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Abstract. We propose a family of 6-to-4-bit S-boxes with linear branch num-
ber 3. Since they also fulfill various further desirable properties such S-boxes
can serve as a building block for various block ciphers.
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1. Introduction

During all the time of analysis and improvement proposals to DES it seemed like there
might be no 6-to-4-bit S-box with linear branch number 3. While almost all S-boxes
used so far have differential branch number 2 and only fail at differentials with zero
output differences to achieve even differential branch number 3, they only have linear
branch number 2. Since Matsui (1994) discovered linear cryptanalysis, several teams
have tried to describe a set of properties that makes DES invulnerable to differential
and linear cryptanalysis. Kim, Lee, Park & Lee (1994, 1995) use some conditions
asking several specific 1-to-1-bit biases to be zero. In contrast, linear branch number
3 (or higher) means that all 1-to-1-bit biases are zero. Neither the DES S-boxes
nor later replacements like the s5DES S-boxes found in Kim et al. (1994, 1995) have
linear branch number 3. DESL, the lightweight variant of DES proposed by Leander,
Paar, Poschmann & Schramm (2007), employs a single S-box in place of the eight
different ones in DES. Also the DESL S-box has linear branch number 2 only.

Here, we propose the S-box U :

efgh 0 1 2 3 4 5 6 7 8 9 A B C D E F

U(0efgh0) 0 9 7 2 B E C 5 3 F D 8 4 1 A 6
U(0efgh1) B 6 8 F 2 1 5 C D A E 3 7 4 0 9
U(1efgh0) E 4 8 D 2 7 1 B 5 A 6 3 9 C F 0
U(1efgh1) 1 D 4 2 F 8 A 7 6 0 9 5 C B 3 E

Note that we represent four bit strings efgh as hexadecimal digits as usual.
It does have linear branch number 3 and enjoys the properties summarized in

Figure 1.1, that ensure good resistance against differential and linear cryptanalysis.
Actually, we started scanning for an S-box with the legendary conditions given by
Coppersmith (1994) and augmented them with conditions from Leander et al. (2007).



2 Loebenberger & Nüsken

S-7 diffS(∆x→ ∆y) ≤ 16
64 for ∆x 6= 0.

S-3 diffS(0∗∗∗∗0→ 0000) = 0.

Q1’ diffS(∗∗∗∗00→ 0000) = 0.

S-4 diffS( wt 1 → wt≤1 ) = 0.

S-5 diffS(001100→ wt≤1 ) = 0.

Q2+ |biasS(a, b)| ≤
24
64 for a 6= 0.

Q3+ |biasS( wt 1 , wt 1 )| = 0.

Q4+ |biasS( wt k , wt ℓ )| ≤ 16
64

when 0 < k + ℓ ≤ 4.

Figure 1.1: Summary of conditions for 6-to-4-bit S-boxes.
The properties S-? are from Coppersmith (1994), the properties Q?+ are stronger forms of the
conditions in Leander et al. (2007). The property Q1’ is equivalent to Leander et al.’s Condition 1
under S-3.

For instance, we used Condition 5 from Leander et al. (2007):

Q5 |biasS(a, b1) · biasS(a, b2)| ≤
240
642

for all a ∈ F
6
2, b1, b2 ∈ F

4
2 with wt(b1+b2) = 1.

Our program, however, also reported S-boxes that violate this particular condition.
Among those we found the S-box U . It only has |biasS(a, b1) · biasS(a, b2)| ≤

384
642

for
all a ∈ F

6
2, b1, b2 ∈ F

4
2 with wt(b1 + b2) = 1.1

It turns out that this new S-box has good differential and linear properties, in-
cluding linear branch number 3 implied by Q3+. To our knowledge this is the first
known 6-to-4-bit S-box with these properties.

Finally, note that all these properties are invariant under many transformations
of S-boxes. Thus we are actually talking about a family of 266! · 244! S-boxes when
looking at the high level conditions listed in Section 2 or of a smaller family of
262!2 · 244! S-boxes when considering all properties from Figure 1.1.

In the following, we consider properties of the proposed family of S-boxes in the
spirit of Saarinen (2012). That work continues many other investigations including
Biryukov, De Cannière, Braeken & Preneel (2003); Courtois & Bard (2007); Daemen
& Rijmen (2002); Kim et al. (1994, 1995); Leander et al. (2007). In this text, we do
not treat properties like most of the DES design properties in Coppersmith (1994),
the conditions in Leander et al. (2007), or the ones listed in Figure 1.1 any further.

2. S-box properties

To formulate all conditions we fix the following standard notions. Let k, ℓ ∈ N>0 and
consider a candidate k-to-ℓ-bit S-box

S : Fk
2 −→ F

ℓ
2.

1For the considerations in Leander et al. (2007) this weakened condition would have still been
sufficient for their reasonings. The issue of so far mostly omitted cases involving neighbored active
S-boxes is treated by us in a future paper.
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2.1. Differential cryptanalysis. For differential cryptanalysis the following no-
tion is central.

Definition 2.1 (Differential probabilities). Given an input difference ∆x ∈ F
k
2 and

an output difference ∆y ∈ F
ℓ
2 we define

diffS(∆x→ ∆y) = prob
(

S(X) ⊕ S(X ⊕∆x) = ∆y X ←−− F
k
2

)

=
1

2k
#

{

x ∈ F
k
2 S(x)⊕ S(x⊕∆x) = ∆y

}

∈ [0, 1].

Here, X denotes a uniform random variable with values F
k
2.

This definition matches Definition 1 in Saarinen (2012).

2.2. Linear cryptanalysis. For linear cryptanalysis the bias of a linear expression
in inputs and outputs is essential: We write 〈a x〉 =

⊕

i aixi for applying a linear
form a ∈ F

k∨
2 to a vector x ∈ F

k
2. Actually this way, we identify the dual space

F
k∨
2 :=

{

F
k
2 → F2

}

with F
k
2, matching the bilinear form 〈· ·〉. As it turns out to be

important not to mix vectors and dual vectors, we keep the notation, at least as a
reminder.

Definition 2.2. Given linear forms a ∈ F
k∨
2 and b ∈ F

ℓ∨
2 we define the bias

biasS(a, b) = prob
(

〈a X〉 = 〈b S(X)〉
)

− prob
(

〈a X〉 6= 〈b S(X)〉
)

= 2prob
(

〈a X〉 = 〈b S(X)〉
)

− 1

=
1

2k

∑

x∈Fk
2

(−1)〈a x〉(−1)〈b S(x)〉

∈ [−1, 1],

which is the correlation between the chosen linear forms on input and output of S.

The value used in Definition 2 in Saarinen (2012) equals 1
2 |biasS(βi, βo)|. We prefer

our definition — also found in Daemen & Rijmen (2002), for example — since it
makes Matsui’s piling-up lemma much nicer and also equals the correlation of the
selected input and output bits.

2.3. Algebraic attacks. For algebraic attacks polynomial relations of input and
output bits are essential. The smaller the degree is, the stronger the attack can
be. Actually, at most quadratic and possibly cubic equations seem to be relevant in
practice. For example, when looking for cubic equations we try to fulfill

α� +
∑

i

αizi +
∑

i<j

αijzizj +
∑

i<j<k

αijkzizjzk = 0
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for all z = (x0, . . . , xk−1, y0, . . . , yℓ−1) ∈ F
k+ℓ
2 with y = S(x) when S is a k-to-ℓ-bit

S-box. For k = 6, ℓ = 4 and degree 3, this is a linear system with 64 equations for
the 176 coefficients [α∗]. Since we have u2 = u for u ∈ F2, we usually consider only
multilinear polynomials, ie. polynomials of degree at most 1 with respect to each
variable.

Definition 2.3 (General algebraic relations). An algebraic relation is a polynomial
p ∈ F2[x, y] such that p(x, S(x)) = 0 for all x ∈ F

k
2. Given d ∈ N we define the

number

dimrel(S)d := dim

{

p ∈ F2[x, y]
p multilinear ∧ deg p ≤ d ∧
∀x ∈ F

k
2 : p(x, S(x)) = 0

}

of independent (multilinear) relations for S in degree d. The algebraic degree

algdeg(S) := min {d ∈ N≤k dimrel(S)d > 0}

of S is the smallest degree that allows a non-trivial algebraic relation.

In general, dimrel(S)d ≥
∑

j≤d

(

k+ℓ
j

)

− 2k and algdeg(S) ≤ k.
We wish to have the number of independent relations as small as possible to avoid

algebraic attacks as far as possible. In particular, for DES conditions we would like
to have dimrel(S)2 = 0 and dimrel(S)d =

∑

j≤d

(10
j

)

− 26 for i ≥ 3.

Saarinen (2012), Definition 3, considers more special relations:

Definition 2.4 (Output-linear algebraic relations). An output-linear algebraic re-
lation is a pair (p, b) with a multilinear polynomial p ∈ F2[x] and a (non-trivial) linear
form b ∈ F

ℓ∨
2 so that 〈b S(x)〉 = p(x) for all x ∈ F

k
2 . The smallest possible degree for

p is called the degree deg 〈b S(·)〉 of 〈b S(·)〉. We define the output-linear degree

outlindeg(S) := min
{

deg(〈b S(·)〉) b ∈ F
ℓ∨
2 \ {0}

}

as the least degree needed for p when varying over all b. More details are revealed by
the number

dimoutlinrel(S)d := dim

{

(p, b) ∈ F2[x]× F
ℓ
2

p multilinear ∧ deg p ≤ d ∧
∀x ∈ F

k
2 : 〈b S(x)〉 = p(x)

}

of independent output-linear relations for S in degree d. Now, outlindeg(S) =
min {d ∈ N≤k dimoutlinrel(S)d > 0}.

In general, dimoutlinrel(S)d ≥
∑

j≤d

(

k
j

)

− 2k and outlindeg(S) ≤ k. Since each
output-linear algebraic relation is an algebraic relation 〈b y〉 − p(x) = 0 of same
degree, we have that dimoutlindeg(S)d > 0 implies dimrel(S)d > 0. However, the
converse is wrong. In other words, algdeg(S) ≤ outlindeg(S) but equality may not
hold. The DES S-box S1 actually has algdeg(S1) = 2 and outlindeg(S1) = 3.
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2.4. Avalanche effect. Finally, we define the differential and linear branch num-
bers.

Definition 2.5 (Branch numbers). The differential branch number is defined as

diffbranch(S) = min {wt(∆x) + wt(∆y) diffS(∆x→ ∆y) 6= 0}

where ∆x ∈ F
k
2, ∆y ∈ F

ℓ
2, (∆x,∆y) 6= (0, 0). The linear branch number is defined as

linbranch(S) = min
{

wt(a) + wt(b) biasS(a, b) 6= 0
}

where a ∈ F
k∨
2 , b ∈ F

ℓ∨
2 , (a, b) 6= (0, 0).

The larger the branch numbers are, the stronger the avalanche effect should be.
Saarinen (2012), Definition 4, only considers differential branch numbers.

3. Equivalence classes

Given one S-box S we can derive others by affine transformation:

T :
F
k
2 −→ F

ℓ
2,

x 7−→ JS(Ix+ s) + t,

where I : Fk
2 → F

k
2 , J : Fℓ

2 → F
ℓ
2 are invertible linear maps and s ∈ F

k
2 , t ∈ F

ℓ
2.

Definition 3.1 (Equivalence). We call S and T linear-affine equivalent if there is
an affine transformation.

We call S and T permutation-affine equivalent if there is an affine transformation
where the matrices are even permutation matrices.

Note that permutation matrices are exactly those invertible linear maps that re-
spect the weight. One can check that two permutation equivalent S-boxes S and
T have strongly related differential probabilities and biases. Namely, considered as
matrices diffS(· → ·) and diffT (· → ·) are obtained from each other by permut-
ing rows and columns according to the permutations I and J−1; for biasS(·, ·) and
biasT (·, ·) additionally some signs change depending on the shifts s and t. The al-
gebraic quantities, namely dimrel(S), algdeg(S), dimoutlinrel(S) and outlindeg(S),
are even invariant under linear-affine transformation. This still holds for the finer
multiset

{

deg 〈b S(·)〉 b ∈ F
4
2 \ {0}

}

. The branch numbers do not change under
permutation equivalence. Summarizing: all quantities introduced in Section 2 are
essentially invariant under permutation-affine transformations.
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4. Properties of the proposed S-box

The differential probabilities are found in Figure 4.2. The different colors mark values
affected by different properties from Figure 1.1. Figure 4.2 shows that diffbranch(U) =
2. Actually, the orange area, reflecting S4, and its surrounding shows that it only fails
marginally to reach 3: There are only five differentials ∆x→ 0000 with wt(∆x) = 2
that have non-zero probability, there is no nontrivial differential ∆x → ∆y with
∆y 6= 0 and wt(∆x) + wt(∆y) = 2. Most of this behavior is part of the design
properties for the DES S-boxes.

The biases are found in Figure 4.3. Note that for all a ∈ F
6∨
2 and b ∈ F

4∨
2 with

a, b not both zero, we have |biasU (a, b)| ≤
24
64 , improving the previous best bound 28

64
again. The yellow area is all zero due to Q3+ and that implies that U has

linbranch(U) = 3.

All earlier 6-to-4-bit S-boxes examined only have linear branch number 2.
Next, we consider the number of independent algebraic relations:

dimrel(U) = [0, 0, 0, 112, 322, . . . ].

These are the minimal possible numbers: dimrel(U)d =
∑

j≤d

(10
j

)

− 26 for d ≥ 3.
Consequently, we have the optimal value

algdeg(U) = 3.

When restricting to special relations we find

outlindeg(U) = 4.

Optimal would be 5, but this is only achieved by some DES S-boxes which are worse

Property O
p
ti
m

al

U D
E

S
L

D
E

S
1

D
E

S
2

D
E

S
3

D
E

S
4

D
E

S
5

D
E

S
6

D
E

S
7

D
E

S
8

diffbranch 2? 2 2 2 2 2 2 2 2 2 2

linbranch 3? 3 2 2 2 2 2 2 2 2 2

algdeg 3 3 2 2 3 3 2 2 3 3 3
dimrel2 0 0 1 1 0 0 5 1 0 0 0

outlindeg 5 4 4 4 4 4 3 4 5 5 4
dimoutlinrel3 0 0 0 0 0 0 1 0 0 0 0

dimoutlinrel4 0 4 2 1 2 1 3 1 0 0 1

dimoutlinrel5 3 4 4 4 4 4 4 4 4 4 4

Figure 4.1: Comparison of 6-to-4-bit S-boxes

in other aspects. Actually, there are four independent (ie. 24 − 1 in total) degree 4
relations. Equivalently, for b ∈ F

4
2\{0} each 〈b U(·)〉 has degree 4. However, degree 4

is already a very high single round degree for algebraic attacks, anyways.
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ξ \ η 0
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

1
0
0
1

1
0
1
0

1
1
0
0

0
1
1
1

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
1

000000 64 . . . . . . . . . . . . . . .

000001 . . . . . 6 6 2 8 4 6 2 6 4 4 16

000010 . . . . . 4 16 4 8 4 8 8 . 8 . 4

000100 . . . . . 8 8 4 8 . 4 12 4 4 4 8

001000 . . . . . 6 4 4 6 8 4 10 8 2 12 .

010000 . . . . . 8 8 8 4 4 4 4 8 4 8 4

100000 . . . . . 2 4 6 6 4 2 4 12 12 4 8

000011 8 4 6 . 4 8 4 10 4 10 4 . . . 2 .

000101 8 . 8 6 6 6 . 4 2 4 6 . 2 4 6 2

000110 . . 12 8 4 8 . 4 8 . 4 . 4 . 12 .

001001 2 6 6 6 4 2 8 2 6 6 4 . 4 4 2 2

001010 . . 10 4 2 8 . 6 8 4 6 4 4 4 4 .

001100 . . . . . 2 4 . 10 16 8 2 4 2 8 8

010001 2 6 4 6 6 2 6 4 4 4 8 6 . 2 2 2

010010 . 12 . 12 . . . 4 . 8 4 . 12 . 4 8

010100 . 4 8 4 16 . 8 4 . . 4 8 . 8 . .

011000 . 4 4 4 12 2 . 4 2 . 4 10 4 10 . 4

100001 10 2 6 8 10 2 4 6 4 2 . 2 . 2 2 4

100010 . . 2 4 6 . . 4 4 16 8 6 4 2 8 .

100100 . 2 8 10 8 4 4 4 4 8 4 . 2 . 2 4

101000 . 10 6 6 6 4 4 2 4 4 6 . 2 4 6 .

110000 . 8 6 . 2 4 8 8 . 8 4 2 4 6 4 .

000111 6 10 . 4 . 2 8 2 4 . 6 8 2 6 2 4

001011 2 2 . 2 8 4 2 6 6 4 2 6 6 4 4 6

001101 6 2 2 4 2 10 10 8 4 6 4 6 . . . .

001110 . . 2 4 2 4 16 2 8 8 6 4 . 4 . 4

010011 2 2 4 10 6 6 8 2 4 4 2 2 4 2 2 4

010101 6 10 . . 8 2 . 2 2 4 . 8 8 6 8 .

010110 . 12 12 12 12 . . . . . . . 8 8 . .

011001 . 4 10 8 6 2 . 4 2 2 2 8 6 2 4 4

011010 . 12 10 4 10 . . 2 . 4 2 . . 8 4 8

011100 . 8 4 8 4 6 . 8 2 4 4 2 4 2 . 8

100011 2 4 . 2 6 6 10 4 2 . . 4 4 10 2 8

100101 . 2 . 4 4 6 2 6 8 6 . 4 14 4 . 4

100110 4 2 2 2 2 6 8 2 6 . 2 6 6 6 6 4

101001 . 10 4 6 2 8 4 6 4 4 2 2 . 4 4 4

101010 12 2 2 2 2 4 4 6 4 . 2 8 2 4 2 8

101100 . 12 10 8 2 6 4 4 2 . 4 4 . . 4 4

110001 2 4 6 . . 4 4 4 6 4 6 4 6 2 10 2

110010 8 4 . 4 . 6 . 2 2 4 6 12 8 4 . 4

110100 . 6 6 2 6 6 4 2 6 4 2 2 2 2 6 8

111000 . 6 8 10 4 2 4 4 6 4 4 2 6 2 2 .

001111 8 . 2 2 . 2 2 6 6 6 8 2 4 2 4 10

010111 . . 6 6 6 4 . 2 . 2 4 10 10 4 6 4

011011 . 8 10 8 2 2 6 2 2 2 . . 2 10 8 2

011101 8 4 2 2 . 2 2 6 4 2 2 2 6 10 6 6

011110 . 12 2 4 2 8 . 10 . 4 2 . 4 . 8 8

100111 4 4 6 6 . 2 . 8 2 8 8 2 2 4 8 .

101011 2 6 . 6 8 10 . 6 . . 4 2 2 2 6 10

101101 2 6 2 2 8 4 2 2 . 12 6 4 2 6 2 4

101110 16 4 2 . 6 6 4 4 2 . 4 4 4 4 . 4

110011 6 2 6 2 4 6 2 4 4 . 6 . 8 2 8 4

110101 8 4 4 . 2 . 10 4 2 . 6 6 . 8 8 2

110110 8 2 4 2 4 4 . 4 4 . 4 4 2 4 10 8

111001 4 . 4 6 4 2 4 . 2 2 8 8 2 4 4 10

111010 8 2 4 2 . 2 8 4 6 4 4 6 2 6 2 4

111100 . 4 4 12 4 4 . 2 4 . 6 2 4 6 4 8

011111 6 6 4 . 6 4 2 2 6 4 6 4 4 4 4 2

101111 4 6 6 6 2 2 2 2 4 8 4 4 . 8 . 6

110111 8 2 8 2 2 2 8 . 8 4 2 6 6 4 2 .

111011 6 4 6 2 10 2 4 2 6 8 2 2 6 2 . 2

111101 6 4 6 6 2 6 2 4 6 2 4 2 8 2 2 2

111110 8 . . . 12 4 8 6 4 8 2 2 4 2 4 .

111111 . 4 . 6 . 2 6 6 6 4 6 12 4 . 6 2

Figure 4.2: 26 · diffU (ξ → η)
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a \ b 0
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

1
0
0
1

1
0
1
0

1
1
0
0

0
1
1
1

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
1

000000 64 . . . . . . . . . . . . . . .

000001 . . . . . . . . . . . . . . . .

000010 . . . . . . . . . . . . . . . .

000100 . . . . . . −8 . 8 8 . −8 . . 8 −8

001000 . . . . . −8 8 . 8 −8 . 16 8 −16 −8 .

010000 . . . . . . 8 . . . . −8 −16 8 . −24

100000 . . . . . . . . . . . . . . . .

000011 . . . . . . . . . . . . . . . .

000101 . . . . . . −8 . −8 8 . −8 16 16 −24 8

000110 . −8 −8 . 8 . . −8 8 −8 8 8 −8 16 −8 .

001001 . . . . . 8 8 . −8 −8 . . 8 . −8 .

001010 . . 8 −8 . . −16 16 −8 . −8 16 . 8 8 −16

001100 . . . . . −8 . . . 16 . 8 8 . 16 24

010001 . . . . . . −8 . . . . 8 16 24 . −8

010010 . 8 . 16 . 8 . . −8 16 . . −8 . . .

010100 . . −8 8 . −8 −8 16 8 . 8 16 8 . −8 .

011000 . 8 8 . . 8 −8 8 16 . . −8 8 . . −8

100001 . . . . . . . . . . . . . . . .

100010 . . . . . 16 16 −16 . . . 16 16 16 16 −16

100100 . −8 −8 8 8 . −8 . 8 8 . . 8 −8 . −8

101000 . −8 −16 8 −16 16 8 8 . −8 8 . . . . .

110000 . . . . . . −8 . . . . 8 −16 24 . 24

000111 . 8 8 16 8 . . −8 8 8 −8 24 8 . −8 .

001011 . . −8 −8 16 . 16 . −8 . 8 16 . 8 8 16

001101 . . . . . 8 . . . 16 . −8 −8 . −16 8

001110 . −8 . 8 8 . . −8 −16 8 16 8 −8 −8 . .

010011 . 8 . . . 8 . 16 −8 −16 16 . −8 . 16 .

010101 . 16 −8 −8 . 8 8 . 8 . −8 . 8 . 8 .

010110 . . −16 8 −8 . 8 −8 16 16 16 −8 −8 8 8 .

011001 . 8 8 . . −8 8 8 . . . −8 8 . . 8

011010 . . . 8 . 24 8 8 −24 8 −8 . 8 . . .

011100 . −8 16 −8 . . −24 −8 −8 . −8 . . 8 8 .

100011 . . . . . 16 −16 −16 . . . −16 16 −16 16 16

100101 . −8 8 8 −8 16 −8 16 8 8 16 16 −8 −8 . 8

100110 . . . 8 . 16 . −8 8 −8 −8 . . −8 . .

101001 . −8 16 8 16 . 8 8 16 −8 8 −16 . 16 . .

101010 . −8 8 . . −8 . −8 . . 16 . 8 −8 . .

101100 . . 8 . −8 . . −8 8 −16 −8 . −8 8 . 24

110001 . . . . . . 8 . . . . −8 16 8 . 8

110010 . −8 . . . 8 . . 8 −16 −16 . −8 . . .

110100 . 8 . 16 −8 −8 −8 . 8 . −8 8 . 8 16 .

111000 . . −8 8 16 . 8 16 8 . −24 −8 . . 8 8

001111 . 8 . −8 −8 . . 8 −16 −8 16 −8 8 8 . .

010111 . . . −8 −8 −16 8 −8 . . . 8 −8 −8 8 .

011011 . . −16 −8 −16 −8 8 8 8 8 −8 . 8 . −16 .

011101 . 8 16 8 . . −8 8 8 . 8 . . −8 −8 .

011110 . 8 . . −8 −16 . 16 . 8 8 −8 8 8 8 .

100111 . 16 . −8 16 . . 8 −8 8 −8 . −16 −8 . .

101011 . −8 −8 . 16 −8 . 8 . . . . 8 −8 . .

101101 . . −8 . 8 . . 8 −8 −16 8 . 8 −8 . 8

101110 . 8 8 8 . 8 . . 8 8 8 . 8 . . .

110011 . −8 . −16 . 8 . 16 8 16 . . −8 . 16 .

110101 . −8 16 . −24 −8 8 . −8 . −8 8 . −8 . .

110110 . 8 8 . . . 8 −8 . 16 . . . . . .

111001 . . −8 8 16 −16 −8 −16 −8 . 8 −8 . . 8 −8

111010 . 8 . . . . 8 . . 8 . . . . 8 .

111100 . 8 8 −8 8 8 8 . . . . 8 . . −8 .

011111 . 8 . −16 8 . . . 16 −8 8 8 8 −8 8 .

101111 . 24 −8 24 . −8 . . −8 −8 −8 . −8 . . .

110111 . −24 8 16 16 . 8 8 . . . . . . . .

111011 . 8 16 −16 16 . 8 . . 8 . . . . −8 .

111101 . −8 24 8 −8 −8 24 . . . . −8 . . 8 .

111110 . −8 −8 −16 . 8 . −8 8 8 . . −8 . −8 .

111111 . 24 8 . . 8 . −8 8 −8 16 . −8 . −8 .

Figure 4.3: 26 · biasU (a, b)
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5. Bijective 4-to-4-bit sub-boxes

We briefly analyze the bijective 4-to-4-bit sub-boxes of the S-box U .

Like any DES-suitable S-box, the S-box U is composed of four bijective 4-to-4-
bit S-boxes, namely, U(a∗∗∗∗f) for a, f ∈ F2. Their canonical representatives in
Saarinen’s language are:

af U(a∗∗∗∗f) permutation-affine
canonical form

linear-affine
canonical form

00 0972BEC53FD841A6 035F78E1BD24C69A 012345768A9BCEFD

01 B68F215CDAE37409 035674ED9F28CAB1 012345896ACEFDB7

10 E48D271B5A639CF0 03596AFCB42ED187 012345768A9BCEFD

11 1D42F8A76095CB3E 0358749EF6AD2BC1 012345768ACE9BFD

It turns out that the first and the third are linear-affine equivalent.

Due to property Q1’ there is a second way to compose the S-box U from four
4-to-4-bit S-boxes, namely by taking U(∗∗∗∗ef) for e, f ∈ F2. These are:

ef U(∗∗∗∗ef) permutation-affine
canonical form

linear-affine
canonical form

00 07BC3D4AE821569F 0358A46FE9B7D21C 012345896ABCE7DF

01 B825DE7014FA69C3 0356789FDABCE142 012345786ABCE9FD

10 92E5F8164D7BA3C0 0358A46FE9B7D21C 012345896ABCE7DF

11 6F1CA349D28705BE 0356789FADCB1E24 012345786ABCE9FD

Here, the first and third are even permutation-affine equivalent and the second and
fourth are linear-affine equivalent.

These eight 4-to-4-bit S-boxes are the only bijective 4-to-4-bit sub-boxes of U .
Even, when allowing linear-affine sub-boxes there is no further bijective 4-to-4-bit
sub-box of U . None of the them is linear-affine equivalent to a golden S-box in terms
of Saarinen (2012).

6. How to find good boxes

In order to find good S-boxes, we have written a C program that searches in a depth
first manner the tree of all partially defined 6-to-4-bit S-boxes, where the leaves are
all totally defined boxes. Thus the tree has depth k and each node has 24 child nodes,
representing one new value for a so far undefined position. Since the complete tree
has (24)2

6

= 2256 leaves it is obviously infeasible to traverse the whole tree. Also,
many S-boxes within this tree are trivially unsuitable or do not fulfill the necessary
properties like the ones stated in Coppersmith (1994) or Leander et al. (2007).

Our search algorithm computes the table of differential probabilities and the bias
tables incrementally along the path from the root to a leaf. During this progress
the values for the differential probabilities increase monotonically by 0/26, 1/26 or
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2/26 in each step and table position. Once a differential probability has bypassed a
bound from a condition, no completion can fulfill that condition any more and thus
that entire branch can be purged from the tree. In contrast, the values for the biases
change by ±1/26 in each step. Thus a similar technique for the bias values is more
tricky. Finally, conditions like Q5, involving products of bias values, can only be
checked at the leaves. These techniques allow us to reduce the size of the tree to
estimated 248 S-boxes, which now seems feasible. After 14.66 CPU-years on 12 to
16 Intel Xeon 3.00GHz processors, it has scanned an estimated fraction of 2–7% of
the purged search tree. (The large interval is due to the inherent difficulty of telling
the size of the subtrees below a given node. We thus use two different heuristics to
estimate the processed fraction of the tree.) We estimate that the algorithm would
finish with the whole tree in roughly 12 to 39 years on our tiny cluster. However, we
do not expect to find even better S-boxes nor S-boxes inequivalent to U .

7. Conclusion

We propose a family of 6-to-4-bit S-boxes with linear branch number 3. Besides that
extraordinary feature, its biases are bounded by 24

64 , which is very small, and it also
fulfills most other design criteria of Coppersmith (1994) and Leander et al. (2007).
It may thus serve as a building block for DES-like ciphers.

We briefly discussed the structure of bijective 4-to-4-bit sub-boxes and observed
that these sub-boxes are not golden but in a surprising way closely related to each
other.
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