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Abstract

As devices everywhere increasingly communicate with each other, many security applications will
require low-bandwidth signatures that can be processed quickly. Pairing-based signatures can be very
short, but are often costly to verify. Fortunately, they also tend to have efficient batch verification
algorithms. Finding these batching algorithms by hand, however, can be tedious and error prone.

We address this by presenting AutoBatch, an automated tool for generating batch verification code
in either Python or C++ from a high level representation of a signature scheme. AutoBatch outputs
both software and, for transparency, a LaTeX file describing the batching algorithm and arguing that it
preserves the unforgeability of the original scheme.

We tested AutoBatch on over a dozen pairing-based schemes to demonstrate that a computer could
find competitive batching solutions in a reasonable amount of time. Indeed, it proved highly competitive.
In particular, it found an algorithm that is significantly faster than a batching algorithm from Eurocrypt
2010. Another novel contribution is that it handles cross-scheme batching, where it searches for a common
algebraic structure between two distinct schemes and attempts to batch them together.

In this work, we expand upon an extended abstract on AutoBatch appearing in ACM CCS 2012 in a
number of ways. We add a new loop-unrolling technique and show that it helps cut the batch verification
cost of one scheme by roughly half. We describe our pruning and search algorithms in greater detail,
including pseudocode and diagrams. All experiments were also re-run using the RELIC pairing library.
We compare those results to our earlier results using the MIRACL library, and discuss why RELIC
outperforms MIRACL in all but two cases. Automated proofs of several new batching algorithms are
also included.

AutoBatch is a useful tool for cryptographic designers and implementors, and to our knowledge, it
is the first attempt to outsource to machines the design, proof writing and implementation of signature
batch verification schemes.

1 Introduction

We anticipate a future where computers are everywhere as an integrated part of our surroundings, continu-
ously exchanging messages, e.g., sensor networks, smartphones, vehicular communications. For these systems
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to work properly, messages must carry some form of authentication, and yet the system requirements on
this authentication are particularly demanding. Applications such as vehicular communications [21, 57],
where cars communicate with each other and the highway infrastructure to report on road conditions, traffic
congestion, etc., require both that signatures be short (due to the limited spectrum available) and that many
messages from different sources can be processed quickly.

Pairing-based signatures are attractive due to their small size, but they often carry a costly verification
procedure. Fortunately, these schemes also lend themselves well to batch verification, where valuable time
is saved by processing many messages at once. E.g., Boneh, Lynn and Shacham [13] presented a 160-bit
signature together with a batching algorithm over signatures by the same signer, where verification time
could be reduced from 47.6ms to 2.28ms per signature in a batch of 200 [26] — a 95% savings!

To prepare for a future of ubiquitous messaging, we would like batching algorithms for as many pairing-
based schemes as possible. Designing batch verification algorithms by hand, however, is challenging. First,
it can be tedious. It requires knowledge of many batching rules and exploration of a potentially huge space
of algebraic manipulations in the hunt for a good candidate algorithm. Second, it can be error prone. In
Section 1.3, we discuss both the success and failure of the past fifteen years in batching digital signatures.
The clear lesson is that mistakes are common and that even when generic methods for batching have been
suggested, they have often been misapplied (e.g., a critical step is forgotten.) This paper demonstrates that
it is feasible for humans to turn over some of the design, proof writing and implementation work in batch
verification to machines.

1.1 Our Contributions

We present AutoBatch, an automated tool that transforms a high-level description of a signature scheme1

into an optimized batch verification program in either Python or C++. The algorithm behind AutoBatch
searches for a batching algorithm by repeatedly applying a combination of novel and existing batching
techniques. Because some loops or other infinite paths could occur, AutoBatch prunes its search using a set
of carefully designed heuristics. The final code also includes logic for altering the behavior of the batching
algorithm based on its input size or past input.

To our knowledge, this is the first attempt to automatically identify when certain batching techniques
are applicable and to apply them in a secure manner. Importantly, the way in which we combine these
techniques and optimizations preserves the unforgeability of the original scheme. Specifically, with all but a
negligible probability, the batch verifier will accept a batch S of signatures if and only if every s ∈ S would
have been accepted by the individual verification algorithm. AutoBatch also produces a machine-generated
LaTeX file that specifies each technique applied and the argument for why security holds.

AutoBatch was tested on several pairing-based schemes. It produced the first batching algorithms, to
our knowledge, for the Camenisch-Lysyanskaya [18], Hohenberger-Waters [33] and Waters dual-system [63]
signatures. It also discovered a significantly faster algorithm for batching the proofs of the verifiable random
functions in [34]. Moreover, AutoBatch is able to handle batches with more than one type of signature.
Indeed, we found that the Hess [32] and Cha-Cheon [22] identity-based signatures can be processed twice
as fast when batched together compared to sorting by type and batching within the type. The capability
to do cross-scheme batching is a novel contribution of this paper, and we feel could be of great value for
applications, such as mail servers, which may encounter many signature types at once.

AutoBatch is a tool with many applications for both existing and future signature schemes. It helps
enable the secure, but rapid processing of authenticated messages, which we believe will be of increasing
importance in a wide-variety of future security applications.

1.2 Overview of Our Approach

We present a detailed explanation of AutoBatch in §3. In this section and in Figure 1 we provide a brief
overview of the techniques. At a high level, AutoBatch is designed to analyze a scheme, extract the signature

1Optionally, one can start with an existing implementation, from which AutoBatch will extract a representation.
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verification equation, and derive working code for a batch verifier. This involves three distinct components:

1. (Optional) A Code Parser, which retrieves the verification equation and variable types from some
existing scheme implementation. This process naturally assumes that the scheme has been implemented
within certain constraints, which we discuss later in the paper. Given such an implementation, the
Parser obtains the signature verification equation and encodes it into an intermediate representation
called Scheme Description Language (SDL).

2. A Batcher, which takes as input an SDL file describing a signature verification equation. It searches
through a series of rules, which may be applied repeatedly, to optimize the equation and thus derive
a new equation for a batch verifier. The output of this equation is second SDL file containing the
individual and batch equations, along with an analysis of the batcher’s estimated running time. For
transparency, the Batcher optionally outputs a human-readable file written in LaTeX describing the
batching algorithm and containing a security proof that it maintains the unforgeability of the original
scheme.

3. A Code Generator, which takes the output of Batcher and generates working source code to implement
the batch verifier. The user can choose either Python or C++ as the output language; either building
on the MIRACL library [56]. Beyond simply implementing the verification equation, the Generator
adds a series of additional components, including group element membership checks, a recursive divide-
and-conquer process to handle batches that contain invalid signatures, and additional logic to identify
cases where individual verification is likely to outperform batching.

There are two usage scenarios for AutoBatch. The most common may be that a user begins with a hand-
coded SDL file and feeds this directly into the Batcher. Since SDL files are human-readable ASCII-based
files containing a mathematical representation of the scheme, some developers may prefer to implement new
schemes directly in this language, which is agnostic to the programming language of the final implementation.

As a second scenario, if the user has a working implementation of the scheme in Charm [1], then she can
save time. This program can be given to the Code Parser, which will extract the necessary information from
the code to generate an SDL file. Charm [1] is a Python-based prototyping framework created by Akinyele,
Green and Rubin that provides infrastructure for developing advanced cryptographic schemes. There is
already a library of pairing-based signatures publicly available in Charm/Python, so we provide this as a
second interface option to our tool.

1.3 Related Work

Computer-aided security is a goal of high importance. Recently, the best paper award at CRYPTO 2011 was
given to Barthe, Grégoire, Heraud and Zanella Béguelin [8] for their invention of EasyCrypt, an automated
tool for generating security proofs of cryptographic system from proof sketches. The reader is referred there
for a summary of efforts to automate the verification of cryptographic security proofs.

In 1989, batch cryptography was introduced by Fiat [27] for a variant of RSA. In 1994, an interactive
batch verifier for DSA presented in an early version of [52] was broken by Lim and Lee [41]. In 1995 Laih
and Yen proposed a new method for batch verification of DSA and RSA signatures [38], but the RSA batch
verifier was broken five years later by Boyd and Pavlovski [15]. In 1998, two batch verification techniques
were presented for DSA and RSA [29, 30] but both were later broken [15, 35, 36]. The same year, Bellare,
Garay and Rabin took the first systematic look at batch verification [9] and presented three generic methods
for batching modular exponentiations, one of which is called the small exponents test. Unfortunately, in
2000, Boyd and Pavlovski [15] published attacks against various batching schemes which were using the
small exponents test incorrectly. In 2003-2004, several batch verification schemes based on bilinear maps
(a.k.a., pairings) were proposed [22, 64, 66, 67] but all were later broken by Cao, Lin and Xue [20]. In 2006,
a method was given for identifying invalid signatures in RSA-type batches [40], but it was also flawed [61].

It is natural to ask what the source of the errors were in these papers. In several cases, the mathematics
of the scheme were simply unsound and the proof of security was either missing or lacking in rigor. However,
there were two other common problems. One was that the paper claimed in English to be doing batch
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Figure 1: The flow of AutoBatch. The input is a signature scheme comprised of key generation, signing
and verification algorithms, represented in the domain-specific SDL language. The scheme is processed
by a Batcher, which applies the techniques and optimizations from Section 3 to produce a new SDL file
containing a batch verification algorithm. Optionally, the Batcher outputs a proof of security (as a PDF
written in LaTeX) that explains, line by line, each technique applied and its security justification. Finally, the
Code Generator produces executable C++ or Python code implementing both the resulting batch verifier,
and the original (unbatched) verification algorithm. An optional component, the Parsing Engine, allows for
the automatic derivation of SDL inputs based on existing scheme implementations.

verification, but the security definition provided in the paper was insufficient to establish this guarantee.
Most commonly this matched the strictly weaker screening guarantee; see [17] for more. A second problem
was more insidious: the security definition and proof were “correct”, but the scheme was still subject to a
practical attack because the authors started the proof by explicitly assuming that elements of the signature
were members of certain algebraic groups and this was not a reasonable assumption to make in practice.
Boyd and Pavlovski [15] provide numerous examples of this case.

AutoBatch addresses these common pitfalls. It uses one security definition (in Section 2.1) and provides
a proof of security for every algorithm it outputs relative to this definition (in Section 3.2), where no
assumptions about the algebraic structure of the input are made and therefore any necessary tests are
explicitly performed by the algorithm.

In addition to the batching work above, we mention a few more. Shacham and Boneh presented a
modified version of Fiat’s batch verifier for RSA to improve the efficiency of SSL handshakes on a busy
server [58]. Boneh, Lynn and Shacham provided a single-signer batch verifier for BLS signatures [13].
Camenisch, Hohenberger and Pedersen [17] gave multiple-signer batch verifiers for Waters identity-based
signatures [62] and a novel construction. Ferrara, Green, Hohenberger, and Pedersen outlined techniques
for batching pairing-based signatures and showed how to batch group and ring signatures [26]. Blazy,
Fuchsbauer, Izabachéne, Jambert, Sibert and Vergnaud [10] applied batch verification techniques to the
Groth-Sahai zero-knowledge proof system as well as group signatures and anonymous credential systems
relying on them, obtaining significant savings.

Law and Matt describe methods for identifying invalid signatures in a batch [39, 47, 48].
Lastly, there have been several research efforts toward automatically generating cryptographic protocols

and executable code. This compiler-like approach has been applied to cryptographic applications such as
security protocols [42, 60, 54, 43, 37], optimizations to software implementations involving elliptic-curve cryp-
tography [7] and bilinear-map functions [53], secure two-party computation [45, 46, 31], and zero-knowledge
proofs [19, 4, 5, 2, 49].
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2 Background

Definition 2.1 (A Digital Signature) A digital signature scheme is a tuple of probabilistic polynomial-
time algorithms (Gen,Sign,Verify) as:

1. Gen(1λ)→ (pk , sk): the key generation algorithm takes as input the security parameter 1λ and outputs
a pair of keys (pk , sk).

2. Sign(sk ,m) → σ: the signing algorithm takes as input a secret key sk and a message m from the
message space and outputs a signature σ.

3. Verify(pk ,m, σ) → {0, 1}: the verification algorithm takes as input a public key pk, a message m and
a purported signature σ, and outputs a bit indicating the validity of the signature.

A scheme is correct if for all Gen(1`)→ (pk , sk), the algorithm Verify(pk ,m,Sign(sk ,m)) = 1.

A scheme is defined to be unforgeable as follows [28]: Let Gen(1`) → (pk , sk). Suppose (m,σ) is output
by a p.p.t. adversary with access to a signing oracle Osk (·) and input pk . Then the probability that m was
not queried to Osk (·) and yet Verify(pk ,m, σ) = 1 is negligible in `.

In this work, we explore three variants:

1. Identity-Based Signatures [59]: Gen is executed by a master authority who publishes pk and uses
sk to generate signing keys for users according to their public identity string, e.g., email address. To
verify a signature on a given message, one only needs the pk of the master authority and the public
identity string of the purported signer.

2. Privacy Signatures: Group [24] and ring [55] signatures are associated with a group of users, where
verification shows that at least one member of the group signed the message, but it is difficult to tell
whom.

3. Verifiable Random Functions [50]: A VRF is a pseudo-random function, where the computing
party publishes a public key pk and then can offer a short non-interactive proof that the function was
correctly evaluated for a given input. This proof can be viewed as a signature by the computing party
on the input to the pseudo-random function.

2.1 Batch Verification

Our security focus here is not directly on unforgeability [28]. Rather we are interested in designing batch
verification algorithms that accept a set of signatures if and only if each signature would have been accepted
by its verification algorithm individually. Thus, if a scheme is unforgeable, then our batching algorithm will
preserve this property.

Specifically, we consider the case where we want to quickly verify a set of signatures on possibly different
messages by possibly different signers. The input is {(t1,m1, σ1), . . . , (tn,mn, σn)}, where ti specifies the
verification key against which σi is purported to be a signature on message mi. It is important to understand
that here one or more signers may be maliciously colluding against the batch verifier.

We recall the definition of Bellare, Garay and Rabin [9] as extended in [17] to deal with multiple signers.

Definition 2.2 (Batch Verification of Signatures) Let ` be the security parameter. Suppose (Gen,Sign,
Verify) is a signature scheme, k, n ∈ poly(`), and (pk1, sk1), . . . , (pkk, skk) are generated independently
according to Gen(1`). Let PK = {pk1, . . . , pkk}. We call probabilistic Batch a batch verification algorithm
when the following conditions hold:

• If pk ti ∈ PK and Verify(pk ti ,mi, σi) = 1 for all i ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . , (pk tn ,mn, σn)) =
1.

• If pk ti ∈ PK for all i ∈ [1, n] and Verify(pk tj ,mj , σj) = 0 for some j ∈ [1, n], then Batch((pk t1 ,m1, σ1), . . . ,
(pk tn ,mn, σn)) = 0 except with probability negligible in `, taken over the randomness of Batch.
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The above definition can be generalized beyond signatures to apply to any keyed scheme with a verifi-
cation algorithm. This includes zero-knowledge proofs, verifiable random functions, and variants of regular
signatures, such as identity-based, attribute-based, ring, group, aggregate, etc. The above definition requires
that signing keys be generated honestly. In practice, users could register their keys and prove some necessary
properties of the keys at registration time [6].

2.2 Algebraic Setting

Bilinear (a.k.a., Pairing) Groups. Let BSetup be an algorithm that, on input the security parameter 1`,
outputs the parameters for a bilinear map (also called a pairing) as (q, g, h,G1,G2,GT , e), where G1,G2 and
GT are groups of prime order q ∈ Θ(2`). The efficient mapping e : G1 ×G2 → GT is both: (bilinear) for all
g ∈ G1, h ∈ G2 and a, b← Zq, e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h generates
G2, then e(g, h) 6= 1. See [17] or Section 4 for more. The above bilinear map is called asymmetric and
our implementations use this highly efficient setting. We optionally could consider symmetric maps where
G1 = G2.

Testing Membership in Bilinear Groups. When batching, it is critical to test that the elements of each
signature are members of the appropriate algebraic group. Boyd and Pavlovski [15] demonstrated efficient
attacks on batching algorithms for DSA signature verification which omitted a subgroup membership test.

In this paper, we must test membership in bilinear groups. We require that elements of purported
signatures are members of G1 and not, say, members of E(Fp) \ G1. Determining whether some data
represents a point on a curve is easy. The question is whether it is in the correct subgroup. If the order
of G1 is a prime q, one option is to verify that an element y is in G1 by checking that yq mod q = 1 [17].
Although this costs an extra modular exponentiation per group element, this will largely be dwarfed by the
savings from reducing the total pairings, as experimentally verified first by Ferrara et al. [26] and confirmed
by our tests.

3 The AutoBatch Toolchain

In this section we summarize the techniques used by AutoBatch to programmatically generate batch verifiers
from standard signature schemes. A high level abstraction was provided in Figure 1. The main stages are
as follows.

1. Derive the scheme’s SDL representation. The AutoBatch toolchain begins with an SDL represen-
tation of a signature scheme. While SDL is not a full programming language, it provides sufficient flexibility
to represent most pairing-based signature schemes. We provide a description of the SDL grammar in Ap-
pendix F, as well as a description of the SDL semantics and several examples in Appendix G. For developers
who already have an existing Charm/Python implementation, we also provide a Parsing Engine that can
optionally derive an SDL representation directly from this Python code.2

2. Apply batching techniques and optimize the verification equation. We first apply a set of tech-
niques designed to convert the SDL signature verification equation into a batch verifier. These techniques
optimize the verification equation by combining pairing equations and re-arranging the components to min-
imize the number of expensive operations. To prevent known attacks, we apply the small exponents test of
Bellare, Garay and Rabin [9], and optimize the resulting equation to ensure that all signature elements are
in the group with the smallest representation (typically, G1). The output of this phase is a modified SDL
file, and (optionally) a human-readable proof that the resulting equation is a batch verifier.

3. Evaluate the capabilities of the batch verifier. Given the optimized batching equation produced
in the previous step, we estimate the performance of the verifier under various conditions. This is done

2We developed this capability for two reasons. First, there is already a library of pairing-based signatures available in
Charm/Python (in fact, the number of Charm implementations is greater than all other settings combined). Secondly, we believe
that there is value in providing multiple interfaces to our tools, particularly interfaces that work with real implementations.
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class BLS:
   def __init__(self):
       global group
       group = Pairing(MNT160)
        
   def keygen(self):
       g = group.random(G2) 
       x = group.random(ZR)
       pk = g ** x
       sk = x
       return (pk, sk, g)
   
  def sign(self, sk, M):
      h = group.hash(M, G1)
      sig = h ** sk
      return sig
        
  def verify(self, pk, g, sig, M):
    h = group.hash(M, G1)
    if pair(h, pk) == pair(sig, g):
       return True
    return False 

SDL

…
# 1 Choose deltas for small exponents test 
      for z in range(0, N):
           delta[z] = SmallExp(secparam)
# 2 Initialize dot products
      dotA = 1;  dotACache = {}
      dotB = 1;  dotBCache = {}
# 3 Precompute dot products that can be 
#    cached between runs of divide / conquer
 for z in range(0, N):
      # 4 group membership tests
      # … variables calculated over sigs…
# 5 Compute dotA & dotB using cache
# 6 Batch Verification check 
if pair(dotA, pk) == pair(dotB, g):
     return True
else:
# 7 divide and conquer  
    dividenconquer(delta, 0, N, incIndices, 
                    dotACache, dotBCache, pk, g)
...

Python 
...
# 1 Choose deltas for small exponents test 
        for (int z = 0; z < N; z++)
              delta[z] = SmallExp(secparam);
# 2 Initialize dot products
# 3 Group membership tests
# 4 Precompute cacheable dot products 
   for (int z = 0; z < N; z++)     {
     h = group.hashListToG1(Mlist[z]);
     dotACache[z] = group.exp(h, delta[z]);
     dotBCache[z] = group.exp(sig[z], delta[z]);   
    }
# 5 Compute dotA & dotB using cache
# 6 Batch Verification check
if ( group.pair( dotA , pk ) == 
        group.pair( dotB, g ) )  { … }
else {
# 7 divide and conquer
   dividenconquer(delta, 0, N, incIndices, 
                    dotACache, dotBCache, pk, g);
}

ORname := bls
N := 100
secparam := 80
 
BEGIN :: types
  M := str;  h := G1;  sig := G1
  g := G2;  pk := G2
END :: types
...
BEGIN :: func:sign
  input := list{sk, M}
  sig := h ^ sk
  output := sig
END :: func:sign
... 
constant := g;     public := pk
signature := sig; message := h
... 
BEGIN :: precompute
  h := H(M, G1)
END :: precompute

verify := {e(h, pk) == e(sig, g)}

Charm/Python Batch Verifier
C++ 

Figure 2: The Boneh-Lynn-Shacham (BLS) signature scheme [13] at various stages in the AutoBatch
toolchain. At the left, an initial Charm-Python implementation of the scheme. In the center, an SDL
representation of the same scheme, programmatically extracted by the Parsing Engine. At right, a fragment
of the resulting batch verifier generated after applying the Batcher and Code Generator.

by counting the operations in the verifier, and deriving a runtime estimate based on the expected cost of
each mathematical operation (e.g., pairing, exponentiation, multiplication). The cost of each operation is
determined via a set of diagnostic tests conducted when the library is initialized.3

4. Generate code for the resulting batch verifier. Finally, we translate the resulting SDL file into
a working batch verifier. This verifier can be implemented in either C++ (using the MIRACL library [56]
for curve operations) or in Python based on the Charm framework. It implements the SDL-specified batch
verification equation as well as the individual verification equation. Based on the calculations of the previous
step, the generated code embeds logic to automatically determine which verifier is most appropriate for a
given dataset (individual or batch). Additionally, the generated code embeds a recursive divide-and-conquer
strategy to handle cases where batch verification fails due to invalid signatures. Two fragments of generated
code (Python and C++) are shown in Figure 2.

We will now describe each of the above steps in detail.

3.1 Batching and Optimization

Given an SDL file containing the verification equation and variable types, the Batcher applies a series
of optimizations to the verification equation in order to derive an efficient batch verifier. Many of these
techniques were first explored in previous works [17, 26]. However, the intended audience of those works is
humans performing manual batching of signatures. Hence, they are in many cases somewhat less ‘general’
than the techniques we describe here.4 Furthermore, unlike previous works we are able to programmatically
identify when these techniques are applicable, and apply them to the verification equation in a consistent
way.

The Batcher assumes that the input will be a collection of η signatures, possibly on different messages
and public keys (or identities). To construct a batch verifier, Batcher first validates the type information

3Obviously these experiments are very specific to the machine and curve parameters on which they are run. Our implemen-
tation re-runs these experiments whenever the library is initialized with a given set of parameters.

4For example: techniques 2 and 3 of [17] each combine a series of logical operations that are more widely applicable and
easily managed by splitting them into more granular sub-techniques.

7



in SDL input file and converts the verification equation into a tree structure. During this phase, it informs
users if there are type mismatches or if the typing information is incomplete in SDL. Next, the batcher
traverses the tree, applying various operations at various nodes in the verification equation. We now list
those techniques.

Technique 0: Consolidate the verification equation. Many pairing-based signature schemes actually require
the verifier to check more than one pairing equation. During the first phase of the batching process, the
batcher applies the small exponents test from [9] to combine these equations into a single verification equa-
tion.5

Technique 1: Combine equations. Assume we are given η signature instances that can be verified using the
consolidated equation from the previous step. We now combine all instances into one equation by applying
the Combination Step of [26], which employs as a subroutine the small exponents test. This results in a
single verification equation. The correctness of the resulting equation requires that all elements be in the
correct subgroup, i.e., that group membership has already been checked. AutoBatch ensures that this check
will be explicitly conducted in the final batch verifier program.

Technique 2: Move exponents into the pairing. When a pairing of the form e(gi, hi)
δi appears, move the

exponent δi into e(). Since elements of G1 and G2 are usually smaller than elements of GT , this gives a
noticeable speedup when computing the exponentiation.

Replace e(gi, hi)
δi with e(gδii , hi)

Wherever possible, we move the exponent into the group with the lowest exponentiation cost. We identify
this group based on a series of operation microbenchmarks that run automatically at code initialization.6

Technique 3: Move dot products into the pairing. When a pairing of the form
∏η
i=1 e(ai, g) with a constant

first or second element appears, move the dot product inside to reduce the number of pairings from η to 1.

Replace

η∏
i=1

e(ai, g) with e(

η∏
i=1

ai, g)

Technique 4: Optimize the Waters Hash. A variety of bilinear signature schemes employ a hash function by
Waters [62], which can be generalized [51, 23]. Assume the identity is a k-bit string V = v1v2 . . . vz where
each vi is a short string. The hash function is evaluated as u′

∏m
i=1 u

vi
i .

When batching η equations containing the Waters hash, one often encounters terms of the form
∏η
j=1 e(gj ,∏z

i=1 u
vij
i ). This can be rewritten to make the number of pairings independent of the number of equations

one wants to batch.

Replace

η∏
j=1

e(gj ,

z∏
i=1

u
vij
i ) with

z∏
i=1

e(

η∏
j=1

gj
vij , ui)

Technique 5: Distribute dot products. When a dot product is applied to two or more pairings, distribute the
dot product to each pairing to allow application of other techniques such as techniques 3 or 4. For example:

Replace

η∏
i=1

(e(ai, gi) · e(bi, hi)) with

η∏
i=1

e(ai, gi) ·
η∏
i=1

e(bi, hi)

Technique 6: Combine pairings with common elements. When two or more pairings share a common first or
second element, they can be combined. For example:

Replace e(a, g) · e(b, g) with e(ab, g)

5For example, consider two verification conditions e(a, b) = e(c, d) and e(a, c) = e(g, h). These can be verified simultaneously
by selecting random δ1, δ2 and evaluating the single equation e(a, b)δ1e(c, d)−δ1e(a, c)δ2e(g, h)−δ2 = 1.

6For many common elliptic curves, this is the G1 base group. However, in some curves the groups G1 and G2 have similar
operation costs; this may give us some flexibility in modifying the equation.
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Technique 7: Move known exponents outside pairing and precompute pairings. In some cases it may be
necessary to move exponents outside of a pairing. For example, when

∏η
i=1 e(g

ai , hbi) appears, move the
exponents outside of pairing. When multiple such exponents appear, we can pre-compute the sum of ai · bi
for all η and exponentiate once in GT .

Replace

η∏
i=1

e(gai , hbi) with e(g, h)
∑
i(ai·bi)

Technique 8: Precompute constant pairings. When pairings have a constant first and second element, we
can simply remove these from the equation and pre-compute them once at the beginning of verification
(equivalent to making them a public parameter). We refer to this as Technique 8.

Technique 9: Split pairings. In some rare cases it can be useful to apply Technique 3 in reverse: splitting a
single pairing into two or more pairings. This temporarily increases the number of pairings in the verification
equation, but may be necessary in order to apply subsequent techniques. For example, this optimization
is necessary so that we can apply the Waters hash optimization (Technique 4) to the ring signature of
Boyen [16].

Technique 10: Unroll loops. Some signature schemes utilize for loops in the verification equation. If the
bounds over the loop are known it might be useful to unroll the loop to allow application of other techniques.
Applying this technique to the VRF [34] scheme enables the application of Technique 6 to further reduce
the number of pairings. For example:

Replace for i = 1 to t : e(g, hi) == e(c, di) with e(g, h1)δ1 · ... · e(g, ht)−δt == e(c, d1)δ1 · ... · e(c, dt)−δt

Discussion: Several of the above techniques are quite simple, in that they perform optimizations that would
seem “obvious” to an experienced cryptographer. However, many optimizations (e.g., Technique 8) could
have been applied in published algorithm descriptions, and yet were not. Moreover, it is a computer and
not a human that is performing the search for us, so an important contribution of this work is providing a
detailed list of which optimizations we tell the computer to try out and in which order, and verifying that
such an approach can find competitive solutions in a reasonable amount of time. This is nontrivial: we
discovered that many orderings lead to “dead ends”, where the optimal solution is not discovered. We now
describe our approach to finding the order of techniques.

Technique Search Algorithm: The challenge in automating the batching process is to identify the order
in which techniques should be applied to a given verifier. This is surprisingly difficult, as there are many
possible orderings, many of which require several (possibly repeated) invocations of specific techniques.
Moreover, some techniques might actually worsen the performance of the verifier in the hope of applying
other techniques to obtain a better solution. An automated search algorithm must balance all of these issues
and must also identify the orderings in an efficient manner.

The naive approach to this problem is simply to try all possible combinations up to a certain limit, then
identify the best resulting verifier based on an estimate of total running time. This limit can be vastly
different as the complexity of the scheme increases. While this approach is feasible for simple schemes, it
is quite inefficient for schemes that require the application of several techniques. Moreover, there is the
separate difficulty of determining when the algorithm should halt, as the application of one technique will
sometimes produce a new equation that is amenable to further optimization, and this process can continue
for several operations.

Our approach is a “pruned” breadth-first search (PBFS) which utilizes a finite state transition function
to constrain the transitions between techniques. This function examines the history of techniques already
applied and determines which techniques can be applied to the current state. From the current state, only
the subset of techniques in which the conditions for the transformation are met are pursued further in the
search. The search algorithm begins with techniques 0, 1 or 2, employs the PBFS and terminates when none
of the techniques can be applied to the current state. Each path from the set of ordering paths uncovered
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during the search is evaluated in terms of total running time. The algorithm selects the path from the
candidate paths that provides the highest cost savings.

To prevent infinite loops in the search, the state function disallows the application of certain techniques
that might potentially undo optimizations. For example, Technique 9 performs a reverse split on pairings
to allow further optimizations; this might affect technique 6, which combines pairings that have common
elements. Certain combinations of techniques 9 and 6 lead to an infinite cycle that combines and splits the
same pairings. Thus, the state function only allows a transition from Technique 6 to 9 to occur once on
a given path. We provide the pseudocode of our search in Algorithm 1 and a diagram of our finite state
transition function in Figure 3.

Our approach is effective and enables efficiently deriving batch verification algorithms. While our ap-
proach does not guarantee the optimal batch equation, in practice we rediscover all existing lower bounds
on batch verification performance, and in some cases we improve on results developed by humans.

Algorithm 1 Pruned Breadth-First Search: the search algorithm takes as input the equation, empty se-
quences of techniques (called paths) and a start technique for the search. The algorithm returns a set of
paths dictated by transitionFunction which is illustrated in Figure 3 and a benchmark for each path. The
user selects whichever path has the highest cost savings.

1: procedure PBFSearch(eq, path, allPaths, technique)
2: result, new eq ← applyTechnique(technique, eq)
3:

4: if result.applied = True then → Technique rule is satisfied
5: path← path+ {technique} → Append technique to path
6: tech list← transitionFunction(path, result) → get pruned list from current state
7: for all x ∈ tech list do
8: newAllPaths← PBFSearch(new eq, copy(path), allPaths, x)
9: allPaths← allPaths ∪ newAllPaths

10: end for
11: else → Reached dead end with this path
12: if path 6⊂ allPaths then
13: allPaths← allPaths+ path → Add path to set of all paths
14: time← benchmark(eq, N, T ) → N for batch size & T for group operation costs
15: recordTime(time, path) → record in a global database
16: end if
17: end if
18: return allPaths
19: end procedure

3.2 Security and Machine-Aided Analysis

Efficiency Analysis. Once the Batcher has produced a final equation for the batch verifier, it counts the
number of operations required as a function of the batch size. These operations include point operations,
pairings, hashes, as well as random element generation. It then combines this operation count with a database
of average operation times that were measured at library initialization. The resulting calculation allows it
to determine the “crossover point”, i.e., the batch size where batch verification becomes more efficient than
individual verification.

Security Analysis. We have two points to make regarding the security of AutoBatch. First, we argue
that the algorithm used by AutoBatch to produce a batch verification equation unconditionally satisfies
Security Definition 2.2. That is, the batch verification equation will hold if and only if each of the individual
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Figure 3: The state diagram represents the transition function we developed using experimental data for
pruning our BFS algorithm. The search always starts with trying Techniques 0 or 1 or both (not pictured)
and then it starts in node 2 (where it tries to apply Technique 2). Then from there, the breadth first search
attempts to follow any outgoing edge and it will then apply the technique labeled by the end node. If the
technique does not apply, this path is terminated. Otherwise, we check whether that path is already a
subset of the paths we have covered so far. We continue with the search until all open paths are terminated.
In an effort to ensure that all paths terminate, we restrict the number of times that certain edges can be
traversed. A number on an edge means that transition is allowed to occur for that limited number of times
on a path. Although, we do not prove that our algorithm is guaranteed to terminate, it did do so promptly
for all of our test cases. Once all paths are terminated, we attempt to apply Technique 10 to each path in a
post-processing phase (not pictured).

signatures would have passed the individual verification test (up to a negligible error probability).7

Theorem 3.1 (Security of AutoBatch) Let an AutoBatch algorithm be generalized as any algorithm that
transforms an individual pairing-based signature verification test into a pairing-based batch verification equa-
tion as follows:

1. Check the group membership of all input elements, and if no errors, apply Techniques 0 and 1 to the
individual verification equation(s) using security parameter λ to obtain a single equation X.

2. Loops until done on: Apply any of Techniques 2-10 to X to obtain equation X ′ and set X := X ′.

Then all AutoBatch algorithms unconditionally satisfy Definition 2.2, where the probability of accepting
an invalid batch is at most 2−λ.

Proof. We analyze this proof in two parts. First, after Step 1 (the application of Techniques 0 and 1),
there will be one batch equation X and it will satisfy the security requirements of Definition 2.2 with error
probability 2−λ. These two techniques combine a set of equations into a single equation using the Small
Exponents Test with security parameter λ. Ferrara et al. [26, Theorem 3.2] prove that this equation will
verify if and only if all individual equations verify, except with probability at most 2−λ. By default in
AutoBatch, we set λ = 80.

7The security of the underlying signature scheme depends on a computational assumption, but the batcher unconditionally
maintains whatever security is offered by the scheme.
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2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier.

We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m ?

= e(g, c)

Step 1: Consolidate the verification equations (tech. 0), merge pairings with
common first or second element (tech. 6), and apply the small exponents test
as follows: For each of the z = 1 to ⌘ signatures, choose random �z,1, �z,2 2 [1, 2�]
and compute the equation:

e(g, b�z,1 · c�z,2) · e(Y, a)��z,1 ?
= e(X, a)�z,2 · e(X, b)m·�z,2

Step 2: Combine ⌘ signatures (tech. 1), move the exponent(s) in pairing (tech. 2):

⌘Y

z=1

e(g, bz
�z,1 · cz

�z,2) · e(Y, az
��z,1)

?
=

⌘Y

z=1

e(X, az
�z,2) · e(X, bz

mz ·�z,2)

Step 3: Split pairings (tech. 9):

⌘Y

z=1

e(g, bz
�z,1) · e(g, cz

�z,2) · e(Y, az
��z,1)

?
=

⌘Y

z=1

e(X, az
�z,2) · e(X, bz

mz ·�z,2)

Step 4: Distribute dot products (tech. 5):

⌘Y

z=1

e(g, bz
�z,1) ·

⌘Y

z=1

e(g, cz
�z,2) ·

⌘Y

z=1

e(Y, az
��z,1)

?
=

⌘Y

z=1

e(X, az
�z,2) ·

⌘Y

z=1

e(X, bz
mz ·�z,2)

Step 5: Move dot products inside pairings to reduce ⌘ pairings to 1 (tech. 3):

e(g,

⌘Y

z=1

bz
�z,1) · e(g,

⌘Y

z=1

cz
�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2) · e(X,

⌘Y

z=1

bz
mz ·�z,2)

Step 6: Merge pairings with common first or second element (tech. 6):

e(g,

⌘Y

z=1

bz
�z,1 · cz

�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2) · e(X,

⌘Y

z=1

bz
mz ·�z,2)

Step 7: Merge pairings with common first or second element (tech. 6):

e(g,

⌘Y

z=1

bz
�z,1 · cz

�z,2) · e(Y,

⌘Y

z=1

az
��z,1)

?
= e(X,

⌘Y

z=1

az
�z,2 · bz

mz ·�z,2)

Steps 1 and 2 form the Combination Step in [21], which was proven to result in a secure batch verifier in [21,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (??) is also batch verifier for CL.

2

Figure 4: A fragment of the machine-generated security proof of a single-signer batch verifier for the bilinear
CL signature scheme [18]. An earlier portion of the proof asserted that a group membership test would be
done prior to checking the final equation. Here the value g is a generator of a bilinear group, the values X,Y
are part of the public key, a signature is a tuple (a, b, c) and the message signed is m.

Next, given a single arbitrary, pairing-based equation X, we apply one of Techniques 2-10. For each
Technique 2-9, we argue that the output equation X ′ holds if and only if the input equation X holds; that is,
the equations are identical up to algebraic manipulations. If this is true, the final batch equation output by
AutoBatch satisfies Definition 2.2 with the same error probability as the equation output after Techniques
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Process BLS CHP CL HW-diff Waters09 Waters05 ChCh/Hess CYH Boyen BBS VRF

Batcher 103.1 90.1 295.2 126.1 578.9 1859.2 160.1 101.2 545.1 443.5 419.5
Partial-Codegen 124.3 171.7 152.2 242.3 361.6 291.2 162.0 242.8 321.2 315.1 251.2
Full-Codegen 491.7 757.8 785.9 1481.6 3405.8 1507.1 798.6 876.3 1233.5 1998.3 2748.3

Figure 5: Time in milliseconds required by the Batcher and Code Generator to process a variety of signa-
ture schemes (averaged over 100 test runs). Batcher time includes search time for the technique ordering,
generating the proof and estimating cross over point between individual and batch verification. The Partial-
Codegen time represents the generation of the batch verifier code from a partial SDL description and Charm
implementation of the scheme in Python. The Full-Codegen time represents the generation of code from a
full SDL description only. The running times are a product of the complexity of each scheme as well as
the number of unique paths uncovered by our search algorithm. In all cases, the standard deviation in the
results were within ±3% of the average.

0 and 1 were applied, completing the theorem.
It remains to argue that for each Technique 2-10, it is indeed the case that the input and output equations

are identical, up to algebraic manipulations. Techniques 2, 3, 4, 6, 7 and 9 follow relatively straightforwardly
from the bilinearity of the groups. As an example, consider Technique 6 which claims that e(a, g) · e(b, g) =
e(ab, g), for all a, b ∈ G1 and g ∈ G2. Let b = ak for some k ∈ Zp. Then we have e(a, g) · e(ak, g) as the
LHS, which is e(a, g) · e(a, g)k by the bilinearity, which is e(a, g)k+1 by multiplication in GT . The RHS is
similarly e(aak, g) = e(ak+1, g) = e(a, g)k+1. Technique 5 requires only associativity in GT . Technique 8
pre-computes and caches values instead of re-computing them on the fly. 2

To offer transparency on how AutoBatch derived any given batch verifier, Batcher produces both an SDL
file and, optionally, a human-readable proof of security for the resulting batch verifier. This proof is a LaTeX
file that includes the individual and batch verification equations, with an enumeration of the various steps
used to convert the former into the latter. Thus, while Theorem 3.1 already argues that this proof is valid,
this provides a means for independently verifying the security of any given batching equation. Interestingly,
the first proof for the batch verification of the HW signatures [33] was produced automatically by AutoBatch.

We show a fragment of this human-readable proof of security for the Camenisch-Lysyanskaya (CL)
scheme [18] in Figure 4. Full proofs for the Hohenberger-Waters (HW) scheme [33], the Camenisch-
Lysyanskaya (CL) scheme [18], the Verifiable Random Functions (VRF) scheme [34], and the Waters09
scheme (derived from the Waters Dual-System IBE of [63]) are given in Appendices B, C, D, and E, respec-
tively.

The security analysis provided in this section applies to the mathematics only. AutoBatch goes on to
convert this mathematical batching equation into code, which could potentially introduce software errors.
However, our hope is that the deliberate process by which AutoBatch generates code would actually help
reduce software errors by systematically including steps, such as the group membership test, which could
easily be accidentally omitted by a human implementor.

3.3 Code Generation

The output of the Batcher is a batch verification equation encoded in SDL. This file defines all of the
datatypes for the signature, message and public key (or identity and public parameters in the case of an
identity-based signature). The Code Generator converts this SDL representation into useable Python or
C++ source code that can operate on real batch inputs.

The Code Generator translates the individual and batch verification equations into C++ or Python code,
and wraps them with the following additional logic components:

1. Group membership tests. For each element in the signature (and optionally the public key, if the
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user requests)8 the membership of the group is tested using an exponentiation. Section 2.2 discusses
the importance and details of this test.

2. Pre-computation. Several values often will be re-used within a verification equation. When this
happens, the batch verifier can pre-compute certain results once, rather than needlessly compute them
several times.

3. Technique selection. For relatively small batch sizes, it may be more efficient to bypass the batch
verifier and simply verify the signatures using the individual verification function. For this reason, our
Code Generator generates this function as well (the output of the Batcher contains both functions),
and adds logic to programmatically choose between batch and individual verification when the batch
size is below a certain threshold automatically determined in the Analysis phase.

4. Invalid signature detection. To handle the presence of invalid signatures in a batch, our batch
verifier code includes a recursive divide-and-conquer strategy to recover from a batching failure (see
e.g,. [26] for a discussion of this). On failure, this verifier divides the signature collection into two
halves and recurses by repeating verification on each half until all of the invalid signatures have been
identified.

The Code Generator consists of two “back-end” modules, which produce Charm/Python and C++/MIRACL
representations of the batch verifiers. It would be relatively easy to extend this module to add support for
additional languages and settings.

3.4 Code Parsing

While SDL is the primary input language for our batcher, we also support batching from a pre-existing
implementation of a signature scheme. To facilitate this, we provide a Code Parsing engine that inter-
prets signature schemes written in a high level language, derives their verification equation and data types,
and produces a resulting SDL file. While our techniques should work with various languages (provided
that the signature implementation is somewhat constrained), our prototype implementation is based on
Charm/Python. This means we can take advantage of a relatively large library of pre-existing Charm imple-
mentations. Additionally, in this setting we are assisted by the Python interpreter, which grants programatic
access to the Python Abstract Syntax Tree via the compiler.ast module.

While Charm implementations are relatively constrained in terms of their structure, a challenging aspect
of code parsing is identifying the type of each variable. We stress that this problem is not unique to Python:
indeed, many standard libraries (such as the the C-based Stanford Pairing-Based Crypto library [44]) employ
abstract data types to represent group elements. Interpreting code written using these languages will also
require techniques similar to the ones we use.

Code parsing consists of the following stages. First, we parse the entire signature scheme file to identify
the AST node of the signature verify() method, and then identify the equality comparisons in this function
that are fundamentally responsible for the signature verification process. We next build a map of variable
names, types, structure, and operations. For each assignment, we check the properties of that assignment
using a further set of heuristics. If we determine that a given assignment is relevant, we extract certain
information about it, such as the type of the variables. We obtain this information by applying known rules
to infer type. For example, we know that certain hash calls indicate an element of G1, a pairing indicates
an element in GT , random element generation calls typically indicate the type of element being generated,
and so on.9

To simplify the parsing, we restrict the subset of Python converted to SDL. In particular, we do not
support the use of functional constructs in Python such as lambda functions. Our database currently
includes signatures for the following types:

8In many applications we can assume that the public keys are trusted, thus we can omit group membership testing on these
values.

9We believe that this approach may also be useful in the future for static checking and formal verification of dynamically-
typed cryptographic implementations.
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Scheme Type Model Ind-Verify By Hand By AutoBatch
Batch-Verify Ref Batch-Verify Techniques

1. Boyen-Lynn-Shacham (BLS) (ss) S RO 2η 2 [14] 2 1,2,3
2. Camenisch et al. (CHP) (same period) S RO 3η 3 [17] 3 1,2,3,5,3
3. Camenisch-Lysyanskaya (CL) (ss) S P 5η 5η none 3 0,6,1,2,9,5,3,6,6
4. Hohenberger-Waters (HW) (ss) S P 2η 2η none 4 1,2,3,9,7,5,3
5. Hohenberger-Waters (HW) S P 2η 2η none 4 1,2,3,9,5,3
6. Waters09 (ss) S P 9η 9η none 13 1,2,9,5,3,7,6
7. Hess I RO 2η 2 [26] 2 1,2,3
8. Cha-Cheon (ChCh) I RO 2η 2 [39] 2 1,2,3
9. Waters05 I P 3η z + 3 [17] z + 3 1,2,3,9,7,5,3,4,6
10. ChCh and Hess together M RO 2η 4 [Law-Matt 07; Ferrara 09] 2 0,1,2,3,5,3,6
11. Chow-Yiu-Hui (CYH) IR RO 2η 2 [26] 2 1,2,3,2
12. Boyen (same ring) R P `η + ` 3`+ 1 [26] 3`+ 1 1,2,9,4,6,9,5,3
13. Boneh-Boyen-Shacham (BBS) G RO 5η 2 [26] 2 1,2,6,6,5,3
14. VRF eq. 1,3,4 & 2 (ss) V P 3η + 2` 3`+ 1 [Hohenberger-Waters 10] `+ 3 0,6,1,2,3,1,2,3,5,3,6,10,6

Figure 6: Digital Signature Schemes used as test cases in AutoBatch. Scheme names followed by an “ss”
were only batched for the same signers; otherwise, different signers were allowed. For types, S stands for
regular signature, I stands for identity-based, M stands for a batch that contains a mix of two different types
of signatures, R stands for ring, G stands for group and V stands for verifiable random function. For models,
RO stands for random oracle and P stands for plain. Let ` be either the size of the ring or the number
of bits in the VRF input. Let z be a security parameter that can be set to 5 in practice. To approximate
verification performance, we count the total number of pairings needed to process η valid signatures. Unless
otherwise noted, the inputs are from different signers. The final column indicates the order of the techniques
from Section 3 that AutoBatch recognized as applicable and applied to obtain the resulting batch verifier.
The rows in bold are the schemes where AutoBatch discovered new or improved algorithms.

1. All pairings and their parameters and types.
2. All hashes and their parameters and types.
3. All Python dictionaries, their key names, their value names, and their types. Charm makes extensive

use of this data structure, so this is important.
4. All constant numbers and strings.

4 Implementation & Performance

Subsequent to our initial publication of the conference version of this work, we identified a software bug in
the group membership function of Charm v0.42 that affected our results. The results in this paper include
the corrections to the affected group membership test and reduces the efficiency gains of batch verification
in CL [18], Waters09 [63] and HW (with different signers) [33]. See Figure 8 for the new graphs.

4.1 Experimental Setup

To evaluate the performance of our techniques we implemented them as part of the Charm prototyping
framework [1]. Charm is a Python-based cryptographic prototyping framework, and provides native support
for bilinear-map based cryptography and other useful primitives, e.g., hashing and serialization. We used a
version of Charm that implements all bilinear group operations using the C-based MIRACL library [56].10

The necessary MIRACL calls are accessed from within our Python code via the C module interface.
To determine the performance of our system in isolation, we first conducted a number of experiments

on various components of our code. First, we used the code parsing component to convert several Python
signature implementations into our intermediate “SDL” representation. Next, we applied our batcher to the
SDL result in order to obtain an optimized equation for a batch verifier. We then applied our code generator

10The version of Charm we used (0.42) can be found in the Charm github repository at www.charm-crypto.com. It uses
MIRACL 5.5.4 for bilinear group operations.
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Approx. Signature Size MIRACL w/ BN256 RELIC w/ BN256
MNT160 BN256 Individual Batched∗ Individual Batched∗

Signatures

BLS [14] (same signer) 160 bits 256 bits 26.6 ms 2.2 ms 11.9 ms 1.5 ms
CHP [17] (same time period) 160 bits 256 bits 46.1 ms 7.2 ms 24.0 ms 7.8 ms
HW [33] (same signer) 320 bits 512 bits 40.5 ms 4.7 ms 22.4 ms 3.0 ms
HW [33] (diff signer) 320 bits 512 bits 40.5 ms 61.1 ms 22.4 ms 29.2 ms
Waters09 [63] (same signer) 6240 bits 6912 bits 153.2 ms 33.1 ms 93.7 ms 44.2 ms
CL [18] (same signer) 480 bits 768 bits 72.0 ms 15.9 ms 34.6 ms 18.0 ms

ID-Based Signatures

Hess [32] 1120 bits 3328 bits 32.7 ms 22.0 ms 17.1 ms 8.4 ms
ChCh [22] 320 bits 512 bits 27.5 ms 4.6 ms 12.6 ms 2.4 ms
Waters05 [62] 480 bits 768 bits 45.3 ms 11.8 ms 21.5 ms 11.0 ms

Group, Ring and ID-based Ring Signatures

BBS [11] Group signature 2400 bits 5376 bits 99.9 ms 31.2 ms 63.9 ms 18.7 ms
Boyen [16] Ring signature, 3-member ring 960 bits 1536 bits 64.2 ms 15.0 ms 41.5 ms 9.8 ms
CYH [25] Ring signature, 10-member ring 1760 bits 2816 bits 34.2 ms 22.3 ms 20.7 ms 16.2 ms

VRFs

HW VRF [Hohenberger-Waters 2010] (same signer, ` = 8) 2240 bits 5120 bits 251.4 ms 36.1 ms 112.5 ms 18.3 ms

Combinations

ChCh + Hess 1440 bits 3840 bits 55.6 ms 26.2 ms 25.7 ms 10.4 ms
∗Verification time per signature when batching 100 signatures.

Figure 7: Cryptographic overhead and verification time for all of the pairing-based signatures in an alternative
implementation of AutoBatch. RELIC is faster on 12 of 14 schemes, but MIRACL is better on CL and
Waters09. We speculate that this is because modular exponentiation in G1 and G2 is slightly slower in
RELIC compared to MIRACL. Since RELIC is an actively developed library, we believe this issue can be
addressed in future versions. In the case of HW (with different signers), individual verification outperforms
batch verification in both libraries because batch time is dominated by group membership tests.

to convert this representation into a functioning batch verifier program, which we applied to various test
data sets.

Hardware configuration. For consistent results we ran all of our experiments on a single hardware platform:
a 2 x 2.66 GHz 6-Core Intel Xeon Macintosh Pro running MacOS version 10.7.3 with 12GB of RAM. We ran
all of our tests within a single thread, and thus used resources from only a single core of the Intel processor.
We instantiated all of our cryptographic implementations using a 160-bit MNT elliptic curve provided with
MIRACL.

A note on the library. We chose MIRACL because it is mature and well supported. However, some research
libraries like RELIC [3] provide alternative pairing implementations that may outperform MIRACL in specific
settings. We note that our results will apply to any implementation where there is a substantial difference
between group operation and pairing times. In our experiments with RELIC using a provided 256-bit
Barreto-Naehrig (BN) curve, we observed a 6-to-1 differential between pairings and operations in G1. Our
main results do hold in this setting, and in fact improves the overall performance in that we can process
a higher number of signatures with batch verification. We provide the details of this alternative version of
AutoBatch and a complete comparison against the BN256 curve MIRACL implementation in Figure 7.

4.2 Signature Schemes used as Test Cases and Summary of the Results

We ran our experiments using two sets of test cases. The first set was comprised of a variety of existing
schemes, including regular, identity-based, ring, group signatures and verifiable random functions. To make
AutoBatch as robust as possible, we also tested it on a second set of fabricated pairing-product equations
that we designed by hand to trigger many different orderings on the techniques. We summarize AutoBatch’s
performance on existing schemes in Figure 6.
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In eight out of fourteen cases, the batching algorithm output by AutoBatch matched the prior best known
result. In the remaining six cases, AutoBatch provided a faster algorithm. We now describe these cases in
more detail.

In particular, AutoBatch first realized a batching algorithm for the VRF in [34] that takes only two-
thirds the time of the one provided in [34] (or 2` + 2 total pairings). Then, after we double-checked this
result by hand, we realized that the verification of equation 2 could be further optimized to only ` − 1
pairings by unrolling a loop in the verification equation and combining the individual verification equations
checked at each iteration. Moreover, a portion of the unrolled loop with the g2 term could be combined with
the corresponding term in the combined equations 1,3,4 for a total pairing count of only ` + 3 pairings to
batch an arbitrary number of VRF proofs for `-bit inputs. We implemented this loop unrolling technique,
incorporated it into AutoBatch and automatically applied it to VRF to obtain ` + 3 pairings. The VRF
batching algorithm and proof appear in Appendix D.

In test case 10, we simulated a scenario where a batch contains a mix of two different types of signatures.
In this case, the batch consisted of both ChCh [22] signatures and Hess [32] signatures in a randomized order.
Instead of sorting the signatures into two groups and batching them individually, AutoBatch automatically
looked for the common algebraic structure between the two distinct schemes and applied the batching
techniques described in Section 3.1. As a generalized example, if two signature schemes both use the same
generator g, where the first signature scheme uses e(A, g) in its verification equation and the second signature
scheme uses e(B, g) in its verification equation, then AutoBatch will apply Technique 6 to obtain e(A ·B, g)
in the combined verification equation (as well as apply the small exponents test). In the case of the ChCh [22]
and Hess [32] batch, this cut the total number of pairings in half. To the best of our knowledge, this is the
first documented result for cross-scheme signature batch verification.

For the Hohenberger-Waters signatures [33], we assume that each public key includes the precomputed
values as suggested in [33, Section 4.2]. For the case of different signers, we assume that the base group
elements g, u, v, d, w, z, h are chosen by a trusted third party and shared by all users. The Waters09 scheme
is derived from the Waters Dual-System IBE of [63] using the technique described by Naor [12]. The details
of these batching algorithms appear in Appendices B and E respectively. Finally, the details of the batching
of CL signatures by the same signer appears in Figure 4.

4.3 Microbenchmarks

To evaluate the efficiency of AutoBatch, we implemented several pairing-based signature schemes in Charm.
We ran AutoBatch to extract an SDL-based intermediate representation of the scheme’s verification equation,
an optimized batch verifier for the scheme, Python and C++ code for implementing the batch verifier. We
measured the processing time for each of the above steps. Our timings, averaged over 100 runs, are presented
in Figure 5.

To obtain our microbenchmarks, we ran AutoBatch on several exemplary pairing-based schemes as listed
in Figure 6. We then experimented with these schemes at different batch sizes, in order to evaluate their
raw performance. The results are presented in Figure 8.

Each graph shows the average per-signature verification time for a batch of η signatures, for η ranging
from 1 to 100. We conducted these tests by first generating a collection of η keypairs and random messages,11

then computing a valid signature over each message. We fed each collection to the batch verifier. ID-based
signatures were handled in a similar manner, although we substitute random identities in place of keys. For
the Boyen ring signature, we generated a group of three signing keys to construct our ring. In each case, we
averaged our results over 100 experimental runs and computed verification time per signature by dividing
the total batching time by the number of signatures batched.

11We used 100-byte random strings for each message. In the case of the stateful HW signature, we batched only signatures
with the same counter value.
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Figure 8: Signature scheme microbenchmarks for Waters09 [63], HW [33] and CL [18] public-key signatures
(same signer), the VRF [34] (with block size of 8), combined verification of ChCh+Hess IBS [22, 32], and
Boyen ring signature (3 signer ring) [16]. Per-signature times were computed by dividing total batch verifi-
cation time by the number of signatures verified. All trials were conducted with 10 iterations. Variation in
running time between trials of the same signature size were minimal for each scheme. Note that in one HW
case, all signatures are formulated by the same signer (as for certificate generation). All other schemes are
without such restrictions. Individual verification times are included for comparison.

4.4 Batch Verification in Practice

Prior works considered the implication of invalid signatures in a batch, e.g., [39, 26, 65, 47, 48]. Mainly,
these works estimated raw signature verification times under various conditions. To evaluate how signature
batching might work in real life, we constructed a simulation to determine the resilience of our techniques
to various denial of service attacks launched by an adversary.

Basic Model. For this experiment, we simulated a server that verifies incoming signed messages read from
a network connection. This might be a reasonable model for a busy server-side TLS endpoint using client
authentication or for a vehicle-to-vehicle communications base station.

Our server is designed to process as many signatures as possible, and is limited only by its computa-
tional resources.12 Signatures are drawn off of the “wire” and grouped into batches, with each batch size
representing the expected number of signatures that can be verified in one second. Initially this number is
simply a guess, which is adjusted upwards or downwards based on the time required to verify each batch.13

This approach can lead to some transient errors (batches that require significantly more or less than one
second to evaluate) when the initial guess is wrong, or when conditions change. In normal usage, however,
this approach converges on an appropriate batch size within 1-2 seconds.

4.4.1 Basic DoS Attacks

A major concern when using a batch verifier is the possibility of service denial or degradation, resulting
from the presence of some invalid signatures in the batch. As described in §3, each of our batch verifiers

12This models a server that delays, drops or redirects the signatures that it cannot handle (e.g., via load balancing).
13The adjustment is handled in a relatively naive way: the server simply computes the next batch size by extrapolating based

on its time to compute the previous batch.
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Figure 9: Simulated service denial attacks against a batch verifier (BLS signatures, single signer). The grey
line (right scale) shows the fraction of invalid signatures in the stream. Batcher throughput is measured
in signatures per second (left scale). The broken line depicts a standard batch verifier. The black line is a
batch verifier that automatically switches to individual verification when batching becomes suboptimal.

incorporates a recursive divide-and-conquer strategy for identifying these invalid signatures. This recursion
comes at a price; the presence of even a small number of invalid signatures can seriously degrade the
performance of a batch verifier.

To measure this, we simulated an adversary who injects invalid signatures into the input stream. Under
the assumption that these signatures are well-mixed with the remaining valid signatures,14 we measured
the verifier’s throughput. Our adversary injects no invalid signatures for the first several seconds of the
experiment, then gradually ramps up its output until the number of invalid signatures received by the
verifier approaches 50%.

A switch to individual verification. Our experiments indicate that batch verification performance exceeds that
of individual verification even in the presence of a relatively large fraction of invalid signatures. However, at
a certain point the batch verifier inevitably begins to underperform individual verification.15 To address this,
we implemented a “countermeasure” in our batch verifier to automatically switch to individual verification
whenever it detects the presence of a significant fraction of invalid signatures.

Analysis of results. We tested the batch verifier on the single-signer BLS scheme with and without the
individual-verification countermeasure. See Figure 9. Throughput is quite sensitive to even small numbers
of invalid signatures in the input stream. Yet, when comparing batch verification to individual verification
throughput, even under a significant attack batch verification dramatically outperforms individual verifica-
tion (up to approximately 15% ratio of invalid signatures). Similarly, the switch to individual verification is a
useful countermeasure for attacks that exceed approximately 20% invalid signatures. While these threshold
switches do not thwart DoS attacks, they do provide some mitigation of the potential damage.

5 AutoBatch Toolkit

The AutoBatch source code and test cases described in this paper are publicly available in the github
repository at https://github.com/JHUISI/auto-tools.

14In practice, this is not a strong assumption, as a server can simply randomize the order of the signatures it receives.
15The reason for this is easy to explain: since our batch verifier handles invalid signatures via a divide-and-conquer approach

(cutting the signature batch into halves, and recursing on each half), at a certain point the number of “extra” operations
exceeds those required for individual verification.
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6 Conclusion

The batch verification of pairing-based signatures is a great fit for applications where short signatures are a
design requirement and yet high verification throughput is required, such as car-to-car communications [21,
57]. This work demonstrates for the first time that the design of these batching algorithms can be efficiently
and securely automated.

The next step is to tackle the automated design of more complex functionalities, where it may be infeasible
to replicate a theorem like Theorem 3.1 arguing that automated design process unconditionally preserves
security. In this case, one might instead focus on having the design tool also output a proof sketch that
could be fed into and verified by EasyCrypt [8] or a similar proof checking tool. Indeed, what are the natural
settings where the creativity of the design process can be feasibly replaced by an extensive computerized
search (perhaps with smart pruning)? Can the “proof sketches” needed for verification by EasyCrypt be
generated automatically for these designs? These are exciting questions which could fundamentally change
cryptography.

On the implementation of AutoBatch, future work could be more resilient to DoS and related attacks by
implementing alternative techniques for recognizing invalid signatures in a batch, e.g., [39, 47, 65, 48]. We
are continuously on the lookout for more efficient means of computing in bilinear groups. Future versions of
AutoBatch will support MIRACL’s API for computing “multipairings” (efficient products of multiple bilinear
pairings). It would be interesting to understand how this and future inclusions may impact performance.
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A Machine-Generated Batch Verification Equations
In Figure 10, we provide the final batch verification equations output by AutoBatch for each of the signature schemes tested.

B A machine-generated proof of security for HW

The following proof was automatically generated by the Batcher while processing the HW signature scheme [33].
This execution allows signatures on different signing keys.
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Scheme Batch Verification Equation output by AutoBatch
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?
= e(

∏η
z=1(S1z · pkaz )δz , Ppub)

Waters05 [62] e(
∏η
z=1 S1

δz
z , g2) · e(

∏η
z=1 S2

δz
z , û1′) ·

∏l
i=1 e(

∏η
z=1 S2

δz·ki,z
z · S3

δz·mi,z
z , ûi)

·e(
∏η
z=1 S3

δz
z , û2′)

?
= e(g1, g2)

∑η
z=1 δz

Group, Ring, and ID-based Ring Signatures

BBS [11] e(
∏η
z=1 T

sz,x·δz
z,3 · h(−sz,γ1−sz,γ2 )·δz · g−cz·δz1 , g2)

Boyen [16] (same ring)
∏l
y=1 e(

∏η
z=1 Sy,z

δz , Ây) · e(
∏η
z=1 Sy,z

my,z·δz , B̂y) · e(
∏η
z=1 Sy,z

ty,z·δz , Ĉy)
?
=
∏η
z=1D

δz

CYH [25] e(
∏η
z=1

∏l
y=1 uy,z · pk

hy,z
y,z

δz
, P )

?
= e(

∏η
z=1 S

δz
z , g)

VRFs

HW VRF [34] (same signer) e(
∏η
z=1 g

(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û) · e(
∏η
z=1 π

−δz,2
z,1 · πδz,3z,2 · π

(1−xz,2)·−δz,3
z,1

·π−δz,4z,3 · π(1−xz,3)·−δz,4·−1
z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1

z,3

·π−δz,6z,5 · π(1−xz,5)·−δz,6·−1
z,4 · π−δz,7z,6 · π(1−xz,6)·−δz,7·−1

z,5 · π−δz,8z,7 · π(1−xz,7)·−δz,8·−1
z,6

·π−δz,9z,8 · π(1−xz,8)·−δz,9·−1
z,7 , g2)

?
=

e(
∏η
z=1 π

δz,1
z,l , U0) ·

∏η
z=1 yz

δz,1 · e(
∏η
z=1 π

−δz,1
z,0 , g2 · h)

·e(
∏η
z=1 π

xz,2·δz,3
z,1 , U2) · e(

∏η
z=1 π

xz,3·δz,4·−1
z,2 , U3) · e(

∏η
z=1 π

xz,4·δz,5·−1
z,3 , U4)

·e(
∏η
z=1 π

xz,5·δz,6·−1
z,4 , U5) · e(

∏η
z=1 π

xz,6·δz,7·−1
z,5 , U6) · e(

∏η
z=1 π

xz,7·δz,8·−1
z,6 , U7)

·e(
∏η
z=1 π

xz,8·δz,9·−1
z,7 , U8) for block size of 8

Combinations

ChCh + Hess e(
∏η
z=1 pkz

ahz·δz,1 · Sc−δz,2z,1 · pkzacz·−δz,2 , Ppub) ·
∏η
z=1 Sh

δz,1
z,1 · e(

∏η
z=1 Sh

−δz,1
z,2 · Scδz,2z,2 , g2)

?
= 1

Figure 10: These are the final batch verification equations output by AutoBatch. Due to space, we do not
include the full schemes or further describe the elements of the signature or our shorthand for them, such as
setting h = H(M) in BLS. However, a reader could retrace our steps by applying the techniques in Section 3
to the original verification equation in the order specified in Figure 6. ‘Combined signatures’ refers to the
combined batching of multiple signature verification equations that share algebraic structure.
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B.1 Definitions

This document contains a proof that HW.BatchVerify is a valid batch verifier for the signature scheme HW.
Let U, V,D, g, w, z, h be values drawn from the key and/or parameters, and M,σ1, σ2, r, i represent a message
(or message hash) and signature. The individual verification equation HW.Verify is:

e(σ1, g)
?
= UM · V r ·D · e(σ2, wdlg(i)e · zi · h)

Let η be the number of signatures in a batch, and δ1, . . . δη ∈ {1, 2λ} be a set of random exponents chosen
by the verifier. The batch verification equation HW.BatchVerify is:

e(

η∏
z=1

σδzz,1, g)
?
=

η∏
z=1

Uz
Mz·δz ·

η∏
z=1

Vz
rz·δz ·

η∏
z=1

Dz
δz · e(

η∏
z=1

σ
δz·dlg(iz)e
z,2 , w) · e(

η∏
z=1

σδz·izz,2 , z) · e(
η∏
z=1

σδzz,2, h)

We will now formally define a batch verifier and demonstrate that HW.BatchVerify is a secure batch verifier
for the HW signature scheme.

Definition B.1 (Pairing-based Batch Verifier) Let BSetup(1τ ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier. We
define pairing-based batch verifier for Verify a probabilistic poly(τ)-time algorithm which outputs accept if
X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does not hold for any j ∈ [1, η] except with
negligible probability.

Theorem B.2 HW.BatchVerify is a batch verifier for the HW signature scheme.

B.2 Proof

Proof. Via a series of steps, we will show that if HW is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(σ1, g)
?
= UM · V r ·D · e(σ2, wdlg(i)e · zi · h) (1)

Step 1: Combine η signatures (technique 1):

η∏
z=1

e(σz,1, g)
?
=

η∏
z=1

Uz
Mz · Vzrz ·Dz · e(σz,2, wdlg(iz)e · ziz · h) (2)

Step 2: Apply the small exponents test, using exponents δ1, . . . δη ∈
[
1, 2λ

]
:

η∏
z=1

e(σz,1, g)δz
?
=

η∏
z=1

Uz
Mz·δz ·

η∏
z=1

Vz
rz·δz ·

η∏
z=1

Dz
δz ·

η∏
z=1

e(σz,2, w
dlg(iz)e · ziz · h)δz (3)

Step 3: Move the exponent(s) into the pairing (technique 2):

η∏
z=1

e(σδzz,1, g)
?
=

η∏
z=1

Uz
Mz·δz ·

η∏
z=1

Vz
rz·δz ·

η∏
z=1

Dz
δz ·

η∏
z=1

e(σδzz,2, w
dlg(iz)e · ziz · h) (4)

Step 4: Move dot products inside pairings to reduce η pairings to 1 (technique 3):
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e(

η∏
z=1

σδzz,1, g)
?
=

η∏
z=1

Uz
Mz·δz ·

η∏
z=1

Vz
rz·δz ·

η∏
z=1

Dz
δz ·

η∏
z=1

e(σδzz,2, w
dlg(iz)e) · e(σδzz,2, ziz ) · e(σ

δz
z,2, h) (5)

Step 5: Distribute dot products (technique 5):

e(

η∏
z=1

σδzz,1, g)
?
=

η∏
z=1

Uz
Mz·δz ·

η∏
z=1

Vz
rz·δz ·

η∏
z=1

Dz
δz ·

η∏
z=1

e(σδzz,2, w
dlg(iz)e) ·

η∏
z=1

e(σδzz,2, z
iz ) ·

η∏
z=1

e(σδzz,2, h) (6)

Step 6: Move dot products inside pairings to reduce η pairings to 1 (technique 3):

e(

η∏
z=1

σδzz,1, g)
?
=

η∏
z=1

Uz
Mz·δz ·

η∏
z=1

Vz
rz·δz ·

η∏
z=1

Dz
δz · e(

η∏
z=1

σ
δz·dlg(iz)e
z,2 , w) · e(

η∏
z=1

σδz·izz,2 , z) · e(
η∏
z=1

σδzz,2, h) (7)

Steps 1 and 2 form the Combination Step in [26], which was proven to result in a secure batch verifier in [26,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (7) is also batch verifier for HW. 2

C A machine-generated proof of security for CL

The following proof was automatically generated by the Batcher while processing the CL signature scheme [18].
This execution was restricted to signatures on a single signing key.

C.1 Definitions

This document contains a proof that CL.BatchVerify is a valid batch verifier for the signature scheme CL.
Let X,Y, g be values drawn from the key and/or parameters, and m, a, b, c represent a message (or message
hash) and signature. The individual verification equation CL.Verify is:

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m ?

= e(g, c)

Let η be the number of signatures in a batch, and δ1,i, . . . δη,i ∈
[
1, 2λ

]
where i = 2 be a set of random

exponents chosen by the verifier. The batch verification equation for CL is:

CL.BatchVerify:

e(g,

η∏
z=1

bz
δz,1 · czδz,2) · e(Y,

η∏
z=1

az
−δz,1)

?
= e(X,

η∏
z=1

az
δz,2 · bzmz·δz,2)

We will now formally define a batch verifier and demonstrate that CL.BatchVerify is a secure batch verifier
for the CL signature scheme.

Definition C.1 (Pairing-based Batch Verifier) Let BSetup(1τ ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier. We
define pairing-based batch verifier for Verify a probabilistic poly(τ)-time algorithm which outputs accept if
X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does not hold for any j ∈ [1, η] except with
negligible probability.

Theorem C.2 CL.BatchVerify is a batch verifier for the CL signature scheme.
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C.2 Proof

Proof. Via a series of steps, we will show that if CL is a secure signature scheme, then BatchVerify is a secure
batch verifier. Recall our batch verification software will perform a group membership test to ensure that
each group element of the signature is a member of the proper subgroup, so here will we assume this fact.
We begin with the original verification equation.

e(Y, a)
?
= e(g, b) and e(X, a) · e(X, b)m ?

= e(g, c) (8)

Step 1: Consolidate the verification equations (technique 0), merge pairings with common first or second
element (technique 6), and apply the small exponents test as follows: For each of the z = 1 to η signatures,
choose random δz,1, δz,2 ∈ [1, 2λ] and compute the equation:

e(g, bδ1 · cδ2) · e(Y, a)−δ1
?
= e(X, a)δ2 · e(X, b)m·δ2 (9)

Step 2: Combine η signatures (technique 1), move the exponent(s) in pairing (technique 2):

η∏
z=1

e(g, bz
δz,1 · czδz,2) · e(Y, az−δz,1)

?
=

η∏
z=1

e(X, az
δz,2) · e(X, bzmz·δz,2) (10)

Step 3: Split pairings (technique 9):

η∏
z=1

e(g, bz
δz,1) · e(g, czδz,2) · e(Y, az−δz,1)

?
=

η∏
z=1

e(X, az
δz,2) · e(X, bzmz·δz,2) (11)

Step 4: Distribute dot products (technique 5):

η∏
z=1

e(g, bz
δz,1) ·

η∏
z=1

e(g, cz
δz,2) ·

η∏
z=1

e(Y, az
−δz,1)

?
=

η∏
z=1

e(X, az
δz,2) ·

η∏
z=1

e(X, bz
mz·δz,2) (12)

Step 5: Move dot products inside pairings to reduce η pairings to 1 (technique 3):

e(g,

η∏
z=1

bz
δz,1) · e(g,

η∏
z=1

cz
δz,2) · e(Y,

η∏
z=1

az
−δz,1)

?
= e(X,

η∏
z=1

az
δz,2) · e(X,

η∏
z=1

bz
mz·δz,2) (13)

Step 6: Merge pairings with common first or second element (technique 6):

e(g,

η∏
z=1

bz
δz,1 · czδz,2) · e(Y,

η∏
z=1

az
−δz,1)

?
= e(X,

η∏
z=1

az
δz,2) · e(X,

η∏
z=1

bz
mz·δz,2) (14)

Step 7: Merge pairings with common first or second element (technique 6):

e(g,

η∏
z=1

bz
δz,1 · czδz,2) · e(Y,

η∏
z=1

az
−δz,1)

?
= e(X,

η∏
z=1

az
δz,2 · bzmz·δz,2) (15)

Steps 1 and 2 form the Combination Step in [26], which was proven to result in a secure batch verifier in [26,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (15) is also batch verifier for CL. 2
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D A machine-generated proof of security for VRF

The following proof was automatically generated by the Batcher while processing the VRF signature scheme [34].
This execution was restricted to signatures on a single signing key.

D.1 Definitions

This document contains a proof that VRF.BatchVerify is a valid batch verifier for the signature scheme VRF.
Let Û , U, g1, g2, h be values drawn from the key and/or parameters, and x, π, y represent a message (or
message hash) and signature. The ` parameter represents the `-bit input size of VRF and varies in practice.
We have shown an example of ` = 8 to simplify the proof. The individual verification equation VRF.Verify
is:

e(π1, g2)
?
= e(g

(1−x1)
1 · Ux1

1 , Û) and e(π0, g2)
?
= e(πl, U0) and e(π0, h)

?
= y and

for t = 2 to ` it holds: e(πt, g2)
?
= e(π

(1−xt)
t−1 , g2) · e(πxtt−1, Ut)

Let η be the number of signatures in a batch, and δ1,i, . . . δη,i ∈
[
1, 2λ

]
be a set of random exponents

chosen by the verifier. Since the input size of ` = 8, then i = 9. The batch verification equation for VRF is:

VRFBatchVerify:

e(

η∏
z=1

g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û)·e(
η∏
z=1

π
−δz,2
z,1 · πδz,3z,2 · π

(1−xz,2)·−δz,3
z,1 · π−δz,4z,3 · π(1−xz,3)·−δz,4·−1

z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1
z,3

·π−δz,6z,5 ·π(1−xz,5)·−δz,6·−1
z,4 ·π−δz,7z,6 ·π(1−xz,6)·−δz,7·−1

z,5 ·π−δz,8z,7 ·π(1−xz,7)·−δz,8·−1
z,6 ·π−δz,9z,8 ·π(1−xz,8)·−δz,9·−1

z,7 , g2)
?
=

e(

η∏
z=1

π
δz,1
z,l , U0)·

η∏
z=1

yz
δz,1 ·e(

η∏
z=1

π
−δz,1
z,0 , g2·h)·e(

η∏
z=1

π
xz,2·δz,3
z,1 , U2)·e(

η∏
z=1

π
xz,3·δz,4·−1
z,2 , U3)·e(

η∏
z=1

π
xz,4·δz,5·−1
z,3 , U4)

· e(
η∏
z=1

π
xz,5·δz,6·−1
z,4 , U5) · e(

η∏
z=1

π
xz,6·δz,7·−1
z,5 , U6) · e(

η∏
z=1

π
xz,7·δz,8·−1
z,6 , U7) · e(

η∏
z=1

π
xz,8·δz,9·−1
z,7 , U8)

We will now formally define a batch verifier and demonstrate that VRF.BatchVerify is a secure batch verifier
for the VRF signature scheme.

Definition D.1 (Pairing-based Batch Verifier) Let BSetup(1τ ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier. We
define pairing-based batch verifier for Verify a probabilistic poly(τ)-time algorithm which outputs accept if
X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does not hold for any j ∈ [1, η] except with
negligible probability.

Theorem D.2 VRF BatchVerify is a batch verifier for the VRF signature scheme.

D.2 Proof

Proof. Via a series of steps, we will show that if VRF is a secure signature scheme, then BatchVerify is a
secure batch verifier. Recall our batch verification software will perform a group membership test to ensure
that each group element of the signature is a member of the proper subgroup, so here will we assume this
fact. We begin with the original verification equation.

e(π1, g2)
?
= e(g

(1−x1)
1 · Ux1

1 , Û) and e(π0, g2)
?
= e(πl, U0) and e(π0, h)

?
= y and

for t = 2 to ` it holds: e(πt, g2)
?
= e(π

(1−xt)
t−1 , g2) · e(πxtt−1, Ut)
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EQ1 Step 1: Consolidate the verification equations (technique 0), merge pairings with common first or
second element (technique 6), and apply the small exponents test as follows: For each of the z = 1 to η
signatures, choose random δz,1, δz,2 ∈ [1, 2λ] and compute the equation:

e(g
(1−x1)
1 · Ux1

1 , Û)δ2 · e(π1, g2)−δ2
?
= e(πl, U0)δ1 · yδ1 · e(π0, g2 · h)−δ1 (16)

EQ1 Step 2: Combine η signatures (technique 1), move the exponent(s) in pairing (technique 2):

η∏
z=1

e(g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û) ·
η∏
z=1

e(π
−δz,2
z,1 , g2)

?
=

η∏
z=1

e(π
δz,1
z,l , U0) ·

η∏
z=1

yz
δz,1 ·

η∏
z=1

e(π
−δz,1
z,0 , g2 · h) (17)

EQ1 Step 3: Move dot products inside pairings to reduce η pairings to 1 (technique 3):

e(

η∏
z=1

g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û) · e(
η∏
z=1

π
−δz,2
z,1 , g2)

?
= e(

η∏
z=1

π
δz,1
z,l , U0) ·

η∏
z=1

yz
δz,1 · e(

η∏
z=1

π
−δz,1
z,0 , g2 · h) (18)

EQ2 Step 4: Combine η signatures (technique 1):

for t = 2 to ` it holds:

η∏
z=1

e(πz,t, g2)
?
=

η∏
z=1

e(π
(1−xz,t)
z,t−1 , g2) · e(πxz,tz,t−1, Ut) (19)

EQ2 Step 5: Apply the small exponents test, using exponents δ1, . . . δη ∈
[
1, 2λ

]
:

for t = 2 to ` it holds:

η∏
z=1

e(πz,t, g2)δz
?
=

η∏
z=1

(e(π
(1−xz,t)
z,t−1 , g2) · e(πxz,tz,t−1, Ut))

δz (20)

EQ2 Step 6: Move the exponent(s) into the pairing (technique 2):

for t = 2 to ` it holds:

η∏
z=1

e(πδzz,t, g2)
?
=

η∏
z=1

e(π
(1−xz,t)·δz
z,t−1 , g2) · e(πxz,t·δzz,t−1 , Ut) (21)

EQ2 Step 7: Move dot products inside pairings to reduce η pairings to 1 (technique 3):

for t = 2 to ` it holds: e(

η∏
z=1

πδzz,t, g2)
?
=

η∏
z=1

e(π
(1−xz,t)·δz
z,t−1 , g2) · e(πxz,t·δzz,t−1 , Ut) (22)

EQ2 Step 8: Distribute dot products (technique 5):

for t = 2 to ` it holds: e(

η∏
z=1

πδzz,t, g2)
?
=

η∏
z=1

e(π
(1−xz,t)·δz
z,t−1 , g2) ·

η∏
z=1

e(π
xz,t·δz
z,t−1 , Ut) (23)

EQ2 Step 9: Move dot products inside pairings to reduce η pairings to 1 (technique 3):

for t = 2 to ` it holds: e(

η∏
z=1

πδzz,t, g2)
?
= e(

η∏
z=1

π
(1−xz,t)·δz
z,t−1 , g2) · e(

η∏
z=1

π
xz,t·δz
z,t−1 , Ut) (24)

EQ2 Step 10: Merge pairings with common first or second element (technique 6):
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for t = 2 to ` it holds: e(

η∏
z=1

πδzz,t · π
(1−xz,t)·−δz
z,t−1 , g2)

?
= e(

η∏
z=1

π
xz,t·δz
z,t−1 , Ut) (25)

EQ2 Step 11: Unrolling for loop (technique 10) and choose random δz,3, δz,9 ∈ [1, 2λ] for each unrolled

equation:

e(

η∏
z=1

π
δz,3
z,2 · π

(1−xz,2)·−δz,3
z,1 · π−δz,4z,3 · π(1−xz,3)·−δz,4·−1

z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1
z,3 · π−δz,6z,5 · π(1−xz,5)·−δz,6·−1

z,4

· π−δz,7z,6 · π(1−xz,6)·−δz,7·−1
z,5 · π−δz,8z,7 · π(1−xz,7)·−δz,8·−1

z,6 · π−δz,9z,8 · π(1−xz,8)·−δz,9·−1
z,7 , g2)

?
=

e(

η∏
z=1

π
xz,2·δz,3
z,1 , U2) · e(

η∏
z=1

π
xz,3·δz,4·−1
z,2 , U3) · e(

η∏
z=1

π
xz,4·δz,5·−1
z,3 , U4) · e(

η∏
z=1

π
xz,5·δz,6·−1
z,4 , U5)

· e(
η∏
z=1

π
xz,6·δz,7·−1
z,5 , U6) · e(

η∏
z=1

π
xz,7·δz,8·−1
z,6 , U7) · e(

η∏
z=1

π
xz,8·δz,9·−1
z,7 , U8) (26)

Step 12: Combine equations 1 and 2, then pairings within final equation (technique 6):

e(

η∏
z=1

g
(1−x1)·δz,2
1 · Ux1·δz,2

1 , Û)·e(
η∏
z=1

π
−δz,2
z,1 · πδz,3z,2 · π

(1−xz,2)·−δz,3
z,1 · π−δz,4z,3 · π(1−xz,3)·−δz,4·−1

z,2 · π−δz,5z,4 · π(1−xz,4)·−δz,5·−1
z,3

·π−δz,6z,5 ·π(1−xz,5)·−δz,6·−1
z,4 ·π−δz,7z,6 ·π(1−xz,6)·−δz,7·−1

z,5 ·π−δz,8z,7 ·π(1−xz,7)·−δz,8·−1
z,6 ·π−δz,9z,8 ·π(1−xz,8)·−δz,9·−1

z,7 , g2)
?
=

e(

η∏
z=1

π
δz,1
z,l , U0)·

η∏
z=1

yz
δz,1 ·e(

η∏
z=1

π
−δz,1
z,0 , g2 ·h)·e(

η∏
z=1

π
xz,2·δz,3
z,1 , U2)·e(

η∏
z=1

π
xz,3·δz,4·−1
z,2 , U3)·e(

η∏
z=1

π
xz,4·δz,5·−1
z,3 , U4)

· e(
η∏
z=1

π
xz,5·δz,6·−1
z,4 , U5) · e(

η∏
z=1

π
xz,6·δz,7·−1
z,5 , U6) · e(

η∏
z=1

π
xz,7·δz,8·−1
z,6 , U7) · e(

η∏
z=1

π
xz,8·δz,9·−1
z,7 , U8) (27)

Steps 1 and 2 form the Combination Step in [26], which was proven to result in a secure batch verifier in [26,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (35) is also batch verifier for VRF. 2

E A machine-generated proof of security for WATERS09

The following proof was automatically generated by the Batcher while processing the WATERS09 signature
scheme [63]. This execution was restricted to signatures on a single signing key.

E.1 Definitions

This document contains a proof that WATERS09.BatchVerify is a valid batch verifier for the signature scheme
WATERS09. Let g1, g2 be values drawn from the key and/or parameters, and M, θ, σ1, σ2, σ3, σ4, σ5,
σ6, σ7, σK , s, s1, s2, t, tagc represent a message (or message hash) and signature. The individual verification
equation WATERS09.Verify is:

e(g1
bs, σ1) · e(g1b·a1s1 , σ2) · e(g1a1s1 , σ3) · e(g1b·a2s2 , σ4) · e(g1a2s2 , σ5)

?
=

e(σ6, τ
s1
1 · τ

s2
2 ) · e(σ7, τ1bs1 · τ2bs2 · w−t) · (e(σ7, uM ·t · wtagc·t · ht) · e(g−t1 , σK))θ ·As2
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Let η be the number of signatures in a batch, and δ1, . . . δη ∈ {1, 2λ} be a set of random exponents chosen
by the verifier. The batch verification equation WATERS09.BatchVerify is:

e(g1
b,

η∏
z=1

σsz·δzz,1 ) · e(g1b·a1 ,
η∏
z=1

σ
sz,1·δz
z,2 ) · e(g1a1 ,

η∏
z=1

σ
sz,1·δz
z,3 ) · e(g1b·a2 ,

η∏
z=1

σ
sz,2·δz
z,4 ) · e(g1a2 ,

η∏
z=1

σ
sz,2·δz
z,5 )

?
=

e(

η∏
z=1

σ
δz·sz,1
z,6 , τ1) · e(

η∏
z=1

σ
δz·sz,2
z,6 , τ2) · e(

η∏
z=1

σ
δz·sz,1
z,7 , τ1

b) · e(
η∏
z=1

σ
δz·sz,2
z,7 , τ2

b) · e(
η∏
z=1

σ
(δz·−tz+θz·δz·tagz,c·tz)
z,7 , w)

· e(
η∏
z=1

σθz·δz·Mz·tz
z,7 , u) · e(

η∏
z=1

σθz·δz·tzz,7 , h) · e(g1,
η∏
z=1

σ−tz·θz·δzz,K ) ·A
∑η
z=0 sz,2·δz

We will now formally define a batch verifier and demonstrate that WATERS09.BatchVerify is a secure batch
verifier for the WATERS09 signature scheme.

Definition E.1 (Pairing-based Batch Verifier) Let BSetup(1τ ) → (q, g,G,GT , e). For each j ∈ [1, η],
where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a pairing based verifier. We
define pairing-based batch verifier for Verify a probabilistic poly(τ)-time algorithm which outputs accept if
X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does not hold for any j ∈ [1, η] except with
negligible probability.

Theorem E.2 WATERS09.BatchVerify is a batch verifier for the WATERS09 signature scheme.

E.2 Proof

Proof. Via a series of steps, we will show that if WATERS09 is a secure signature scheme, then BatchVerify
is a secure batch verifier. Recall our batch verification software will perform a group membership test to
ensure that each group element of the signature is a member of the proper subgroup, so here will we assume
this fact. We begin with the original verification equation.

e(g1
bs, σ1) · e(g1b·a1s1 , σ2) · e(g1a1s1 , σ3) · e(g1b·a2s2 , σ4) · e(g1a2s2 , σ5)

?
=

e(σ6, τ
s1
1 · τ

s2
2 ) · e(σ7, τ1bs1 · τ2bs2 · w−t) · (e(σ7, uM ·t · wtagc·t · ht) · e(g−t1 , σK))θ ·As2 (28)

Step 1: Combine η signatures (technique 1):

η∏
z=1

e(g1
bsz , σz,1) · e(g1b·a1sz,1 , σz,2) · e(g1a1sz,1 , σz,3) · e(g1b·a2sz,2 , σz,4) · e(g1a2sz,2 , σz,5)

?
=

η∏
z=1

e(σz,6, τ
sz,1
1 · τsz,22 ) · e(σz,7, τ1bsz,1 · τ2bsz,2 · w−tz )

· (e(σz,7, uMz·tz · wtagz,c·tz · htz ) · e(g−tz1 , σz,K))θz ·Asz,2 (29)

Step 2: Apply the small exponents test, using exponents δ1, . . . δη ∈
[
1, 2λ

]
:

η∏
z=1

(e(g1
bsz , σz,1) · e(g1b·a1sz,1 , σz,2) · e(g1a1sz,1 , σz,3) · e(g1b·a2sz,2 , σz,4) · e(g1a2sz,2 , σz,5))δz

?
=

η∏
z=1

(e(σz,6, τ
sz,1
1 · τsz,22 ) · e(σz,7, τ1bsz,1 · τ2bsz,2 · w−tz )

· (e(σz,7, uMz·tz · wtagz,c·tz · htz ) · e(g−tz1 , σz,K))θz ·Asz,2)δz (30)
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Step 3: Move the exponent(s) into the pairing (technique 2):

η∏
z=1

e(g1
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Step 4: Split pairings (technique 9):

η∏
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e(g1
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Step 5: Distribute dot products (technique 5):
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Step 6: Move dot products inside pairings to reduce η pairings to 1 (technique 3) and move dot product to

summation on precomputed pairing (technique 7):
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Step 7: Merge pairings with common first or second element (technique 6):
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Steps 1 and 2 form the Combination Step in [26], which was proven to result in a secure batch verifier in [26,
Theorem 3.2]. We observe that the remaining steps are merely reorganizing terms within the same equation.
Hence, the final verification equation (7) is also batch verifier for WATERS09. 2

F SDL Grammar

We provide a detailed description of our SDL grammar below.

〈name-statement〉 ::= 〈sdl-name〉.

〈assign-statement〉 ::= 〈single-assignment〉 | 〈func-call-statement〉 | 〈sig-size-statement〉 | 〈setting-statement〉
| 〈group-assign-statement〉 | 〈dict-statement〉 | 〈random-statement〉 | 〈hash-statement〉 | 〈pair-statement〉.

〈single-assignment〉 ::= 〈variable-target〉 〈assign-op〉 〈expr-statement〉 | 〈variable-target〉.

〈sig-size-statement〉 ::= 〈N-name〉 〈assign-op〉 〈integer〉.

〈variable-target〉 ::= 〈keywords〉 | 〈variable-name〉.

〈setting-statement〉 ::= 〈setting-name〉 〈assign-op〉 〈setting-token〉.

〈group-assign-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈type〉.

〈func-call-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈variable-name〉 ‘(’ 〈arg-list〉 ‘)’.

〈arg-list〉 ::= 〈arg-name〉 | 〈arg-name〉 ‘,’ 〈arg-list〉.

〈arg-name〉 ::= 〈variable-name〉.

〈random-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈random-name〉 ‘(’ 〈group-type〉 ‘)’.

〈hash-statement〉 ::= 〈variable-name〉 〈assign-op〉 〈hash-name〉 ‘(’ 〈arg-list〉 ‘,’ 〈group-type〉 ‘)’.

〈dict-statement〉 ::= 〈variable-name〉 〈assign-op〉 ‘list{’ 〈arg-list〉 ‘}’ | ‘expand{’ 〈arg-list〉 ‘}’.

〈dot-prod-statement〉 ::= ‘prod{’ 〈single-assignment〉 ‘,’ 〈single-assignment〉 ‘} on’ 〈expr-statement〉.

〈sum-of-statement〉 ::= ‘sum{’ 〈single-assignment〉 ‘,’ 〈single-assignment〉 ‘} of’ 〈expr-statement〉

〈for-statement〉 ::= 〈proc-token〉 〈block-sep〉 ‘for’
| ‘for{’ 〈assign-statement〉 , 〈assign-statement〉 ‘}’ [〈new-line〉 〈expr-statement〉]*
| forall{ 〈assign-statement〉 , 〈assign-statement〉 ‘}’ [〈new-line〉 〈expr-statement〉]*.

〈conditional-statement〉 ::= 〈proc-token〉 〈block-sep〉 ‘if’
| ‘if{’ 〈cond-statement〉 ‘}’ [〈new-line〉 〈expr-statement〉]+
| ‘else’ [〈new-line〉〈expr-statement〉]+.

〈expr-statement〉 ::= 〈pair-statement〉 | 〈expr0-statement〉.

〈expr0-statement〉 ::= 〈expr0-statement〉 〈group-op〉 〈expr0-statement〉
| 〈exp1-statement〉
| 〈variable-name〉.

32



〈cond-statement〉 ::= 〈cond-statement〉 [〈bool-op〉 〈cond-statement〉]* | 〈expr-statement〉.

〈pair-statement〉 ::= ‘e(’ 〈expr-statement〉 ‘,’ 〈expr-statement〉 ‘)’
| 〈pair-statement〉 〈group-op〉 〈pair-statement〉
| 〈pair-statement〉 〈exp〉 〈exp1-statement〉.

〈exp1-statement〉 ::= 〈exp1-statement〉 〈exp〉 〈exp2-statement〉 | 〈expr2-statement〉

〈exp2-statement〉 ::= 〈expr-statement〉 〈exp-ops〉 〈expr-statement〉
| 〈expr-statement〉 〈group-op〉 〈expr-statement〉
| 〈negate-op〉 [〈exp2-statement〉 | 〈integer〉].

〈sdl-name〉 ::= 〈variable-name〉.

〈element-type〉 ::= None | int | str | ZR | G1 | G2 | GT

〈type〉 ::= 〈element-type〉 | ‘list{’ 〈element-type〉, [ 〈element-type〉 ]* ‘}’
| ‘expand{’ 〈element-type〉, [ 〈element-type〉 ]* ‘}’
| 〈type-list〉.

〈type-list〉 ::= 〈type〉 ‘;’ 〈type-list〉 | 〈type〉.

〈procedure〉 ::= 〈proc-token〉 〈block-sep〉 〈procedure-name〉.

〈procedure-name〉 ::= 〈variable-name〉 | ‘func:’ 〈procedure-name〉.

〈variable-name〉 ::= 〈letters〉[〈letters〉|〈integer〉|〈symbols〉]*.

〈alphabet〉 := ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ |
‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’

〈letters〉 := 〈alphabet〉*.

〈integer〉 ::= digit [digit]*.

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

〈symbols〉 ::= ‘_’ | ‘#’ | ‘?’ | ‘$’

〈proc-token〉 ::= ‘BEGIN’ | ‘END’

〈block-sep〉 ::= ‘::’

〈random-name〉 ::= ‘random’

〈keywords〉 ::= ‘verify’ | ‘constant’ | ‘public’ | ‘signature’ | ‘message’ | ‘public_count’ | ‘signature_count’
| ‘message_count’ | ‘latex’ | ‘precompute’ | ‘types’ | ‘name’

〈hash-name〉 ::= ‘H’

〈N-name〉 ::= ‘N’

〈setting-name〉 ::= ‘setting’
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〈setting-token〉 ::= ‘symmetric’ | ‘asymmetric’.

〈assign-op〉 ::= ‘:=’

〈exp〉 ::= ‘^’

〈exp-ops〉 ::= ‘+’ | ‘-’ | 〈group-op〉

〈group-op〉 ::= ‘*’ | ‘/’

〈bool-op〉 ::= ‘|’ | ‘and’ | ‘or’ | ‘==’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’

〈negate-op〉 ::= ‘-’

〈new-line〉 ::= ‘\n’

G Semantics of SDL

We provide a brief overview of our domain specific language and examples of how schemes are written in it.
SDL can accommodate a full description of pairing schemes in situations where an existing implementation
of a signature scheme does not exist or a developer prefers to code their scheme directly in SDL. This
information is used to inform AutoBatch on details needed to generate the scheme implementation and the
batch algorithm. The SDL file consists of two parts.

The first part is a full representation of the signature scheme which consists of the descriptions of each
algorithm such as keygen, sign, verify and a types section. This information is used to generate executable
code for the scheme either in Python or C++.

The second part is a broken down version of the verification algorithm in a form for the AutoBatch
to derive the desired batch verification algorithm. To this end, there are several keywords used to provide
context for AutoBatch. Public, signature and message keywords are used to identify the public key variables
and the signature and message variables. Additionally, the public count keyword is used to determine
whether public keys belong to the same or different signers. The signature count and message count
keywords describe the number of signatures and messages expected per batch. The constants keyword
describe variables in the scheme shared by signers such as the generators of a group. Precompute section
represents computation steps necessary before each verification check. The verify keyword is used to describe
the verification equation as a mathematical expression. Finally, we include a block for LATEX to assist the
proof generator map variables in SDL to equivalent LATEX representation.

Our abstract language is capable of representing a variety of programming constructs such as dot products,
for loops, summation, and boolean operators. Thus, very complex schemes can be described using our SDL
and to reflect this we provide full SDL descriptions below for BLS [14], HW [33], Waters09 [63] and CL04 [18]:

name := bls

# expected batch size per time

N := 100

setting := asymmetric

# types for variables used in verification.

# all other variable types are inferred by SDL parser

BEGIN :: types

M := str

END :: types

# description of key generation, signing, and verification algorithms
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BEGIN :: func:keygen

input := None

g := random(G2)

x := random(ZR)

pk := g^x

sk := x

output := list{pk, sk, g}

END :: func:keygen

BEGIN :: func:sign

input := list{sk, M}

sig := (H(M, G1)^sk)

output := sig

END :: func:sign

BEGIN :: func:verify

input := list{pk, M, sig, g}

h := H(M, G1)

BEGIN :: if

if {e(h, pk) == e(sig, g)}

output := True

else

output := False

END :: if

END :: func:verify

# Batcher SDL input

constant := g

public := pk

signature := sig

message := h

# same signer

BEGIN :: count

message_count := N

public_count := one

signature_count := N

END :: count

# variables computed before each signature verification

BEGIN :: precompute

h := H(M, G1)

END :: precompute

# verification equation

verify := {e(h, pk) == e(sig, g)}

The HW full SDL description:

name := hw

N := 100

setting := asymmetric
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BEGIN :: types

m := str

n := ZR

i := int

END :: types

BEGIN :: func:setup

input := None

g1 := random(G1)

g2 := random(G2)

u := random(G1)

v := random(G1)

d := random(G1)

w := random(ZR)

z := random(ZR)

h := random(ZR)

w1 := g1 ^ w

w2 := g2 ^ w

z1 := g1 ^ z

z2 := g2 ^ z

h1 := g1 ^ h

h2 := g2 ^ h

mpk := list{g1, g2, w1, w2, z1, z2, h1, h2, u, v, d}

output := mpk

END :: func:setup

BEGIN :: func:keygen

input := list{g2, u, v, d}

a := random(ZR)

A := g2^a

U := e(u, A)

V := e(v, A)

D := e(d, A)

i := 0

pk := list{U, V, D}

sk := a

output := list{i, pk, sk}

END :: func:keygen

BEGIN :: func:sign

input := list{mpk, pk, sk, i, m}

mpk := expand{g1, g2, w1, w2, z1, z2, h1, h2, u, v, d}

pk := expand{U, V, D}

i := i + 1

M := H(m, ZR)

r := random(ZR)

t := random(ZR)

n := ceillog(2, i)

sig1:= (((u^M)*(v^r)*d)^sk)*((w1^n)*(z1^i)*h1)^t

sig2 := g1 ^ t
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output := list{sig1, sig2, r, i}

END :: func:sign

BEGIN :: func:verify

input := list{U, V, D, g2, w2, z2, h2, m, sig1, sig2, r, i}

M := H(m, ZR)

n := ceillog(2, i)

BEGIN :: if

if { e(sig1, g2) == ((U^M) * (V^r) * D * e(sig2, ((w2^n)*((z2^i)*h2)))) }

output := True

else

output := False

END :: if

END :: func:verify

# Batcher SDL input

constant := list{g1, g2, w2, z2, h2}

public := list{U, V, D}

signature := list{sig1, sig2, r, i, n}

message := M

BEGIN :: precompute

M := H(m, ZR)

n := ceillog(2, i)

END :: precompute

# different signers

BEGIN :: count

public_count := N

message_count := N

signature_count := N

END :: count

verify := { e(sig1, g2) == ((U^M) * (V^r) * D * e(sig2, ((w2^n)*((z2^i)*h2)))) }

The Waters09 full SDL description:

name := waters09

N := 100

setting := asymmetric

BEGIN :: types

m := str

END :: types

BEGIN :: func:keygen

input := None

g1 := random(G1)

g2 := random(G2)

a1 := random(ZR)
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a2 := random(ZR)

b := random(ZR)

alpha := random(ZR)

wExp := random(ZR)

hExp := random(ZR)

vExp := random(ZR)

v1Exp := random(ZR)

v2Exp := random(ZR)

uExp := random(ZR)

vG2 := g2 ^ vExp

v1G2 := g2 ^ v1Exp

v2G2 := g2 ^ v2Exp

wG1 := g1 ^ wExp

hG1 := g1 ^ hExp

w := g2 ^ wExp

h := g2 ^ hExp

uG1 := g1 ^ uExp

u := g2 ^ uExp

tau1 := vG2 * (v1G2 ^ a1)

tau2 := vG2 * (v2G2 ^ a2)

g1b := g1 ^ b

g1a1 := g1 ^ a1

g1a2 := g1 ^ a2

g1ba1 := g1 ^ (b * a1)

g1ba2 := g1 ^ (b * a2)

tau1b := tau1 ^ b

tau2b := tau2 ^ b

A := (e(g1, g2)) ^ (alpha * a1 * b)

g2AlphaA1 := g2 ^ (alpha * a1)

g2b := g2 ^ b

pk := list{g1, g2, g1b, g1a1, g1a2, g1ba1, g1ba2, tau1, tau2, tau1b, tau2b,

uG1, u, wG1, hG1, w, h, A}

sk := list{g2AlphaA1, g2b, vG2, v1G2, v2G2, alpha}

output := list{pk, sk}

END :: func:keygen

BEGIN :: func:sign

input := list{pk, sk, m}

pk := expand{g1, g2, g1b, g1a1, g1a2, g1ba1, g1ba2, tau1, tau2, tau1b, tau2b,

uG1, u, wG1, hG1, w, h, A}

sk := expand{g2AlphaA1, g2b, vG2, v1G2, v2G2, alpha}

r1 := random(ZR)

r2 := random(ZR)

z1 := random(ZR)

z2 := random(ZR)

tagk := random(ZR)

r := r1 + r2

M := H(m, ZR)

S1 := g2AlphaA1 * (vG2 ^ r)

S2 := (g2 ^ -alpha) * (v1G2 ^ r) * (g2 ^ z1)
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S3 := g2b ^ -z1

S4 := (v2G2 ^ r) * (g2 ^ z2)

S5 := g2b ^ -z2

S6 := g1b ^ r2

S7 := g1 ^ r1

SK := (((u ^ M) * (w ^ tagk)) * h)^ r1

output := list{S1, S2, S3, S4, S5, S6, S7, SK, tagk}

END :: func:sign

BEGIN :: func:verify

input := list{g1, g2, g1b, g1a1, g1a2, g1ba1, g1ba2, tau1, tau2, tau1b, tau2b,

u, w, h, A, S1, S2, S3, S4, S5, S6, S7, SK, tagk, m}

s1 := random(ZR)

s2 := random(ZR)

t := random(ZR)

tagc := random(ZR)

s := s1 + s2

M := H(m, ZR)

theta := ((tagc - tagk)^-1)

BEGIN :: if

if { (e(g1b^s, S1) * (e(g1ba1^s1, S2) * (e(g1a1^s1, S3) * (e(g1ba2^s2, S4) * e(g1a2^s2, S5)))))

== (e(S6, (tau1^s1) * (tau2^s2)) * (e(S7, ((tau1b^s1) * ((tau2b^s2) * w^-t))) *

(((e(S7, ((u^(M * t)) * (w^(tagc * t))) * h^t) * (e(g1^-t, SK)) )^theta) * (A^s2)))) }

output := True

else

output := False

END :: if

END :: func:verify

# Batcher SDL input

BEGIN :: precompute

s1 := random(ZR)

s2 := random(ZR)

t := random(ZR)

tagc := random(ZR)

s := s1 + s2

M := H(m, ZR)

theta := ((tagc - tagk)^-1)

END :: precompute

constant := list{g1, g2}

public := list{g1b, g1ba1, g1a1, g1a2, g1ba1, g1ba2, g1a2, tau1, tau2, tau1b, tau2b, w, u, h, A}

signature := list{theta, S1, S2, S3, S4, S5, S6, S7, SK, s, s1, s2, t, tagc}

message := M

# same signer

BEGIN :: count

message_count := N

public_count := one

signature_count := N
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END :: count

verify := { (e(g1b^s, S1) * (e(g1ba1^s1, S2) * (e(g1a1^s1, S3) * (e(g1ba2^s2, S4) * e(g1a2^s2, S5))))) ==

(e(S6, (tau1^s1) * (tau2^s2)) * (e(S7, ((tau1b^s1) * ((tau2b^s2) * w^-t)))

* (((e(S7, ((u^(M * t)) * (w^(tagc * t))) * h^t) * (e(g1^-t, SK)) )^theta) * (A^s2)))) }

The CL04 full SDL description:

name := cl04

N := 100

setting := asymmetric

BEGIN :: types

M := str

sig := list{G2}

END :: types

BEGIN :: func:setup

input := list{None}

g := random(G1)

output := g

END :: func:setup

BEGIN :: func:keygen

input := list{g}

x := random(ZR)

y := random(ZR)

X := g^x

Y := g^y

output := list{X, Y, x, y}

END :: func:keygen

BEGIN :: func:sign

input := list{x, y, M}

a := random(G2)

m := H(M, ZR)

b := a^y

c := a^(x + (m * x * y))

sig := list{a, b, c}

output := sig

END :: func:sign

BEGIN :: func:verify

input := list{X, Y, g, M, a, b, c}

m := H(M, ZR)

BEGIN :: if

if {{ e(Y, a) == e(g, b) } and { (e(X, a) * (e(X, b)^m)) == e(g, c) }}

output := True

else

output := False

END :: if

END :: func:verify
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# Batcher SDL input

BEGIN :: precompute

m := H(M, ZR)

END :: precompute

constant := g

public := list{X, Y}

signature := list{a, b, c}

message := m

# same signer

BEGIN :: count

message_count := N

public_count := one

signature_count := N

END :: count

verify := { e(Y, a) == e(g, b) } and { (e(X, a) * (e(X, b)^m)) == e(g, c) }
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