈ ΥB, b

′ ∈ ΩB with (y′, b′) 6= (ỹ, b̃)
it holds that ∆

(
(x, a), (ỹ, b̃), (y′, b′)

)
≤ 0, what yields:

η̃′
(
(x, a), (ỹ, b̃), (y′, b′)

)
≤ η̃

(
(x, a), (ỹ, b̃), (y′, b′)

)
Proof for (d): Let us assume that we could find some y ∈ ΥB, b ∈ ΩB with:

η̃
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η̃

(
(ΥA,ΩA), (y, b), (y, b)

)
η̃′
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> η̃′

(
(ΥA,ΩA), (y, b), (y, b)

)
This would directly yield that ∆

(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> ∆

(
(ΥA,ΩA), (y, b), (y, b)

)
, but

by construction of ∆ for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

∆
(
(x, a), (y, b), (ΥB,ΩB)

)
= 0

∆
(
(x, a), (y, b), (y, b)

)
≥ 0

Lemma 16 (Decomposition of direct cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and

let η ∈ N
(F)
B be direct. Then η is straight or it contains a trivial cheating situation for F .

Proof. W.l.o.g. we assume that η is not straight, i.e. we find some ỹ ∈ ΥB, such that η|true(ỹ) > 0
and η|fake(ỹ) > 0. We now construct a trivial cheating situation η̃, such that η̃ v η. We define the
following mapping:

η̃ : (ΥA×ΩA)×(ΥB×ΩB)2 → R≥0,
(
(x, a), (y, b), (y′, b′)

)
7→

{
φx,ỹ(a,b)
|ΥA| if y = y′ = ỹ and b = b′

0 else

29

It is pretty obvious that η̃ is a trivial cheating situation for F . So there is just left to show that
η̃ v η. So, let some arbitrary x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB, b, b
′ ∈ ΩB be given with:

η̃
(
(x, a), (y, b), (y′, b′)

)
> 0

By construction of η̃ this means that y = y′ = ỹ and b = b′ and φx,ỹ(a, b) > 0. By our choice of ỹ
and the conditions 2 and 3 of Definition 5 follows:

η
(
(x, a), (ỹ, b), (ΥB,ΩB)

)
> 0

η
(
(x, a), (ΥB,ΩB), (ỹ, b)

)
> 0

Since η is direct by assumption, this implies that η
(
(x, a), (ỹ, b), (ỹ, b)

)
> 0. Since y = y′ = ỹ and

b = b′, this means that η
(
(x, a), (y, b), (y′, b′)

)
> 0. This is what we had to show.

Corollary 17 (General decomposition of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin

and let η ∈ N
(F)
B . Then η is equivalent to a trivial cheating situation for F or there exists a convex

combination η′ := t · η̄ + (1− t) · η̂ of a trivial cheating situation η̄ ∈ N
(F)
B and a straight cheating

situation η̂ ∈ N
(F)
B , such that η ∼ η′.

Proof. W.l.o.g. we assume that η is a direct cheating situation (cf. Lemma 15). Further, w.l.o.g.
we assume that η is neither trivial nor straight. We will now construct some cheating situations

η̄′, η̂′ ∈ N
(F)
B meeting the following four conditions:

η̄′ v η η̂′ @ η η̄′ is trivial η is a convex combination of η̄′ and η̂′

Since every convex combination of trivial cheating situations for F itself is a trivial cheating situa-
tion, our lemma then follows by induction.

By Lemma 16, we find some trivial cheating situation η̄′ ∈ N
(F)
B , such that η̄′ v η. Now, let

t := max
{
s ∈ R | Image(η − s · η̄′) ⊆ R≥0

}
. Note that 0 < t < 1 by our choice of η and η̄′. We set

η̂′ := (1− t)−1 · (η − t · η̄′). By Lemma 10, it follows that η̂′ ∈ N
(F)
B . Moreover, by our choice of t

we have that η̂′ @ η.

Corollary 18 (Characteristic-based redundancy criterion). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin

and let y′ ∈ ΥB, ξ ∈ X
(F)
B , such that ξ(y) ≤ 0 for all y ∈ ΥB \{y′} and ξ(y′) > 0. Then y′ is

redundant.

Proof. By Definition 7 we find some normalized cheating situation η ∈ N
(F)
B , such that for all

y ∈ ΥB it holds:
η|fake

B (y) > η|true
B (y) if y = y′

η|fake
B (y) ≤ η|true

B (y) else

By Corollary 17 we can choose η to be straight (we just discard the trivial part), whereby it follows:

η|fake
B (y′) = 1 and η|true

B (y′) = 0

Now, let ι := η|true
B . We also find some family of probability mass functions λ := (λy,b)y∈ΥB,b∈ΩB

⊆
pmf(ΩB), such that for all y ∈ ΥB, b, b

′ ∈ ΩB with η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 we have:

λy,b(b
′) =

η
(
(ΥA,ΩA), (y, b), (y′, b′)

)
η(
(
ΥA,ΩA), (y, b), (ΥB,ΩB)

)
30

Exploiting the conditions 2, 4 and 3 of Definition 5, we get for all x ∈ ΥA, a ∈ ΩA, b
′ ∈ ΩB:∑

y∈ΥB, b∈ΩB

ι(y) · φx,y(a, b) · λy,b(b′) =
∑

y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (ΥB,ΩB)

)
· λy,b(b′)

η|A(x)

=
∑

y∈ΥB, b∈ΩB

η
(
(x, a), (y, b), (y′, b′)

)
η|A(x)

= η|fake
B (y′) · φx,y′(a, b′) = φx,y′(a, b

′)

Corollary 19 (Uniqueness of redundancy-free versions). Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin

be given. Then the redundancy-free version of F is unique up to isomorphism.

Proof. We have to show: For any two redundant input symbols ỹ′, ỹ′′ ∈ ΥB, such that after removing
one of them the other is not redundant any more, the respective block columns in the condensed
canonical representation are equal up to internal permutation of columns. This implies that it does
not matter in which order redundant input symbols are removed from ΥB (or ΥA respectively).

So, let any such ỹ′, ỹ′′ ∈ ΥB be given. Since ỹ′ is redundant, we find some ι ∈ pmf(ΥB) and
{λy,b}y∈ΥB,b∈ΩB

⊆ pmf(ΩB), such that ι(ỹ′) = 0 and for all x ∈ ΥA, a ∈ ΩA, b
′ ∈ ΩB it holds:

φx,ỹ′(a, b
′) =

∑
y∈ΥB, b∈ΩB

ι(y) · φx,y(a, b) · λy,b(b′)

Thus, we can construct a (normalized) cheating situation as follows:

η′
(
(x, a), (y, b), (y′, b′)

)
:=

{
1
|ΥA| · ι(y) · φx,y(a, b) · λy,b(b′) if y 6= ỹ′ and y′ = ỹ′

0 else

Note that by construction η′ is straight and η′|fake
B (ỹ′) = 1. Further note that η′|true

B (ỹ′′) > 0 by

our choice of ỹ′, ỹ′′. Analogously, we find some straight cheating situation η′′ ∈ B
(F)
B , such that

η′′|fake
B (ỹ′′) = 1 and η′′|true

B (ỹ′) > 0. Let t := η′′|true
B (ỹ′). Now, by Lemma 10, we can construct a new

cheating strategy η as follows:
η := 1

1+t · η
′′ + t

1+t · η
′

By construction we have that η|fake
B ({ỹ′, ỹ′′}) = 1 and η|fake

B (ỹ′) = η|true
B (ỹ′) = t

1+t . By Corollary 17
we can conclude that η is either equivalent to a trivial cheating situation, or there exists a straight

cheating situation η̂ ∈ B
(F)
B such that η̂|fake

B (ỹ′′) = 1 and η̂|fake
B (ỹ′) = η̂|true

B (ỹ′) = 0. Since the latter
is ruled out by our choice of ỹ′, ỹ′′, we have that η|fake

B (ỹ′′) = η|true
B (ỹ′′) = 1

1+t , whereby it follows:

η′|fake
B (ỹ′) = η′|true

B (ỹ′′) = 1 and η′′|fake
B (ỹ′′) = η′′|true

B (ỹ′) = 1

Intuitively speaking, a corrupted Bob can replace the input symbols ỹ′ and ỹ′′ just by each other.
It is straightforward now to verify that in the condensed canonical representation of F the block
columns belonging to ỹ′ and ỹ′′ are equal up to internal permutation of columns.

4.4 Existence of robust OT-cores

In this section we show for every redundancy-free 2-party function F ∈ Ffin that it has some OT-
core useful for us, if it has any OT-core at all. This is the core argumentation of the algebraic part
of our security proof.

Definition 20 (OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and some (x, a), (x′, a′) ∈ ΥA×ΩA,
(y, b), (y′, b′) ∈ ΥB×ΩB be given. We call

{
(x, a), (x′, a′)

}
×
{

(y, b), (y′, b′)
}

an OT-core of F , if
φx,y(a, b) · φx′,y′(a′, b′) 6= φx′,y(a

′, b) · φx,y(a, b′) and at most one of the factors is zero.

31

Notation 21 (Hideable inputs). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. For Y ⊆ ΥB we define:

ΨF (Y) :=
{
y ∈ ΥB

∣∣ ∃ η ∈ N
(F)
B : η|true

B (y) > 0 ∧ η|fake
B (Y) = 1

}
Given any y, y′ ∈ ΥB, we write ΨF (y, y′) instead of ΨF ({y, y′}) for convenience.

Remark 22. Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. Then for all Y ⊆ ΥB it holds:

ΨF (Y) = Y ∪
{
y ∈ ΥB

∣∣ ∃ ξ ∈ X
(F)
B : ξ(y) < 0 ∧ ∀ y′ ∈ ΥB\Y : ξ(y′) ≤ 0

}
Lemma 23 (Monotonicity of ΨF). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and let Y ′ ⊆ ΥB. Then for
all Y ⊆ ΨF (Y ′) we have that ΨF (Y) ⊆ ΨF (Y ′).

Proof. Let Y ⊆ ΨF (Y ′). By Remark 22 and Corollary 11 we find some cheating characteristics

ξ′, ξ′′ ∈ X
(F)
B , such that for all y ∈ ΥB it holds:

ξ′(y) < 0 if y ∈ ΨF (Y)\Y ξ′′(y) < 0 if y ∈ ΨF (Y ′)\Y ′

ξ′(y) ≤ 0 if y ∈ ΥB\ΨF (Y) ξ′′(y) ≤ 0 if y ∈ ΥB\ΨF (Y ′)

Now we find some γ ∈ R>0, such that γ · ξ′′(y) < −ξ′(y) for all y ∈ ΨF (Y ′)\Y ′. Since Y ⊆ ΨF (Y ′)
by assumption, we especially have that γ · ξ′′(y) + ξ′(y) < 0 for all y ∈ Y \Y ′. Let ξ := ξ′ + γ · ξ′′
(cf. Corollary 11). Thereby, for all y ∈ ΥB we can conclude:

ξ(y) < 0 if y ∈ ΨF (Y)\Y ′

ξ(y) ≤ 0 if y /∈ Y ′

Hence, by Remark 22 it must hold that ΨF (Y) ⊆ ΨF (Y ′).

Lemma 24. Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, such that ΥB does not contain any redundant
input symbols. Further let ỹ, ỹ′ ∈ ΥB and Ỹ , Ỹ ′ ⊆ ΨF (ỹ, ỹ′), such that ΨF (ỹ, ỹ′)) {ỹ, ỹ′} and for
all ŷ ∈ Ỹ , ŷ′ ∈ Ỹ ′ it holds that ΨF (ŷ, ŷ′) = ΨF (ỹ, ỹ′). Then for all ŷ ∈ Ỹ , ŷ′ ∈ Ỹ ′, Y ⊆ Ỹ ∪ Ỹ ′

with ŷ, ŷ′ /∈ Y there exists some ξ ∈ X
(F)
B , such that for all y ∈ ΥB it holds:

ξ(y) > 0 if y ∈ {ŷ, ŷ′}
ξ(y) = 0 if y ∈ Y or y /∈ ΨF (ỹ, ỹ′)

ξ(y) < 0 else

Proof. Our proof is by induction on |Y |. So in the first instance we assume that Y = ∅. Let ŷ ∈ Ỹ
and ŷ′ ∈ Ỹ ′ be arbitrary. Since ΨF (ŷ, ŷ′) = ΨF (ỹ, ỹ′) by assumption, we find some ξ ∈ X

(F)
B by

Remark 22 and Corollary 11, such that for all y ∈ ΥB it holds:

ξ(y) = 0 if y /∈ ΨF (ỹ, ỹ′)

ξ(y) < 0 if y ∈ ΨF (ỹ, ỹ′)\{ŷ, ŷ′}

Moreover, since ΨF (ỹ, ỹ′)\{ŷ, ŷ′} 6= ∅ by assumption and ξ(ΥB) = 0 by definition, it must hold
that ξ(ŷ) > 0; else ŷ′ would be redundant by Corollary 18. Analogously it follows that ξ(ŷ′) > 0.
Thereby we have proven our lemma for the case that |Y | = 0.

Now, let Y ⊆ Ỹ ∪ Ỹ ′ with Y 6= ∅ and let ŷ ∈ Ỹ , ŷ′ ∈ Ỹ ′, such that ŷ, ŷ′ /∈ Y . Furthermore, let
y′ ∈ Y . There are two cases to be considered: y′ ∈ Ỹ and y′ ∈ Ỹ ′. Since both cases can be handled

32

analogously, we just consider the latter. By induction hypothesis we find some ξ′, ξ′′ ∈ X
(F)
B , such

that for all y ∈ ΥB it holds:

ξ′(y) > 0 if y ∈ {ŷ, y′} ξ′′(y) > 0 if y ∈ {ŷ, ŷ′}
ξ′(y) = 0 if y ∈ Y \{y′} or y /∈ ΨF (ỹ, ỹ′) ξ′′(y) = 0 if y ∈ Y \{y′} or y /∈ ΨF (ỹ, ỹ′)

ξ′(y) < 0 else ξ′′(y) < 0 else

We set ξ := ξ′(y′) ·ξ′′−ξ′′(y′) ·ξ′; note that ξ ∈ X
(F)
B by Corollary 11, since ξ′(y′) > 0 and ξ′′(y′) < 0.

By construction, for all y ∈ ΥB it follows:

ξ(y) > 0 if y = ŷ

ξ(y) = 0 if y ∈ Y or y /∈ ΨF (ỹ, ỹ′)

ξ(y) < 0 if y ∈ ΨF (ỹ, ỹ′) and y /∈ Y ∪ {ŷ, ŷ′}

Finally, we still must have that ξ(ŷ′) > 0, since otherwise ŷ would be redundant by Corollary 18.

Lemma 25. Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, such that ΥB does not contain any redundant
input symbols. Further let {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (ỹ′, b̃′)} ⊆ (ΥA×ΩA)2×(ΥB×ΩB)2 be an OT-core
of F . Then there exist some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that {(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)} also
is an OT-core of F and ΨF (ȳ, ȳ′) = {ȳ, ȳ′}.

Proof. W.l.o.g., φx̃,ỹ(ã, b̃) > 0 and φx̃′,ỹ(ã
′, b̃) > 0, i.e. we can write

φx̃,ỹ′ (ã,b̃
′)

φx̃,ỹ(ã,b̃)
6= φx̃′,ỹ′ (ã

′,b̃′)

φx̃′,ỹ(ã′,b̃)
; else we

interchange (ỹ, b̃) and (ỹ′, b̃′). We define the following input sets:

Ŷ ′ :=
{
y′ ∈ ΥB

∣∣ for some b′ ∈ ΩB, {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (y′, b′)} is an OT-core of F
}

Ŷ :=
{
y ∈ ΥB\Ŷ ′

∣∣ for some b ∈ ΩB, {(x̃, ã), (x̃′, ã′)}×{(y, b), (ỹ′, b̃′)} is an OT-core of F
}

Ŷ0 :=
{
y0 ∈ ΥB

∣∣ φx̃,y0(ã,ΩB) = φx̃′,y0(ã′,ΩB) = 0
}

Further we set Ỹ := Ŷ ∩ ΨF (ỹ, ỹ′) and Ỹ ′ := Ŷ ′ ∩ ΨF (ỹ, ỹ′) and Ỹ0 := Ŷ0 ∩ ΨF (ỹ, ỹ′). Note that
Ŷ ∪ Ŷ ′ ∪ Ŷ0 = ΥB and thereby Ỹ ∪ Ỹ ′ ∪ Ỹ0 = ΨF (ỹ, ỹ′). Further note that ỹ ∈ Ỹ and ỹ′ ∈ Ỹ ′.

We prove our lemma by contradiction. So, we assume that our initially given OT-core is a
minimal counterexample in the sense that ΨF (ỹ, ỹ′)) {ỹ, ỹ′} and for all y ∈ Ỹ , y′ ∈ Ỹ ′ it holds that
ΨF (y, y′) = ΨF (ỹ, ỹ′) (cf. Lemma 23). Now, by Lemma 24 instantiated with Y := (Ỹ ∪ Ỹ ′)\{ỹ, ỹ′},
we find some ξ ∈ X

(F)
B , such that for all y ∈ ΥB it holds:

ξ(y) > 0 if y ∈ {ỹ, ỹ′}
ξ(y) = 0 if y ∈ Y or y /∈ ΨF (ỹ, ỹ′)

ξ(y) < 0 else

In other words, since ΨF (ỹ, ỹ′) = Ỹ ∪ Ỹ ′ ∪ Ỹ0 and Ỹ0 ∩ Ỹ = Ỹ0 ∩ Ỹ ′ = ∅, for all y ∈ ΥB it holds:

ξ(y) > 0 if y ∈ {ỹ, ỹ′}
ξ(y) < 0 if y ∈ Ỹ0

ξ(y) = 0 else

33

Thereby we find a cheating situation η ∈ N
(F)
B , such that for all y ∈ ΥB it holds:

η|fake
B (y) > η|true

B (y) if y ∈ {ỹ, ỹ′}
η|fake

B (y) < η|true
B (y) if y ∈ Ỹ0

η|fake
B (y) = η|true

B (y) else

By Corollary 17 we can decompose η into a trivial and a straight part. Let η̂ denote the straight
part. By construction it holds:

η̂|true
B (Ỹ0) = 1

η̂|fake
B (ỹ) > 0

However, by our choice of Ŷ0 we have:

0 = η̂|A(x̃) ·
∑

y∈Ŷ0

η̂|true
B (y) · φx̃,y(ã,ΩB) ≥ η̂|A(x̃) ·

∑
y∈Ỹ0

η̂|true
B (y) · φx̃,y(ã,ΩB)

Hence, by Condition 2 of Definition 5 we can conclude that 0 ≥ η
(
(x̃, ã), (Ỹ0,ΩB), (ΥB,ΩB)

)
. Be-

cause η̂|true
B (Ỹ0) = 1 and thus η̂

(
(x̃, ã), (ΥB\Ỹ0,ΩB), (ΥB,ΩB)

)
= 0, we also have:

η̂
(
(x̃, ã), (Ỹ0,ΩB), (ΥB,ΩB)

)
= η̂

(
(x̃, ã), (ΥB,ΩB), (ΥB,ΩB)

)
≥ η̂

(
(x̃, ã), (ΥB,ΩB), (ỹ, b̃)

)
Now, since φx̃,ỹ(ã, b̃) > 0 by assumption and we found η̂|fake

B (ỹ) > 0, we can finally estimate by the
conditions 1 and 2 of Definition 5:

η̂
(
(x̃, ã), (ΥB,ΩB), (ỹ, b̃)

)
= η̂|A(x̃) · η̂|fake

B (ỹ) · φx̃,ỹ(ã, b̃) > 0

Putting things together, we get the contradiction that 0 > 0, what concludes our proof.

Corollary 26 (Existence of robust OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, such that
ΥB does not contain any redundant input symbols. Further let {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (ỹ′, b̃′)} ⊆
(ΥA×ΩA)2×(ΥB×ΩB)2 be an OT-core of F . Then there exist some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that

{(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)} also is an OT-core of F and for every cheating situation η ∈ N
(F)
B

with η|fake
B ({ȳ, ȳ′}) = 1 and all y ∈ ΥB it holds:

η|fake
B (y) = η|true

B (y)

Proof. By Lemma 25 we find some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that {(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)}
also is an OT-core of F and ΨF (ȳ, ȳ′) = {ȳ, ȳ′}. Now, let any η ∈ N

(F)
B with η|fake

B ({ȳ, ȳ′}) = 1 be
given. We just have to show:

η|fake
B (ȳ) = η|true

B (ȳ)

η|fake
B (ȳ′) = η|true

B (ȳ′)

We pick the following cheating characteristic (q.v. Definition 7):

ξ : ΥB → R, y 7→ η|fake
B (y)− η|true

B (y)

Since η|fake
B ({ȳ, ȳ′}) = 1 and thus η|fake

B (ΥB\{ȳ, ȳ′}) = 0, for all y ∈ ΥB\{ȳ, ȳ′} it must hold that
ξ(y) ≤ 0. Moreover, since ΨF (ȳ, ȳ′) = {ȳ, ȳ′}, for all y ∈ ΥB\{ȳ, ȳ′} we actually have that ξ(y) = 0
by Remark 22. Since ξ(ΥB) = 0, it follows that ξ(ȳ) = −ξ(ȳ′). Now, if ξ(ȳ) 6= 0, this would render
either ȳ or ȳ′ redundant by Corollary 18. Thus, it must hold that ξ(ȳ) = ξ(ȳ′) = 0.

34

Protocol πF (X,Y, α, β, γ)

Parametrized by a 2-party function F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF . Let k denote
the security parameter and let K := {1, . . . , k}. The protocol proceeds as follows.

0. Initialization: Alice initializes two empty strings sin
A, s

out
A and an index set KA ← K. Bob analo-

gously initializes sin
B, s

out
B ,KB. Let the probability mass functions ñA, ñB be defined by:

ñA : ΥA → R>0, x 7→

{
(1− k−α) · |X|−1 + k−α · |ΥA|−1 if x ∈ X

k−α · |ΥA|−1 else

ñB : ΥB → R>0, y 7→

{
(1− k−α) · |Y |−1 + k−α · |ΥB|−1 if y ∈ Y

k−α · |ΥB|−1 else

1. Invocation of F : According to ñA Alice randomly chooses some input symbol x ∈ ΥA; Bob
randomly chooses some y ∈ ΥB according to ñB. Then F is invoked with the input tuple (x, y), i.e.
Alice learns some a ∈ ΩA and Bob learns some b ∈ ΩB with (a, b) distributed according to φx,y.
Alice concatenates x to sin

A and a to sout
A respectively; Bob concatenates y to sin

B and b to sout
B .

This protocol step is executed for k times.

2. Check A: Alice picks some uniformly random index set K̄A ⊆ KA witha |K̄A| = k
1
2 +β and sends

K̄A to Bob, who announces
(
ŝin

B[K̄A], ŝout
B [K̄A]

)
:=
(
sin

B[K̄A], sout
B [K̄A]

)
. Alice aborts the protocol, if

she finds some x ∈ ΥA, y ∈ ΥB, a ∈ ΩA, b ∈ ΩB with:∣∣sin
A×sout

A ×ŝin
B×ŝout

B [K̄A]
∣∣
(x,a,y,b)

6= k
1
2 +β · ñA(x) · ñB(y) · φx,y(a, b)± k 1

4 +β

At the end of this protocol step, Alice sets KA ← KA\K̄A and Bob sets KB ← KB\K̄A.

3. Check B: This protocol step proceeds analogously to Check A with interchanged roles of Alice and
Bob.

4. Output: Alice announces the index set K ′A :=
{
i ∈ KA

∣∣ sin
A[i] ∈ X

}
, then Bob announces K ′B :={

i ∈ KB

∣∣ sin
B[i] ∈ Y

}
; let K ′ := K ′A ∩K ′B. If |K ′| < k − k1−γ , the protocol is aborted; else Alice

outputs the compound string sin
A×sout

A [K ′] and Bob outputs sin
B×sout

B [K ′].

aW.l.o.g. we have that k
1
2

+β ∈ N, since β ∈ Q and w.l.o.g. k ∈
{
lζ

∣∣ l, ζ ∈ N, such that ζ · (1
2

+ β) ∈ N
}

.

Figure 8: Our protocol scheme for secure generation of correlated data from a given 2-party function.

4.5 Protocol for generation of correlated data

Now we give the formal description of our generic protocol scheme for generation of correlated data
(q.v. Figure 8). For convenience, we use the following quite self-suggesting notations.

Notation 27. Let “a = b± c” denote that |a− b| < |c|, i.e. the value a differs from b at most by c.

Notation 28. Let s be a finite string over some alphabet Ω. By |s| we denote the length of s. By |s|α
with α ∈ Ω we denote the number of appearances of α in s. We canonically extend this notation to
subalphabets T ⊆ Ω by |s|T :=

∑
α∈T |s|α. By s[i] with i ∈ {1, . . . , |s|} we denote the i-th element

of s. For n ∈ N and a given index set K = {k1, . . . , kn} ⊂ N with 0 < k1 < . . . < kn ≤ |s|, we
denote the string s[k1] s[k2] . . . s[kn] by s[k1, . . . , kn], or simply by s[K]. Further, for some given
strings sA and sB of the same length, we define the compound string sA×sB, whose i-th element is
just the tuple

(
sA[i], sB[i]

)
. We denote the i-th element of such a compound string by sA×sB[i].

Notation 29. Given any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, let ΠF denote the set of all quintuples
(X,Y, α, β, γ), where X ⊆ ΥA, Y ⊆ ΥB, α, β, γ ∈ R>0, such that X,Y 6= ∅ and β ∈ Q with β < 1

6 .

35

Notation 30. Given any F ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF , we define the following characteristics
for non-aborted protocol runs of πF (X,Y, α, β, γ):

νB

(
(x, a), (y, b), (y′, b′)

)
:=

∣∣sin
A×sout

A ×sin
B×sout

B ×ŝin
B×ŝout

B [K̄A]
∣∣
(x,a,y,b,y′,b′)∣∣K̄A

∣∣
νA

(
(x, a), (x′, a′), (y, b)

)
:=

∣∣sin
A×sout

A ×ŝin
A×ŝout

A ×sin
B×sout

B [K̄B]
∣∣
(x,a,x′,a′y,b)∣∣K̄B

∣∣
For convenience, we also write:

νB|A(x) := νB

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
νA|B(y) := νA

(
(ΥA,ΩA), (ΥB,ΩB), (y,ΩB)

)
νB|true

B (y) := νB

(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
νA|true

A (x) := νA

(
(x,ΩA), (ΥA,ΩA), (ΥB,ΩB)

)
νB|fake

B (y′) := νB

(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
νA|fake

A (x′) := νA

(
(ΥA,ΩA), (x′,ΩA), (ΥB,ΩB)

)
4.6 Real protocol runs versus idealized cheating situations

We show now that our notion of cheating situations is close to what may ever happen during real
protocol runs. Therefor, we utilize some powerful tools from probability theory (Lemma 31 and
Corollary 32) and real algebraic geometry (Lemma 35 and Corollary 36). The former are borrowed
from [KMQ10], but the latter are completely novel tools, which were necessary because our notion
of cheating situations is more complex than that of [KMQ10, KMQ11]. In particular, normalized
cheating situations in [KMQ10] can be described by linear constraints, which is not true in our case
due to Condition 4 of Definition 5.

Lemma 31 (Stability of random distributions, [KMQ10, Lemma 15]). Let some sequence (Xk)k∈N
of binomially and/or hypergeometrically distributed random variables Xk be given, such that
P[0≤Xk≤k] = 1 for all k ∈ N. Further let ∆ > 1

2 . Then the probability P
[
|Xk −E(Xk)| ≥ k∆

]
is

negligible in k.

Proof. By [Hoe63, Theorem 2], for all n ∈ N, c ∈ R>0 and every binomially distributed random
variable X with P[0 ≤ X ≤ n] = 1 it holds that P

[
|X − E(X)| ≥ c

]
≤ 2 · exp

(
−2c2 · n−1

)
. In

[Hoe63, Section 6] it was shown that this estimation holds for hypergeometrically distributed X,
too. For all k ∈ N, we can conclude:

P
[
|Xk −E(Xk)| ≥ k∆

]
≤ 2 · exp

(
−2k2∆−1

)
Corollary 32 ([KMQ10, Corollary 16]). Let H be some memoryless random source that samples
from some finite alphabet Ω. Let p : Ω→ R, x 7→ P[H outputs x]. Further let A be some arbitrary
algorithm that on input k ∈ N sequentially samples up to k random symbols X1, . . . , XN

r← H,
i.e. N is a random variable with P[1≤N ≤ k] = 1 and N may be correlated with (X1, . . . , XN).
Then for all constants ∆ > 1

2 and all S ⊆ Ω the probability P
[∣∣|X1 . . . XN |S −N · p(S)

∣∣ ≥ k∆
]

is
negligible in k.

Proof. For our proof we make A a bit more powerful: A always samples exactly k random symbols
X1, . . . , Xk

r← H and then computes and outputs N .
Now, for n ∈ {1, . . . , k}, S ⊆ Ω let Xn(S) := |X1 . . . Xn|S . Analogously to the proof of

Lemma 31, for all n ∈ {0, . . . , k} and S ⊆ Ω it always holds:

P
[
|Xn(S)− n · p(S)| ≥ k∆

]
≤ P

[
|Xn(S)− n · p(S)| ≥ n∆

]
≤ 2 · exp

(
−2n2∆−1

)
36

Further, for n < k∆ it trivially holds that P
[
|Xn(S)− n · p(S)| ≥ k∆

]
= 0. Hence follows:

P
[
|XN (S)−N · p(S)| ≥ k∆

]
≤

k∑
n=dk∆e

P
[
|Xn(S)− n · p(S)| ≥ k∆

]
≤ 2(k − k∆)

exp
(
2k∆(2∆−1)

)
Corollary 33. Let some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF be
given, as well as some constant ∆ > 1

2 . Let π := πF (X,Y, α, β, γ) and let k denote the security
parameter. Then, if Alice is honest, a protocol run of π with overwhelming probability is either
aborted or for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB and b ∈ ΩB we have that νB

(
(x, a), (y, b), (ΥB,ΩB)

)
=

k−1
∣∣sin

A × sout
A × sin

B × sout
B

∣∣
(x,a,y,b)

± k∆−(1
2

+β). If Bob is honest, the analog holds for νA.

Proof. Let us consider some arbitrary but fixed x ∈ ΥA, a ∈ ΩA, y ∈ ΥB and b ∈ ΩB. Once the
compound string sin

A× sout
A × sin

B × sout
B is generated by Alice and Bob calling F in the protocol step

Invocation of F , we can consider an honest Alice’s random choice of K̄A as a random experiment
with hypergeometrically distributed outcome

∣∣sin
A×sout

A ×sin
B×sout

B [K̄A]
∣∣
(x,a,y,b)

. Now, by Lemma 31

we have with overwhelming probability:

∣∣sin
A × sout

A × sin
B × sout

B [K̄A]
∣∣
(x,a,y,b)

= k
1
2

+β ·

∣∣sin
A × sout

A × sin
B × sout

B

∣∣
(x,a,y,b)

k
± k∆

As νB

(
(x, a), (y, b), (ΥB,ΩB)

)
= k−(1

2
+β)
∣∣sin

A × sout
A × sin

B × sout
B [K̄A]

∣∣
(x,a,y,b)

by definition (cf. Nota-

tion 30), we can conclude:

νB

(
(x, a), (y, b), (ΥB,ΩB)

)
= k−1

∣∣sin
A × sout

A × sin
B × sout

B

∣∣
(x,a,y,b)

± k∆−(1
2

+β)

If Bob is honest, we have to take into account that a corrupted Alice might choose K̄A mali-
ciously and thereby introduce an additional error of at most kβ−

1
2 into our estimation, i.e.:

νA

(
(x, a), (ΥA,ΩA), (y, b)

)
= k−1

∣∣sin
A × sout

A × sin
B × sout

B

∣∣
(x,a,y,b)

±
(
k∆−(1

2
+β) + kβ−

1
2
)

However, since β < 1
6 by definition (cf. Notation 29) and the estimation also holds for any ∆′ with

1
2 < ∆′ < ∆, we can argue:

k∆′−(1
2

+β) + kβ−
1
2 = k∆−(1

2
+β) · k∆′−∆ ·

(
1 + k−∆′+2β

)
< k∆−(1

2
+β) · k∆′−∆ ·

(
1 + k−

1
6
)︸ ︷︷ ︸

≤ 1 for almost all k

Hence, if Bob is honest, a protocol run of π with overwhelming probability is either aborted or for
all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB and b ∈ ΩB we have:

νA

(
(x, a), (ΥA,ΩA), (y, b)

)
= k−1

∣∣sin
A × sout

A × sin
B × sout

B

∣∣
(x,a,y,b)

± k∆−(1
2

+β)

Lemma 34. Let some arbitrary F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin and (X,Y, α, β, γ) ∈ ΠF be given,
as well as some constant ∆ > 1

2 . Let π := πF (X,Y, α, β, γ) and let k denote the security parameter.
Then, if Alice is honest, a protocol run of π with overwhelming probability is either aborted or we
have:

1. For all x ∈ ΥA it holds that νB|A(x) = ñA(x)± k(1
2

+β)(∆−1).

37

2. For all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

νB

(
(x, a), (y, b), (ΥB,ΩB)

)
= νB|A(x) · νB|true

B (y) · φx,y(a, b)± k(1
2

+β)(∆−1)

3. For all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB it holds:

νB

(
(x, a), (ΥB,ΩB), (y′, b′)

)
= νB|A(x) · νB|fake

B (y′) · φx,y(a, b)± k
∆−1

2

4. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB with νB

(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
> 0 it holds:

νB

(
(x, a), (y, b), (y′, b′)

)
= νB

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· νB((x,a),(y,b),(ΥB,ΩB))
νB((ΥA,ΩA),(y,b),(ΥB,ΩB)) ± k

(1
2

+β)(∆−1)

If Bob is honest, the analog holds for νA.

Proof. The techniques needed here are pretty much the same as for the proof of Corollary 33.
The assertions 1 and 4 are direct consequences of Lemma 31, as we can consider k

1
2

+β · νB|A(x)

a binomially distributed random variable and k
1
2

+β · νB

(
(x, a), (y, b), (y′, b′)

)
a hypergeometrically

distributed random variable in the respective context. Assertion 2 can be derived from Corol-
lary 32, as a corrupted Bob’s view in the protocol step Invocation of F can be seen as maliciously
sampling from |ΥB| mutually independent memoryless random sources. Finally, an honest Alice
enforces assertion 3 in the protocol step Check A, what can be shown as follows. Alice directly
enforces that νB

(
(x, a), (ΥB,ΩB), (y′, b′)

)
= ñA(x) · ñB(y′) ·φx,y′(a, b′)± k−

1
4 for all x ∈ ΥA, a ∈ ΩA,

y′ ∈ ΥB, b
′ ∈ ΩB, whereby especially follows:

νB|A(x) = ñA(x)± |ΩA× ΩB| · k−
1
4

νB|fake
B (y′) = ñB(y′)± |ΩA× ΩB| · k−

1
4

Thereby, we already have:

νB

(
(x, a), (ΥB,ΩB), (y′, b′)

)
= νB|A(x) · νB|fake

B (y′) · φx,y′(a, b′)±
(
2 · |ΩA× ΩB|+ 1

)
k−

1
4

Furthermore, we can estimate the error term
(
2 · |ΩA×ΩB|+ 1

)
k−

1
4 from above by k

∆−1
2 for almost

all k ∈ N, since ∆ > 1
2 by assumption.

If Bob is honest, we have to take into account that a corrupted Alice might choose K̄A mali-
ciously. This will only introduce an additional error of at most kβ−

1
2 in the analog of our estima-

tions for the assertions 1 and 2, i.e. there we formally have to replace the error term k(1
2

+β)(∆−1)

by
(
k(1

2
+β)(∆−1) + kβ−

1
2

)
. However, since β < 1

6 by definition (cf. Notation 29) and our estimations
also hold for any ∆′ with 1

2 < ∆′ < ∆, we can argue:

k(1
2

+β)(∆′−1) + kβ−
1
2 = k(1

2
+β)(∆−1) ·

(
k(1

2
+β)(∆′−∆) + k−

∆
2

+(2−∆)β
)

< k(1
2

+β)(∆−1) ·
(
k

1
3

(∆′−∆) + k−
∆
2

+ 1
4
)︸ ︷︷ ︸

≤ 1 for almost all k

Lemma 35. Let n ∈ N and some polynomial f ∈ R[X1, . . . , Xn] be given, such that the variety
V :=

{
x ∈ Rn

∣∣ f(x) = 0
}

is not empty. Furthermore, let a bounded convex polytope P ⊂ Rn be
given, such that V ∩ P 6= ∅. Then for every norm there exist some constants c, δ ∈ R>0, such that
for all x ∈ P it holds:

miny∈V ∩P ‖x− y‖ ≤ c ·
∣∣f(x)

∣∣δ
38

Proof. Our proof is based on the Lojasiewicz Inequality [Loj59, Theorem 17], by which for every
open set U ⊆ Rn, every real analytic function h : U → R with non-empty zero locus Z and every
compact set K ⊂ U there exist some constants c, δ ∈ R>0, such that for all x ∈ K it holds:

infz∈Z ‖x− z‖ ≤ c ·
∣∣h(x)

∣∣δ
Note that we do not need to specify the norm used, since all norms on Rn are equivalent. In the
following, for any x ∈ Rn and S ⊆ Rn let dist(x, S) := infy∈S ‖x− y‖.

We want to prove our lemma by contradiction, i.e. we assume that for all c, δ ∈ R>0 there
exists some x ∈ P , such that dist(x, V ∩ P) > c · |f(x)|δ. In particular, we find some sequence
(xi)i∈N ⊆ P , such that dist(xi, V ∩ P) > i · i

√
|f(x)| for all i ∈ N. Since P is closed and bounded

and thus compact, the sequence (xi)i∈N has some limit point x̂ ∈ P . Moreover, we can choose x̂
such that f(x̂) = 0 and thus x̂ ∈ V , since otherwise we had the following contradiction:

∞ = lim infi∈N i · i
√
|f(xi)| ≤ lim infi∈N dist(xi, V ∩ P) ≤ dist(x̂, V ∩ P)

Hence, we have that |f(xi)| ≤ 1 for infinitely many i ∈ N and can discard all other members
of the sequence (xi)i∈N, while preserving the property that dist(xi, V ∩ P) > i · i

√
|f(xi)| for all

i ∈ N. Moreover, we can now discard any members of the sequence (xi)i∈N and still preserve that
property. We will exploit this extensively. In the first instance, w.l.o.g. the whole sequence (xi)i∈N
does converge to x̂. Further, we find the following sequences:

• (zi)i∈N ⊆ V , such that dist(xi, zi) = dist(xi, V)

• (wi)i∈N ⊆ P , such that wi is a convex combination of xi and zi, and dist(wi, zi) is minimized

We also find some finite set of degree-one polynomials T ⊂ R[X1, . . . , Xn], such that we can write:

P =
{
x ∈ Rn

∣∣ maxg∈T g(x) ≤ 0
}

Note that limi→∞wi = x̂ and hence for almost all (w.l.o.g. all) i ∈ N it holds:

∀ g ∈ T : g(wi) = 0 ⇒ g(x̂) = 0

Moreover, by the Lojasiewicz Inequality there exist some constants c′, δ′ ∈ R>0, such that for all
x ∈ P it holds:

dist(x, V) ≤ c′ ·
∣∣f(x)

∣∣δ′
Hence, it must hold that zi /∈ P and thus maxg∈T g(wi) = 0 for almost all (w.l.o.g. all) i ∈ N,
since otherwise we had a contradiction to our choice of (xi)i∈N. Now, as maxg∈T g(wi) = 0 for
all i ∈ N, by a pigeonhole argument there must exist some g ∈ T , such that g(wi) = 0 for
infinitely many (w.l.o.g. all) i ∈ N. Let ĝ be such a polynomial. We define the affine subspace
A :=

{
x ∈ Rn

∣∣ ĝ(x) = 0
}

and the polytope Q := P ∩ A. Note that V ∩ Q 6= ∅, as x̂ ∈ V ∩ Q.
Now we can utilize induction on the dimension n; or to be more precise, w.l.o.g. we may assume
that n is minimal in the sense that for smaller n there would not exist any counterexample for our
lemma. In particular, since for n = 0 our lemma is trivially true, we must have that n > 0. By the
Triangle Inequality we can estimate:

∀ i ∈ N : dist(xi, V ∩ P) ≤ dist(xi, wi) + dist(wi, V ∩Q)

However, since (wi)i∈N ⊆ Q ⊂ A by construction, we have that estimating dist(wi, V ∩ Q) is the
original problem with dimension n− 1. Since by assumption there cannot be a counterexample for
our lemma with dimension n− 1, we find c′′, δ′′ ∈ R>0, such that for all w ∈ Q it holds:

dist(w, V ∩Q) ≤ c′′ ·
∣∣f(w)

∣∣δ′′
39

Let b := maxa∈P ‖∇f(a)‖. For all i ∈ N it holds:

dist(xi, V ∩ P) ≤ dist(xi, wi) + dist(wi, V ∩Q)

≤ dist(xi, wi) + c′′ ·
∣∣f(wi)

∣∣δ′′
≤ dist(xi, wi) + c′′ ·

(
|f(xi)|+ dist(xi, wi) ·maxa∈P ‖∇f(a)‖

)δ′′
= dist(xi, wi) + c′′ ·

(
|f(xi)|+ b · dist(xi, wi)

)δ′′
Now we can put things together. Since each wi is a convex combination of the respective xi and
zi, we can estimate:

dist(xi, wi) ≤ dist(xi, zi) = dist(xi, V) ≤ c′ ·
∣∣f(xi)

∣∣δ′
Thus, for all i ∈ N we have:

dist(xi, V ∩ P) ≤ c′ ·
∣∣f(xi)

∣∣δ′ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ′)δ′′
We set δ := min

{
1, δ′, δ′′

}
and c := (c′ + c′′) · (1 + b · c′)δ. Since limi→∞ f(xi) = f(x̂) = 0, we have

for almost all (w.l.o.g. all) i ∈ N that |f(xi)| is sufficiently small, so that we can estimate:

c′ ·
∣∣f(xi)

∣∣δ′ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ′)δ′′ ≤ c′ ·
∣∣f(xi)

∣∣δ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ)δ
In conclusion, we have for all i ∈ N:

dist(xi, V ∩ P) ≤ c′ ·
∣∣f(xi)

∣∣δ + c′′ ·
(∣∣f(xi)

∣∣+ b · c′ ·
∣∣f(xi)

∣∣δ)δ
≤ (c′ + c′′) ·

(∣∣f(xi)
∣∣+ b · c′ ·

∣∣f(xi)
∣∣δ)δ

≤ (c′ + c′′) ·
(

(1 + b · c′) ·
∣∣f(xi)

∣∣δ)δ
= c ·

∣∣f(xi)
∣∣δ2

This contradicts our choice of the sequence (xi)i∈N and thus concludes this proof.

Corollary 36. Let n ∈ N and some finite set of polynomials S ⊂ R[X1, . . . , Xn] be given, such
that the variety V :=

{
x ∈ Rn

∣∣ ∀ f ∈ S : f(x) = 0
}

is not empty. Furthermore, let a bounded
convex polytope P ⊂ Rn be given, such that V ∩ P 6= ∅. Then for every norm there exist some
constants c, δ ∈ R>0, such that for all x ∈ P it holds:

miny∈V ∩P ‖x− y‖ ≤ c ·maxf∈S
∣∣f(x)

∣∣δ
Proof. We define the polynomial g :=

∑
f∈S f

2, whereby we get that V =
{
x ∈ Rn

∣∣ g(x) = 0
}

.
Now, by Lemma 35 we find some constants c′, δ′ ∈ R>0, such that for all x ∈ P it holds:

miny∈V ∩P ‖x− y‖ ≤ c′ ·
∣∣g(x)

∣∣δ′
Thus, our proof is concluded by the observation that for all x ∈ Rn we have:

c′ ·
∣∣g(x)

∣∣δ′ ≤ c′ · |S| ·maxf∈S
∣∣f(x)

∣∣2δ′
40

Lemma 37. Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given. Then, if Alice is honest, there exist
some constants ε, ε′ ∈ R>0, such that for any π := πF (X,Y, α, β, γ) with (X,Y, α, β, γ) ∈ ΠF and
α < ε′ a protocol run of π with overwhelming probability is either aborted or we have:

∃ η ∈ N
(F)
B :

∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ 1
kε

If Bob is honest, the analog holds for νA.

Proof. For symmetry reasons it suffices to consider the case of an honest Alice.
First note that P := pmf

(
(ΥA×ΩA)×(ΥB×ΩB)2

)
is a bounded convex polytope in the linear

space R(ΥA×ΩA)×(ΥB×ΩB)2
. Moreover, consider the variety V ⊆ R(ΥA×ΩA)×(ΥB×ΩB)2

defined by the
following polynomial equations:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
= η

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
· η
(
(ΥA,ΩA), (y,ΩB), (ΥB,ΩB)

)
· φx,y(a, b)

η
(
(x, a), (ΥB,ΩB), (y′, b′)

)
= η

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
· η
(
(ΥA,ΩA), (ΥB,ΩB), (y′,ΩB)

)
· φx,y′(a, b′)

η
(
(x, a), (y, b), (y′, b′)

)
· η
(
(ΥA,ΩA), (y, b), (ΥB,ΩB)

)
= η

(
(ΥA,ΩA), (y, b), (y′, b′)

)
· η
(
(x, a), (y, b), (ΥB,ΩB)

)
Note that Bob’s cheating situations for F (q.v. Definition 5) are just the mappings η ∈ V ∩P with
minx∈ΩA

η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
> 0, i.e. we have:

N
(F)
B =

{
η ∈ V ∩ P

∣∣ ∀x ∈ ΩA : η
(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
> 0
}

(1)

Now, by Corollary 36 instantiated with the L1-norm we find some constants c, δ ∈ R>0, such that
for every probability mass function η̃ ∈ P that fulfills our polynomial equations stated above up to
some error ρ it holds:

minη∈V ∩P ‖η − η̃‖1 ≤ c · ρδ

Hence by Lemma 34, with some arbitrary but constant ∆ > 1
2 , a protocol run of π with overwhelm-

ing probability is either aborted or there exists a mapping η ∈ V ∩ P with:∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ c · kδ(
1
2

+β)(∆−1)

Further, by Lemma 34 we still have that a protocol run of π with overwhelming probability is either
aborted or for all x ∈ ΥA it holds:

νB

(
(x,ΩA), (ΥB,ΩB), (ΥB,ΩB)

)
≥ ñA(x)− k(1

2
+β)(∆−1) ≥ k−α · |ΥA|−1 − k(1

2
+β)(∆−1)

Now, if k−α · |ΥA|−1 − k(1
2

+β)(∆−1) > c · kδ(
1
2

+β)(∆−1), we can by (1) conclude that a protocol run

of π with overwhelming probability is either aborted or there exists a cheating situation η ∈ N
(F)
B

with:∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ c · kδ(
1
2

+β)(∆−1)

Note that w.l.o.g. δ ≤ 1, i.e. it suffices that α < ω′ := δ(1
2 + β)(1 −∆) and hence k−α · |ΥA|−1 >

(c+ 1)kδ(
1
2

+β)(∆−1) for almost all k ∈ N. Moreover, we could have chosen ∆ < 1, so that finally we

can set ε := δ(1
2 + β)(1 −∆′) with ∆ < ∆′ < 1. Thereby, we have that c · kδ(

1
2

+β)(∆−1) ≤ k−ε for
almost all k ∈ N and it follows:∑

x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ k−ε

41

Lemma 38. Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given. Then, if Alice is honest, there exist
some constants ε, ε′ ∈ R>0, such that for any π := πF (X,Y, α, β, γ) with (X,Y, α, β, γ) ∈ ΠF and
α < ε′ a protocol run of π with overwhelming probability is either aborted or there exists a cheating

situation η ∈ N
(F)
B with the following properties:

1. We have that η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B

∣∣
(x,a,y,b)

·k−1±k−ε for all x ∈ ΥA,

a ∈ ΩA, y ∈ ΥB, b ∈ ΩB.

2. We have that η|A(x) = 1
|X| ± k

−ε for all x ∈ X.

3. We have that η|fake
B (y) = 1

|Y | ± k
−ε for all y ∈ Y .

4. We have that η|fake
B (y) ≤ k−ε for all y ∈ ΥB\Y .

If Bob is honest, the analog holds with η ∈ N
(F)
A .

Proof. We just consider the case that Alice is honest; the analogous assertions for an honest Bob
follow by symmetry reasons.

Let ∆ > 1
2 . Corollary 33 states that a protocol run of π is either aborted or for all x ∈ ΥA,

a ∈ ΩA, y ∈ ΥB, b ∈ ΩB it holds:

νB

(
(x, a), (y, a), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B

∣∣
(x,a,y,b)

· k−1 ± k∆−(1
2

+β)

Further, by Lemma 37 we find some constants ε̃, ε′ ∈ R>0, such that for any π = πF (X,Y, α, β, γ)
with (X,Y, α, β, γ) ∈ ΠF and α < ε′ a protocol run of π with overwhelming probability is either
aborted or we have:

∃ η ∈ N
(F)
B :

∑
x∈ΥA, a∈ΩA, y,y′∈ΥB, b,b′∈ΩB

∣∣η((x, a), (y, b), (y′, b′)
)
− νB

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ 1
kε̃

Now, all we have to do is looking for some ε > 0, such that the four assertions of our proposition
hold true for such an η. Assertion 1 directly follows by our considerations so far and the fact that
we could have chosen ∆ < 1

2 + β. In particular, for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB we have:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B

∣∣
(x,a,y,b)

· k−1 ±
(
k∆−(1

2
+β) + k−ε̃

)
I.e., we just need that ε < 1

2 + β − ∆ and ε < ε̃. The remaining three assertions follow by the
observation that in the protocol step Check A (q.v. Figure 8) an honest Alice for all x ∈ ΥA, y ∈ ΥB

enforces the following inequality:∣∣sin
A×ŝin

B[K̄A]
∣∣
(x,y)

= k
1
2

+β · ñA(x) · ñB(y)± k
1
4

+β · |ΩA×ΩB|

By definition of νB (q.v. Notation 30) this expression is equivalent to the following:

νB

(
(x,ΩA), (y,ΩB), (ΥB,ΩB)

)
= ñA(x) · ñB(y)± k−

1
4 · |ΩA×ΩB|

Thus, by construction of ñA and ñB (q.v. Figure 8) it follows for our η:

η|A(x) = 1
|X| ±

(
k−α

|X| −
k−α

|ΥA| + k−
1
4 · |ΥB×ΩA×ΩB|+ k−ε

)
for all x ∈ X

η|fake
B (y) = 1

|Y | ±
(
k−α

|Y | −
k−α

|ΥB| + k−
1
4 · |ΥA×ΩA×ΩB|+ k−ε

)
for all y ∈ Y

η|fake
B (y) ≤ k−α

|ΥB| + k−
1
4 · |ΥA×ΩA×ΩB|+ k−ε for all y ∈ ΥB\Y

So, we only additionally need that ε < α and ε < 1
4 and we are done.

42

4.7 Secure generation of correlated data

In this section we put things together by combining the results of Section 4.4 and Section 4.6. In
particular, we show that our generic protocol scheme from Section 4.5 can always be instantiated
such that no corrupted party can deviate from the prescribed input probabilities too much, and thus
the generated data is non-trivially correlated. This suffices for implementation of OT as described
in Section 3.2.

Notation 39 (Cheating quantum). For F = (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin, with ṄF denoting the
minimal spanning set of all normalized cheating situations for F (q.v. Lemma 10), we define:

ϑF := min
{
η|fake

B (y′)
∣∣ y′ ∈ ΥB, η ∈ ṄF : η|fake

B (y′) > 0
}

Lemma 40 (Quantizability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin. Further,

let η ∈ N
(F)
B , ω ∈ R≥0, such that ω < 1

|ΥB| . Then there exists some η′ ∈ N
(F)
B that fulfills the

following two conditions:

1. For all y′ ∈ ΥB we have the following implication:

η|fake
B (y′) ≤ ω · ϑF ⇒ η′|fake

B (y′) = 0

2. For all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB we have:∣∣η((x, a), (y, b), (y′, b′)
)
− η′

(
(x, a), (y, b), (y′, b′)

)∣∣ ≤ 2ω · |ΥA×ΥB|

Proof. As stated in Lemma 10, the set of all normalized cheating situations for F is the convex hull
of a finte set of vertices, say {η̇1, . . . , η̇n}. Note that for all i ∈ {1, . . . , n} and all y′ ∈ ΥB we have
that either 0 < ϑF ≤ η̇i|fake

B (y′) or η̇i|fake
B (y′) = 0 by definition of ϑF (q.v. Notation 39). Now, let η̃

denote the normalized version of η (cf. Corollary 9). We define:

Y ′ :=
{
y′ ∈ ΥB

∣∣ 0 < η̃|fake
B (y′) ≤ ω · ϑF

}
W.l.o.g., we assume that Y ′ 6= ∅, as otherwise we could just set η′ := η (cf. Remark 13). Moreover,
we find some a1, . . . , an ∈ R≥0, such that

∑n
i=1 ai · η̇i = η̃ and especially

∑n
i=1 ai = 1. We define

the index set I :=
{
i ∈ {1, . . . , n}

∣∣ η̇i|fake
B (y′) > 0

}
, whereby we get:∑

i∈I
ai · ϑF ≤

∑
i∈I

ai · η̇i|fake
B (Y ′) ≤ η̃|fake

B (Y ′) ≤ ω · ϑF · |Y ′|

Since ω < 1
|ΥB| by assumption, this especially yields that

∑
i∈I ai ≤ ω · |Y ′| < 1. So, we can set

J := {1, . . . , n}\I and η̃′ := (
∑

i∈J ai)
−1 ·

∑
i∈J ai · η̇i, whereby for all x ∈ ΥA, a ∈ ΩA, y, y

′ ∈ ΥB,
b, b′ ∈ ΩB we get:∣∣η̃((x, a), (y, b), (y′, b′)

)
− η̃′

(
(x, a), (y, b), (y′, b′)

)∣∣
=

∣∣∣∣∣
n∑
i=1

ai · η̇i
(
(x, a), (y, b), (y′, b′)

)
−
∑

i∈J ai · η̇i
(
(x, a), (y, b), (y′, b′)

)∑
i∈J ai

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈I

ai · η̇i
(
(x, a), (y, b), (y′, b′)

)∣∣∣∣∣+

∣∣∣∣∣
(

1− 1∑
i∈J ai

)
·
∑
i∈J

ai · η̇i
(
(x, a), (y, b), (y′, b′)

)∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣+

∣∣∣∣∣
(

1− 1∑
i∈J ai

)
·
∑
i∈J

ai

∣∣∣∣∣ = 2
∑
i∈I

ai ≤ 2ω · |Y ′| ≤ 2ω · |ΥB|

43

Finally, we define the mapping η′ : (ΥA×ΩA)×(ΥB×ΩB)2 → R≥0 by:

η′
(
(x, a), (y, b), (y′, b′)

)
:= |ΥA| · η|A(x) · η̃′

(
(x, a), (y, b), (y′, b′)

)
Since η̃′ is normalized, by Lemma 8 it follows that η′ ∈ N

(F)
B . Now we can put things together. On

the one hand, by our choice of η̃ for all x ∈ ΥA, a ∈ ΩA, y
′ ∈ ΥB, b

′ ∈ ΩB we have (q.v. Corollary 9):

η((x, a), (ΥB,ΩB), (y′, b′))

η|A(x)
=
η̃((x, a), (ΥB,ΩB), (y′, b′))

η̃|A(x)

Thus, by Condition 3 of Definition 5, for all y′ ∈ ΥB it follows:

η|fake
B (y′) = η̃|fake

B (y′)

So, for all y′ ∈ ΥB with η|fake
B (y′) ≤ ω ·ϑF it holds that y′ ∈ Y ′ and hence η′|fake

B (y′) = η̃′|fake
B (y′) = 0

by construction. On the other hand, for all x ∈ ΥA, a ∈ ΩA, y, y
′ ∈ ΥB, b, b

′ ∈ ΩB we can rewrite
the distance

∣∣η((x, a), (y, b), (y′, b′)
)
− η′

(
(x, a), (y, b), (y′, b′)

)∣∣ as follows:

|ΥA| · η|A(x)︸ ︷︷ ︸
≤1

·
∣∣η̃((x, a), (y, b), (y′, b′)

)
− η̃′

(
(x, a), (y, b), (y′, b′)

)∣∣︸ ︷︷ ︸
≤2ω·|ΥB|

Corollary 41. Let any F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given. Then, if Alice is honest, there
exist some constants ε, ε′ ∈ R>0, such that for any π := πF (X,Y, α, β, γ) with (X,Y, α, β, γ) ∈ ΠF

and α < ε′ a protocol run of π with overwhelming probability is either aborted or there exists a

cheating situation η ∈ N
(F)
B with the following properties:

1. It holds that η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B

∣∣
(x,a,y,b)

· k−1± k−ε for all x ∈ ΥA,

a ∈ ΩA, y ∈ ΥB, b ∈ ΩB.

2. It holds that η|A(x) = 1
|X| ± k

−ε for all x ∈ X.

3. It holds that η|fake
B (y) = 1

|Y | ± k
−ε for all y ∈ Y .

4. It holds that η|fake
B (y) = 0 for all y ∈ ΥB\Y .

If Bob is honest, the analog holds with η ∈ N
(F)
A .

Proof. The proof is straightforward; we just need to combine Lemma 38 and Lemma 40.

Lemma 42. Let some redundancy-free F := (ΥA,ΥB,ΩA,ΩB, φ) ∈ Ffin be given that has some OT-
core. Then there also exist an OT-core {(x̄, ā), (x̄′, ā′)}×{(ȳ, b̄), (ȳ′, b̄′)} ⊆ (ΥA×ΩA)2×(ΥB×ΩB)2, a
protocol π := πF ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) with ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) ∈ ΠF and a constant ε ∈ R>0

with the following property: If at least one party (Alice or Bob) is honest, a protocol run of π with
overwhelming probability is either aborted or in the end for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′},
b ∈ ΩB it holds:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B [K ′]

∣∣
(x,a,y,b)

= 1
|{x̄,x̄′}×{ȳ,ȳ′}| · φx,y(a, b)± k

−ε

Proof. By assumption we have an OT-core {(x̃, ã), (x̃′, ã′)}×{(ỹ, b̃), (ỹ′, b̃′)} ⊆ (ΥA×ΩA)2×(ΥB×ΩB)2.
By Corollary 26 we find some (ȳ, b̄), (ȳ′, b̄′) ∈ ΥB×ΩB, such that {(x̃, ã), (x̃′, ã′)}×{(ȳ, b̄), (ȳ′, b̄′)} also

is an OT-core and every cheating situation η ∈ N
(F)
B with η|fake({ȳ, ȳ′}) = 1 is equivalent to a trivial

44

cheating situation (cf. Definition 6). Analogously, we find some (x̄, ā), (x̄′, ā′) ∈ ΥA×Ωa, such that

{(x̄, ā), (x̄′, ā′)}×{(ȳ, b̄), (ȳ′, b̄′)} is still an OT-core and for every η ∈ N
(F)
A with η|fake

A ({x̄, x̄′}) = 1
and all x ∈ ΥA we also have:

η|fake
A (x) = η|true

A (x)

Now, let π := πF ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) with ({x̄, x̄′}, {ȳ, ȳ′}, α, β, γ) ∈ ΠF and let α be suffi-
ciently small, so that we can apply Corollary 41. Henceforth, for symmetry reasons it suffices to
consider the case that Alice is honest. In this case, we find by Corollary 41 some constant ε̃ ∈ R>0,
such that a protocol run of π with overwhelming probability is either aborted or there exists a cheat-

ing situation η ∈ N
(F)
B fulfilling the following conditions for all x ∈ ΥA, a ∈ ΩA, y ∈ ΥB, b ∈ ΩB:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
=
∣∣sin

A×sout
A ×sin

B×sout
B

∣∣
(x,a,y,b)

· k−1 ± k−ε̃ (2)

η|A(x) = 1
|{x̄,x̄′}| ± k

−ε̃ if x ∈ {x̄, x̄′} (3)

η|fake
B (y) = 1

|{ȳ,ȳ′}| ± k
−ε̃ if y ∈ {ȳ, ȳ′} (4)

η|fake
B (y) = 0 if y ∈ ΥB\{ȳ, ȳ′} (5)

Note that (5) can be reformulated as η|fake
B ({ȳ, ȳ′}) = 1, and thus our choice of ȳ, ȳ′ yields that (4)

is equivalent to the following:

η|true
B (y) = 1

|{ȳ,ȳ′}| ± k
−ε̃ for all y ∈ {ȳ, ȳ′}

Hence, by (3) and Condition 2 of Definition 5 we have for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′},
b ∈ ΩB:

η
(
(x, a), (y, b), (ΥB,ΩB)

)
=

φx,y(a, b)

|{x̄, x̄′}×{ȳ, ȳ′}|
± k−ε̃

(
1

|{x̄, x̄′}|
+

1

|{ȳ, ȳ′}|
+ k−ε̃

)
By (2), this yields for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′}, b ∈ ΩB:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B

∣∣
(x,a,y,b)

=
φx,y(a, b)

|{x̄, x̄′}×{ȳ, ȳ′}|
± k−ε̃

(
1 +

1

|{x̄, x̄′}|
+

1

|{ȳ, ȳ′}|
+ k−ε̃

)
Since in the protocol step Output of π every honest party enforces that |K ′| ≥ k − k1−γ (q.v.
Figure 8), we finally have for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′}, b ∈ ΩB:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B [K ′]

∣∣
(x,a,y,b)

=
φx,y(a, b)

|{x̄, x̄′}×{ȳ, ȳ′}|
±
(
k−ε̃

(
1 +

1

|{x̄, x̄′}|
+

1

|{ȳ, ȳ′}|
+ k−ε̃

)
+ k−γ

)
This concludes our proof, since we can choose an arbitrary constant ε > 0 with ε < min{ε̃, γ} and
then for almost all k ∈ N estimate the error term by k−ε.

4.8 Conclusion of the formal part

By Lemma 42, one can now show quite straightforwardly our final theorem. This final theorem

just states that we can implement the functionality F (G,ε)
SMCD (q.v. Figure 6), instantiated such that

G has some OT-core, from any redundancy-free 2-party function F ∈ Ffin that has some OT-core

itself. Since OT can be implemented from such instantiations of F (G,ε)
SMCD by standard techniques

(q.v. Section 3.2), this concludes our work.

45

Theorem. Let any redundancy-free 2-party function F ∈ Ffin be given that has some OT-core.
Then there exist a constant ε ∈ R>0 and a tuple of protocol parameters (X,Y, α, β, γ) ∈ ΠF ,

such that the protocol π := πF (X,Y, α, β, γ) implements UC-securely the functionality F (G,ε)
SMCD (q.v.

Figure 6) with some G that also has an OT-core.

Proof. We instantiate ε and the protocol parameters (X,Y, α, β, γ) as needed for Lemma 42,
with X = {x̄, x̄′} and Y = {ȳ, ȳ′}. In particular, there exist ā, ā′ ∈ ΩA, b̄, b̄

′ ∈ ΩB, such that
{(x̄, ā), (x̄′, ā′)}×{(ȳ, b̄), (ȳ′, b̄′)} is an OT-core. Further, we define G := (ΛA,ΛB, ψ) as follows:

ΛA :=
{

(x, a) ∈ X× ΩA

∣∣ φX,Y (a,ΩB) > 0
}

ΛB :=
{

(y, b) ∈ Y × ΩB

∣∣ φX,Y (ΩA, b) > 0
} ψ

(
(x, a), (y, b)

)
:=

φx,y(a, b)

|X×Y |

Note that G has some OT-core by construction. Furthermore, w.l.o.g. we have that ε ≤ γ. Now

we have to show that π := πF (X,Y, α, β, γ) implements UC-securely F (G,ε)
SMCD.

If no party is corrupted, it follows straightforwardly by Lemma 31 that π is aborted only with
some negligible probability. Further, the simulator in the ideal model just has to send a compound

string tA×tB of right length to the ideal functionality F (G,ε)
SMCD, so that the joint output distribution

of non-aborted protocol runs in the real model is identical to the joint output distribution in the
ideal model. Thus, simulation in a totally uncorrupted setting is just straightforward.

If Alice (and only Alice) or Bob (and only Bob) is corrupted, we need only a slightly more
sophisticated simulator program. For symmetry reasons it suffices to consider a corrupted Bob. In
this case, our simulator works as follows: He lets the corrupted Bob play with a simulated version

of the honest Alice and a simulated version of the hybrid functionality F (F)
SFE, thus generating some

joint output string (sin
A×sout

A)× (sin
B×sout

B)[K ′] with k − k1−γ < |K ′| ≤ k (if the protocol is not
aborted). By Lemma 42, this simulated protocol run of π with overwhelming probability is either
aborted or in the end for all x ∈ {x̄, x̄′}, a ∈ ΩA, y ∈ {ȳ, ȳ′}, b ∈ ΩB it holds:

1
k ·
∣∣sin

A×sout
A ×sin

B×sout
B [K ′]

∣∣
(x,a,y,b)

= 1
|{x̄,x̄′}×{ȳ,ȳ′}| · φx,y(a, b)± k

−ε

Thus, if the simulated protocol run is not aborted, the simulator can just set tA := sin
A×sout

A [K ′] and

tB := sin
B×sout

B [K ′] and then send tA×tB to the ideal functionality F (G,ε)
SMCD. Else, i.e. if the simulated

protocol run is aborted, the simulator just needs to terminate, too. Again, it is straightforward to
verify that the ideal model is statistically indistinguishable from the real model.

If both parties are corrupted, there is nothing to prove, since the simulator can just perfectly
simulate the complete real model.

Acknowledgements

The author wants to heartly thank Felipe Voloch from the mathoverflow community for pointing
him to the Lojasiewicz Inequality.

References

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-party
secure computation. In Michael J. Wiener, editor, Advances in Cryptology, Proceed-
ings of CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
80–97. Springer, 1999.

46

[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Proceedings of STOC
1988, pages 113–131. ACM, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of FOCS 2001, pages 136–145, 2001. Revised full version
online available at http://eprint.iacr.org/2000/067.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a
memory-bounded receiver. In Proceedings of FOCS 1998, pages 493–502, 1998.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in
Cryptology, Proceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 545–562. Springer, 2008.

[CGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer
and private multi-party computation. In Don Coppersmith, editor, Advances in
Cryptology, Proceedings of CRYPTO ’95, volume 963 of Lecture Notes in Computer
Science, pages 110–123. Springer, 1995.

[CK88] Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened security
assumptions (extended abstract). In Proceedings of FOCS 1988, pages 42–52. IEEE
Computer Society, 1988.

[CK90] Claude Crépeau and Joe Kilian. Weakening security assumptions and oblivious trans-
fer (abstract). In Shafi Goldwasser, editor, Advances in Cryptology, Proceedings of
CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages 2–7. Springer,
1990.

[CKS+11] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and
Hong-Sheng Zhou. (Efficient) universally composable two-party computation using
a minimal number of stateless tokens. IACR Cryptology ePrint Archive, 2011:689,
2011.

[CMW05] Claude Crépeau, Kirill Morozov, and Stefan Wolf. Efficient unconditional oblivious
transfer from almost any noisy channel. In Carlo Blundo and Stelvio Cimato, editors,
SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages 47–59. Springer,
2005.

[Cré88] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl
Pomerance, editor, Advances in Cryptology, Proceedings of CRYPTO ’87, volume
293 of Lecture Notes in Computer Science, pages 350–354. Springer, 1988.

[DFMS04] Ivan Damg̊ard, Serge Fehr, Kirill Morozov, and Louis Salvail. Unfair noisy channels
and oblivious transfer. In Moni Naor, editor, Theory of Cryptography, Proceedings
of TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 355–373.
Springer, 2004.

[DFR+07] Ivan Damg̊ard, Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner. A
tight high-order entropic quantum uncertainty relation with applications. In Alfred
Menezes, editor, Advances in Cryptology, Proceedings of CRYPTO 2007, volume 4622
of Lecture Notes in Computer Science, pages 360–378. Springer, 2007.

47

http://eprint.iacr.org/2000/067

[DKMQ11] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and com-
posable security using a single stateful tamper-proof hardware token. In Yuval Ishai,
editor, Theory of Cryptography, Proceedings of TCC 2011, volume 6597 of Lecture
Notes in Computer Science, pages 164–181. Springer, 2011. Extended full version
online available at http://eprint.iacr.org/2012/135.

[DKS99] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing oblivi-
ous transfer and bit commitment on weakened security assumptions. In Advances in
Cryptology, Proceedings of EUROCRYPT ’99, pages 56–73, 1999.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive lock-
ing, zero-knowledge PCPs, and unconditional cryptography. In Tal Rabin, editor,
Advances in Cryptology, Proceedings of CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 173–190. Springer, 2010.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, Theory of Cryptography, Proceedings of TCC 2010, volume 5978 of Lecture
Notes in Computer Science, pages 308–326. Springer, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, Advances in Cryptology, Proceedings of CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 39–56. Springer, 2008.

[GL91] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in
presence of immoral majority. In Alfred Menezes and Scott A. Vanstone, editors,
Advances in Cryptology, Proceedings of CRYPTO ’90, volume 537 of Lecture Notes
in Computer Science, pages 77–93. Springer, 1991.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. OT-combiners
via secure computation. In Ran Canetti, editor, Theory of Cryptography, Proceedings
of TCC 2008, volume 4948 of Lecture Notes in Computer Science, pages 393–411.
Springer, 2008.

[HNRR06] Danny Harnik, Moni Naor, Omer Reingold, and Alon Rosen. Completeness in two-
party secure computation: A computational view. Journal of Cryptology, 19(4):521–
552, 2006.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai, and
Jürg Wullschleger. Constant-rate oblivious transfer from noisy channels. In Phillip
Rogaway, editor, Advances in Cryptology, Proceedings of CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 667–684. Springer, 2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In David Wagner, editor, Advances in Cryptology, Proceed-
ings of CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages
572–591. Springer, 2008.

48

http://eprint.iacr.org/2012/135

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of STOC
1988, pages 20–31. ACM, 1988.

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In Proceedings of
STOC 1991, pages 553–560. ACM, 1991.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation.
In Proceedings of STOC 2000, pages 316–324. ACM, 2000.

[KMQ10] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with construc-
tive proofs for finite deterministic 2-party functions (full version). IACR Cryptology
ePrint Archive, 2010:654, 2010. Full version of [KMQ11].

[KMQ11] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with construc-
tive proofs for finite deterministic 2-party functions. In Yuval Ishai, editor, The-
ory of Cryptography, Proceedings of TCC 2011, volume 6597 of Lecture Notes in
Computer Science, pages 364–381. Springer, 2011. Full version online available at
http://eprint.iacr.org/2010/654.

[Kol10] Vladimir Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In Daniele Micciancio, editor, Theory of Cryptography, Proceedings
of TCC 2010, volume 5978 of Lecture Notes in Computer Science, pages 327–342.
Springer, 2010.

[Loj59] Stanis law Lojasiewicz. Sur le problème de la division. Polska Akademia Nauk. Instytut
Matematyczny. Studia Mathematica, 18:87–136, 1959.

[May95] Dominic Mayers. On the security of the quantum oblivious transfer and key distri-
bution protocols. In Don Coppersmith, editor, Advances in Cryptology, Proceedings
of CRYPTO ’95, volume 963 of Lecture Notes in Computer Science, pages 124–135.
Springer, 1995.

[May96] Dominic Mayers. Quantum key distribution and string oblivious transfer in noisy
channels. In Neal Koblitz, editor, Advances in Cryptology, Proceedings of CRYPTO
’96, volume 1109 of Lecture Notes in Computer Science, pages 343–357. Springer,
1996.

[MPR10] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law for crypto-
graphic complexity with respect to computational UC security. In Tal Rabin, editor,
Advances in Cryptology, Proceedings of CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 595–612. Springer, 2010.

[MPR12] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A unified characterization
of completeness and triviality for secure function evaluation. In Steven D. Galbraith
and Mridul Nandi, editors, Progress in Cryptology, Proceedings of INDOCRYPT
2012, volume 7668 of Lecture Notes in Computer Science, pages 40–59. Springer,
2012.

[MPW07] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for
oblivious transfer. In Salil P. Vadhan, editor, Theory of Cryptography, Proceedings
of TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages 404–418.
Springer, 2007.

49

http://eprint.iacr.org/2010/654

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Aiken Computation Laboratory, Harvard University, 1981.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In Moni Naor, editor, Advances
in Cryptology, Proceedings of EUROCRYPT 2007, volume 4515 of Lecture Notes in
Computer Science, pages 555–572. Springer, 2007.

[Wul09] Jürg Wullschleger. Oblivious transfer from weak noisy channels. In Omer Reingold,
editor, Theory of Cryptography, Proceedings of TCC 2009, volume 5444 of Lecture
Notes in Computer Science, pages 332–349. Springer, 2009.

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Serge Vau-
denay, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 222–232. Springer, 2006.

[Yao95] Andrew Chi-Chih Yao. Security of quantum protocols against coherent measure-
ments. In Frank Thomson Leighton and Allan Borodin, editors, Proceedings of STOC
1995, pages 67–75. ACM, 1995.

50

	Introduction
	Related work
	Our contribution
	Organization of this paper

	Presentation of our results
	Notion of security
	Basic concepts
	Completeness criteria for all finite randomized 2-party functions
	Comparison with criteria from the literature

	How to prove the Classification Theorem
	Secure generation of correlated data
	The protocol for generating correlated data
	Idealized attack strategies
	Robust OT-cores
	Robust OT-cores in real protocol runs

	Reduction of OT to correlated data
	Refining the correlated data
	Building OT from the refined correlated data

	Formal part
	Basic notions and notations
	Linear properties of cheating situations
	Cheating situations for redundant input symbols
	Existence of robust OT-cores
	Protocol for generation of correlated data
	Real protocol runs versus idealized cheating situations
	Secure generation of correlated data
	Conclusion of the formal part

	Acknowledgements
	References

