
Search Pattern Leakage in Searchable Encryption:
Attacks and New Constructions

Chang Liu
School of Computer Science,
Beijing Institute of Technology

Beijing, 100081, China
changliu.bit@gmail.com

Liehuang Zhu
School of Computer Science,
Beijing Institute of Technology

Beijing, 100081, China
liehuangz@bit.edu.cn

Mingzhong Wang
School of Computer Science,
Beijing Institute of Technology

Beijing, 100081, China
wangmz@bit.edu.cn

Yu-an Tan
School of Computer Science,
Beijing Institute of Technology

Beijing, 100081, China
victortan@yeah.net

ABSTRACT
Searching on remote encrypted data (commonly known as
searchable encryption) is becoming an important technique
in secure data outsourcing, since it allows users to outsource
encrypted data to the third party and maintains the keyword
searching on the data at the same time.
It has been widely accepted in the literature that search-

able encryption techniques should leak as little information
as possible to the third party. An early classical method
called oblivious RAM hides all information at the cost of
poly-logarithmic computation and communication overhead-
s, which turns out to be impractical in the real world applica-
tions (e.g., cloud computing). A number of efficient search-
able encryption schemes have been proposed under weaker
security guarantees afterwards, however, such schemes leak
statistical information about the user’s search pattern.
In this paper, we show that the search pattern leakage can

result in non-trivial risks. As pioneer work, we present two
concrete attack models exploiting user’s search pattern and
some auxiliary background knowledge aiming to disclose the
underlying keywords of user’s queries. To resist these attack-
s, we develop two new searchable encryption constructions
that hide the search pattern. Our constructions are designed
to be independent from the underlying searchable encryp-
tion scheme. Our experiments, which are based on the real
world dataset, demonstrate the effectiveness and efficiency
of proposed attack models and new constructions.

Keywords
search pattern, searchable encryption, index, fake query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Cloud computing has been increasingly employed to out-

source data by cloud tenants to diminish the high overhead
of data storage and management. In many cases, cloud ten-
ants need to encrypt data before outsourcing them to pre-
vent cloud administrator from accessing sensitive informa-
tion, such as government documents, hospital records and
personal emails. However, data encryption invalidates many
data query functions, which will lead to inefficient data u-
tilization. For instance, the cloud service provider cannot
execute keyword search query over encrypted data. The
purpose of searchable encryption is allowing a user to out-
source data to a third party in a secure manner, and then
retrieve documents containing the queried keywords. There-
fore, searchable encryption can play an important role in to-
day’s cloud computing scenario (see [12] for a discussion).

Index, an auxiliary structure that accelerates the search
process, has been widely studied in information retrieval
fields. In general, each entry of the index is formed as a
<keyword, document identifiers> tuple, so that all the doc-
uments containing the queried keyword can be easily located
by searching the indexed document identifiers. We describe
the general scenario of searchable encryption as follows: a
data owner (e.g., Alice) has a set of documents to outsource
to a third party (e.g., Carol). Alice first builds an index of
all the keywords contained in the documents, and then en-
crypts both the documents and the index. After that, she
outsources the encrypted documents and index to Carol. An
authorized data user (e.g., Bob) has a secret key, so that he is
able to generate keyword search queries (a.k.a. trapdoors or
tokens) by calling a trapdoor function. Once Carol receives
a query from Bob, she can search in the index and return
the (encrypted) search result1 to Bob. Then Bob is able to
decrypt the search results and retrieve needed documents.

It has been widely accepted in the literature that nei-
ther the outsourced data (i.e., documents and index) nor
the search query should leak as little information as possi-
ble to the third party. We note that searchable encryption
can be achieved through a classical method called oblivious

1The search result is a collection of document identifiers
whose corresponding documents contain the queried key-
word.

RAM (e.g., [15, 10]), which attains the optimal security (i.e.,
nothing leaked to the third party). However, this kind of ap-
proaches is unpractical due to the poly-logarithmic compu-
tation and communication overheads. Therefore a number
of searchable symmetric encryption (SSE) schemes (e.g., [16,
9, 7, 8, 17, 14, 13]) have been proposed under weaker securi-
ty guarantees to achieve efficiency. Nevertheless, as it is also
noted in [13], a limitation of most known SSE schemes is the
leakage of access and search patterns. In fact, this limita-
tion also exists in searchable asymmetric encryption schemes
(e.g., [6, 4]). Informally, the access pattern is the informa-
tion about which documents contain the queried keyword
(i.e., the search result) for each of the user queries. The
search pattern is the information about whether any two
queries are generated from the same keyword or not. Thus
the occurrence frequency of each query can be deduced from
the search pattern. In recent studies, only [11] have dis-
cussed a concrete attack exploiting the access pattern to
disclose user’s queried keywords. The potential risks of the
search pattern leakage are rarely studied in the literature,
which motivates us to investigate on this issue and devel-
op searchable encryption constructions under more rigorous
security requirements.
Intuitions. Let’s begin with analyzing why search pat-

tern is leaked in SSE schemes. We can note that the query
algorithms of all SSE schemes in the literature are deter-
ministic, which means the same keyword will always gen-
erate the same query. In this sense, an adversary can eas-
ily judge whether any two queries are generated from the
same keyword or not, so as to obtain the user’s search pat-
tern. One may apply probabilistic query algorithms to solve
this problem. However, simply making use of probabilis-
tic query algorithms still cannot hide the search pattern,
because the entry touched in each search process discloses
the search pattern as well. In other words, for the same
keyword, its entry in the index must be the same, so that
the adversary can disclose user’s search pattern just by ob-
serving the entries touched in the index during the search
process. For this reason, the search pattern is also leaked in
searchable asymmetric encryption (a.k.a. public key encryp-
tion with keyword search, PEKS), whose query algorithms
are probabilistic (see e.g., [6, 4]). It is also worthwhile to
point out that the access pattern may leak search pattern
in the same way (i.e., the same search result might mean
the same queried keyword). We refer the reader to [11] for
the details on how to hide the access pattern. The work of
this paper only considers the search pattern leakage caused
by the queries and index, and we leave the comprehensive
search pattern hiding for the future work. A delicate ap-
proach to hide the search pattern is launching several fake
queries along with the real query, so that the adversary can-
not identify the real query. In this way, the search pattern
is hidden simultaneously.
Our contributions. We outline the contributions of this

paper as the following:

1. As pioneer work, we address the search pattern leak-
age issue and demonstrate its potential risks in the
practical applications by giving two concrete attack
models. In particular, an adversary who has obtained
user’s search pattern can effectively attack the under-
lying keywords of the user query under the help of
some public available knowledge.

2. We put forward universal constructions for hiding the
search pattern. Our constructions are designed to be
independent of the underlying searchable encryption
scheme, so that most existing index-based searchable
encryption schemes (e.g., [9, 7, 8, 17, 14, 13]) can be
used in our constructions.

3. We test the performance of the proposed attack mod-
els and constructions based on the real world dataset.
The experiment results indicate the effectiveness of our
attack models, and the security and practicality of our
constructions.

Organization of the paper. The remainder of the pa-
per is organized as follows: Section 2 briefly surveys the
motivations of hiding the search pattern. Section 3 intro-
duces some preliminaries. We formalize two attack models
in Section 4. In Section 5 we will describe our constructions.
Section 6 shows experimental studies for evaluating the per-
formance of the proposed attack models and constructions.
We review related work in Section 7 and conclude the paper
in Section 8.

2. MOTIVATIONS
Throughout this paper, we treat the third party Carol

as the adversary, which is consistent with most previous
work. Carol behaves “honest-but-curious” in the searchable
encryption protocol. On one hand, Carol follows the oper-
ations required by the protocol. On the other hand, Carol
tries to deduce as much private information as possible by
utilizing all kinds of attack methods. Carol has the ability
of eavesdropping the network, so that she has access to al-
l encrypted documents, index and queries. To make more
effective attacks, Carol will draw support from some aux-
iliary knowledge, which can be legally obtained from other
channels. Now we demonstrate that the search pattern leak-
age can lead to the keyword privacy leakage through several
examples below.

Once the search pattern is leaked to Carol, the occur-
rence frequency of each query is known to Carol. Intuitively,
the most vulnerable keywords are of highest query frequen-
cies, which we call hot keywords. For example, the keyword
“Thanksgiving” is the hot keyword of Thanksgiving Day. S-
ince Carol is able to identify the query with the highest
occurrence frequency at Thanksgiving Day, she knows the
underlying keyword of that query is “Thanksgiving”.

To make a more general attack, Carol records the occur-
rence frequency of a specific query per day (week, month,
etc.). As it is shown in Figure 1(a), Carol records the occur-
rence frequency of a specific query in each week of the year
2012. She also obtains auxiliary knowledge from a public we-
b facility based on Google Search, called Google Trends [1]
which shows how often a particular search-term is entered
by users. For illustration, we show three sample keywords
in Figure 1(b) and let the time interval be consistent with
that recorded by Carol. What Carol needs to do is search-
ing the best matched keyword by applying some methods
of similarity measurement (e.g., Euclidean distance). The
successful keyword attack above is based on the reasonable
assumption that the users’ search pattern are homologous
in the Google Search and a general searchable encryption
system.

In some cases, data users have specific background (such
as IT, medicine, etc.), so the search habit of these users has

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

se
ar

ch
 fr

eq
ue

nc
y

week

 a specific query

(a)

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

se
ar

ch
 fr

eq
ue

nc
y

week

 obama
 soccer
 spring

(b)

Figure 1: Search frequency2over time

discrepancy when compared with that of the general users.
To attack the users with specific background, Carol needs to
adjust the auxiliary knowledge accordingly. This is possible
because Google Trends also offers statistics under variant
categories, which can be treated as user backgrounds.
Currently, more and more results of analyses on users’

search habits are open to the public, which indeed facilitates
all variants of attacks on users’ privacy. Consequently, the
search pattern leakage will grievously threaten the keyword
privacy. We formalize two keyword attack models in Section
4.

3. PRELIMINARIES
We first give a general definition of index-based searchable

encryption, which covers both searchable symmetric encryp-
tion and searchable asymmetric encryption.

Definition 1 (Searchable Encryption). An index-
based Searchable Encryption (SE) scheme is a tuple of 6

2The search frequencies offered by Google Trends are nor-
malized and displayed on a scale from 0 to 100, rather the
absolute frequency numbers. We refer the reader to the site
help of [1] for more details on how to normalize and scale
data. In this paper, when we refer search frequencies (or oc-
currence frequencies) which are used for matching with the
data in Google Trends, we assume these frequency numbers
have been normalized and scaled properly.

algorithms SE = (KeyGen, BuildIndex, Encryption, Query,
Search, Decryption):

1. KeyGen(1λ): The key generation algorithm takes a se-
curity parameter λ as input, it outputs K as a collec-
tion of secret keys.

2. BuildIndex(D): The index building algorithm takes a
document collection D = {D1, ..., Dn} as input, it out-
puts an index I.

3. Encryption(D, I,K): The encryption algorithm takes a
document collection D, an index I and a secret key col-
lection K as input, it outputs an encrypted document
collection C = {c1, ..., cn} and a secure index SI.

4. Query(w,K): The query algorithm takes a keyword w
as input, it outputs an encrypted query (a.k.a. trap-
door) qw.

5. Search(qw,SI): The search algorithm takes a query qw
and a secure index SI as input, it outputs a collection
of document identifiers whose corresponding data file
containing the keyword w, which denoted as R(w) =
{id(w, 1), ..., id(w, p)}, where id(w, i)(1 ≤ i ≤ p) de-
notes the i-th identifier in R(w).

6. Decryption(ci,K): The decryption algorithm takes an
encrypted data file ci ∈ C and a secret collection K as
input, it outputs Di.

Before we formally define the notion of search pattern, we
first give the definition of history.

Definition 2 (History). Let D be a document collec-
tion. A n-query history over D is a tuple H = (D,w) where
w = {w1, w2, ..., wn} is a vector of underlying keywords of
the n queries.

A history represents the interactions between the users
and the third party, which contain a document collection
and a list of keywords that the users have searched.

Definition 3 (Search Pattern). The search pattern
over a n-query history H = (D,w) is a n × n symmetric
binary matrix τH such that for 1 ≤ i, j ≤ n, τH [i][j] = 1 if
wi = wj, and 0 otherwise.

Informally, a secure searchable encryption scheme should
not leak any information of the history to the adversary. In
existing security definitions of searchable encryption [7, 9,
8], the search pattern is assumed to leaked to the adversary.
Thus their schemes might be vulnerable in the practical ap-
plications where the adversaries have knowledge on users’
search habits.

4. TWO ATTACK MODELS
Now we formalize the keyword attack based on the search

pattern leakage. Let q be a specific query that Carol wants
to attack, Carol records the occurrence frequency of q in
each period of time (e.g., day, week, month, etc.), which we
denote as f i

q for 1 ≤ i ≤ p where p is the total number of
record items (e.g., p = 50 in Figure 1(a)). Thus Carol gets
a frequency vector of q denoted as Vq = (f1

q , f
2
q , ..., f

p
q). Let

D denote a dictionary of keywords and m denote the size
of D. In our attack models, we assume Carol has auxiliary

knowledge about users’ search habits (e.g., Google Trend-
s [1]). Let Vwi = (f1

wi
, f2

wi
, ..., fp

wi
) denote the auxiliary

frequency vector of the keyword wi ∈ D(i ∈ {1, ...,m}),
where the time interval is consistent with Vq. Let V =
{Vw1 , Vw2 , ..., Vwm} denote the set of all auxiliary frequen-
cy vectors. Let Dist(Vq, Vwi) be a function measuring the
similarity of Vq and Vwi (e.g., Euclidean Distance, Cosine
Distance and etc.).
Coral tries to identify the underlying keyword of q, which

can be easily achieved by calling the following attack algo-
rithm. We call this attack model The General Attack and
denote it as ATKGeneral:

• ATKGeneral(Vq, V):

1. set i∗ = argmin
i∈{1,...,m}

Dist(Vq, Vwi).

2. return wi∗ .

We have mentioned that users sometimes have specific
background, but Carol cannot discover the exact background
directly. To deal with this situation, we present The Adap-
tive Attack (denoted as ATKAdaptive) which dynamically ad-
just the auxiliary knowledge based on the previous attack-
s. For example, if Carol has obtained five keywords “HIV”,
“leukocyte”, “winter”, “virus” and “glucose”, she will guess
the users are medical related and update the auxiliary fre-
quency vector to an associated version. Here, we assume
that the auxiliary knowledge offers statistics of users’ search
histories under different categories which refer to different
user backgrounds. In addition, Carol needs to label all the
keywords with these categories.
Let C = {c1, c2, ..., cr} be the set of all possible cate-

gories offered by the auxiliary knowledge. Let Vwi,cj =

(f1
wi,cj , f

2
wi,cj , ..., f

p
wi,cj)(1 ≤ i ≤ m, 1 ≤ j ≤ r) be the

auxiliary frequency vector of keyword wi under the cate-
gory cj . Let Vcj = {Vw1,cj , Vw2,cj , ..., Vwm,cj} denote the
set of all auxiliary frequency vectors under the category cj .
We set a weight value on each of the category (denoted as
vj(1 ≤ j ≤ r)), which are equal to the proportion of resulted
keywords labeled with cj

3 in the previous rounds of attacks.
The Adaptive Attack works as follows:

• ATKAdaptive({Vqi}i∈Z, {Vcj}j∈{1,...,r}):

1. for 1 ≤ j ≤ r, set vj = 0.

2. randomly choose Vcurrent from {Vcj}j∈{1,...,r}.

3. set ctr = 1.

4. let wi∗ = ATKGeneral(Vqctr , Vcurrent).

5. let cj∗ be the category labeled on wi∗ .

6. for 1 ≤ j ≤ r(j ̸= j∗), let vj =
vj ·(ctr−1)

ctr
.

7. let vj∗ =
vj∗ ·(ctr−1)+1

ctr
.

8. set jmax = argmax
j∈{1,...,r}

vj .

9. let Vcurrent = Vcjmax
.

10. let ctr = ctr+ 1

11. goto 4.

3It is not hard to verify that the sum of all the weight values
is equal to 1.

The Random-Selecting-Based Construction

1. KeyGen(1λ): output K ← SE.KenGen(1λ)

2. BuildIndex(D): output I ← SE.BuildIndex(D)

3. Encryption(D, I,K):
output (C,SI)← SE.Encryption(D, I,K)

4. Query(k,w,K):

(a) randomly choose k − 1 keywords:
wi0 , ..., wik−2 ∈ W\w

(b) randomly choose b ∈ {0, ..., k − 1}
(c) for 0 ≤ j ≤ b− 1:

let sqj ← SE.Query(wij ,K)

(d) let sqb ← SE.Query(w,K)

(e) for b+ 1 ≤ j ≤ k − 1:
let sqj ← SE.Query(wij−1 ,K)

(f) output (b,Q = {sq0, ..., sqk−1})

5. Search(Q,SI):

(a) for each sqi in Q:
let Ri ← SE.Search(sqi,SI)

(b) output R = {R0, ...,Rk−1}

6. Extract(R, b): output Rb

7. Decryption(ci,K):
output Di ← SE.Decryption(ci,K

′)

Figure 2: The random-selecting-based construction
(RSBC)

5. OUR CONSTRUCTIONS
In this section, we construct two searchable encryption

constructions based on a index-based searchable encryption
scheme defined in Section 3.

5.1 The random-selecting-based construction
(RSBC)

We first introduce a straightforward construction, which
we call the random-selecting-based construction (RSBC).
Before describing RSBC in detail, we introduce some ad-
ditional notations. LetW be the list of all distinct keyword-
s contained in document collection D in alphabetical order
and |W| be its size. Assume wi denotes the i-th keyword in
W.

In RSBC, the query generated by Bob is a collection of
k sub-queries, which includes one sub-query of the real key-
word and k − 1 sub-queries of randomly selected keywords.
We call k the confusion parameter. To prevent Carol from
identifying the sub-query of the real keyword, Bob needs
to place this sub-query at a random position in the query
structure. When Carol received a query (i.e., a collection of
k sub-queries) from Bob, for each sub-query, she calls the
search algorithm to get the sub-result (assumed to be en-
crypted). Then she gets the final search result in the form
of k sub-results with the consistent order of the sub-queries,
and sends it to Bob. Since Bob knows the correct position of

the real sub-query, he can extract the sub-result of the real
sub-query and deletes other sub-results. Bob then uses his
secret key to decrypt the sub-result and finishes the query
process.
Let SE be a specific searchable encryption scheme. We use

the Extract algorithm to represent the process of extracting
the real sub-result from the search result structure. The
details of RSBC are shown in Figure 2.
Analysis. The main idea of RSBC is blending the sub-

query of the real keyword with several sub-queries of fake
keywords which are randomly selected in W. In this case,
Carol cannot identify the real sub-query of each Bob’s query,
thus cannot obtain Bob’s search pattern. However, we ob-
serve that RSBC is not robust in some cases. It is possible
that some particular keywords are queried much more times
than other keywords. In this case, Carol is able to figure out
the real sub-queries of these keywords by performing set-
intersection operation. We show this using the following ex-
ample: assume Bob has queried 5 keywords (w1, w2, w1, w1, w1)
and the confusion parameter k = 3, the corresponding queries
received by Carol are, say Q1 = (sq(w7), sq(w1), sq(w38)),
Q2 = (sq(w34), sq(w91), sq(w2)),Q3 = (sq(w1), sq(w51), sq(w67)),
Q4 = (sq(w8), sq(w77), sq(w1)),Q5 = (sq(w1), sq(w12), sq(w83)).
Through set-intersection operation, Carol can easily observe
that sq(w1) appears four times among the five queries, so she
believes that the real sub-query of the 1-st, 3-rd, 4-th and 5-
th query is sq(w1). Thus the view of Carol can be presented
as V iew = {Q1 = (sq(w1)),Q2 = (sq(w34), sq(w91), sq(w2)),
Q3 = (sq(w1)),Q4 = (sq(w1)),Q5 = (sq(w1))}, which leaks
Bob’s search pattern to a certain degree. One may think
that sq(w1) can also appear in a query when it is selected
as a fake sub-query. However, such a case occurs with very
low probability if (1) the keyword set size is large, or (2) k
value is small.

5.2 The random-dividing-based construction
(RDBC)

To strengthen security, we propose an improved construc-
tion which we call the random-dividing-based construction
(RDBC). In RDBC, we add an additional algorithm named
Dividing, which dividesW into |W|/k subsets {S1, ..., S|W|/k},
where k is the confusion parameter. Here, we assume |W| is
an integral multiple of k. Once a keyword w ∈ W is queried,
each keyword that appears in the same subset with w will
also be queried, so that the final query also contains one real
sub-query and k − 1 fake sub-queries.
In addition, We make use of a pseudo-random permuta-

tion π with the following parameters:

π : {0, 1}λ × Z|W| → Z|W|

where λ is a security parameter denotes the length of se-
cret key. To randomly divide W into |W|/k subsets, we
first use π permuting W and then divide the permuted W.
Here, only authorized users have secret key to calculate the
permutation.
The details of RDBC are shown in Figure 3. Unlike RS-

BC, which randomly selects fake sub-queries from the w-
hole W, RDBC divides W into a number of subsets so
that the generated query will always be the same when the
queried keyword belongs to the same subset. This proper-
ty avoid Carol’s attack by performing set-intersection op-
eration. To testify this, let’s suppose k = 3, and sup-
pose w1 and w2 belongs to the subset (w33, w1, w74) and

The Random-Dividing-Based Construction

1. KeyGen(1λ, 1λ
′
):

(a) pick a random s ∈ {0, 1}λ

(b) let K′ ← SE.KenGen(1λ
′
)

(c) output K = {s,K′}

2. BuildIndex(D): output I ← SE.BuildIndex(D)

3. Encryption(D, I,K):
output (C,SI)← SE.Encryption(D, I,K′)

4. Dividing(k,W,K):

(a) calculate a permutation P on {0, ..., |W| − 1}
as follows:
let P [i] be the i-th element of P , for 0 ≤ i ≤
|W| − 1:
set P [i] = πs(i)

(b) divide W into |W|/k subsets as follows:
for 0 ≤ i ≤ |W|/k − 1:
set Si = {wP [i∗k], ..., wP [i∗k+k−1]}

(c) output {Si}i∈{0,...,|W|/k−1}

5. Query(k,wi,K):

(a) set x = πs(i)

(b) calculate (a, b) satisfy x = ak + b, where 0 ≤
b ≤ k − 1

(c) let Sa[j] be the j-th element of Sa, calculate
sub-queries as follows:
for 0 ≤ j ≤ k − 1:
let sqj ← SE.Query(Sa[j],K

′)

(d) output (b,Q = {sq0, ..., sqk−1})

6. Search(Q,SI):

(a) for each sqi in Q:
let Ri ← SE.Search(sqi,SI)

(b) output R = {R0, ...,Rk−1}

7. Extract(R, b): output Rb

8. Decryption(ci,K):
output Di ← SE.Decryption(ci,K

′)

Figure 3: The random-dividing-based construction
(RDBC)

(w85, w41, w2) respectively. Let’s consider the following view
of Carol: V iew = {Q1 = (sq(w33), sq(w1), sq(w74)),Q2 =
(sq(w85), sq(w41), sq(w2)),Q3 = (sq(w33), sq(w1), sq(w74)),
Q4 = (sq(w33), sq(w1), sq(w74)),Q5 = (sq(w33), sq(w1), sq(w74))}.
Although Q1, Q3, Q4 and Q5 are identical, it is not rational
for Carol to guess the real sub-query of the 1-st, 3-rd, 4-th
and 5-th query are (1) sq(w1), because sq(w33) and sq(w74)
also satisfy this situation, or (2) identical, because differ-
ent queried keywords will generate the same query if these
keywords are from the same subset.

It is easy to find that k = 1 implies an unchanged search-

able encryption scheme, and k =W means each query con-
tains sub-queries of all the keywords. The larger k is, the
stronger security attained, but the higher overhead required.
Therefore, it is significantly important to choose k properly
according to the practical applications.

6. EXPERIMENTS
In this section, we test the attack models and our con-

structions presented in this paper. Our test programs were
implemented by Python-2.7.3. All experiments were per-
formed on a PC with Intel Core i5-2400 CPU 3.10GHz and
4.00GB RAM. The underlying operation system was Win-
dows 7 Professional. Each data point presented in the ex-
periment results was the mean of 10 executions.
In our experiments, all keywords were selected from Enron

email dataset[3], which is a real world dataset containing a
total of about 500000 messages of about 150 users. We se-
lected a subset of the emails as our corpus. It contains 96107
messages from the“Sent Mail”directories. The total number
of distinct words in the corpus is 122426. We ranked these
words with occurrence frequency and chose the top 3000
words as our keyword set. Here, all English stopwords[2]
such as “a”, “the” and “about” had been filtered away.

6.1 Performance of our attack models
To demonstrate the feasibility and effectiveness of our at-

tack models, we tested their attack accuracy4 under different
factor settings. We assumed that Carol had recorded the oc-
currence frequency of each query launched by users for con-
secutive weeks in the year 2011, thus she had obtained the
frequency vector of each query. The length of the frequency
vector was equal to the number of recorded weeks. Carol’s
auxiliary knowledge on statistics of users’ search histories
were extracted from Google Trends [1], which contains the
frequency vectors of all the keywords in the keyword set. It
is obvious that the attack accuracy will be 1 if the frequency
vectors of users’ queries perfectly match the auxiliary knowl-
edge. However, in a real application, the scale of users may
be so smaller than Google’s that the real users’ queries will
be inevitably diverse from the auxiliary knowledge. Con-
sidering the significant differences between particular users’
query behaviors noted by [11], and no real world query set
on the Enron dataset has been published to the best of our
observation, we simulate user query of a particular keyword
through adding Gaussian noise N (0, α ·σ2) to the frequency
vector of this keyword in the auxiliary knowledge. Here, σ2

is the variance of the frequency vector and α5 is a constant
representing the noise level.
Figure 4(a) shows the attack accuracy of The General At-

tack under different keyword set sizes and α values. Here,
the length of the frequency vector was fixed at 52 (i.e., 52
weeks in the year 2011), and the keyword set size was chosen
to be 1000, 2000 and 3000 respectively. We can see that the
attack accuracy is almost 100% when α ≤ 0.5 and starts to
decrease when α > 0.5. The experiment results showed that
the proposed attack model was quite accurate if the data
users’ searches (in the experiment) were well consisted with
Google’s statistic. The attack was also successful when the
data users’ searches had large deviation to Google’s statistic

4The attack accuracy represents the percentage of keywords
that are successfully attacked by the adversary.
5The larger α value implies the larger noise energy.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
90

92

94

96

98

100

ac
cu

ra
cy

 (%
)

 1000 keywords
 2000 keywords
 3000 keywords

(a)

10 15 20 25 30 35 40 45 50
40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

length of the frequency vector

 1000 keywords
 2000 keywords
 3000 keywords

(b)

Figure 4: Attack accuracy of The General Attack for
different choices of keyword set size.

since the accuracy was approximately 92% even when α = 1.
With the increase of keyword set size, the attack accuracy
slightly declined. This is because the larger size of keyword
set inevitably incurs the higher probability of mismatch.

Figure 4(b) shows the attack accuracy of The General At-
tack under different keyword set sizes and lengths of the
frequency vector. In this experiment, the α value was set
at 0.5 and the keyword set size was chosen to be 1000, 2000
and 3000 respectively. We can see that the attack accuracy
is growing with the increase of length of the frequency vec-
tor and reaches 90% when the vector length comes to 25.
The attack accuracy is higher than 50% even when the vec-
tor length is as short as 10. Same as previous experiment,
the attack accuracy slightly declines when keyword set size
increases. As we have mentioned in Section 2, the period
of records in the frequency vector in not limited as a week.
Other kinds of period such as a day, a month and a year are
also feasible.

To test the attack accuracy of The Adaptive Attack, we la-
beled 1000 keywords with 6 categories, which were“science”,
“health”, “games”, “sports”, “food” and “non-classified”. We
extracted the associated frequency vectors under each of the
categories from Google Trends, which formed Carol’s auxil-
iary knowledge. In this experiment, data users were assumed
to be of a specific category. To simulate the users’ searches,
we assumed that users of a specific category searched the
keywords of this very category with higher probability than

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
15
20
25
30
35
40
45
50
55
60
65
70
75
80

ac
cu

ra
cy

 (%
) i

n
ro

un
d

r

r

 x = 50
 x = 60
 x = 70
 x = 80
 x = 90

Figure 5: Attack accuracy of The Adaptive Attack for different choices of x.

other keywords. Thus we generated a sequence of 100 key-
words, where x of them were labeled with the same category
as the users. As it is shown in Figure 5, x is set to be 50, 60,
70, 80 and 90 respectively. The larger x implies the higher
speciality of the user searches. According to The Adaptive
Attack we have described in Section 4, during each round
of the attack process Carol adjusts the utilized frequency
vectors based on the previous rounds. In the experiment we
fixed the noise parameter α to be 0.5 and the length of fre-
quency vector to be 52. From Figure 5 we can see that the
attack accuracy in the first round is only about 20%, that is
because Carol had no idea on the users’ category in the first
round, thus the version of the auxiliary knowledge she used
was very likely to mismatch the users’ category. With the
increase of rounds, Carol has significant probability to figure
out the users’ exact category, so that the attack accuracy in
the 100-th round comes to about 65% when x = 50 and near
80% when x = 90.
The experiment results above suggested significant dis-

tinctions exist among the frequency vectors of each key-
word, thus again we emphasize that any searchable encryp-
tion scheme leaking users’ search pattern is vulnerable.
In Figure 6 we evaluate the execution time for searching

the best match among the auxiliary frequency vectors under
different lengths of the frequency vector. The keyword set
size was set to be 1000, 2000 and 3000 respectively. We can
see though the time costs were linear with the length of the
frequency vector and the number of keywords, the time costs
are in millisecond level, which means our attack models are
quite efficient.

6.2 Performance of our constructions
Now we evaluate the performance of our constructions. In

our constructions, a user query is a set of k − 1 fake sub-
queries and one real sub-query. To apply the attack models
described in Section 4, Carol has to first guess the real sub-
query in each user query. We describe Carol’s operation as
follows:
Guessing the real sub-query in RSBC. For each

query Qi = {sqi1 , sqi2 , ..., sqik} (here, k is the confusion pa-

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

ex
ec

ut
io

n
tim

e
(m

s)

length of the frequency vector

 1000 keywords
 2000 keywords
 3000 keywords

Figure 6: Execution time for search the best match.

rameter), Carol calculates set-intersection with every other
query. In this way, she can figure out the sub-query which
occurs the most times in the results of the set-intersection
calculations. She regards this sub-query as the “real” sub-
query of Qi.

Guessing the real sub-query in RDBC.We have ana-
lyzed in Section 5 that RDBC invalidates the set-intersection
operation. In this case, for each queryQi = {sqi1 , sqi2 , ..., sqik},
Carol randomly choose a sub-query as the “real” sub-query
of Qi.

After Carol has obtained the “real” sub-query of all users’
queries, she can calculate the frequency vector of each query
and apply our attack models.

We evaluated the average accuracy of Carol hitting the
real sub-query in Figure 7. In this experiment, the keyword
set size, the length of the frequency vector and the noise pa-
rameter α were 3000, 52 and 0.5 respectively. Users’ query
sequence was generated according to the statistics of Google
Trends. From Figure 7 we can see that the guessing accu-
racy in RDBC approximately equals to 1/k since Carol just
randomly selects a sub-query from the total k sub-queries
as the real sub-query. Carol has small advantage in guess-

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

ac
cu

ra
cy

 (%
)

k

 RSBC
 RDBC

Figure 7: Under different choices of k, the accuracy
of guessing the real sub-query.

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

ac
cu

ra
cy

 (%
)

k

 RSBC
 RDBC

Figure 8: Under different choices of k, the attack
accuracy of The General Attack

.

ing the real sub-query in RSBC, which is induced by the
set-intersection operations.
Based on the results in Figure 7, we further evaluated how

The General Attack performs in our constructions. Also, the
keyword set size, the length of the frequency vector and the
noise parameter α were set to be 3000, 52 and 0.5 respec-
tively. From Figure 8 we can see that the attack accuracy is
low as about 20% in RSBC and about 15% in RDBC even
when k = 2. With a increase in k value, the attack accuracy
decreases rapidly. For both constructions, the attack accu-
racy is near 0 when k ≥ 5. Therefore, we suggest to choose
k not less than 5 in the practical applications.
We also evaluated the computation overhead of our con-

structions. In our experiments, we chose SSE-2 in [8] as the
underlying searchable encryption scheme in our construc-
tions. Figure 9 reports the execution times for the Query
and Search algorithms under different choices of k value.
From the results in Figure 9(a) we can see that the execu-
tion time for the Query algorithms of our constructions are
linear to the k value. In addition, they are about k times the
execution time in SSE-2. Nevertheless, the Query algorithms
of our constructions are quite time saving, since the execu-
tion time is less than 1ms even when k is chosen to be 10.
In Figure 9(b), similarly, the execution times for the Search
algorithms of our constructions are linear to the k value,

2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

ex
ce

cu
tio

n
tim

e
(

s)

k

 SSE-2.Query
 RSBC.Query
 RDBC.Query

(a)

2 3 4 5 6 7 8 9 10
0

5

10

15

20

ex
ec

ut
io

n
tim

e
(

s)
k

 SSE-2.Search
 RSBC(RDBC).Search

(b)

Figure 9: Average query and search execution time
in SSE-2 and our constructions.

and they are about k times the execution time in SSE-2.
The Search algorithms of both constructions are exactly the
same, so we didn’t test them separately. In our implemen-
tations, indexes are built using hash table, which achieves
O(1) look-up time. Therefore the results of the search time
in Figure 9(b) are very small.

Besides the Query and the Search algorithms, the Dividing
algorithm (in RDBC) and the Extract algorithms (in both
RSBC and RDBC) also import computation overhead. How-
ever, the Dividing algorithm only needs to be executed once
at the setup phase for each user, and the execution time of
the Extract algorithms can be ignored. Therefore, the addi-
tional computation overheads induced by our constructions
are very small.

7. RELATED WORK
The problems of searching on remote encrypted data have

been widely studied in the literature, most of which focus on
enhancing privacy guarantees and optimizing efficiency. The
classical method proposed by Goldreich and Ostrovsky [15,
10], which called oblivious RAM, can resolve the problem
without leaking any information to the third party. How-
ever, standing in the perspective of practical applications,
such schemes are unacceptable due to their poly-logarithmic
computation and communication overheads. A number of
searchable encryption schemes (e.g., [16, 9, 6, 7, 8, 17, 14,

13]) have been proposed under weaker security guarantees
to achieve efficiency. More concretely, Song et al. [16] gave
a practical solution attaining search time that is linear to
the data size. This construction is not secure against statis-
tical analysis, since the adversary can obtain the distribu-
tion information of the underlying plaintext through statis-
tic approaches. To formalize security, Goh [9] formulated a
security model as semantic security against adaptive chosen
keyword attack (IND-CKA) and a slightly stronger IND2-
CKA. He also developed an IND-CKA secure index called
Z-INX which utilizes Bloom filter [5] to build an index for
each data file. The overhead of Z-INX for testing whether
a keyword belongs to a data file is O(1), thus searching on
the whole file collection needs O(n) time. The security def-
inition in [7] is similar with IND2-CKA except for the re-
quirement that trapdoors should not leak any information
of the queried keywords. As further related work, Curtmola
et al. [8] put forward stronger security definitions. Their se-
curity definition requires any function about the documents
and the keywords that can be computed from the encrypted
documents, the index and the trapdoors can be computed
from the length of the documents, the identifiers of the doc-
uments, the access pattern and the search pattern. In other
words, nothing is leaked more than the length of the docu-
ments, the identifiers of the documents, the access pattern
and the search pattern. In addition, both non-adaptive and
adaptive adversaries are considered in their work.
The approaches mentioned above are in the scope of search-

ing on symmetric key encrypted data, which thus called
searchable symmetric encryption (SSE). For application sake,
another research field of searchable encryption focuses on
the public key setting. As pioneer work, Bonel et al. [6]
proposed a searchable encryption scheme called PEKS (i.e.,
Public-key Encryption with Keyword Search), where trap-
door function is probabilistic. This property seems to con-
tribute to hiding the search pattern. Unfortunately, except
for trapdoors, index and search outcomes also leak the search
pattern, which we have discussed in Section 1.
With the exception of oblivious RAMs, all proposed search-

able encryption schemes leak the search pattern. The trend
of distributing searchable encryption schemes into cloud server-
s [12, 17, 14] highlights the potential risks of search pattern
leakage (as well as access pattern leakage). That is because
large amounts of data centralizing into the cloud servers af-
filiates effective statistical attacks. Moreover, such attacks
can be launched well under the massive computing power of
cloud servers. We are aware of a recent work of access pat-
tern disclosure on searchable encryption proposed by Islam
et al. [11], which is close to our work. In [11], the authors
treated keyword distribution as a background knowledge of
the adversary and formulated a concrete attack on the access
pattern leakage. They also presented a mitigation approach
to hide the access pattern. Their main idea is importing
some false positives to make search outcomes turn into i-
dentical to a certain degree. Therefore, both the issue we
focus and the principle of our approaches are quite different
from theirs.

8. CONCLUSION
In this paper, we review searchable encryption schemes in

the literature and point out the search pattern leakage is-
sue. By giving two concrete attack models, we demonstrate
that the search pattern can be utilized to attack the under-

lying queried keywords. Motivated by this, we present two
constructions based on the idea of faking query. The se-
curity guarantees of both constructions are associated with
the confusion parameter, which needs to be properly chosen
according to the practical applications. To clarify the per-
formance of proposed attack models and constructions, we
give detailed experiments on the real world dataset.

9. ACKNOWLEDGEMENTS
The authors are grateful to Yuan Zhang for the early dis-

cussions of this work. This work is supported by National
Natural Science Foundation of China No.61272512 and Bei-
jing Municipal Natural Science Foundation No.4121001.

10. REFERENCES
[1] Google trends. http://www.google.com/trends/.

[2] Stopword list.
http://www.ranks.nl/resources/stopwords.html.

[3] Enron email dataset, 2009.
http://www.cs.cmu.edu/∼enron/.

[4] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz,
T. Kohno, T. Lange, J. Malone-Lee, G. Neven,
P. Paillier, and H. Shi. Searchable encryption revisited:
Consistency properties, relation to anonymous ibe,
and extensions. In Advances in Cryptology -
CRYPTO’05, volume 3621 of Lecture Notes in
Computer Science, pages 205–222. Springer, 2005.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In Advances in Cryptology - EUROCRYPT’04,
volume 3027 of Lecture Notes in Computer Science,
pages 506–522. Springer, 2004.

[7] Y.-C. Chang and M. Mitzenmacher. Privacy
preserving keyword searches on remote encrypted
data. In Applied Cryptography and Network Security
(ACNS’05), volume 3531 of Lecture Notes in
Computer Science, pages 391–421. Springer, 2005.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: Improved
definitions and efficient constructions. Journal of
Computer Security, 19(5):895–934, 2011.

[9] E.-J. Goh. Secure indexes. Cryptology ePrint Archive,
Report 2003/216, 2003. http://eprint.iacr.org/.

[10] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the
ACM, 43(3):431–473, 1996.

[11] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access
pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Network and
Distributed System Security Symposium (NDSS’12),
2012.

[12] S. Kamara and K. Lauter. Cryptographic cloud
storage. In Financial Cryptography Workshops,
volume 6054 of Lecture Notes in Computer Science,
pages 136–149. pringer, 2010.

[13] S. Kamara, C. Papamanthou, and T. Roeder.
Dynamic searchable symmetric encryption. In ACM
Conference on Computer and Communications
Security (CCS’12), pages 965–976, 2012.

[14] M. Kuzu, M. S. Islam, and M. Kantarcioglu. Efficient
similarity search over encrypted data. In IEEE
International Conference on Data Engineering
(ICDE’12), pages 1156–1167, 2012.

[15] R. Ostrovsky. Efficient computation on oblivious rams.
In ACM Symposium on Theory of Computing
(STOC’90), pages 514–523, 1990.

[16] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searching on encrypted data. In IEEE
Symposium on Security and Privacy, pages 44–55,
2000.

[17] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure
ranked keyword search over encrypted cloud data. In
IEEE International Conference on Distributed
Computing Systems (ICDCS’10), pages 253–262, 2010.

