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Abstract

In this paper we present the (to the best of our knowledge) first
LWE-based encryption scheme that removes the need of Gaussian sam-
pling for the error, i.e. the discrete Gaussian distribution is replaced by
the uniform distribution on a (small) set, which at the same time pre-
serves the underlying worst-case hardness. This shows that provable
security and efficiency do not necessarily have to mutually exclude each
other. We give an asymptotic parameter instantiation for our scheme,
as well as some hardness results for LWE which might be of indepen-
dent interest.
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1 Introduction

Lattice-based cryptography has aroused a lot of interest in the last years.
From a certain point of view, two main paths have been developed: Provably
secure schemes using worst-case to average-case reduction on the one hand
and practical schemes on the other hand. The provably secure schemes
are mainly based on two problems: Learning With Errors (LWE) and the
Small Integer Solution (SIS). We will focus on LWE in this paper, leaving
SIS for future work. LWE can be shown to be hard in the average-case as
long as certain lattice problems are hard in the worst-case, if a gaussian
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sampler is used for noise generation. In practice, however, a significant
amount of time is spent on Gaussian sampling (e.g. [WHCB13]). Some
implementations solve this problem by using uniform error and pretty much
ignoring the provable security (e.g [GLP12], [HPS98]). A recent result from
Miccianco and Peikert gives access to another solution of this problem. They
showed in [MP13] that LWE with (small) uniform noise can remain its worst-
case hardness if the amount of samples is restricted. We use this result to
construct the (to the best of our knowledge) first encryption scheme that
uses no Gaussian sampling and at the same time remains its worst-case
security. For this purpose, we slightly modify the scheme by Lindner and
Peikert [LP11].

1.1 Related Work

As mentioned before, we combine results from [MP13] with the scheme
presented in [LP11] to construct our scheme. Güneysu et al. present in
[GLP12] a highly efficient signature scheme using uniform noise, but with-
out a worst-case hardness proof. Another provably worst-case secure cryp-
tosystem can be found in [Reg09]. Other LWE-based cryptosystems are for
example [HPS98, KTX07, PVW08, PW08, Pei09, LPR10, SS11].

1.2 Future Work

Although our scheme is asymptotically provably secure, the hardness of con-
crete instances remains unclear. This problem needs to be addressed before
concrete parameters can be proposed and the scheme can be compared to
schemes using Gaussian error. Since our parameters are bigger than param-
eters for schemes based on Gaussian error, it is unclear which scheme will be
more practical. Consequently, improving existing Gaussian sampler remains
an interesting problem. Finally, the results of [MP13] can moreover be used
to construct other provably secure schemes without Gaussian samples.

1.3 Notation

For integers n,m, q ∈ N and probability distributions X ,Y, we denote by
LWE(n,m, q,X ,Y) the decisional variant of the Learning with Errors (LWE)
problem (see [Reg09]), where n is the dimension of the underlying lattice,
q denotes the modulus, m is the number of given samples, and where secrets
are sampled according to the “secret distribution” X and errors are sampled
according to the “error distribution” Y. By SIVP(k, γ), we will furthermore
denote the Shortest Independent Vector Problem (SIVP) in dimension k
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with approximation factor γ (see [Reg09]), where γ is a function in n. We
write Ut for the uniform distribution on {0, . . . , t− 1}. Accordingly, since all
entries are in Zq, we denote the uniform distribution on Zq as Uq. At last,
we write Õ(f) for O(f · logc(f)) and some constant c > 0.

2 Hardness Results for LWE

This section is devided in two parts. In the first, we give an instances of LWE
and prove its security. Afterwards, we present the new encryption-scheme
with asymptotic parameters and base its security on this LWE instance.

2.1 From Uniform Secret to Secret from Error Distribution

Since [ACPS09] is known that LWE becomes not easier if the secret is chosen
according to the error distribution (instead of chosen uniformly from Zq).
Since the errors are small, this leads to smaller secrets (and thus to smaller
keys). Unfortunately, the reduction from LWE with small secret to LWE
with uniform secret comes with a cost: It loses n samples. This is of course
not of interest in the “classical” definition of LWE (since the attacker has
access to arbitrary many samples), but does matter if the amount of samples
is limited. We now give the reduction, following the proof in [ACPS09].

Theorem 1. If there is an algorithm that can solve LWE(n,m, q,X ,X )
with probability p for an arbitrary distribution X over Zq, then there exists
an algorithm for solving LWE(n, n+m, q,Uq,X ) with probability p · c, where
c =

∏n
i=1(1− qi).

Proof. We denote the samples with (ai, bi), with bi := 〈ai, s〉+ ei (in case of
LWE) or bi

$← Zq (in case of uniform).

1.) Use the first n samples to define

b :=

b1...
bn

 , e :=

e1...
en

 , A :=
(
a1, a2, . . . , an

)
.

If A is not invertible over Zq, return fail.

2.) Transform the other samples to (a′i, b
′
i) where

a′i := −A
−1
an+i, b′i := bn+i + 〈b, a′i〉

for i ∈ {1, . . . ,m}.
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3.) Query the oracle on the samples {(a′i, b′i) | i ∈ {1, . . . ,m}} and return
the output of the oracle (either uniform or LWE).

We now analyse the algorithm for an input from the LWE and the uniform
distribution.

• Uniform input : If the samples bn+i are uniform, so are the transformed
samples b′i. The oracle in step 3.) is called with uniform input.

• LWE input: If the samples have the form bi := 〈ai, s〉+ ei, then

b
′
i = bn+i + 〈b, a′i〉

= 〈an+i, s〉+ en+i + 〈A
T
s+ e, a′i〉

= 〈an+i, s〉+ 〈A
T
s, a′i〉+ 〈e, a′i〉+ en+i

= 〈an+i, s〉+ 〈A
T
s,−A−1an+i〉+ 〈e, a′i〉+ en+i

= 〈e, a′i〉+ en+i

and the oracle indeed is called with LWE-samples where the secret is
sampled according to X .

The overall success probability of this algorihm is therefore p · c where

c = Pr[A is invertible | A $← Zn×n
q ]

=

(
1− 1

qn

)(
1− q

qn

)
· . . . ·

(
1− qn−1

qn

)
=

n−1∏
i=0

(
1− qi−n

)
.

2.2 Instantiating LWE with Small Uniform Error

The instantiation of our encryption scheme uses a recent result of Micciancio
and Peikert in [MP13] about parameter choices for the LWE problem with
uniform error. They showed that by limiting the number of samples, one can
prove the worst-case hardness of LWE for small non-Gaussian errors. For
completeness we give an adapted version here.
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m− n s k q ≥ secret
1
2n−

3
2k

√
Cm < 1

3n c ·m
3
2

n−k
n−3k > c ·m

3
2 Uq

n− 2k Cm < 1
2n c ·m2 n−k

n−2k > c ·m2 Uq
3
2n−

5
2k (Cm)

3
2 < 3

5n c ·m
5
2

n−k

n− 5
3 k > c ·m

5
2 Uq

1
2n−

5
2k (Cm)

3
2 < 1

5n c ·m
5
2

n−k

n− 5
3 k > c ·m

5
2 Us

1
2n−

5
2k (Cm)

3
2

1
5n−

2
5 log

2(n) c ·m
3
2
(1+ n

n+log2(n)
) Us

Table 1: Parameter sets for provably secure LWE instances. The last
column shows the “secret distribution”; errors are chosen according to Us.

Theorem 2 ([MP13], Theorem 4.6). Let

0 < k ≤ n ≤ m− ω(log(k)) ≤ kO(1), (1)

s ≥ (Cm)(m−(n−k))/(n−k) (2)

for a large enough universal constant C, and q be a prime such that

max{3
√
k, (4s)m/(m−n)} ≤ q ≤ kO(1). (3)

For the set X = {0, . . . , s − 1}m of size |X| = sm, the LWE(n,m, q,Uq,X )
problem is hard with respect to the uniform input distribution X = Us, under
the assumption that SIVP(k, Õ(

√
k · q)) is (quantum) hard to approximate in

the worst-case.

We note that if we need more than n extra samples (i.e. m− n > n, like
we require in our instantiation of the LWE-based scheme) this leads to

m− (n− k)
n− k

>
n+ k

n− k
> 1,

which means that the size of the errors is superlinear.
Table 1 gives a short overview of some instantiations of hard LWE-

problems. Given m − n, we can calculate the smallest s satisfying (2) and,
since m − n > 0, we get an upper bound for k. We use inequality (3) to
get a lower bound for q. The constant C comes from Theorem 2 and the
constant c can be derived easily if C is known. We will exemplarily show
the calculations for the first row of Table 1: Since m = 3

2(n − k) we have
s ≥
√
Cm, and by

m

m− n
=

3
2(n− k)
1
2n−

3
2k

= 3
n− k
n− 3k

,
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we obtain

q ≥ (4s)
m

m−n ≥ (4
√
Cm)3

n−k
n−3k ≥ (4

√
C)3m

3
2

n−k
n−3k . (4)

Thus we can choose c = (4
√
C)3.

Please note that in (4), q is a monotonously increasing function in k
(for 0 < k < n/3) and therefore the modulus q increases with increasing
worst-case dimension k. Since this is true for all parameter sets presented,
there is one more tradeoff to be made. The first two instantiations lead to a
sublinear number of extra samples (i.e. m−n < n) and cannot be used with a
secret generated according to the “error distribution”. The third instantiation
provides more than n extra samples and can be used for a cryptosystem
with small secret, if the worst-case dimension is restricted. This is done
in the fourth row: Theorem 1 can be used to show that the LWE-instance
presented in row four of Table 1 (using the smaller “error distribution” for
the secret) is at least as hard as the LWE-instance presented in row three
(with larger secret). The instantiation in the last row is a concrete version
of the fourth row which we will use to construct our scheme. In comparison
to the parameters proposed in [Reg09] for the LWE-scheme with Gaussian
noise (i.e. with q = O(n2) and σ = n1.5

log2(n)
), we have to pay with slightly

bigger error and modulus for being able to use uniform noise. We will now
give a proof for the worst-case hardness of our concrete instantiation.

Corollary 3. Let n ∈ N be big enough such that k :=
⌊
1
5n−

2
5 log

2(n)
⌋
is

positive, let m =
⌊
5
2(n− k)

⌋
, s :=

⌈
(Cm)

3
2

⌉
, and q be a prime satisfying

q ≥ max{3
√
k, (4s)

m
m−n }. If q is polynomially bounded in k (i.e. q ≤ kO(1)),

then LWE(n,m, q,Uq,Us) is at least as hard as SIVP(k, Õ(
√
k · q)) in the

worst case.

Proof. The theorem will mainly follow from Theorem 2. We show that its
preconditions are fulfilled:

1.) s ≥ (Cm)
m−(n−k)

n−k :

(Cm)
m−(n−k)

n−k ≤ (Cm)
5
2 (n−k)−(n−k)

n−k = (Cm)
3
2 ≤

⌈
(Cm)

3
2

⌉
= s

2.) k > 0: precondition

3.) k ≤ n: trivial
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4.) m− n ≥ ω(log(k)) :

m− n =

⌊
5

2
(n− k)

⌋
− n > 3

2
n− 5

2
k − 1 =

3

2
n− 5

2

⌊
1

5
n− 2

5
log2(n)

⌋
− 1

≥ n+ log2(n)− 1 ≥ n− 1 ≥ ω(log(n)) ≥ ω(log(k))

5.) m − ω(log(k)) ≤ kO(1): Since 10k =
⌊
2n− 4 log2(n)

⌋
> n for big

enough n, we have

m− ω(log(k)) ≤ m ≤ 3n < 30k = kO(1).

3 Provably Secure Encryption with Uniform Error

In this section we first present the description of our scheme which makes
use of small uniform noise (and secret) in contrast to previous schemes which
used a discrete Gaussian distribution for noise generation. We also present a
concrete parameter instantiation for our scheme which shows that provable
security and efficiency do not necessarily have to mutually exclude each other.
After this we prove the hardness of our proposed scheme, relying its security
to the well-known SIVP using the average-case to worst-case reduction.

3.1 Description of the Scheme and Parameter Instantiation

We will now explain our scheme, which is an adaption of the LWE-encryption
scheme presented in [LP11], as well as how to choose parameters. In contrast
to this instantiation, our scheme does not require a discrete Gaussian sam-
pler, since all secrets and errors are chosen according to a uniform distribu-
tion. According to Lindner and Peikert, we also require simple error-tolerant
encoding and decoding functions encode : Z`

2 → Z`
q and decode : Z`

q → Z`
2,

such that decode(encode(m)+e) = m for any error vector e with ‖e‖∞ ≤
⌊ q
4

⌋
(for a concrete instance see [LP11]). Our scheme makes use of the following
parameters: an integer modulus q ≥ 2, integral dimensions n1, n2 ≥ 2, max-
imal error sizes sk, se for key generation and encryption, respectively, and
an integral message length ` ≥ 1.

A description of the scheme is given in Figure 1. As already mentioned,
the presented scheme is very similar to Lindner and Peikert’s LWE-based
encryption scheme in [LP11]. It differs in key generation and encryption due
to our use of secrets and errors chosen according to a uniform distribution
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KeyGen(n1, n2, q, sk, se, `): Choose A ← Un1×n2
q , R1 ← Un1×`

sk
and

R2 ← Un2×`
sk

, and let P = R1 − AR2 ∈ Zn1×`
q . Return public key

(A,P ) and secret key R2.

Enc(µ, (A,P )): Choose e1 ← Un1
se , e2 ← Un2

se , e3 ← U `
se , compute

µ = encode(µ) ∈ Z`
q, ct1 = et1A + et2 and ct2 = et1P + et3 + µt, and

return ciphertext (c1, c2).

Dec((c1, c2), R2): Return message decode(ct1R2 + ct2) ∈ Z`
2.

Figure 1: LWE-Encryption Scheme with Uniform Error

instead of a discrete Gaussian distribution. In detail, this means we choose
R1, R2 in key generation and e1, e2, e3 in encryption according to uniform
distributions Usk and Use , respectively.

Regarding the parameters of our scheme, we solely base the security on
the single security parameter n2 which corresponds to the number of LWE-
samples in the generation of the keys. The other parameters are chosen
depending on n2, and the sample instantiation of the parameters used in our
scheme can be seen in Table 2. As will be shown in the proof of Theorem 5,
the conditions q ≥ 3

√
kk and q ≥ 3

√
ke will implicitly be fulfilled by the

correctness condition q ≥ 4(n1 + n2)sesk + 4se + 1.

3.2 Security of the Scheme

We will first sketch the proof of the hardness of our instantiation:

Scheme with parameters n1, n2, q, sk, se, ` easy
Thm 4
=====⇒ LWE(n2, n1, q,Usk ,Usk) easy ∨

LWE(n1, n2 + `, q,Use ,Use) easy
Thm 1
=====⇒ LWE(n2, n1 + n2, q,Uq,Usk) easy ∨

LWE(n1, n1 + n2 + `, q,Uq,Use) easy
Cor 3
====⇒ SIVP(kk, Õ(

√
kk · q)) easy ∨

SIVP(ke, Õ(
√
ke · q)) easy

In order to prove the hardness of the scheme, we will need the hardness
of two LWE-instances: The first instance will be needed to hide the secret
key (i.e. an attacker cannot distinguish the public key from uniform random
matrices), the second will be needed to hide the message.
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n2 security parameter

kk
⌊
1
5(n2 − 2 log2(n2))

⌋
n1

⌊
1
2(3n2 − 5kk)

⌋
ke

⌊
1
5(n1 − 2 log2(n1))

⌋
`

⌊
1
2(3n1 − 5ke)

⌋
− n2

sk

⌈
(C(n1 + n2))

3
2

⌉
se

⌈
(C(n1 + n2 + `))

3
2

⌉
q smallest prime ≥ max

{
(4sk)

n1+n2
n1 , (4se)

n1+n2+`
n2+` ,

4(n1 + n2)sesk + 4se + 1

}

Table 2: Parameter Instantiation for the Scheme

Theorem 4. The encryption scheme presented in Figure 1 is secure as long
as LWE(n2, n1, q,Usk ,Usk) and LWE(n1, n2 + `, q,Use ,Use) are hard.

Proof. Following the proof of Theorem 3.2 in [LP11].

We now use the collected results to prove the main theorem of this paper
which (quantumly) relies the hardness of the presented encryption scheme
onto the hardness of worst-case SIVP.

Theorem 5. The encryption scheme presented in Figure 1 with parameters
as in Table 2 is correct, i.e. no decryption errors occur, and it is secure for
big enough n2 as long as SIVP(kk, Õ(

√
kk · q)) and SIVP(ke, Õ(

√
ke · q)) are

(quantum) hard in the worst case.

Proof. We first prove the correctness of our scheme. Let r1, . . . , r` be the

columns of R =

R1

R2

I`

 ∈ Z(n1+n2+`)×`
q and e =

e1e2
e3

 ∈ Zn1+n2+`
q . By the

definition of the encode and decode functions, the cryptosystem decrypts the
j-th bit of the message correctly if |〈e, rj〉| < bq/4c. For j = 1, . . . , ` we have
|〈e, rj〉| ≤ (n1 + n2)sesk + se, such that from (n1 + n2)sesk + se < bq/4c we
obtain |〈e, rj〉| < bq/4c for j = 1, . . . , `, and no decryption errors occur.
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We now prove the hardness of our scheme. Theorems 4 and 1 show that
the scheme is hard as long as LWE(n2, n1 + n2, q,Uq,Usk) (i.e. LWE with
m = n1 + n2 and n = n2) and LWE(n1, n1 + n2 + `, q,Uq,Use) (i.e. LWE
with m = n1 + n2 + ` and n = n1) are hard. Note that

3
√
kk < kk <

1

5
n2 < n2 < 4(n1 + n2)sesk + 4se + 1 ≤ q

and
3
√
ke < ke <

1

5
n1 < n1 < 4(n1 + n2)sesk + 4se + 1 ≤ q

for large enough n2. Since

n1 + n2 =

⌊
1

2
(3n2 − 5kk)

⌋
+ n2 =

⌊
5

2
(n2 − kk)

⌋
and

n1 + n2 + ` = n1 + n2 +

⌊
1

2
(3n1 − 5ke)

⌋
− n2 =

⌊
5

2
(n1 − ke)

⌋
and kk, ke > 0 for big enough n2, we can apply Corollary 3 to prove the
hardness of these problems if q is polynomially bounded with respect to kk
and ke.

We will now show that this is true. First we note that kO(1)
k = k

O(1)
e since

n2 < n1 < 2n2. We will therefore in the following only write kO(1) for this
class. Note that sk is in this class since for big enough n2 we have 10kk > n2
such that

sk ≈ C(n1 + n2)
3
2 ≈ C 5

2
(n2 − kk)

3
2 < C

5

2
(10kk − kk)

3
2 ≤ kO(1).

A similar calculation gives us se < kO(1). We will furthermore need that n1
and n2 are polynomially bounded in k. This is the case since

n1 ≈
3

2
n2 −

5

2
kk ≈

3

2
n2 −

1

2
n2 + log2(n2)

= n2 + log2(n2) < 10kk + log2(10kk) ≤ kO(1).

Again, a similar calculation results in n2 ≤ kO(1). In order to bound the
exponent, we note that

n1 + n2
n1

≈ 2n2 + log2(n2)

n2 + log2(n2)
= 1 +

n2

n2 + log2(n2)
< 2

and (similarly) n1+n2+`
n2+` < 2. Putting this together, we obtain q ≤ kO(1).

10



References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sa-
hai. Fast cryptographic primitives and circular-secure encryp-
tion based on hard learning problems. In Proceedings of the
29th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’09, pages 595–618, Berlin, Heidelberg,
2009. Springer-Verlag.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.
Practical lattice-based cryptography: A signature scheme for
embedded systems. Cryptographic Hardware and Embedded
Systems–CHES 2012, pages 530–547, 2012.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru:
A ring-based public key cryptosystem. In JoeP. Buhler, editor,
Algorithmic Number Theory, volume 1423 of Lecture Notes in
Computer Science, pages 267–288. Springer Berlin Heidelberg,
1998.

[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit
cryptosystems based on lattice problems. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, Public Key Cryptography – PKC
2007, volume 4450 of Lecture Notes in Computer Science, pages
315–329. Springer Berlin Heidelberg, 2007.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and at-
tacks) for LWE-based encryption. In Aggelos Kiayias, editor,
Topics in Cryptology - CT-RSA 2011, volume 6558 of Lecture
Notes in Computer Science, pages 319–339. Springer Berlin Hei-
delberg, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In Henri Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 1–23. Springer
Berlin Heidelberg, 2010.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and
LWE with small parameters. Cryptology ePrint Archive, Re-
port 2013/069, 2013. http://eprint.iacr.org/.

11

http://eprint.iacr.org/


[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case
shortest vector problem: extended abstract. In Proceedings of
the 41st annual ACM symposium on Theory of computing, STOC
’09, pages 333–342, New York, NY, USA, 2009. ACM.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A
framework for efficient and composable oblivious transfer. Ad-
vances in Cryptology–CRYPTO 2008, pages 554–571, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and
their applications. In Proceedings of the 40th annual ACM sym-
posium on Theory of computing, STOC ’08, pages 187–196, New
York, NY, USA, 2008. ACM.

[Reg09] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. J. ACM, 56(6):34:1–34:40, September
2009.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as
worst-case problems over ideal lattices. In KennethG. Pater-
son, editor, Advances in Cryptology – EUROCRYPT 2011, vol-
ume 6632 of Lecture Notes in Computer Science, pages 27–47.
Springer Berlin Heidelberg, 2011.

[WHCB13] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Jo-
hannes Buchmann. Instantiating treeless signature schemes.
Cryptology ePrint Archive, Report 2013/065, 2013. http:
//eprint.iacr.org/.

12

http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Related Work
	Future Work
	Notation

	Hardness Results for LWE
	From Uniform Secret to Secret from Error Distribution
	Instantiating LWE with Small Uniform Error

	Provably Secure Encryption with Uniform Error
	Description of the Scheme and Parameter Instantiation
	Security of the Scheme


