
On the Impossibility of Cryptography with

Tamperable Randomness

Per Austrin∗, Kai-Min Chung†, Mohammad Mahmoody‡, Rafael Pass§, Karn Seth¶

June 14, 2018

Abstract

We initiate a study of the security of cryptographic primitives in the presence of efficient
tampering attacks to the randomness of honest parties. More precisely, we consider p-tampering
attackers that may efficiently tamper with each bit of the honest parties’ random tape with
probability p, but have to do so in an “online” fashion. Our main result is a strong negative
result: We show that any secure encryption scheme, bit commitment scheme, or zero-knowledge
protocol can be “broken” with advantage Ω(p) by a p-tampering attacker. The core of this
result is a new algorithm for biasing the output of bounded-value functions, which may be of
independent interest.

We also show that this result cannot be extended to primitives such as signature schemes
and identification protocols: assuming the existence of one-way functions, such primitives can
be made resilient to (1/poly(n))-tampering attacks where n is the security parameter.

Keywords Tampering, Randomness, Encryption.

∗KTH Royal Institute of Technology austrin@kth.se. Work done while at Univ. of Toronto, funded by NSERC.
†Cornell chung@cs.cornell.edu. Supported in part by NSF Award CNS-1217821.
‡University of Virginia mohammad@cs.virginia.edu. Supported by NSF CAREER award CCF-1350939.
§Cornell {rafael}@cs.cornell.edu. Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New

Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844,
AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2- 0211. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government
¶Cornell {karn}@cs.cornell.edu.

Contents

1 Introduction 1
1.1 Our Results . 3
1.2 Related Work . 4
1.3 Our Techniques . 7

1.3.1 Biasing Bounded-Value Functions . 7
1.3.2 Impossibility Results for Tamper-Resilient Cryptography 8

2 Preliminaries 9

3 Biasing Functions via Online Tampering 10
3.1 Preliminaries: Calculating the Effect of a Single Variable 10
3.2 The Boolean Case . 11
3.3 Tampering with Bounded-Value Functions—The General Case 14

3.3.1 Tampering with One Bit . 17

4 Computational Splitting from Efficient Biasing 18

5 Impossibility of Tamper Resilient Cryptographic Primitives 21
5.1 Encryption . 21
5.2 Tamper-Resilient Commitments and Secure Computation 23
5.3 Impossibility of Tamper-Resilient Zero-Knowledge for NP 26

5.3.1 Proof of Theorem 5.15 . 29

6 Achieving Tamper Resilience Using Pseudorandomness 33
6.1 Tamper Resilient Signatures . 34
6.2 Identification Schemes . 36
6.3 Witness Hiding Protocols . 37
6.4 Weak Semantic Security . 38
6.5 Generalization to Threshold-0 Primitives . 39
6.6 Beyond Threshold-0 Primitives . 40

6.6.1 Tamper-Resilient Key Agreement . 40

1 Introduction

A traditional assumption in cryptography is that the only way for an attacker to gather or control
information is by receiving and sending messages to honest parties. In particular, it is assumed that
the attacker may not access the internal states of honest parties. However, such assumptions on
the attacker—which we refer to as physical assumptions—are quite strong (and even unrealistic).
In real-life, an attacker may through a “physical attack” learn some “leakage” about the honest
parties’ internal states and may even tamper with their internal states. For instance, a computer
virus may (e.g., using a, so-called, buffer overflow attack [Ale96, Fry00, PB04]) be able to bias
the randomness of an infected computer. Understanding to what extents the traditional physical
assumptions can be relaxed, to capture such realistic attacks, is of fundamental importance.

Indeed, in recent years leakage-resilient cryptography—that is, the design of cryptographic
schemes and protocols that remain secure even when the attacker may receive (partial) leakage
about the internal state of the honest parties—has received significant attention (see e.g., [MR04,
DP08,AGV09,BKKV10,DHLAW10,DGK+10,KLR12,GR12,LL12,DSK12,Rot12]).

In this work, we focus on understanding the power of tampering attacks—that is, attacks where
the adversary may partially modify (i.e., tamper with) the internal state of honest parties. Early
results in the 1990’s already demonstrate that tampering attacks may be very powerful: by just
slightly tampering with the computation of specific implementations of some cryptographic schemes
(e.g., natural implementations of RSA encryption [RSA78]), Boneh, DeMillo and Lipton [BDL97]
demonstrated that the security of these schemes can be broken completely.

Previous works on tamper-resilient cryptography consider tampering of computation [AK96,
BDL97,BS97,IPSW06,FPV11,LL12] and tampering with the memory of an honest party who holds
a secret (e.g., a signing or a decryption algorithm) [GLM+04,DPW18,LL10,KKS11,LL12,CKM11].
This line of research culminated in strong compilers turning any polynomial-size circuit C into a
new “tamper-resilient” polynomial-size circuit C ′; tamper-resilience here means that having “grey-
box” access to C ′ (i.e., having black-box access while tampering with the computation of C ′) yields
no more “knowledge” than simply having black-box access to C. These works, thus, show how to
keep a secret hidden from a tampering attacker. Our focus here is somewhat different. In analogy
with recent work of leakage-resilient security, we aim to investigate to what extent a tampering
attacker may violate the security of a cryptographic protocol by tampering with the internal state
of honest parities.

For concreteness, let us focus on the security of public-key encryption schemes (but as we shall
see shortly, our investigation applies to many more cryptographic tasks such as zero-knowledge
proofs and secure computation). Roughly speaking, we require a tamper-resilient encryption scheme
to guarantee that ciphertexts conceal the encrypted messages, even if the internal computation of
the sender (of the ciphertext) has been tampered with.1 As first observation note that if the
attacker may completely change the computation of the sender, he could simply make the sender
send the message in the clear. Thus, to hope for any reasonable notion of tamper-resilient security
we need to restrict the attacker’s ability to tamper with the computation.

1Let us remark that the simulation property of tamper-resilient compilers do not necessarily guarantee that if the
sender algorithm is compiled into a “tamper-resilient” version, then the encryption scheme is tamper-resilient. This
is due to the fact that the simulation property of those compilers only guarantee that an attacker cannot learn more
from tampering with the sender strategy than it could have with black-box access to it. But in the case of encryption
schemes, it is actually the input to the algorithm (i.e., the message to be encrypted) that we wish to hide (as opposed
to some secret held by the algorithm).

1

Tampering with Randomness. Among various computational resources, randomness might be
one of the hardest to protect against tampering. This is due to the fact that randomness is usually
generated (perhaps based on some “physical” resources available to the system) and any malicious
attacker who is able to change the bits along their generation can mount a tampering attack against
the randomness. Indeed given the breakthrough results of [HDWH12, LHA+12a, LHA+12b] it is
becoming even more clear that randomness is one of the most vulnerable aspects of a cryptographic
system. Thus, a very basic question is to what extent we can protect our systems against tampering
with randomness. In this work we initiate a formal study of this question by considering tampering
attacks to the randomness of the honest players; namely we study the following basic question:

Can security of cryptographic primitives be preserved under tampering attacks to the
randomness of honest parties?

Note that we need to restrict the tampering ability of the attacker, for otherwise the adversary
can effectively make the scheme deterministic by always fixing the randomness of the honest parties
to all zeros. But it is well-known that deterministic encryption schemes cannot be semantically
secure. Therefore, here we initiate study of the power of weak types of tampering attacks to the
randomness of the honest parties.

General Model: The Tampering Virus. We envision the adversary as consisting of two sepa-
rate entities: (1) a classical attacker who interacts with the honest parties only by sending/receiving
messages to/from them (without any side-channels), and (2) a tampering circuit (a.k.a. the “virus”)
who observes the internal state of the honest parties and may only tamper with their randomness
(but may not communicate with the outside world, and in particular with the classical attacker).
The tampering circuit only gets to tamper with a small fraction of the random bits, and in an effi-
cient manner. Note that this model excludes a scenario in which the virus (even efficiently) samples
the whole randomness, regardless of the original randomness sampled by the system, because in
this cases all of the sampled tampered bits might be different from the system’s original random
seed. However, here we study weak attackers who only tamper with a small fraction of the random
bits. In fact, previous works on resettable cryptography [CGGM00] can be interpreted as achieving
tamper resilience against adversaries who tamper with all of the randomness of the honest parties
by resampling the randomness of the honest parties and executing them again and again. This
is incomparable to our model, since our adversary does not have control over the honest parties’
execution (to run them again), but is more powerful in that it could change the value of some of
the random bits.

Online Tampering. Let 0 < p < 1 be the parameter describing the “power” of adversary (which
defines the fraction of tampered bits). It still remains to clarify how the tampering is done over
these bits. The first naive model would allow the adversary to tamper with a p fraction of the bits
after all the bits are sampled by the system (and, thus, are known to the virus as well). However,
this is not realistic since the sequence of random bits used by the system could always be sampled
in an online manner; namely, the system could sample the i-th random bit whenever it needs it
and might use it “on the fly”. Therefore, a tampering adversary also needs to tamper with them
one-by-one, efficiently, and in an on-line fashion.

2

More precisely, we consider a so-called p-tampering attack, where the adversary gets to tam-
per with the random tape of the honest players as follows. The randomness of honest parties is
generated bit-by-bit, and for each generated bit xi the efficient tampering circuit gets to tamper
with it with independent probability p having only knowledge of previously generated random bits
x1, x2, . . . , xi−1 (but not the value of the random bits tossed in the future). Roughly speaking,
requiring security with respect to p-tampering attacks amounts to requiring that security holds
even if the honest players’ randomness comes from a computationally efficient analog of a Santha-
Vazirani (SV) source [SV86]. Recall that a random variable X = (X1, . . . , Xn) over bit strings is
an SV source with parameter δ if for every i ∈ [n] and every (x1, . . . , xi) ∈ {0, 1}i, it holds that
δ ≤ P[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1 − δ. It is easy to see that the random variable
resulting from performing a p-tampering attack on a uniform n-bit string is an SV source with pa-
rameter (1− p)/2; in fact, any SV source is equivalent to performing a computationally unbounded
p-tampering attack on a uniform n-bit string.

The main focus of this work is on the following question:

Can security be achieved under p-tampering attacks?

1.1 Our Results

Our main result is a strong negative answer to the question above for a variety of basic crypto-
graphic primitives. A p-tampering attacker can break all of the following with advantage Ω(p):
(1) the security of any CPA-secure (public-key or private-key) encryption scheme, (2) the zero-
knowledge property of any efficient-prover proof (or argument) system for nontrivial languages, (3)
the hiding property of any commitment scheme, and (4) the security of any protocol for computing
a “nontrivial” finite function. More formally, we prove the following theorems.

Theorem 1.1 (Impossibility of Encryption). Let Π be any CPA-secure public-key or private-key
encryption scheme. Then a p-tampering attacker can break the security of Π with advantage Ω(p).
Moreover, the attacker only tampers with the random bits of the encryption (not the key-generation)
without knowing the encrypted message.

Theorem 1.2 (Impossibility of Zero-Knowledge). Let (P, V) be an efficient prover proof/argument
system for a language L ∈ NP such that the view of any p-tampering verifier can be simulated by
an efficient simulator with indistinguishability gap o(p), then the language L is in BPP.

Theorem 1.3 (Impossibility of Commitments). Let (S,R) be a bit-commitment scheme. Then,
either an efficient malicious sender can break the biding with advantage Ω(p) (without tampering),
or an efficient malicious p-tampering receiver can break the hiding with advantage Ω(p).

Following [GLM+04] we consider two-party functions f : D1 × D2 7→ R where only one player
gets the output. A function f is called trivial in this context, if there is a deterministic single-
message (i.e., only one player speaks) protocol for computing f that is statistically secure.

Theorem 1.4 (Impossibility of Secure Computation). The security of any protocol for computing
a two-party non-trivial function can be broken with advantage Ω(p) through a p-tampering attack.

3

Positive Results. We complement the above negative results by demonstrating some initial
positive results: Assuming the existence of one-way functions, for any p = n−α, where α > 0 is a
constant and n is the security parameter, every implementation of signature schemes, identification
protocols, and witness hiding protocols can be made resilient against p-tampering attackers. We
also present a relaxed notion of semantic security for encryption schemes that can be achieved under
n−α-tampering attacks. We show that for these primitives, security holds even if the randomness
source “min-entropy loss” of at most O(log n). We next show how to use PRGs to ensure that a
tampering attacker will only be able to decrease the overall (pseudo) min-entropy by O(log n). The
above mentioned primitives already imply the existence of one-way functions [IL89], thus preventing
against n−α-tampering attacks can be achieved for these primitives unconditionally. Finally, we
present positive results for tamper-resilient key-agreement and secure multi-party computation in
the presence of (at least) two honest players. We provide the details on this in Section 6.

1.2 Related Work

Subliminal Channels and Kleptography. Cryptographic research on “subliminal channels”
[Sim94] and the related field of “kleptography” [YY96] study whether a cryptographic scheme
can be “misused” for a purpose other than the original purpose it was designed for (e.g., by
putting an undetectable trapdoor in the systems). The existence of subliminal channels between
“outside” and “inside” adversaries could be a huge security concern in certain scenarios such as
voting schemes [FB09]. Our Theorem 1.1 shows that any efficient encryption scheme always has a
subliminal channel between an outsider adversary and an insider virus who is (only) able to tamper
with the randomness of the encryption device no matter how the encryption algorithm tries to
“detect” a virus who is signaling a bit of information to the adversary.

Undetectablity and Algorithm Substitution Attacks. As discussed above, our tampering
attacks are undetectable in the sense that they would pass any extra check done over the randomness,
as part of scheme, as long as these extra checks do not harm the completeness of the scheme.
Perhaps surprisingly, our tampering attack could be set to remain perfectly undetachable in the
sense that it generates a tampered random seed which is uniformly distributed, just like the original
un-tampered randomness. As a result, the behavior of the algorithm using the tampered random
seed remains identical to the when no attack occurs. More formally, we present tampering attacks
against randomness of encryption, commitment, and secure computation schemes, breaking them
with advantage 1/poly(n) by tampering with only one bit of randomness that keeps the distribution
of the tampered bits uniformly distributed (see Remark 5.11.)

The beautiful work of Bellare et al. [BPR14] studies algorithm substitution attacks against sym-
metric key encryption schemes in which the “big brother” substitutes the encryption algorithm E
(that is assumed to contain the encryption key) with its own variant E′ with the goal of learning
nontrivial information about the encrypted message M through accessing to the ciphertext (en-
crypted by E′) transmitted over the public channel. [BPR14] presented attacks against specific
popular encryption schemes. Our tampering attacks against symmetric encryption schemes could
be interpreted as algorithm substitution attacks in which the new substituted encryption algorithm
is the affected encryption algorithm by adversary’s virus that tampers with its randomness. Us-
ing our completely undetectable tampering attack, we could obtain algorithm substitution attacks
against any semantically secure encryption scheme.

4

Tampering with Randomness vs. Imperfect Randomness. Our negative results are closely
related to the impossibility result of Dodis et al. [DOPS04] on the “impossibility of cryptography
with imperfect randomness”, where the security of cryptographic primitives are analyzed assuming
that the honest parties only have access to randomness coming from an SV source (as opposed to
the randomness being perfectly uniform). [DOPS04] present several strong impossibility results for
secure realizability of cryptography primitives in a setting where players only have access to such
imperfect randomness. The SV sources they consider for their impossibility results, however, may
not be efficiently computable.

The key-difference between tamper-resilient security in our setting and security with imperfect
randomness is that we restrict to randomness sources that are efficiently sampled through an
(online) p-tampering attack; thus achieving tamper-resilient security becomes easier than resilience
to imperfect randomness. Note that even if one can efficiently sample from the sources employed
by [DOPS04], that still does not solve our main question, because by sampling fresh randomness
for the system the adversary is indeed tampering with all of the random seed. As we discussed
above, however, in such scenario the adversary can always fix the randomness to zero and so we
are essentially down to the deterministic case. Another, perhaps less important difference, is that
for primitives with simulation-based security, we allow the simulator to depend on the p-tampering
attacker, whereas [DOPS04] the simulator must work for any randomness source; this further makes
achieving tamper-resilient security easier than resilience to imperfect randomness.

Comparison with [KK08]. The work of Kamara and Katz studies the security of private-key
encryption schemes in a related, but quite different model that also lets the adversary tamper with
the randomness of the encryption. Indeed [KK08] allows a CPA attacker A to arbitrarily choose
the randomness r of their CPA encrypting oracle, but their attacker A does not have any control
over the randomness used to encrypt the actual challenge ciphertext. They showed how to achieve
security in this model, while our result, prove in our model, is a negative one; thus the two models
are incomparable. In particular, even though the tampering happens in the model of [KK08], the
adversary cannot make this tampering based on private data stored on the encrypting device. On
the other hand, in our model, the only actual tampering attack is launched over the randomness
used for encrypting the challenge ciphertext, while this randomness remains intact in [KK08].

Preserving Secrets vs. Achieving Security. Some of the previous works on tamper-resilient
cryptography focused on compiling a circuit C holding a secret into a new circuit C ′ that hides
the secret even if the attacker gets to tamper with the computation of C ′. In contrast, in this
work we focus on whether one can preserve the security of cryptographic schemes under tampering
attacks. The simulation property of tamper-resilient compilers do not necessarily guarantee that
if the sender algorithm is compiled into a “tamper-resilient” version, then the encryption scheme
is tamper-resilient. This is due to the fact that the simulation property of those compilers only
guarantee that an attacker cannot learn more from tampering with the sender strategy than it
could have with black-box access to it. But in the case of encryption schemes, it is actually the
input to the algorithm (i.e., the message to be encrypted) that we wish to hide (as opposed to some
secret held by the algorithm). In the following, we review these related works in two categories:
aiming resilience against tampering with memory and against tampering with the computation.

5

Tampering with Memory. The work of Gennaro et al. [GLM+04] was the first to formally
study tamper resilience from an algorithmic (as opposed to a hardware-based) point of view. In
their model they deal with a cryptographic algorithm G(s, x) holding a secret s that given an input
x outputs some y (e.g., G could be a signing or a decryption algorithm). The adversary gets hold to
a box running G and is allowed to perform tampering attacks over the “memory” of G that holds
the secret state of G (which in particular includes the secret s). The adversary’s goal is to break
the security of G with respect to the original value of s (e.g., forge a signature). Gennaro et al.
showed that any cryptographic protocol that can be “tested” for malfunctioning (e.g., a signature
box can be publicly tested by verifying the signatures it produces) can be broken by an adversary
that only performs “resetting” attacks over the bits of the secret state. The idea is to test the bits
of s one by one. In ith step the adversary sets the bit si of s to zero. Then if the newly tampered
value of s passes the malfunctioning test (e.g., can be used to sign messages successfully), it means
that an acceptable value for the first i bit of s is discovered; otherwise we set si to one.

Gennaro et al. also present a positive result based on the assumption that there is a tamper
proof component (e.g., some “circuitry”) available. This way, a trusted party who generates the
circuit of G would sign the original secret state of G and hardwire this signature together with the
corresponding verification key into the tamper proof part of the code of G. The execution of G
will always start by first testing the signature of its own secret state. If the signature verification
passes it will use this state to run its algorithm, and otherwise it will “self-destruct”. The work of
Dziembowski et al. [DPW18] extended the positive result of [GLM+04] and achieved information
theoretic security for a more restricted class of tampering functions through introducing and con-
structing “non-malleable” codes. These codes, then, are used to encode and decode the internal
secret state of G before and after using it (instead of self-destruct). The works of [KKS11, LL12]
go beyond only tamper resilience by achieving also leakage resilience when both of tampering and
leakage are performed only over the memory. Finally the work of Choiet al. [CKM11] studies the
tamper resilience in the context of universal composability and studies affine tampering functions.

Tampering with Computation. Boneh, DeMillo and Lipton [BDL97] showed that introducing
minor random errors during the computation of some implementations of certain cryptographic
schemes can be exploited by the adversary to a large extent and break the scheme completely. The
result was rather shocking, since some natural implementations would completely break down by
a single call along with a random tampering performed. Ishai et al. [IPSW06] took on the positive
side and showed how to make a circuit that is already accessible by the adversary as an input-
output functionality secure against being tampered with up to t wires in every input-output call.
The security here means that the view of any such adversary can be simulated by a simulator who
does not tamper with the circuit and only uses it as a black-box. Thus the compiler of [IPSW06]
shows how to keep a key inside a circuit in a secure way against tampering (e.g., a decryption
circuit, or a signing circuit). The tampering functions here are restricted in the following sense:
they only choose a set of t wires, and for each of them decide whether to set them to zero or one,
or to flip their values. Our positive results (see Section 6), however, apply even to the case that the
adversary can observe the whole internal state of the tampered algorithm, and choose the value of
the tampered “random” bits based on that. The subsequent work of Faust et al. [FPV11] followed
the framework of [IPSW06] and extended their work to the setting that there is no fixed upper
bound t on the number of tampered wires in each round of executing the tampered algorithm, but
there is a constant probability δ > 0 that each chosen wire remains untampered.

6

1.3 Our Techniques

Our main technical contribution is the development of new methods for biasing Boolean, and more
generally, bounded-value functions, using a p-tampering attack.

1.3.1 Biasing Bounded-Value Functions

Our first (negative) result proves an efficient version of the Santha-Vazirani theorem: Any balanced
(or almost balanced) efficiently computable Boolean function f can be biased by Ω(p) through an
efficient p-tampering attack.

Specifically, let Un denote the uniform distribution over {0, 1}n and let UTam,p
n denote the

distribution obtained after performing a p-tampering attack on Un using a tampering algorithm
Tam; more precisely, let UTam,p

n = (X1, . . . , Xn) where with probability 1 − p, Xi is a uniform
random bit, and with probability p, Xi = Tam(1n, X1, . . . , Xi−1).

Theorem 1.5. (Biasing Boolean Functions). There exists an oracle machine Tam with input
parameters n and ε < 1 that runs in time poly(n/ε) and for every n ∈ N and ε ∈ (0, 1), every
Boolean function f : {0, 1}n → {−1, 1}, and every p < 1, for µ = E[f(Un)] it holds that

E[f(UTamf ,p
n)] ≥ µ+ p · (1− |µ| − ε).

The tampering algorithm Tam is extremely simple and natural; it just greedily picks the bit
that maximizes the bias at every step. More precisely, Tamf (x1, . . . , xi−1) estimates the value of

E[f(x1, . . . , xi−1, b, Un−i)]

for both of b = 0 and b = 1 by sampling, and sets xi to the bit b with larger estimated expectation.
Theorem 1.5 suffices for our impossibility result for tamper-resilient zero-knowledge. For all

our remaining impossibility results, however, we need a more general version that also deals with
bounded value functions f : {0, 1}n → [−1, 1]. Our main technical theorem provides such a result.

Theorem 1.6. (Main Technical Theorem: Biasing Bounded-Value Functions). There exists an
efficient oracle machine Tam such that for every n ∈ N , every bounded-value function f : {0, 1}n →
[−1, 1], and every p < 1,

E[f(UTamf ,p
n)] ≥ E[f(Un)] + Ω(p ·Var[f(Un)]).

Note that in Theorem 1.6 the dependence on the variance of f is necessary because f may be
the constant function f(x) = 0, whereas for the case of balanced Boolean functions this clearly
cannot happen. Let us also point out that we have not tried to optimize the constant in Theorem
1.6, but our calculations guarantees 1/15.5.

The greedy algorithm does not work in the non-Boolean case anymore. The problem, roughly
speaking, is that a greedy strategy will locally try to increase the expectation, but that might lead
to choosing a wrong path. As a “counter-example” consider a function f such that: conditioned on
x1 = 0 f is a constant function ε, but conditioned on x1 = 1, f is a Boolean function with average
−ε. For such f , the greedy algorithm will set x1 = 0 and achieves bias at most ε, while by choosing
x1 = 1 more bias could be achieved. To circumvent this problem we use a “mildly greedy” strategy:
we take only one sample of f(·) by choosing x′i, x

′
i+1, . . . , x

′
n at random (x1, . . . , xi−1 are already

7

fixed). Then, we keep the sampled x′i with probability proportional to how much the output of f
is close to our “desired value”, and flip the value of x′i otherwise.

More precisely, Tam(1n, x1, . . . , xi−1) proceeds as follows:

• Samples (x′i, x
′
i+1, . . . , x

′
n)← Un−i+1 and compute y = f(x1, . . . , xi−1, x

′
i, . . . , x

′
n).

• Sample Tam(1n, x1, . . . , xi−1) from a Boolean random variable with expectation y ·x′i. Namely,
output x′i with probability 1+y

2 , and −x′i with probability 1−y
2 .

Note that our mildly greedy strategy is even easier to implement than the greedy one: to tamper
with each bit, it queries f only once.

1.3.2 Impossibility Results for Tamper-Resilient Cryptography

We employ the biasing algorithms of Theorems 1.5 and 1.6 to obtain our negative results using the
following blue-print: We first prove a computational version of the “splitting lemma” of [DOPS04]
(Lemma 1.7 below which follows from Corollary 3.2 in [DOPS04]). Then we will use the same
arguments as those of [DOPS04] to derive our impossibility results.

Lemma 1.7 (Proved in [DOPS04]). Let f0, f1 : {0, 1}poly(m) 7→ {0, 1}m be two efficient functions
such that Pr[f0(Um) 6= f1(Um)] ≥ 1/poly(n). Then there is a Santha-Vazirani source X with
parameter 1/2− 1/ poly(n) such that f0(X) is computationally distinguishable from f1(X).

We use our Theorem 1.6 to prove the following computational version of Lemma 1.7 which
allows one to distinguish the functions f0, f1 by tampering with their random input.

Lemma 1.8 (Computational Splitting Lemma). Let f0 and f1 be two efficient functions from
{0, 1}m to {0, 1}poly(m) and Pr[f0(Um) 6= f1(Um)] ≥ ε > 1/ poly(m). Then one can efficiently find
poly(m)-size circuits f and (tampering circuit) Tam such that

Pr[f(f1(UTam,p
n)) = 1] ≥ Pr[f(f0(UTam,p

n)) = 1] + Ω(ε · p).

Proof Outline. We derive Lemma 1.8 from Theorem 1.6 as follows. We use Theorem 1.6 to
bias the difference function gf (x) = f(f1(x)) − f(f0(x)) (with domain {−1, 0,+1}) towards 1 by
a tampering circuit Tam. It is easy to see that if f is Boolean, doing this is equivalent to the
goal of Lemma 1.8. We show that if one samples f from a family of pairwise independent Boolean
functions, then the resulting function gf (·) has sufficient variance as needed by Theorem 1.6.

We use our Lemma 1.8 similar to the way Lemma 1.7 is employed in [DOPS04] to derive our
impossibility results for tamper resilient: encryption schemes, commitments, and two-party secure
function evaluation protocols. For all these primitives an adversary uses Lemma 1.8 to generate a
tampering circuit Tam that later on lets him distinguish the corresponding challenges (generated
using the tampered randomness) and break the security.

Zero-Knowledge. Zero-knowledge proofs in the setting of [DOPS04] require a universal simula-
tor that simultaneously handles a large class of imperfect randomness sources. We can also use our
Lemma 1.8 to rule out such tamper-resilient zero-knowledge proofs. In the computational setting,
however, it is the malicious verifier who generates the bad source of randomness, and so we shall
allow the simulator to depend on the tampering circuit as well. Thus, the simulator in our setting
has more power. This prevents us from being able to apply Lemma 1.8 directly.

8

We proceed in using the following high level outline. In the first step, we generalize a result
by Goldreich and Oren [GO94] showing that non-trivial zero-knowledge protocols cannot have
deterministic provers. Our generalization to [GO94] shows that non-trivial zero-knowledge protocols
require having prover messages with min-entropy ω(log n). This means that the verifier can apply
a (seeded) randomness extractor to the transcript and obtain one almost unbiased bit. In a second
step, we show how to use (the proof of) Theorem 1.5 to tamper with the prover’s randomness so
as to signal bits of the witness to the verifier.

This outline, however, oversimplifies: is it not the case that every non-trivial zero-knowledge
protocol requires the prover messages to have min-entropy ω(log n); in fact, for some “easy” in-
stances, the prover may not communicate at all. Rather, we demonstrate that an “instance-based”
version of the min-entropy extension of the Goldreich and Oren [GO94] theorem holds, and using
it we can prove that either the prover’s messages have high min-entropy (and thus the witness can
be leaked to the verifier), or the instance can be decided “trivially”. It follows that in either case,
we can correctly decide the instance and thus the language must be trivial.

2 Preliminaries

Notation. We use x ← X to denote the sampling of x from the random variable (or rather
distribution) X. By Un we refer to the uniform distribution over {0, 1}n. We use the notation
that multiple uses of the same random variable in a probability or expectation refers to the same
instantiation. For example Pr[f(Un) = g(Un)] = Pr[f(Un) = g(Un)]. On few occasions, to em-
phasize over the random variable over which the probability or expectation is defined, we might
use the notation Prx←X [·] or Ex←X [·]. By a negligible function, denoted as negl(n), we mean any
function which is of the form n−ω(1). By a noticeable function f(n) we mean any function of the
form nΩ(1). We use the notation PPT do denote probabilistic polynomial time. We might use the
terms “efficient” and PPT interchangeably. For interactive algorithms (A,B) and C ∈ {A,B}, by
ViewC〈A,B〉(x) we denote the view of C in an execution of the interaction between A,B, where
this view includes the common input, the private randomness of C, and the messages exchanged.
In addition, by 〈A,B〉(x) we denote the output of the interaction between (randomized) interactive
algorithms A,B over common input x. By ∆(X,Y) we denote the statistical distance between
the random variables X,Y defined as 1

2

∑
x |P[X = x] − P[Y = x]|. By H∞(X) we denote the

min-entropy of the random variable X defined as the largest k such that P[X = a] ≤ 2−k for every
a. We call a sequence {Xx} of random variables indexed by x ∈ I ⊆ {0, 1}∗ an ensemble of random
variables. We call two ensembles of random variables {Xx} and {Yx} (with the same index set)
α(|x|)-indistinguishable if for every polynomial p(·) and every sequence of Boolean circuits Cn of
size p(n), we have ∆(C|x|(x,Xx), C|x|(x,Yx)) ≤ α(|x|). we use the term computationally indistin-
guishable to refer to the case where α(·) = negl(·). For function f : {0, 1}n 7→ R by E[f] and Var[f]
we mean E[f(Un)] and Var[f(Un)].

Definition 2.1 (SV Sources). The random bit string X = (X1, . . . , Xn) is a Santha-Vazirani (SV)
source with parameter δ if for every i ∈ [n] and every (x1, . . . , xi), it holds that δ ≤ P[Xi = xi|X1 =
x1, . . . , Xi−1 = xi−1] ≤ 1− δ. It is easy to see that H∞(X) ≥ n · lg(1− δ) holds for any SV source
X = (X1, . . . , Xn) with parameter δ.

9

3 Biasing Functions via Online Tampering

In this section we study how much the output of a bounded function can be biased through a
tampering attack. First we formally define an online tampering process and a tampering source of
randomness (as a result of an online tampering attack performed on a uniform distribution).

Definition 3.1. A distribution X = (X1, . . . , Xn) over {−1, 1}n is an (efficient) p-tampering source
if there exists an (efficient) tampering algorithm Tam such that X can be generated in an online
fashion as follows: For i = 1, . . . , n,

Xi =

{
Tam(1n, X1, . . . , Xi−1) with probability p,

U i1 with probability 1− p,

where U i1 denotes a uniformly random bit over {−1, 1}. In other words, with probability p, Tam gets
to tamper the next bit with the knowledge of the previous bits (after the tampering)2. The tampering
algorithm Tam might also receive an auxiliary input and use it in its tampering strategy.3 We use
UTam,p
n to denote the p-tampered source obtained by the above tampering process with tampering

algorithm Tam.

Note that in the definition above, the tampering algorithm Tam might be completely oblivious
to the parameter p. By referring to Tam as a p-tampering algorithm, we emphasize on the fact that
Tam’s algorithm might depend on p.

Remark 3.2. Every p-tampering source is also a Santha-Vazirani source [SV86] with parameter
δ = (1−p)/2. In fact, it is not hard to see that without the efficiency consideration, the two notions
are equivalent.

3.1 Preliminaries: Calculating the Effect of a Single Variable

Since the constants that emerge in our analysis are standard Fourier notation, in the following we
will first recall the Fourier notation before using it in our presentation of the proofs. However, we
emphasize that no knowledge of Fourier analysis is needed for understanding our proofs.

Recall that the Fourier coefficients of any function f : {−1, 1}n → [−1, 1] are indexed by the
subsets S of [n] and are defined as f̂(S) := E[f(Un)χS(Un)], where χS(x) :=

∏
i∈S xi. Note that

the Fourier coefficient of the empty set f̂(∅) is simply the expectation E[f(Un)].
For every prefix x≤i = (x1, . . . , xi), let fx≤i : {−1, 1}n−i → [−1, 1] be the restriction of f on x≤i,

i.e., fx≤i(xi+1, . . . , xn) := f(x1, . . . , xn). We note that the variables of fx≤i are named (xi+1, . . . , xn)

and thus the Fourier coefficients of fx≤i are f̂x≤i(S)’s with S ⊆ {i+ 1, . . . , n}. The following basic
identity can be proved by straightforward calculation.

f̂x1(∅) = f̂(∅) + f̂({1}) · x1. (1)

2In a stronger variant of tampering attacks, the attacker might be completely stateful and memorize the original
values of the previous bits before and after tampering and also the places where the tampering took place, and use
this extra information in its future tampering. Using the weaker stateless attacker of Definition 3.1 only makes our
negative results stronger. Our positive results hold even against stateful attackers.

3The auxiliary input could, e.g., be the information that the tampering algorithm receives about the secret state
of the tampered party; this information might not be available at the time the tampering circuit is generated.

10

Recall that f̂(∅) and f̂x1(∅) are simply expectations. One interpretation of the above identity is
that ±f̂({1}) is the change of expectation when we set x1 = ±1. This is thus useful for analyzing
the bias introduced as the result of a tampering attack.

Using the above identity with a simple induction, we can express f(x) as a sum of Fourier
coefficients of restrictions of f . Namely, f(x) equals to the expectation f̂(∅) plus the changes in
expectation when we set xi bit by bit.

Lemma 3.3. For every x ∈ {−1, 1}n, it holds that f(x) = f̂(∅) +
∑n

i=1 f̂x≤i−1
({i}) · xi.

Proof. By expanding f̂x≤j (∅) = f̂x≤j−1
(∅)+ f̂x≤j−1

({j}) ·xj , (implied by Equation (1)) and a simple
induction on j it follows that:

f(x) = f̂x≤j (∅) +

n∑
i=j+1

f̂x≤i−1
({i}) · xi,

which proves the lemma.

As a corollary, the above lemma implies that the sum of Fourier coefficients (of restrictions of
f) in absolute value is at least |f(x)| − |f̂(∅)|.

Corollary 3.4. For every x ∈ {−1, 1}n, it holds that
∑n

i=1

∣∣∣f̂x≤i−1
({i})

∣∣∣ ≥ |f(x)| − |f̂(∅)|.

Proof. We have

n∑
i=1

∣∣∣f̂x≤i−1
({i})

∣∣∣ =

n∑
i=1

∣∣∣f̂x≤i−1
({i}) · xi

∣∣∣ ≥ ∣∣∣∣∣
n∑
i=1

f̂x≤i−1
({i}) · xi

∣∣∣∣∣ = |f(x)− f̂(∅)| ≥ |f(x)| − |f̂(∅)|

where both inequalities follow by the triangle inequality, and the second equality uses Lemma 3.3.

3.2 The Boolean Case

A seminal result by Santha and Vazirani [SV86] shows that for every balanced Boolean function
f (e.g., a candidate “extractor”), there exists a p-tampering source X that biases the output of
f by at least p. We now present a strengthening of this result that additionally shows that if
the function f is efficiently computable, then the source X could be an efficient p-tampering one
(and only needs to use f as a black box). In the language of extractors, our result thus proves a
strong impossibility result for deterministic randomness extraction from “efficient” Santha-Vazirani
sources. Our proof of the generalized result is quite different (and in our eyes simpler) than classic
proofs of the Santha-Vazirani theorem and may be of independent interest.

In fact, we present two different proofs. The first one achieves optimal bias p for balanced f ,
whereas the second uses an extremely simple “mild greedy” tampering algorithm that makes only
a single query to f and achieves bias p/3 for balanced f .

Theorem 1.5 (Restated). (Biasing Boolean Functions). There exists an oracle machine Tam with
input parameters n and ε < 1 that runs in time poly(n/ε) and for every n ∈ N and ε ∈ (0, 1),
every Boolean function f : {0, 1}n → {−1, 1}, and every p < 1, for µ = E[f(Un)] it holds that

E[f(UTamf ,p
n)] ≥ µ+ p · (1− |µ| − ε).

11

Proof of Theorem 1.5. Let us first present a proof with an inefficient tampering algorithm achieving
bias p · (1− |µ|); next, we show how to make it efficient while not loosing much in bias. On input
x≤i−1 = (x1, . . . , xi−1), Tam sets xi = sgn(f̂x≤i−1

({i})). By Equation (1), f̂x≤i−1
({i}) corresponds

to the change in expectation of fx≤i−1
when setting the value of xi. This amounts to greedily

choosing the xi that increases the expectation. Let X = UTam,p
n . By applying Lemma 3.3 and the

linearity of expectations, we have

E[f(X)] = f̂(∅) +
n∑
i=1

E
[
f̂X≤i−1

({i}) ·Xi

]
= f̂(∅) +

n∑
i=1

E
[
f̂X≤i−1

({i}) · E[Xi|X≤i−1]
]
.

Since Tam tampers with the i’th bit with independent probability p, therefore

E[Xi|X≤i−1] = p · sgn(f̂X≤i−1
({i})

and so it holds that

E[f(X)] = f̂(∅) + p ·
n∑
i=1

E
[∣∣∣f̂X≤i−1

({i})
∣∣∣] = f̂(∅) + p · E

[
n∑
i=1

∣∣∣f̂X≤i−1
({i})

∣∣∣] ≥ f̂(∅) + p · (1− f̂(∅))

where the last inequality follows by Corollary 3.4.
Note that the above tampering algorithm Tam in general is not efficient since computing

f̂x≤i−1
({i}) exactly may be hard. However, we show that Tam may approximate f̂x≤i−1

({i}) using

M = Theta(n
2

ε2
·log n

ε) samples, and set xi according to the sign of the approximation of f̂x≤i−1
({i}),

while still inducing essentially the same bias. This clearly can be done efficiently given oracle access

to f . As before, let X = UTamf ,p
n denote the corresponding p-tampering source. To lower bound

E[f(X)], we note that the only difference from the previous case is that Tam(1n, x≤i−1) is no longer
always outputting sgn(f̂x≤i−1

({i})). Nevertheless, we claim that for every x<i it holds that

f̂x≤i−1
({i}) · E[Xi|X≤i−1 = x≤i−1] ≥ p ·

(
|f̂x≤i−1

({i})| − ε/n
)

since either (i) |f̂x≤i−1
({i})| ≥ ε/2n in which by a Chernoff bound Tam outputs sgn(f̂x≤i−1

({i}))
with probability at least 1 − ε/2n, or (ii) |f̂x≤i−1

({i})| < ε/2n in which case the inequality holds
no matter what Tam outputs since |E[Xi|X≤i−1 = x≤i−1]| ≤ p. A lower bound on E[f(X)] then
follows by the same analysis as before.

E[f(X)] ≥ f̂(∅) + p ·
n∑
i=1

E
[∣∣∣f̂X≤i−1

({i})
∣∣∣− ε/n] ≥ µ+ p · (1− |f̂(∅)| − ε).

Before presenting the second proof, we state the following lemma, which follows similarly to
lemma 3.3, but instead it relies on a squared version of Equation (1).

Lemma 3.5. For all x ∈ {−1, 1}n, f(x)2 = f̂(∅)2 +
∑n

i=1

[
f̂x≤i−1

({i})2 + 2f̂x≤i−1
(∅)f̂x≤i−1

({i})xi
]
.

12

Proof. Squaring Equation (1), and recalling that x2
i = 1 since xi ∈ {−1, 1}, for every f we obtain

f̂x1(∅)2 = f̂(∅)2 + f̂({1})2 + 2f̂(∅) · f̂({1}) · x1.

By expanding

f̂x≤j (∅)
2 = f̂x≤j−1

(∅)2 + f̂x≤j−1
({j})2 + 2f̂x≤j−1

(∅) · f̂x≤j−1
({j}) · xj

and using a simple induction over j it follows that

f(x)2 = f̂x≤j (∅)
2 +

n∑
i=j+1

(
f̂x≤i−1

({i})2 + 2f̂x≤i−1
(∅) · f̂x≤i−1

({i}) · xi.
)
,

which proves the lemma.

We continue to present the second proof, which uses a “mild greedy” tampering algorithm that
makes only a single query to f and achieves bias p/3 for balanced f .

Theorem 3.6. There exists an oracle machine Tam that makes a single query to its oracle such that
for every n ∈ N , every Boolean function f : {0, 1}n → {−1, 1}, and every p < 1, for µ = E[f(Un)]
it holds that

E[f(UTamf ,p
n)] ≥ µ+ p · (1− µ2)/3.

Proof. We consider a mild greedy tampering algorithm MTam that on input x≤i−1 = (x1, . . . , xi−1),
samples uniformly random (x′i, . . . , x

′
n) ← Un−i+1, queries y = f(x1, xi−1, x

′
i, . . . , x

′
n), and outputs

Xi = x′i if y = 1 and Xi = −x′i if y = −1. Namely, MTam samples a random completion of x≤i−1

and output the sampled bit x′i iff the sample evaluates to 1.
Interestingly, this simple mild greedy MTam implicitly “plays the first Fourier coefficient” in

expectation in the sense that E[MTam(x≤i−1)] = f̂x≤i−1
({i}).

Claim 3.7. For every x≤i−1, E[MTam(x≤i−1)] = f̂x≤i−1
({i}).

Proof. Let Xi = MTam(x≤i−1). We have E[Xi] = E[f(x) · xi] = f̂x≤i−1
({i}) where the second

expectation is over the choice of x ≥ i from Un−i+1.

To analyze MTam, we derive two equalities analogous to that in the proof of Theorem 1.5, and
the theorem follows by combining the two equalities. First, since MTam gets to tamper with bit
i with independent probability p and E[MTam(x≤i−1)] = f̂x≤i−1

({i}), by Claim 3.7, we have that

E[Xi|X≤i−1] = p · f̂X≤i−1
({i}). Thus,

E[f(X)] = f̂(∅) + p ·
n∑
i=1

E
[
f̂X≤i−1

({i})2
]
. (2)

Similarly, by applying Lemma 3.5 and the linearity of expectations, we have

E[f(X)2] = f̂(∅)2 +

n∑
i=1

(
E[f̂X≤i−1

({i})2]
)

+
n∑
i=1

(
2E[f̂X≤i−1

(∅) · f̂X≤i−1
({i}) · E[Xi|X≤i−1]]

)
.

13

Simplifying using the fact that f is Boolean, the trivial bound |f̂X≤i−1
(∅)| ≤ 1, and E[Xi|X≤i−1] =

p · f̂X≤i−1
({i}) gives

1 ≤ f̂(∅)2 + (1 + 2p) ·
n∑
i=1

E[f̂X≤i−1
({i})2]. (3)

Plugging Equation (3) in Equation (2) yields

E[f(X)] ≥ f̂(∅) +
p

1 + 2p

(
1− f̂(∅)2

)
≥ µ+ p ·

(
1− µ2

)
/3,

which completes the proof of Theorem 3.6.

3.3 Tampering with Bounded-Value Functions—The General Case

We further consider the more general case of tampering non-Boolean, bounded-value functions. We
present an efficient tampering algorithm that biases the expectation of the function by an amount
linear in the variance of the function.

Theorem 1.6 (Restated). (Main Technical Theorem: Biasing Bounded-Value Functions). There
exists an efficient oracle machine Tam such that for every n ∈ N , every bounded-value function
f : {0, 1}n → [−1, 1], and every p < 1,

E[f(UTamf ,p
n)] ≥ E[f(Un)] + Ω(p ·Var[f(Un)]).

In particular, we will prove the above Theorem for constant 1/15.5 as the constant in the Ω(·)
notation; we did not optimize this constant.

We prove Theorem 1.5 using mild greedy tampering algorithm again. As before, we let MTam
take a single sample, and make decision based on the outcome of the sample, but since f is not
Boolean, we make randomized decision based on the function value on the sample. Specifically, on
input x≤i−1 = (x1, . . . , xi−1):

• MTam samples random (x′i, . . . , x
′
n)← Un−i+1, and computes y = f(x1, . . . , xi−1, x

′
i, . . . , x

′
n).

• MTam outputs Xi = x′i with probability (1 + y)/2, and Xi = −x′i with probability (1− y)/2.
Note that Xi has expectation E[Xi] = y · x′i.

The following claim says that MTam “implicitly plays the first Fourier coefficient” in expectation.

Claim 3.8. For every x≤i−1 = (x1, . . . , xi−1) ∈ {−1, 1}i−1, E[MTam(x≤i−1)] = f̂x≤i−1
({i}).

Proof. Let Xi = MTam(x≤i−1). We have:

E[Xi] = E[f(x) · xi] = f̂x≤i−1
({i})

where the second expectation is over the choice of x ≥ i from Un−i+1.

Let X = UMTamf ,p
n . Also, let the mean E[f(Un)] = µ, the second moment E[f(Un)2] = ν, and

the variance Var[f] = σ2 be denoted so. The analysis of the mild greedy algorithm MTam for the
non-Boolean case is significantly more involved. We first follow an analogous step in the analysis
of Boolean case to derive an inequality between E[f(X)] and E[f(X)2], then rely on a potential
function analysis to derive a second inequality relation between E[f(X)] and E[f(X)2], and then
derive a lower bound on E[f(X)] by combining the two. The two inequalities are stated in the
following lemmas.

14

Lemma 3.9.
E[f(X)]− µ ≥ p

1 + 2p
·
(
E[f(X)2]− µ2

)
.

Lemma 3.10. Let g : {−1, 1}n → [−1, 1] be an arbitrary function. For every prefix x≤i ∈ {−1, 1}i,
define a potential

Φ(x≤i) := f̂x≤i(∅) +
ĝx≤i(∅)

2
+
ĝx≤i(∅)2

4
,

and let Φ := Φ(x≤0). Then it holds that E[Φ(X)] ≥ Φ.

We first use the above two lemmas to derive Theorem 1.6.

Proof of Theorem 1.6 using Lemmas 3.9 and 3.10. In Lemma 3.10, we use g(x) = (f(x) − µ)2/4.
Note that g(x) ∈ [0, 1] ⊂ [−1,+1]. Let µ′ = E[f(X)] and β = µ′ − µ be the bias. Then, we have

E[Φ(X≤n)] = E[f(X)] + E

[
1

2
· (f(X)− µ)2

4
+

1

4
· (f(X)− µ)4

16

]
< µ′ +

3

4
· E
[

(f(X)− µ)2

4

]
= µ′ +

3

16
· E
[
f(X)2 + µ2 − 2µµ′

]
(by β = µ′ − µ) = µ′ +

3

16
· E
[
f(X)2 − µ2 − 2µβ

]
(by Lemma 3.9) = µ′ +

3

16
·
(
β · (1 + 2p)

p
− 2µβ

)
≤ µ′ + 3β · (1 + 2p)

16p
+

3

8
· β.

On the other hand, we have

E[Φ(X≤0)] = E[f(Un)] +
1

2
· E
[

(f(Un)− µ)2

4

]
+

1

4
· E
[

(f(X)− µ)2

4

]2

= µ+
1

8
· σ2 +

1

64
σ4 > µ+

1

8
· σ2.

Now, by using Lemma 3.10 (i.e., E[Φ(X≤0)] ≤ E[Φ(X≤n)]) and the above bounds we get:

µ′ +
3β · (1 + 2p)

16p
+

3

8
· β > µ+

1

8
· σ2

and so,

β ·
(

1 +
3(1 + 2p)

16p
+

3

8

)
>

1

8
· σ2.

Therefore,

(µ′ − µ) · (15.5) = β · (15.5) > β ·
(

8p+
3(1 + 2p)

2
+ 3p

)
> p · σ2

which proves Theorem 1.6.

15

Now we prove Lemmas 3.9 and 3.10.

Proof of Lemma 3.9. By applying Lemma 3.3 and the linearity of expectations, we have

E[f(X)] = f̂(∅) +

n∑
i=1

E
[
f̂X≤i−1

({i}) ·Xi

]
= f̂(∅) +

n∑
i=1

E
[
f̂X≤i−1

({i}) · E[Xi|X≤i−1]
]
.

Since MTam gets to tamper with bit i with independent probability p and E[MTam(x≤i−1)] =
f̂x≤i−1

({i}), by Claim 3.8, we have that E[Xi|X≤i−1] = p · f̂X≤i−1
({i}). Thus,

E[f(X)] = f̂(∅) + p ·
n∑
i=1

E
[
f̂X≤i−1

({i})2
]
. (4)

Similarly, by applying Lemma 3.5 and the linearity of expectations, we have

E[f(X)2] = f̂(∅)2 +
n∑
i=1

(
E[f̂X≤i−1

({i})2]
)

+
n∑
i=1

(
2E[f̂X≤i−1

(∅) · f̂X≤i−1
({i}) · E[Xi|X≤i−1]]

)
.

Simplifying using the trivial bound |f̂X≤i−1
(∅)| ≤ 1 and E[Xi|X≤i−1] = p · f̂X≤i−1

({i}) gives

E[f(X)2] ≤ f̂(∅)2 + (1 + 2p) ·
n∑
i=1

E[f̂X≤i−1
({i})2]. (5)

The lemma follows by combining Equations (4) and (5):

E[f(X)] ≥ f̂(∅) +
p

1 + 2p

(
E[f(X)2]− f̂(∅)2

)
= µ+

p

1 + 2p

(
E[f(X)2]− µ2

)
.

We now prove Lemma 3.10.

Proof of Lemma 3.10. We show that for every x≤i−1 ∈ {−1, 1}i−1,

E[Φ(X≤i) | X≤i−1 = x≤i−1] ≥ Φ(x≤i−1).

To simplify the notation, let A = f̂x≤i−1
(∅), a = f̂x≤i−1

({i}), B = ĝx≤i−1
(∅), and b = ĝx≤i−1

({i}).
Using this notation we have,

Φ(x≤i−1) = A+B/2 +B2/4.

Using Equation (1), we see that

Φ(x≤i) = f̂x≤i(∅) +
ĝx≤i(∅)

2
+
ĝx≤i(∅)2

4
= (A+ a · xi) +

B + b · xi
2

+
(B + b · xi)2

4
.

Recall that in the tampering process, with probability 1 − p, Xi is uniformly random, and with
probability p, Xi = MTam(x≤i−1) equals 1 with probability (1+f̂x≤i−1

({i}))/2 = (1+a)/2. Namely,
E[Φ(X≤i) | X≤i−1 = x≤i−1] is equal to

(1 + pa)

2

(
(A+ a) +

B + b

2
+

(B + b)2

4

)
+

(1− pa)

2

(
(A− a) +

B − b
2

+
(B − b)2

4

)
.

16

A calculation shows that

E[Φ(X≤i) | X≤i−1 = x≤i−1] = Φ(x≤i−1) + p ·
(
a2 +

(1 +B)ab

2
+
b2

4

)
+ (1− p)b

2

4
.

Note that since g is bounded, we have |B| ≤ 1 and thus

a2 +
(1 +B)ab

2
+
b2

4
≥ |a|2 − |a| · |b|+ |b|

2

4
= (|a| − |b|/2)2 ≥ 0.

Therefore, E[Φ(X≤i) | X≤i−1 = x≤i−1] ≥ Φ(x≤i−1). Applying the inequality iteratively shows that

E[Φ(X)] = E[Φ(X≤n)] ≥ E[Φ(X≤n−1)] ≥ · · · ≥ E[Φ(X≤0)] = Φ.

Lemma 3.10 now follows easily.

Proof of Lemma 3.10. By applying Lemma 3.10 with g = f2 and noting that ĝ(∅) = ν, we have

E[f(X)] +
E[f(X)2]

2
+

E[f(X)2]2

4
≥ µ+

ν

2
+
ν2

4
.

3.3.1 Tampering with One Bit

In this subsection we study the effects of applying the greedy biasing attack of Theorem 1.5 in a
scenario in which the tampering circuit Tam gets to tamper with only one bit of the input bits where
the location of the tampered bit is selected at random. Intuitively, this is similar to a p-tampering
attack with p = 1/n where n is the number of input bits.

Theorem 3.11. There exists an oracle machine Tam running in time poly(n/ε) such that for every
n ∈ N , every bounded-value function f : {0, 1}n → [−1, 1], and every p < 1,

E[f(X)] ≥ E[f(Un)] +
Var[f(Un)]

2n
− ε.

where X is the result of Tam tampering with a single randomly selected bit of the input bits Un.

Proof. We use the greedy tampering algorithm of Theorem 1.5. Similar to the proof of Theorem 1.5
we present a computationally unbounded tampering that achieves bias p·Var[f(Un)]

n . This tampering
attack could then be turned into an efficient one by using approximations of expectations while
losing an additive ε term.

Recall that by Lemma 3.3 we have f(x) = E[f(Un)]+
∑n

i=1 f̂x≤i−1
({i}) ·xi., and that f̂x≤i−1

({i})
is the the increase in the expectation when we set xi to be one.

Let j ∈ [n] be the randomly selected index of the tampered bit. Recall therefore we have

E[f(X)] = E[f(Un)] + |f̂x≤j−1
({j})|

where x≤j−1 is the first i − 1 bits of X. However, since the j’th bit is the only tampered bit,

x≤j−1 is uniformly distributed. We will show that Ej←[n],X [|f̂X≤j−1
({j})|] ≥ Var[f(Un)]/(2n) which

17

is equivalent to E
[∑

j∈[n] |f̂X≤j−1
({j})|

]
≥ Var[f(Un)]/2. The theorem then follows by linearity

of expectations. Similarly to the proof of Theorem 1.5 it holds that E
[∑

j∈[n] |f̂X≤j−1
({j})|

]
≥

E[|µ− f(Un)|]. However, note that if 0 < α < 2 it holds that α ≥ α2/2, and therefore it holds that
E[|µ− f(X)|] ≥ E[|µ− f(X)|2]/2 = Var[f].

4 Computational Splitting from Efficient Biasing

In this section we state and prove Lemma 1.8 formally.
The following definition formalizes the scenario in which one can distinguish between the func-

tions f0, f1 by a tampering circuit T that performs a p-tampering attack against the inputs of f0

and f1 and at the end one applies a Boolean function f over the generated output.

Definition 4.1 (Distinguishing Functions). For any two functions f0, f1 mapping {0, 1}m to {0, 1}∗,
any Boolean function f , tampering parameter p, and circuit T , we call (f, T) δ-distinguishing for
(f0, f1) (under p-tampering attack) if Pr[f(f1(UT,pm)) = 1] ≥ Pr[f(f0(UT,pm)) = 1] + δ. In case (f ,T)
is a distribution, we call them δ-distinguishing if the same holds but also over the randomness of
(f, T); namely, if it holds that Eδf ,T ≥ δ where (f ,T) is δf,T -distinguishing.

The definition above could be generalized beyond p-tampering attacks and can, e.g., , be directly
adapted for tampering attackers that tamper with a randomly selected bit only.

Remark 4.2. Note that in Definition 4.1 above, the tampering circuit T could be fully described
independently of f0, f1, or it could be described as an oracle algorithm T f0,f1 relative to (f0, f1).
However, when the circuit T receives the random bits Un, it does not know which one of f0, f1 will
be executed over the sequence of tampered bits. One can think of an alternative version of Definition
4.1 in which two tampering circuits T0, T1 together with a detecting function f aim to distinguish
f0 from f0 in which T0 tampers with with the inputs of f0 and T1 tampers with the inputs of f1.

Now we describe Lemma 1.8 formally.

Lemma 4.3 (Lemma 1.8, formalized). Let f0 and f1 be two efficient functions from {0, 1}m to
{0, 1}poly(κ) where m ≤ poly(κ) and κ is the security parameter4 and H∞(fb(Um)) > t for both
b ∈ {0, 1} and some t ≥ 10. Let ε = Pr[f0(Un) 6= f1(Un)], and let p < 1 be an arbitrary tampering
parameter. There is a PPT A(κ,m) that only depends on κ,m and outputs a function f and a
tampering oracle-aided circuit T such that (f ,T(f0,f1)) δ-distinguish (f0, f1) where δ ≥ Ω(ε · p −
2−t/2). Moreover, in case the tampering model allows T to tamper with only one randomly selected
bit, then δ ≥ Ω(ε/n − 2−t/2), and the distribution of the sequence of input bits remains uniformly
random even after the tampering (with one bit).

Remark 4.4. Note that the adversary of Lemma 4.3 generates the tampering oracle-aided circuit
T without the knowledge of the f0, f1, however, the circuit T will have access to both of these
functions while tampering with the inputs. But the tampered randomness will be fed to fb for an
unknown b ∈ {0, 1}. This setting is useful in scenarios in which the functions f0, f1 are not known to
the attacker during the generation of the tampering virus, but will be known during the tampering

4The input length m could potentially be much smaller than the security parameter κ.

18

attack. An example is the tampering attack of Section 5 for private-key encryption schemes in
which the functions f0, f1 are the functions whose decryption depends on the private key and take
randomness as input and encrypt, in order, b = 0 and b = 1.

In the rest of this section, we will prove Lemma 4.3.

Proof of Lemma 4.3. We first prove the lemma for the case of p-tampering attacks and then will
describe how to adapt it to the case of tampering with one randomly selected bit.

Notation. In all cases below, when f is clear from the context, for b ∈ {0, 1} let f̃b(·) = f(fb(·))
and µb = E[f̃b(Un)]. When f0, f1 are clear from the context let gf (x) = f̃1(x) − f̃0(x) and let

µ = E[gf (Um)]. When clear from the context, we use µ′b to denote the expected value of f̃b(·)
and µ′ to denote the expected value of gf (·) both under a tampering attack. Let ⊥ be a trivial
tampering circuit that does not change the input. In the following, without loss of generality we
will assume that p < 1/10. We will also use the notation (1 − f)(·) = 1 − f(·). Let ` be an
upper-bound on the length of f0({0, 1}m) and f1({0, 1}m).

Description of A. A will sample f ← F for a family of pairwise independent functions F
mapping {0, 1}` to {0, 1}, and then outputs tampering circuit T of Theorem 1.6 such that the
p-tampering (oracle) circuit T gf biases gf towards +1 (by Ω(Var[gf (Um)] · p)). Recall that T is an
oracle algorithm that has access to f0 and f1 as subroutines and thus it could compute gf on any
input of its choice. For simplicity, in the following we will simply write T instead of T gf or T (f0,f1).

In the rest of the proof we will prove the properties of the algorithm A as needed in Lemma
4.3. First observe that a p-tampering algorithm T that generates input distribution UT,pn makes f
δ-distinguish (f0, f1) if it biases gf (x) = f(f1(x)) − f(f0(x)) which, in general, is not a Boolean
function and takes values in {−1, 0,+1}.

Claim 4.5. (f, T) is δ-distinguishing for (f0, f1) iff E[gf (UT,pn)] ≥ δ where gf (x) = f̃1(x)− f̃0(x).

Proof. The proof follows by a simple application of the linearity of expectation:

µ1 − µ0 = Pr[f̃1(UT,pm) = 1]− Pr[f̃0(UT,pm) = 1] = E[f̃1(UT,pm)]− E[f̃0(UT,pm)] = E[gf (UT,pm)] = µ.

Therefore, the goal of the tampering circuit T is to bias the bounded function g : {0, 1}m 7→
{−1, 0,+1} towards 1. However, this is not possible in general because f0 and f1 could be the same
(or almost the same) functions, in which case gf (·) is almost always zero. Here, we will use the fact
that Pr[f0(Un) 6= f1(Un)] = ε.

Definition 4.6. For any function g : {0, 1}m 7→ {−1, 0,+1}, let val(g) = Pr[gf (Um) ∈ {+1,−1}].

Claim 4.7. Let F be a family of pairwise independent functions mapping Supp(f0({0, 1}m)) ∪
Supp(f1({0, 1}m)) to {0, 1}. Then Ef←F [val(gf)] ≥ ε/2.

Proof. We have:

Ef←F [val(gf)] = Ef←F [P[f̃0(Um) 6= f̃1(Um)]] =

E[Pf←F [f̃0(Um) 6= f̃1(Um)]].

19

But note that whenever f0(r) = f1(r) it holds that Pf←F [f̃0(r) 6= f̃1(r)] = 0, and whenever

f0(r) 6= f1(r) it holds that Pf←F [f̃0(r) 6= f̃1(r)] = 1/2 (due to the pairwise independence of
f ← F). Therefore, it holds that

E[Pf←F [f̃0(Um) 6= f̃1(Um)] = Pr←Um [f0(r) 6= f1(r)] · (1/2) = ε/2.

In the following we will always assume that f is being sampled from the family of pairwise
independent functions F described above.

Claim 4.8. If val(g) ≥ δ. and E[g(Um)] < 1/10 then Var[g(Um)] ≥ 4δ/5.

Proof. Recall that Var[X] = E[(X − E[X])2]. By the first property, with probability at least δ
over the choice of r it holds that g(r) ∈ {−1, 1}. For such r, by the second property, the value of
|g(r)− E[g]| is at least 9/10. Therefore, it holds that Varr[g(·)] ≥ δ · (9/10)2 = 4δ/5.

We will use the following well-known fact followed by the left-over hash lemma.

Lemma 4.9. Suppose X is a random variable defined over {0, 1}` and H∞(X) ≥ t. Let F = {fs |
s ∈ {0, 1}2`} be a family of pairwise independent functions indexed by s ∈ {0, 1}2` that map {0, 1}`
to {0, 1}. Then the statistical distance between (s, fs(X))s←U2`

and (U2`+1) is at most O(1/2t).

Note that the goal of A is to generate the tampering circuit T without the knowledge of f0, f1

while, at the same time, this circuit T (which does access f0, f1 in a black-box way) will increase
µ′ (i.e., the value of µ under a p-tampering attack). To do this we rely on the high entropy of
the two sources and use the fact that for such sources (when we sample f ← F from a family
of pairwise independent functions) f is always far from being a good distinguishing function for
(f0, f1) (without tampering). The formal argument follows.

By Lemma 4.9 and an averaging argument, with probability 1 − O(2−t/2) over the choice of
f ← F , it holds that |µ| ≤ 2−t/2. Now suppose the sampled f is such that it leads to |µ| ≤ 2−t/2 < 1.
We call such f a good sampled function. Since we are assuming t ≥ 10 it follows that 2−t/2 < 1/10,
and so by Claim 4.8 we have Var[gf] ≥ 4 · val(gf)/5, and so (f, T) is already ρf -distinguishing
(f0, f1) for

ρ = (4 · val(gf)/5) · (p/2)− 2−t/2 = 2 · val(g) · p/5− 2−t/2.

Claim 4.7 showed that E[val(F)] ≥ ε/5, and since there is O(2−t/2) probability that the sampled f
is not good, it follows that the sampled (f, T) are δf,T -distinguishing (f0, f1) where E(f,T)←A[δf,T] ≥
2p · ε/25−O(2−t/2).

Tampering with One Randomly Selected Bit. To prove Lemma 4.3 for the case of tampering
with one randomly selected bit, all we have to do is to use the tampering algorithm of Theorem 3.11
rather than that of Theorem 1.6. The Ω(ε/n− 2−t/2) distinguishability advantage follows similarly
to the proof for the case of p-tampering, but it still remains to show that the distribution of the
tampered bits (despite being tampered with) remains uniform over {0, 1}n. The reason, roughly
speaking, is that the tampering direction is also selected at random and that randomness depends
on the selection of the pairwise independent function f .

20

More formally, without loss of generality we assume that for every f ∈ F complement function
(1 − f) is also in F , and that these two functions are sampled with equal probabilities.5 We also
defer the selection of the function f to after selecting the index j ∈ [n] of the tampered with as
well fixing as the randomness used by the tampering circuit T . The greedy tampering of Theorem
3.11 proceeds by approximating whether setting xi will increase or decrease the final expectation.
It is easy to see that the decision by the tampering T would flip if we choose (1− f) instead of f .
Therefore, the final distribution X after the tampering is as follows: a random index j is selected,
then xj is tampered with a random value (depending on whether f or (1− f) is chosen). This way,
the distribution of X remains uniformly random over {0, 1}n.

5 Impossibility of Tamper Resilient Cryptographic Primitives

In this section we show how to use Lemma 4.3 and the arguments given in [DOPS04] to derive
impossibility results regarding tamper resilient encryption, commitments, secure two party compu-
tation, and zero-knowledge proofs.

5.1 Encryption

In this subsection we prove that no CPA secure (private-key or public-key) encryption scheme would
remain secure in the presence of a tampering attack. For these applications we follow the way the
“splitting lemma” (see Lemma 1.7) is employed in [DOPS04] but instead we use our computationally
efficient version of this tool (i.e., our Lemma 4.3). We formalize and prove the result for the case of
public-key encryption for which the tampering occurs only during the encryption. We then sketch
the argument for the private-key setting. At the end we show that an almost identical proof holds
for private-key encryption schemes as well. We start by formally defining the notion of tamper
resilient encryption.

Definition 5.1. We call a public-key or private-key encryption scheme p-tamper-resilient secure, if
for every poly(n)-sized adversary Adv there exists a negligible function negl(n) such that for every
sequence {(xn0 6= xn1)}n of pair of messages of equal (polynomial) length (i.e., |xn0 | = |xn1 | = poly(n))
Adv can win in the game below with probability at most 1/2 + negl(n) where n is the security
parameter.

1. A pair of keys (sk, pk) are generated and Adv receives the public-key pk. In case the scheme
is private-key, the adversary receives no key.

2. Adv generates a p-tampering circuit T and {xn0 , xn1}. If the scheme is public-key, these choices
can depend on the public key pk.

3. T acts on rE, the uniform randomness of the encryption, as a p-tampering circuit (see Defi-
nition 3.1) and transforms it into rTE. In case the scheme is private-key T also gets access to
the private key.6

4. The message xb ∈ {xn0 , xn1} is chosen at random and c = Encpk(xb, r
T
E) is sent to Adv.

5This could be achieved, e.g., , by switching to choosing (1− f) with provability 0.5 whenever f is sampled from
F . This modification gives us the desired property while preserving the pairwise independence of F .

6If the scheme was public-key this would not be necessary as the whole description of T could depend on pk.

21

5. Adv receives c, outputs a guess b′, and wins if b = b′.

P[Adv wins]− 1/2 is also called the advantage of Adv.

Let us make a few remarks regarding Definition 5.1 follow.

• We do not allow the adversary to tamper with the randomness of the key-generation phase.
One reason is that key-generation is run only once and is easier to protect than the encryption
phase which might be executed many times. Note that this restriction only makes our negative
result stronger.

• We require the adversary to generate the tampering circuit without the knowledge of the
exact selected message xb (even though this message finally will be present in the infected
encrypting device). The reason is that the randomness rE may be generated ahead of time
and the message gets selected afterwards. Again, this restriction only makes our impossibility
result stronger.

Why Accessing the Secret Key? Note that in Definition 5.1 we did not allow T to access the
private key if the scheme is public-key, while we did allow T to access the private key if the scheme
is private-key. This difference is justified since in a private-key encryption scheme the private-key
should be stored and used in the encrypting device, and thus could be accessed by the tampering
circuit, while in a public-key encryption scheme this is not necessarily the case. Moreover, there are
private-key encryption schemes that remain tamper-resilient (against tampering with encryption’s
randomness) if the tampering circuit does not access the private key. E.g., consider the following
scheme in which the message space is M = {0, 1}m, the key length is k, and R is a PRG with a
k-bit key, domain size n and image size m. To encrypt any message x, the encrypting algorithm
chooses a random seed r ← {0, 1}n and takes Enc(key, x, r) = (r,Rkey(r)⊕x) where ⊕ is the bit-wise
“exclusive or” operation. It is easy to see that (1) this scheme is multi-message secure, and (2) as
long as p < 1 − ω(log n)/n the p-tampering source UT,pn (as a result of p-tampering attack by T)
still has ω(log n) min-entropy and that suffices for multi-message security of the scheme under a
p-tampering attack (to encryption).

One-Message vs Multi-Message Security. Note that if a private-key encryption scheme is
1-message secure (i.e., the encryption of all messages in the message space are indistinguishable)
then one should not anticipate a similar attack to that of Theorem 5.2 to hold, simply because the
one-time pad encryption has a deterministic encryption. However, as we will show below, if the
private-key encryption scheme is even two-message secure (i.e., the adversary proposes two pairs of
messages and one pair gets encrypted message by message and is returned to him) then it should
have enough randomness in its encryption phase to let a tampering attack (to the randomness of
encryption) break its security.

The following is the formalized variant of Theorem 1.1.

Theorem 5.2 (No Tamper-Resilient Public-Key or Private-Key Encryption). Let Π be a CPA-
secure public-key or private-key encryption scheme for message space {0, 1} and completeness
1 − negl(n). For every p ≥ 1/ poly(n), there is an efficient p-tampering adversary that breaks
Π (according to Definition 5.1) with advantage Ω(p)− negl(n).

22

Proof. We will use Lemma 4.3. In the following let ek be the encryption key. This would be the
public-key in case of public-key encryption and the secret (symmetric) key in the case of private-key
encryption. According to Definition 5.1 the tampering circuit T generated by the adversary does
have access to the encryption key ek, either because the scheme is public-key and pk is known by
the adversary before generating pk, or that the scheme is private-key and the tampering circuit T
gets to read sk during the tampering attack.

Suppose the encryption randomness rE has m = poly(n) bits. Recall that the adversary Adv
generates a tampering circuit T that tampers with the encryption randomness rE of the challenger
and changes its distribution from Um into a p-tampering source UT,pm , receives the cipher text c
that is encrypted under the tampered randomness, and it has to guess the index b of the encrypted
message with probability 1/2 + Ω(p).

The adversary will use xn0 = 0, xn1 = 1 and wishes to distinguish between the two functions:
f0(r) = Encek(0, r) and f1(r) = Encek(0, r). By the completeness of the encryption scheme, with
overwhelming probability over the choice of ek, it holds that Pr[f0(Um) 6= f1(Um)] = ε ≥ 1 −
negl(n) > 1/2.

We first prove that the encryptions of 0, 1 have enough min-entropy, and then we will apply
Lemma 4.3 to derive the attack.

Lemma 5.3 (Ciphertext Entropy). For any CPA secure private-key or public-key encryption
scheme for messages m = {0, 1}, it holds that with probability 1 − negl(n) over the choice of
the encryption key ek it holds that H∞(cb) ≥ ω(log n) for both b ∈ {0, 1} where cb is the random
variable denoting the encryption of b over the randomness of the encryption.

Proof. Suppose on the contrary that with probability 1/ poly(n) over the choice of the key key,
there is a message b ∈ {0, 1} and a ciphertext c′ such that P[cb = c′] = 1/poly(n). Then one can
break the CPA security of Π with advantage ≥ 1/ poly(n) as follows. Given the challenge ciphertext
c← cb, the adversary obtains c0 as a fresh encryption of 0, either by encrypting itself if the scheme
is public-key, or by asking it to be encrypted if the scheme is CPA-secure. Then the adversary
outputs outputs 0 iff c0 = c.

The attack succeeds with advantage ≥ 1/ poly(n) because of the following. If the challenger
chooses b = 1, then by the 1 − negl(n) completeness of Π, the probability that c1 = c is only
negl(n), and therefore the probability of adversary outputting 0 is negl(n). On the other hand,
if the challenger chooses b = 1 (based on the assumption above) with probability 1/poly(n) the
two encryptions of zero equal to c′. This means that the bit output by the adversary will indeed
distinguish between the two encrypted bits.

Because of Lemma 5.3, the tampering adversary can use the attack of Lemma 4.3 for t = ω(n).
Thus, the adversary is able to efficiently generate an efficient function f and an efficient tampering
circuit T such that by using T in its tampering attack and outputting f(c) it will win in the security
game of Definition 5.1 with probability 1/2 + Ω(p)− negl(n).

5.2 Tamper-Resilient Commitments and Secure Computation

In this section we use the argument used in [DOPS04] for the case of commitments holds (in
the computational setting) also for a weaker variant of commitments which we call “semi-honest”
commitments. Then we use the impossibility of tamper-resilient semi-honest commitments to also
rule out tamper-resilient secure two-party computation.

23

Suppose f is a two-input finite function, Alice holds an input x, Bob holds an input y and they
want to jointly compute f(x, y) in a way that only Bob receives f(x, y). In this section we show
that any such finite function is either trivial and has a deterministic secure protocol, or that any
efficient protocol to compute f(x, y) is vulnerable to tampering attacks. We restrict ourselves to
the case that only one party receives the output of f , and extending our result to the setting that
both parties get outputs remains as an interesting open question.

We use the following semi-honest (weak) definition for the security of SFE protocols. This
makes our negative result only stronger.

Definition 5.4 ((Weak) Semi-Honest SFE). Suppose Π is a two-party protocol in which Alice and
Bob receive 1n as common input, Alice gets input x ∈ X and Bob gets input y ∈ Y. We call Π a
secure function to compute a two-input function f with input sets X and Y if the following hold:

• At the end of the interaction Bob receives f(x, y) with probability 1− negl(n).

• For any pair of inputs for Bob y1 6= y2 ∈ Y and input x for Alice, if Bob uses yb for a random
b ∈ {0, 1} to interact with Alice who uses x, after an honest execution, Alice cannot guess b
with probability more than 1/2 + negl(n).

• For any pair of inputs x1 6= x2 for Alice and y for Bob, if f(x1, y) = f(x2, y), at the end of
the interaction, an honest execution of Bob using y cannot guess with probability more than
1/2 + negl(n) the randomly chosen input of Alice xb.

Definition 5.5 (Tamper-Resilient (Weak) Semi-Honest SFE). We call Π a secure protocol for f
against p-tampering adversaries, if the conditions stated in Definition 5.4 hold even if the party
(e.g., Alice) who tries to guess the randomly chosen input of the other party (e.g., Bob’s input)
is allowed to perform a p-tampering attack along the execution of the protocol. Namely, if Alice
generates a tampering circuit Tam which transforms the uniform randomness of Bob into UTam

poly(n)
and then interacts with Bob, she still should not be able to guess Bob’s input which is chosen as
y ← {y1, y2} with probability more than 1/2 + negl(n). The same holds if Bob tries to guess Alice’s
input x← {x1, x2} when he uses an input y such that f(x1, y) = f(x2, y) even if he gets to perform
a p-tampering attack over Alice’s randomness.

Following [BMM99] we say that f has an insecure minor if there are x1 6= x2 ∈ X , y1 6= y2 ∈ Y
such that f(x1, y1) 6= f(x2, y1) but f(x1, y2) = f(x2, y2). It was shown in [BMM99] that if f does
not have an insecure minor, then there is a deterministic single message protocol to compute f
which is secure even against malicious parties. Here we show that if f has an insecure minor, then
it cannot have a tamper-resilient secure protocol.

Theorem 5.6 (Impossibility of Tamper-Resilient SFE). Suppose f is a two-input function with an
insecure minor. Then for every p > 1/ poly(n), there is no protocol to compute f securely against
p-tampering adversaries (according to Definition 5.5).

Proof Outline. To prove Theorem 5.6, roughly speaking, we show that computing f can be
interpreted as a weak form of commitment scheme that cannot be tamper-resilient. Here we show
that the impossibility of tamper-resilient commitments applies even to a weak form of commitment
schemes that is implied by any secure (asymmetric) SFE. Note that here we are not referring to a
general black-box reduction from (our variant of weakly secure) commitments to secure SFE, since

24

such transformations might not preserve tamper-resilience, but in fact our reduction is more direct
in the sense that any attack to our weakly-secure commitment scheme can be transformed back to
an attack against the SFE scheme.

Definition 5.7 (Semi-Honest Commitments). We call (S,R) a semi-honest bit-commitment if:

• Completeness. Similar to standard commitments.

• Semi-Honest Hiding. We call (S,R) (1 − ε) semi-honest hiding if an honest execution of
R cannot guess a randomly chosen committed bit b by the end of the commitment phase with
a probability more than ε. More formally, such receiver is modeled by R = (R1, R2) where
R1 runs the receiver’s protocol honestly and then R2 receives the view of R1 and outputs a
the output of R. We simply call (S,R) semi-honest hiding if it is (1 − negl(n)) semi-honest
hiding.

• Semi-Honest Binding. We call (S,R) (1 − ε) semi-honest binding, if the probability that
(in an honest execution), the randomness rS is accepted as decommitment to both of {0, 1}
is at most ε. Namely, with probability at least 1 − ε over the choice of (rS , rR) it holds that
τ(0, rS , rR) 6= τ(1, rS , rR) where τ(b, rS , rR) is the transcript of the commitment phase. We
call (S,R) simply semi-honest binding if it is (1− negl(n)) semi-honest binding.

The following construction shows how to get a commitment scheme from any protocol that
computes a function f with an insecure minor. We will show that if the protocol to compute f if
semi-honest secure, then so is the commitment scheme.

Construction 5.8. Suppose Π = (A,B) is a two party protocol for computing a function f with
an insecure minor of: f(x1, y1) 6= f(x2, y1), f(x1, y2) = f(x2, y2). We construct a bit commitment
scheme ΣΠ = (S,R) as follows.

• For an input b ∈ {0, 1} given to the sender, the commitment phase consists of an execution
of Π to compute f(xb, y2) where S emulates A(xb) and R emulates B(y2).

• In the decommitment phase, S reveals b and sends the randomness she used to emulate A(xb)
to R as the decommitment string.

Theorem 5.9. If Π is a weak semi-honest secure computation for f (with insecure minor), then
the commitment scheme ΣΠ of Construction 5.8 is semi-honest secure.

Proof. The completeness of ΣΠ is immediate. The hiding of ΣΠ also follows immediately from the
security of Π for Alice (and the fact that the receiver is honestly executing the protocol as well).

In the following we prove the semi-honest binding of ΣΠ. Suppose for sake of contradiction that
with probability ε > 1/ poly(n) over the choice of rS , rR, it holds that using both inputs b ∈ {0, 1}
leads to the same transcript: τ(0, rS , rR) = τ(1, rS , rR). This event which we denote by E can be
efficiently verified to hold by the sender (who is emulating the execution of Alice).

Now suppose, in a different game, the receiver emulates the execution of B(y2) instead of B(y1).
In this case, by the security of the protocol Π for Bob, the event E should happen with probability
at least ε′ = ε − negl(n) > 1/ poly(n), or otherwise Alice can distinguish Bob’s inputs by using
either of the inputs {x1, x2}, executing the protocol with Bob, and checking wether the event E
holds or not. This contradicts the completeness of the protocol Π, because with non-negligible
probability ε′, both inputs x1, x2 lead to the same exact transcripts and therefore the same outputs
for Bob, but with 1− negl(n) probability the outputs should be different.

25

Before proving Theorem 5.6 we show that the commitment messages have enough min-entropy.

Lemma 5.10 (Commitment’s Entropy). For any semi-honest secure bit commitment scheme Π, it
holds that with probability 1− negl(n) over the choice of the receiver’s randomness rR it holds that
H∞(cb) ≥ ω(log n) for both b ∈ {0, 1} where cb is the random variable (over the randomness of the
sender) denoting the transcript of commitment for message b.

Proof. The proof is similar to that of Lemma 5.3.
Suppose on the contrary that with probability 1/ poly(n) over the choice of the receiver’s ran-

domness rR, there is a message b ∈ {0, 1} and a transcript c′ such that P[cb = c′] ≥ 1/ poly(n).
Then one can break the semi-honest security of Π with advantage ≥ 1/poly(n) as follows. Given
the transcript c ← cb, the semi-honest receiver adversary R = (R1, R2) obtains c0 by running the
honest sender’s protocol (with fresh randomness) against the same randomness rR of the receiver
R1. The receiver R2 outputs outputs 0 iff c0 = c.

The attack succeeds with advantage ≥ 1/ poly(n) because of the following. If the sender chooses
b = 1, then by the security of Π against semi-honest senders the probability that c1 = c is only
negl(n), and therefore the probability of adversary outputting 0 is negl(n). On the other hand, if
the sender chooses b = 1, with probability ≥ 1/ poly(n) the two transcripts of for b = 0 will be
equal to c′. This means that the bit output by the adversary will indeed distinguish between the
two committed bits.

Finally we will prove Theorem 5.6 using Lemma 5.10 and Lemma 4.3.

Proof of Theorem 5.6. By the reduction of Construction 5.8 and Theorem 5.9 it is sufficient to rule
out “tamper-resilient” semi-honest commitments where tamper-resilient semi-honest commitments
are naturally defined by requiring semi-honest binding and hiding properties to hold even if a party
performs an (1/poly(n))-tampering attack to randomness of the other party.

For a fixed rR let fb(rS) be the transcript of the scheme where sender uses (b, rS) and the
receiver uses rR. By Lemma 5.10, the entropy of the transcript will be t ≥ ω(n). So a tampering
receiver attacker A can use the attack of Lemma 4.3 to generate (f, T) and have T tamper with
the randomness of the sender in a way that by applying f(·) to the transcript A can distinguish
between b = 0 and b = 1 with advantage Ω(p)− negl(n).

Remark 5.11. Our tampering attacks against encryption, commitment, and secure computation
schemes described in subsections above all use a single invocation of the computational splitting
algorithm of Lemma 1.8. Therefore, if the tampering model allows the tampering attacker to tamper
with a single uniformly selected bit of randomness, the tampering attack has the extra property that
the tampered random bits remain completely random! Therefore, no statistical test on the tampered
random bits could reveal the fact that they are tampered with.

5.3 Impossibility of Tamper-Resilient Zero-Knowledge for NP

In this section we show that no interactive proof system (with an efficient prover) for languages in
NP \ BPP can be zero-knowledge against a tampering verifier. For simplicity, in the following we
assume that the prover’s randomness and the common input are both of length n (otherwise we
pad the shorter one). First we give an explicit definition for tamper-resilient zero-knowledge.

26

Definition 5.12 (Tamper-Resilient Zero-Knowledge). Suppose (P, V) is an interactive proof system
for language L where x (of length n) is the common input and y ∈ {0, 1}poly(n) is prover’s private
input. A p-tampering verifier V ∗ at the beginning of the interaction generates a tampering circuit
T that gets y as auxiliary input and transforms the uniform source of private randomness Un of the
prover into a p-tampering source UT,pn . We call such proof system α-tamper-resilient zero-knowledge
against p-tampering, if for every p-tampering PPT verifier V ∗, there exists a simulator Sim such
for every sequence of triples (x, y, z) of: the common input x, prover’s private input y, the following
two ensembles are α(|x|)-indistinguishable:

{Output of V ∗ in 〈V ∗, P (y)〉(x)}x∈L,y and {Sim(x)}x∈L.

Remark 5.13. Note that in the definition above we did not give auxiliary input to the verifier,
even though such definitions are standard. However, an auxiliary input zero knowledge is indeed a
stronger form of zero knowledge, and the fact that our main result about zero knowledge if negative
it only makes our result stronger. We also chose to simulate the output of the malicious verifier
rather than its view, but these two are well-known to be equivalent.

Theorem 5.14 (Impossibility of Zero-Knowledge for NP). Suppose there exists an efficient prover
zero-knowledge proof system Π for L ∈ NP with negligible completeness and soundless errors. Then
Π cannot be o(p)-tamper-resilient zero-knowledge against p-tampering verifiers for p > 1/ poly(n)
unless L ∈ BPP.

Comparison to the setting of [DOPS04]. As noted in the introduction, we cannot simply
follow the footsteps of [DOPS04] and use our computational splitting lemma (Lemma 4.3) to derive
Theorem 5.14 above because of how the definition of zero-knowledge proofs conceptually differs
between the computationally efficient and information theoretic (imperfect) sources of randomness.
The difference is that in [DOPS04] the simulation is universal and should handle all the (bad)
sources of randomness (with high min-entropy of certain forms), while here the simulator implicitly
knows the bad source of randomness because it can access the code of the malicious verifier.

In the rest of this section we will prove Theorem 5.14. At a high level, the proof is as follows.

Intuition. Fix input x and a verifier randomness rV . Then either of the following holds:

1. If the prover is (almost) deterministic, we show how to use the simulator of the zero-knowledge
protocol to decide whether x ∈ L or not with non-negligible advantage. The proof of this
step improves upon a result by Goldreich and Oren [GO94] who showed that the min-entropy
of τ is positive.

2. If the prover is using sufficient randomness in the transcript to convey the proof in zero-
knowledge manner: We show that in this case the messages of the system (now generated by
the prover, since rV is already fixed) have min-entropy at least ω(log n). Relying on the high
min-entropy of the messages and using ideas behind the proof of Lemma 4.3 we still show the
existence of a tampering verifier who can learn nontrivial information about any of the bits
of the witness by applying a Boolean function f to the transcript τ generated by a tampered
rS . Since the view of such tampering verifier should be simulated by the efficient simulator
Sim(·), by running Sim(x) enough number of times we can learn yi for every i and obtain y.

27

We start by formally describing our extension of the result of Goldreich and Oren [GO94], which
corresponds to the first step above. Note that here we only rely on the zero-knowledge property of
the proof system (regardless of the tampering).

Theorem 5.15 (Message-Entropy of Zero-Knowledge Proofs). Suppose (P, V) is an interactive
proof system for a language L with negligible completeness and soundness errors. Then there is a
PPT algorithm A such that the following properties hold.

• A takes as input x and 1K and runs in time poly(|x|,K).

• If A accepts x, it implies x ∈ L up to negl(n) error: P[A(x) = 1 and x 6∈ L] ≤ negl(n).

• Suppose in addition that (P, V) is zero-knowledge, then either of the following holds for x ∈ L:

1. A(1K , x) accepts x with probability at least 1/poly(K,n), or

2. with probability 1 − 1/K over the choice of rV , it holds that the min-entropy of the
transcript τ = 〈V, P 〉(x) conditioned on rV is at least: H∞(τ | rV) ≥ log(K).

Interpretation. Theorem 5.15 implies that if the entropy of the messages coming from the prover
in a zero-knowledge protocol is O(log n), then by taking K = poly(n) large enough A(1k, x) can de-
cide x ∈ L with 1/ poly(n) advantage (i.e., it accepts x ∈ L with 1/ poly(n) probability and accepts
any x 6∈ L with negl(n) probability). This improves over the result of Goldreich and Oren [GO94]
that obtained the same conclusion based on assumption that the prover is deterministic.

The following theorem corresponds to the second step of the proof of Theorem 5.14.

Theorem 5.16 (Signaling the Witness Bits). Suppose (P, V) is an efficient-prover o(p)-tamper-
resilient zero-knowledge proof system against p-tampering adversaries for a language L and p =
1/poly(n). There exists an efficient algorithm Bp such that the following holds for all x ∈ L: If
with probability 1 − 1/K over the choice of rV , the min-entropy of the transcript τ = 〈V, P 〉(x)
conditioned on rV is H∞(τ | rV) ≥ logK and that K = ω(1/p2), then with probability 1− negl(n)
the output of Bp is a valid witness y for x ∈ L.

Proof of Theorem 5.14. We first prove Theorem 5.14 using Theorems 5.15 and 5.16. We present
an efficient algorithm C that decides membership of x ∈ L for the language L ∈ NP in probabilistic
polynomial time by relying on efficient algorithms A and B of Theorems 5.15 and 5.16.

Algorithm Cp(x).

1. Take K = ω(1/p2) to be some poly(n) (which is possible since p = 1/ poly(n)).

2. Run algorithm Bp(x) to get some NP-witness y. Output x ∈ L if y is an acceptable witness.

3. Otherwise, run the algorithm A(1K , x) and output whatever A decides about x ∈ L.

Soundness of C. We first show that if x 6∈ L, C accepts x with negl(n) probability. The reason
is that since we verify the extracted “witness” y. Therefore if x 6∈ L, no such witness can exist and
pass the verification and so we would not accept x in Step 2. On the other hand, Theorem 5.15
asserts that the probability that if x 6∈ L, the algorithm A accept x with negligible probability.

28

Completeness of C. There are two possibilities.

1. First suppose that with probability 1 − 1/K over the choice of rV , the min-entropy of the
transcript τ = 〈V, P 〉(x) conditioned on rV is at least: H∞(τ | rV) ≥ logK. In this case, the
algorithm B will extract the witness with probability 1 − negl(n) and so C accepts x with
probability 1− negl(n).

2. Otherwise, by the properties of the algorithm A specified in Theorem 5.15, x will be accepted
with probability at least 1/ poly(n,K) ≥ 1/ poly(n).

In the following we will prove Theorems 5.15 and 5.16.

5.3.1 Proof of Theorem 5.15

Our proof, at a high level, follows the approach of Goldreich and Oren [GO94], who showed that
zero-knowledge with deterministic provers is impossible unless L ∈ BPP. Namely, one starts by
assuming that the prover is deterministic for all x ∈ L and derive L ∈ BPP. In our Theorem 5.15,
however, we conclude an instance-dependent statement; namely, for every x ∈ L, either there is
“sufficient” entropy in the messages, or that we can decide the membership of x in L efficiently.

Below, first, we give a comparison between the approach of [GO94] and our approach for the
weaker claim (than Theorem 5.15) that the entropy of the prover messages in case of x ∈ L cannot
always be O(log n). Then will then prove Theorem 5.15 formally.

The Approach of [GO94]. Suppose the prover is deterministic. This means that for every
prefix of the transcript of the interaction between the prover and the verifier p1, v1, . . . , pi−1, vi−1,
the next message pi of the prover is determined. This fact can be used, together with the existence
of the simulator Sim, to efficiently generate an accepting transcript τ whenever x ∈ L, in a way
that the same procedure does not generate an accepting transcript whenever x 6∈ L. The main
ideas of [GO94] to obtain both properties simultaneously are as follows:

1. At a high level, in the process of generating τ we are executing the verifier V against some
fixed (simulated) prover strategy P ∗. This way, the soundness condition guarantees that this
will not lead to an accept for x 6∈ L unless with negligible probability.

2. The (simulated) prover P ∗ needs to behave close to the honest prover if x ∈ L to generate
an accepting τ . For this, we use the simulator Sim to get the prover messages pi one by one.
To get the i’th message pi, we use the simulator over a verifier who knows the previously
generated partial transcript p1, v1, . . . , pi−1 as auxiliary input, and sends vi−1 as the next
answer according to the algorithm of the honest verifier. This way the value p′i will be indeed
the same as the actual pi (that the honest prover would return) with 1−negl(n) probability, or
otherwise these two answers would be distinguishable which contradicts the zero-knowledge
property (note that pi is fixed can be known to the distinguishing circuit).

29

Extensions. When the prover is randomized, we cannot conclude that the generated message p′i
is necessarily the same as pi with high probability because the prover’s messages (even conditioned
on the previous messages p1, p2, . . . , pi−1) could be different in every new execution of the protocol
against the same fixed honest verifier. Thus, instead we follow the following approach.

1. How to Generate Messages: Instead of executing the simulator once for getting every
message p′i+1, we repeatedly execute the simulator Sim up to some poly(n) times till we get
the same the partial transcript (p1, v1 . . . , pi−1, vi) as generated previously, and only then we
look at the simulated value p′i (which we hope to be the same as pi with good probability).

2. Analysis: The challenging part is to show that if there is at least one transcript τ =
(p1, v1, . . . , pm, vm) that appears with α ≥ 1/ poly(n) probability, then we will generate τ
through the process above with non-negligible probability. A naive analysis would use the
fact that in every step, the provability of obtaining pi is at least βi > α > 1/ poly(n). This sim-
ple analysis does not work because (1/ poly(n))poly(n) could be negligible (but note that this
analysis in fact works for constant number of rounds because (1/ poly(n))O(1) ≥ 1/ poly(n)).
For arbitrary polynomial number of rounds we need a sharper analysis to show that if we ob-
tain pi with probability βi, the product

∏
βi is also non-negligible. We do so by decomposing

α into α = α1 · α2 . . . where αi is the probability of pi being the honest message conditioned
on the previously generated transcript. We show that for every i, βi/αi ≈ 1 + ε for arbitrary
small ε = 1/ poly(n) and thus β =

∏
i βi ≈

∏
i αi = α.

The Formal Proof. Let τ = Q(x, rV) be the random variable denoting the transcript of the
protocol when the common input is x, and the verifier has random coins fixed to rV . Since the
verifier acts deterministically once x and rV are fixed, the distribution of Q is a deterministic
function of the random coins of the prover. For an implicitly fixed rV , we further let Qi(x, τi−1)
denote the distribution of the message sent by the prover in the ith round, given that τi−1 =
p1, v1, . . . , pi−1, vi−1 is the set of messages exchanged in the previous rounds.

In the following we assume that the proof system (P, V) has m rounds.
Observe that the message sent by the verifier in the ith round is a (poly-time computable)

deterministic function f of x, rV , and the messages sent by the prover in the previous rounds. We
can use this fact to write Q in terms of Qi, as follows. Let τ = p1, v1, . . . , pm, vm be a transcript of
the protocol consistent with x and rV . Then, assuming that τi is the partial transcript up to and
including round i, it holds that:

P[Q(x, rV) = τ] = P[Q1(x, τ0) = p1] · · · · · P[Qm(x, τm−1) = pm].

Our algorithm A will be such that for K = poly(n) and x ∈ L, if for a 1/K fraction of rV , the
min-entropy of Q(x, rV) is ≤ logK, then A(1K , x) will output “accept” with probability ≥ 1/16K2.

Suppose for a 1/K fraction of rV , there is some corresponding “heavy” message transcript
τ∗ = τ∗(x, rV) that occurs with probability ≥ 1/K; we call such rV special.

Our approach will be to produce an efficient prover strategy P ∗ that, when interacting with V
on x with such a special rV , will produce the corresponding τ∗ as its transcript with probability
≥ 1/8K (without knowing rV and τ∗ in advance).

First, assuming that we have such a prover strategy P ∗, we claim that we can use P ∗ to create
the required A. We observe that for fixed x ∈ S (of large enough length n = |x|), not more
than 1/2 fraction of the special rV can have their corresponding τ∗ to be a rejecting transcript,

30

because otherwise the honest verifier will reject on common input x with probability 1/2K > negl(n),
violating the 1− negl(n) completeness. Thus a uniformly chosen rV will be both special and have
an accepting τ∗ with probability > 1/2K.

Now we examine what will happen when we simulate (P ∗, V) on common input x ∈ S, with a
uniformly chosen rV . With probability > 1/2K, the random coins of V will have a corresponding τ∗

that is an accepting transcript, and conditioned on getting such an rV , the output of (P ∗, V) will
be τ∗ with probability ≥ 1/8K. Thus, with probability ≥ 1/16K2, (P ∗, V) will be accepting. Further,
notice that when the common input is x /∈ L, then the output of (P ∗, V) can be accepting with
probability at most negl(n), or otherwise the 1− negl(n) soundness would be violated. Therefore,
we can simply define A to be the machine simulating (P ∗, V) on common input x.

It remains to show how to construct P ∗. Define V ∗ to be the verifier strategy that takes a
partial message transcript as its auxiliary input z, sends its first messages according to z, and then
aborts. By the auxiliary input zero-knowledge, there exists an efficient simulator S for V ∗.

The malicious prover P ∗ (defined based on S), over the common input x, works as follows.

1. Let τ̂ = ∅.

2. For i = 1 to k :

(a) Run S(x, τ̂) repeatedly, until you find a transcript τ whose first i − 1 messages match
with τ̂ . If no such message was found in K(logK) runs, abort.

(b) Send pi according to τ , and receive vi from the verifier.

(c) p̂i = pi, v̂i = vi

Assuming that the randomness of the verifier, rV , is special, ideally we want that in each
iteration i, P ∗ sends the ith prover message such that it matches τ∗ for x and rV of the verifier it
is interacting with.

To actually analyze the behavior of P ∗, let assume that P ∗ and V have each sent all messages
correctly corresponding to τ∗ for all iterations up to the tth iteration (i.e., τ̂ = τ∗t−1). We will calcu-
late the probability that P ∗ then sends p∗t on the tth iteration. Then, since V acts deterministically
given x, rV and the prover messages, V will also send v∗t on this iteration.

Our analysis will initially assume that we have access to an oracle simulator O(x, z), that
produces transcripts identically distributed to a real interaction between (P, V ∗). We will estimate
the success probability for each iteration when we are using this oracle. Then, we will argue that
replacing the oracle O with our simulator S gives at most a negligible loss.

Using the Ideal Oracle. We now give the analysis when we use O. First we analyze the
probability that our oracle simulator finds a transcript matching the messages sent so far. Since
the verifier V ∗ will send messages according to its auxiliary input, the verifier messages up to step t
will always match v∗i (after this, V ∗ will abort, but it turns out we don’t care about the (t+1)th and
later messages in this transcript). So we only need to find the probability that the transcript has
matching prover messages. Since O is a perfect simulator oracle, the first t− 1 prover messages of
O(x, τ∗t−1) will be distributed exactly as the random variables Qi for i ≤ t−1. Thus the probability
that a transcript produced by O(x, τ∗t−1) matches the first t− 1 messages of τ∗ is given by

t−1∏
i=1

P[Qi(x, τ
∗
i−1) = p∗i] ≥

k∏
i=1

P[Qi(x, τ
∗
i−1) = p∗i] ≥

1

K
.

31

Thus, repeating K(logK) times will give us a probability ≥ 1−(1−1/K)K(logK) of producing a
matching transcript, which is ≥ 1− 1/K. Given that we have produced a matching transcript, the
probability that the tth message of this transcript is p∗t is given by ≥ P[Qt(x, τ

∗
t−i) = p∗t]. Therefore

the overall probability that P ∗ using O sends p∗t in the tth iteration, given that it sent the correct
messages in the previous iterations, is (1− 1/K) · P[Qt(x, τ

∗
t−i) = p∗t].

Using the Simulator. Now we replace the ideal oracle O by using the simulator S. We argue
that P ∗ using S must succeed with probability at least (1− 1/K) · (1− 1/K) · P[Qt(x, τ

∗
t−i) = p∗t].

Otherwise, we can create a distinguisher D to distinguish between ViewV ∗〈P, V ∗(τ∗t−1)〉(x) and
S(x, τ∗t−1) as follows: Simulate the tth iteration of P ∗ and outputs 1 whenever the message sent
is m∗i (where 1 corresponds to guessing that the distribution is ViewV ∗〈P, V ∗(τ∗t−1)〉(x)). Then D
distinguishes between ViewV ∗〈P, V ∗(τ∗t−1)〉(x) and S(x, τ∗t−1) with advantage at least

1

K
· (1− 1

K
) · P[Qt(x, τ

∗
t−i) = p∗t] ≥

1

K
· (1− 1

K
) · 1

K

contradicting the fact that the protocol is zero-knowledge.
Finally note that the probability that every message sent by P ∗ using S matches τ∗ is at least:

k∏
t=1

(1− 1

K
)2 · P[Qt(x, τ

∗
t−i) = p∗t] = (1− 1

K
)2K · P[Q(x, rV) = τ∗] >

1

8K
.

The last inequality holds for large enough K because (1− 1/K)2K ≈ 1/e2 for large enough K.

Proof of Theorem 5.16. In the following we use {−1,+1} (instead of {0, 1}) to represent the bits
of the witness y. In what follows we will describe a malicious verifier V ∗i which is indexed by
i ≤ poly(n). We will show how to use a simulator for the o(p)-tamper-resilient zero knowledge to
obtain an efficient way to guess yi with overwhelming probability where yi is the i’th bit of the
witness given to the prover. Then, by enumerating i we can construct all of y with high probability.

The description of tampering verifier V ∗i . The verifier V ∗i starts by choosing rV at random
as the randomness of the verifier. Then it runs the attacker of Lemma 4.3 to obtain (f ,T) for the
following two functions f0, f1. The function fb takes prover’s randomness as input and outputs
the transcript τ of the interaction of the verifier (with randomness rV) with the prover (with the
designated randomness) using witness yb where y is the same as y except possibly on the i’th bit in
which yb is fixed to be b. In other words, it is as if the prover will flip the i’th bit of y if it is not b and
then interacts with the verifier using a randomness rP (which is the input) and then the transcript
denotes the output of fb. After sampling (f, T) ← (f ,T) from the corresponding distribution of
Lemma 4.3 for functions f0, f1 described above V ∗i sends T as the p-tampering circuit to tamper
with prover’s randomness, and outputs f(τ) as its final output bit.

Output of V ∗i correlates with yi. Now by the properties of Lemma 4.3, if with probability
1− 1/K over the choice of rV , the min-entropy of the transcript τ = 〈V, P 〉(x) conditioned on rV
is H∞(τ | rV) ≥ logK and that K = ω(1/p2), then we can conclude that with probability 1− o(p)
over the choice of rV , the output bit of V ∗i distinguishes f0 from f1 by advantage Ω(p)−

√
1/K =

Ω(p) − o(p) = Ω(p). Therefore, the o(p) error over the choice of rP cannot affect this bound and
the final output bit of V ∗i will indeed distinguish f0 from f1 by advantage Ω(p).

32

Using simulator of V ∗i to reveal yi. Since the output of V ∗i is just one bit, the simulator should
indeed simulate this bit statistically well. This means that the simulator Sim for V ∗i gets x as input
and generates an output bit that distinguishes which bit b the i’th bit of the witness yi is taking,
and reveals this value by advantage Ω(p). Therefore, the output bit of simulator (executed over x)
could be used to guess yi with probability 1/2 + Ω(p). By repeating the execution of the simulator
and taking majority one can obtain yi with probability 1− negl(n).

6 Achieving Tamper Resilience Using Pseudorandomness

We present our positive results on tamper-resilient cryptography in this section. We show that
assuming the existence of pseudorandom generators (PRGs), which is implied by the existence
of one-way functions [HILL99], a wide range of cryptographic primitives, including signatures,
identification schemes, witness-hiding protocols, as well as encryption schemes with a “weak” notion
of semantic security (see Definition 6.9) can be made resilient to p-tampering for p = n−α, where
n is the security parameter and α > 0 is an arbitrary constant. Our construction can be extended
in a straightforward way to achieve resilience to p-tampering with p = log−c(n) for some constant
c, assuming the existence of PRGs with sub-exponential security.

Using Pseudorandomness with Short Seeds. We obtain our positive results by a generic
transformation that converts a secure implementation P of a primitive P to one that is secure
even in the presence of p-tampering attacks. Our transformation is in fact very simple: given an
implementation P with standard security, we convert it to P that generates a short random seed x
with length s ≤ 1/p, and then uses a PRG G : {0, 1}s → {0, 1}poly(n) to generate a pseudorandom
string G(x). Finally, it emulates P with G(x) as the randomness. Note that by doing so, P only
needs to use s random bits to generate a seed x for G, and so, on average, only 1 bit of the
randomness gets tampered with during the p-tampering attack.

First note that when we use the PRG G over a seed s of length 1/p and use G(s) instead
of the truly random bits, the scheme P (typically) remains secure if P was originally secure due
to the pseudorandomness of G(s).7 Also, since the min-entropy of the tampered s is at least
lg[((1 + p)/2)1/p], any event E involving a system that executes P , would happen with a tampered
s with probability at most ε · ((1 + p)/2)1/p/21/p < ε · e where ε is the probability of E happening
in the original (un-tampered) game. Therefore, if originally we had ε = negl(n), the probability of
adversary winning remains negligible eε = negl(n).

Our transformation applies to natural primitives with a security game that can be captured
by a “threshold-t falsifiable game” with t = 0. A threshold-t falsifiable game Π is simply a game
between an efficient challenger C and an adversary A such that C outputs accept or reject after the
interaction with A, and the game Π is secure if for every efficient adversary A, C outputs accept with
probability at most t(n)+negl(n). Threshold-0 falsifiable games, in general, capture primitives with
security defined as hardness of searching secrets. As mentioned, this includes signature schemes,
witness-hiding protocols, and identification schemes.

Our result about tamper-resilient identification schemes might seem skeptical at first because
most known identification schemes are based on zero-knowledge protocols, and we have demon-
strated earlier that zero-knowledge is impossible in the presence of tampering. However, tamper-
resilient identification schemes are still possible to obtain because identification schemes only rely

7More formally, for this, we would need the event E that the security is broken to be efficiently recognizable.

33

on the weaker property of witness hiding (as opposed to zero-knowledge property), and in this
section we show that the witness hiding property can be preserved under tampering.

Beyond Threshold-0 Primitives. The above mentioned idea of using pseudorandomness can
only be applied to threshold-0 primitives since it relies on the fact that adversary’s original winning
probability is at most negligible. We also show how to obtain tamper-resilient implementations
of cryptographic primitives even when the security game is not threshold-0, but here we assume
the number of honest parties to be at least 2. This result, on a high level, is obtained by one
honest party Alice helping the other honest party Bob extract pure randomness from its tampered
randomness X̂B. To do this, Alice sends random string X̂A (which might also be a tampered string)

to Bob, and Bob applies a two-source extractor to get pure randomness RB = Ext(X̂A, X̂B). In

case X̂A is sent over a public channel observed by the adversary, we would need a strong two-source
extractor [DO03] such that RB remains uniformly random even conditioned on the value of X̂A.
This idea can be applied to obtain private truly random seeds where we have two conditions: (1)

p <
√

2− 1; this is required to guarantee that each of X̂A, X̂B have sufficient min-entropy required
by the known two-source extractors, and that (2) the honest parties know the set of honest parties.
For the more general case of any constant p < 1, and where the (at least two) honest parties do
not know each other, we rely on the network extractor paradigm of [KLR09] to obtain private
pseudorandom seeds under (non-standard) computational assumptions.

6.1 Tamper Resilient Signatures

As a concrete example, we will first show how to achieve tampering resilient signatures. The
arguments for the other primitives will be indeed similar.

Definition 6.1 (Many-Time Signatures). A many-time signature scheme P = (Gen,Sign,Ver) is
secure if every PPT adversary A wins in the following game Π = (A,C) with negligible probability:

1. C executes Gen(1n) to generate signing key sk and verification key vk, and sends vk to A.

2. For i ∈ [poly(n)], A sends a message mi to C and receives σi = Signsk(mi) from C.

3. A generates and sends (m,σ) to C.

4. C accepts (i.e., A wins) if m 6= mi for every i, and Vervk(m,σ) = 1.

We say that any A breaks the security of P if he wins with non-negligible probability.

Recall that, assuming the existence of OWFs, we know how to create many-time secure signature
schemes that are deterministic in their signing and verification phases. In fact, any many-time
signature scheme that uses randomness in the signing phase can be converted into one that is
deterministic, by using PRFs. This could be done by generating the seed for the PRF in the key-
generation phase, and adding it as part of the secret key. Then, whenever a message m is to be
signed, we apply the PRF to m, and use the result as the randomness needed to sign.

The definition of p-tamper-resilient signatures follows from Definition 6.1 and asserting that the
security holds against p-tampering adversaries.

34

Definition 6.2 (Tamper Resilient Signature). A many-time signature scheme is p-tamper-resilient
if it remains secure according to Definition 6.1, even if the adversary, at the beginning of the
game, generates a p-tampering circuit Tam that transforms the uniform randomness Upoly(n) of the

challenger (i.e., the randomness for key-generation and signing) into a UTam,p
poly(n) and the challenger

uses UTam,p
poly(n) in its interaction.

Theorem 6.3. Let α ∈ (0, 1) be a constant. If there exists a many-time secure signature scheme,
then there exists a many-time (n−α)-tamper-resilient signature scheme.

Proof. Let P = (Gen, Sign,Ver) be a secure signature scheme. W.l.o.g., we assume that P is
deterministic except in Gen. Suppose further that Gen(1n) uses m(n) bits of randomness. Let G :
{0, 1}s → {0, 1}m(n) be a pseudorandom generator with s = O(nα). (Recall that secure signature
schemes imply OWFs [IL89], which imply PRGs with arbitrary polynomial length output.) We
define P = (Gen, Sign,Ver), where Gen(1n) works as follows: Gen generates a random seed X of
length s = nα, and then computes r = G(X). It then emulates Gen using r as random coins. In
the following by Π we refer to the new scheme and by C we refer to the new challenger of the
multi-message security game of Π.

Roughly speaking, Theorem 6.3 is proved by observing that (1) P remains secure even if the
randomness of P is generated from the pseudorandom source G(X), and (2) after tampering, the
seed X used by P still has s−O(1) bits of min-entropy.

The Formal Proof. Suppose that there exists an efficient adversary A that breaks the scheme
Π by winning the game against C with non-negligible probability. Namely, there exists a non-
negligible ε such that for infinitely many n,

P[〈A,C〉(1n) = 1] ≥ ε(n).

By an averaging argument and fixing coins of A, we can assume w.l.o.g. that A is deterministic
and thus the tampering circuit Tam is fixed. Observe that in this case, the interaction 〈A,C〉 in
Π is equivalent to the interaction 〈A,C[G(UTam

s)]〉 in Π, where the notation 〈A,C[D]〉 means the
output of simulating 〈A,C〉 with C’s coins drawn from distribution D, and A is simply A without
sending the tampering circuit. Thus, we have

P[〈A,C[G(UTam
s)]〉 = 1] ≥ ε.

Note that since UTam
s is a p-tampering source over s = 1/p bits, it has min-entropy s− log e. This

can be seen by observing that for every r ∈ {0, 1}s, P[UTam
s = r] ≤ ((1 + p)/2)s ≤ ep·s/2s = e/2s.

This means that if we use the randomness Us rather than UTam
s the probability of any event

would decrease at most by a factor of e. Namely, A is a successful attacker breaking the scheme with
probability ε(n)/e > 1/ poly(n). But, this contradicts the security of the scheme P and completes
the proof of Theorem 6.3.

Our proofs of security for identification schemes and witness hiding protocols follow the same
lines as those of our result about signature schemes. Thus we will only discuss the specific modifi-
cations we make in each case.

35

6.2 Identification Schemes

An identification scheme is a protocol that allows Alice to prove her identity to Charlie, and a ma-
licious Bob cannot impersonate Alice even if he gets to see Alice proving her identity polynomially
many times. Each identity can be represented by some α ∈ {0, 1}n and there exists a “public-file”
that couples every identity α by some secretly generated public information I(s, α). The secret s
(which is chosen at random) is given to the person with identity α. The public record (α, I(s, α))
will be accessed by both the “prover” (of the identity) and the “verifier” during identification.

Definition 6.4. An identification scheme Π = (I, P, V) has three efficient components: The algo-
rithm I takes as input (α ∈ {0, 1}n, s ∈ {0, 1}poly(n)) and outputs v ∈ {0, 1}poly(n) and (P, V) form
an interactive proof system. We also demand the following properties.

• Completeness: P[〈P (s), V 〉(α, I(s, α)) = 1] = 1 holds for every α ∈ {0, 1}n, s ∈ {0, 1}poly(n).

• Soundness: For every α ∈ {0, 1}n, every poly(n)-sized (non-uniform) interactive adversary
A wins in the following game with negl(n) probability.

1. For s← {0, 1}poly(n), A interacts with P (s) polynomially many times.

2. Then A (while keeping its internal state) interacts with V on common input (α, I(s, α)).

3. A wins if V accepts the interaction.

Remark 6.5 (Identification from Signatures). Many-times secure signature schemes can be used to
obtain identification schemes as follows. The information generation algorithm I, for every identity
α generates a pair of signing key s and verification key v. (Note that the signing key can always
be assumed to be a uniformly sampled string.) The verifier V , given the public record (α, v) sends
a uniformly chosen random message m to P who signs m using the signing key s, and sends the
signature σ back to V . Finally V accepts if σ is a valid signature of m. It is easy to see that the
many-time security of the signature scheme implies the soundness of the constructed identification
scheme. Further, if the signature scheme has a deterministic Sign algorithm, then the identification
scheme has a deterministic prover P (but the verifier is randomized).

Although secure signature schemes imply secure identification schemes according to Remark 6.5,
this transformation does not preserve the tamper resilience by definition. The reason is that, even
though it is known that there are signature schemes with deterministic verification, this identifica-
tion scheme uses some extra randomness which could also be tampered with by the adversary.

Theorem 6.6. If there exists a secure identification scheme, then there exists a p-tamper-resilient
identification scheme, with p = n−α, for any constant α > 0.

Proof. The existence of a secure identification scheme implies the existence of OWFs [IL89], which
in turn implies the existence of a secure signature scheme Σ with a deterministic signing algorithm.
The signature scheme Σ can be used to obtain an identification scheme Π with a deterministic
prover P according to the construction described in Remark 6.5.

Since the prover P in the obtained identification scheme is deterministic, the adversary A can
only usefully tamper with the randomness of the information generation algorithm I and the verifier
V . I uses its randomness in the initial generation phase, and V uses its randomness in the final
verification phase. Since in the security game of Π there is only a single verification performed,

36

the number of random bits needed for the information generation and the final verification is an
a priori fixed polynomial. Therefore, we can apply the same idea that we used to make signature
schemes tamper resilient. Namely, we modify I and V both so that each of them uses only a short
random seed of length O(1/p) and applies a PRG to expand it to the right size poly(n). The proof
of tamper-resilience of the new scheme is identical to that of Theorem 6.3.

6.3 Witness Hiding Protocols

Definition 6.7 (Witness Hiding Protocols). Suppose R is an NP relation. Namely, there is an
efficient algorithm that accepts (x,w) when |w| = poly(|x|) iff (x,w) ∈ R. Suppose Gen is a
randomized sampling procedure that given 1n (and enough random bits) runs in time poly(n) and
outputs some (x,w) of length |x| = n. A proof system (P, V) for the relation R is one-time witness
hiding w.r.t. the sampling procedure Gen if, for all PPT adversaries A, A wins in the following
game with negligible probability:

1. Gen(1n) generates (x,w) ∈ R.

2. A interacts in 〈P (w), A〉(x).

3. A outputs w′, and wins if (x,w′) ∈ R.

(P, V) is called q-time witness hiding (resp. witness hiding) if A is allowed to participate in q =
poly(n) (resp. any polynomial) number of interactions for the same (x,w) before outputting w′.

All variants of witness hiding defined in Definition 6.7 can be defined under tampering attacks.

Theorem 6.8. Any (q-times) witness hiding protocol (P, V) for some relation R can be converted
into a stateless (q-times) p-tamper-resilient witness-hiding protocol, with p = n−α, for any constant
α > 0. Achieving p-tamper resilience witness-hiding (with unbounded number of repetitions) is also
possible assuming that the prover is allowed to keep internal state between repetitions.

Proof. First note that any witness hiding protocol implies the existence of one-way functions as
follows: Given input r, use r as randomness and using Gen(·) sample (x,w) ∈ R and output
x = f(r). Inverting f(r) for a random r implies breaking the witness hiding of the corresponding
protocol even without participating in the interactive phase. Again, we can again use the existence
of OWFs to get PRGs [HILL99].

To achieve tamper resilience under a single execution of the interactive proof we can use the
same exact trick as we did for signature schemes: Gen uses a “short” random seed s of length 1/p,
and applies a PRG to make it of sufficiently long to run Gen. The prover also does the same thing;
i.e., it tosses 1/p many coins and expands them to the right length using a PRG. In the following
we focus on the case of sequential repetition.

A Priori Bounded Number of Repetitions. If the number of sequential repetitions is an a
priori bounded polynomial q = poly(n), then we can still take the same approach as that of the
single-repetition case. Namely, one can think of the security game with a fixed number q = poly(n)
of repetitions as a game with a fixed time-complexity that needs a fixed ` = poly(n) number of
random bits used by the challenger C = (Gen, P1, P2, . . . , Pq). Thus, by using a PRG we can
expand an initial 1/p number of true random bits to ` bits and apply the same analysis.

37

Unbounded Number of Repetitions. At first sight, it seems that our general technique of
using PRGs does not work if we go through an unbounded number of repetitions (i.e., a polynomial
that is chosen by the adversary). But, if the prover can keep internal state, we can use a PRF as a
way to obtain a PRG with an unbounded number of output bits. (Note that if g is a PRG, for any
polynomial `, the function G(s) = [gs(1), . . . , gs(`)] is a PRG.) Thus, again, we start by using 1/p
truly random bits s, and use a PRG g with key s and compute it over gs(1), gs(2), . . . to obtain
enough number of pseudorandom bits that is needed for the execution of the repetitions.

To analyze the tamper resilience of the scheme above, we apply the same analysis presented
for the previous cases. All we have to do additionally is to first fix the adversary, which fixes the
number of its sequential repetitions, and then apply the same analysis as before. This was not
previously needed because, e.g., in case of signatures, even though the adversary’s complexity was
not fixed before the analysis, we had an upper-bound on the number of random bits needed by the
challenger, but here we get this upper-bound after fixing the adversary’s running time.

6.4 Weak Semantic Security

Here we present the following new definition as a relaxation of the semantic security and prove our
positive result about the possibility of tamper resilient encryption under this relaxed definition.

Definition 6.9. A public-key or private-key encryption scheme (Gen,Enc,Dec) is called (1 +
δ)-weakly semantically-secure if for every poly(n)-sized (non-uniform) adversary Adv, arbitrary
distribution X overM and arbitrary functions I, f : M 7→ {0, 1}poly(n) there exists a PPT simulator
Sim such that:

Pm←X [Adv(I(m),Enc(m)) = f(m)] ≤ (1 + δ) · Pm←X [Sim(I(m)) = f(m)] + negl(n).

The probabilities above are also over the generation of the encryption key. Note that (Gen,Enc,Dec)
is semantically-secure if it is 1-weakly semantically secure.

Definition 6.10 (Tamper Resilient Weakly Semantically Secure Encryption). We call an encryp-
tion scheme Π tamper-resilient weakly semantically secure if for every p = 1/poly(n) (where n
is the security parameter) Π is secure under Definition 6.9 even when the adversary Adv is able
to generate a p-tampering circuit Tam that modifies the randomness of the key generation and
encryption algorithms into p-tampering sources.

We prove the following positive result about the possibility of achieving weakly semantically
secure encryptions under Definition 6.9. Our result implies that when we consider the weak semantic
security according to Definition 6.9 for functions f(m) which cannot be computed by more than
negl(n) probability given the encryption of m, one can always preserve this property (of f remaining
“hard” to compute given the encryptions) even in the presence of p = 1

poly(n) -tampering attacks.

Theorem 6.11. Suppose there exits a semantically secure (public-key or private-key) encryption
scheme, and p = n−α for a constant α > 0. Then for every 0 < β < α, there exists a (1 +O(n−β))
weakly semantically-secure encryption scheme that is secure against p-tampering adversaries.

Proof. We follow the same paradigm of previous sections but with even smaller PRG seeds. The
existence of any semantically secure encryption scheme implies the existence of OWFs, which in
turn implies the existence of PRGs with arbitrary polynomial stretch [HILL99]. Thus, for every

38

constant γ > 0 we can use two seeds of length nγ/2 to get enough number of pseudorandom bits to
use in Gen and Enc. To get the (1 +O(n−β)) weakly semantically secure scheme (Gen′,Enc′,Dec)
we set γ = α − β and then modify the Gen and Enc algorithms (and call them Gen′,Enc′) to use
a truly random seed of length nγ/2 and stretch it to the necessary number of bits.

First we claim that if (Gen,Enc,Dec) was semantically secure, (Gen′,Enc′,Dec) remains seman-
tically secure. This is nontrivial because the distribution X is not necessarily efficiently samplable
and f, I are not necessarily efficiently computable. We use the classical result of [GM84] that
a public key scheme is semantically secure iff it is CPA secure. A CPA secure is defined based
on a security game in which the adversary, given the public key, chooses two messages m0,m1,
receives the encryption of mb for b ← {0, 1} and wins if he guesses b correctly with probability
1/2 + 1/ poly(n). It is easy to see that the CPA property is preserved when we use pseudorandom
bits in Gen, because otherwise the security game itself can be turned into a distinguisher against
the PRG that is used to expand the pseudorandom bits used in Gen.

Now we study the security of (Gen′,Enc′,Dec) in the presence of n−α-tampering attacks. During
a n−α-tampering attack, every bits of the PRG seed of length nγ (applied to two seeds of length
nγ/2) is tampered with by the adversary only with probability n−α. Therefore, the probability of

any seed being the result of the tampering is at most (1 + n−α/2)n
γ ≤ en

−β
/2n

γ
. Similarly to the

argument in the analysis of the tamper-resilient signatures, we conclude that any event E which
an efficient adversary could make it happen without the tampering, would happen now (with the
tampering) with probability at most

e(n−β) · P[E without tampering] ≤ (1 +O(n−β)) · P[E without tampering].

We conclude Theorem 6.11 by considering the event E to be the event that the adversary is
computing f(m) correctly. In the original semantically secure scheme it holds that

Pm←X [Adv(I(m),Enc(m)) = f(m)]

≤ Pm←X [Sim(I(m)) = f(m)] + negl(n)

which implies that in the new scheme (Gen′,Enc′,Dec) it holds that

Pm←X [Adv(I(m),Enc(m)) = f(m)]

≤ (1 +O(n−β)) · (Pm←X [Sim(I(m)) = f(m)] + negl(n))

≤ negl(n) + (1 +O(n−β)) · Pm←X [Sim(I(m)) = f(m)].

6.5 Generalization to Threshold-0 Primitives

Our tamper-resilient constructions for Signatures, Identification Schemes, Weakly-Semantically Se-
cure Encryptions, etc, above clearly suggest a general approach that can be applied to a wide
range of primitives where the adversary’s job is to make the challenger accept with non-negligible
probability. Here we describe the abstract properties of the primitives that makes this approach
applicable.

Any natural cryptographic primitive P can be viewed as a set of interactive algorithms with
some completeness properties imposed on them. For example an encryption scheme has three

39

components of (Gen,Enc,Dec). In the security game of P some of these components are executed
on the “challenger” side and their randomness is prone to online tampering. There might be
several “instantiations” of each of these components by the challenger during its interaction with
the adversary. For example in the security game of multi-message signatures, the signing algorithm
might be executed an unbounded polynomial number of times depending on adversary’s choice. If
an executed component can keep internal state across different instantiations, we still consider this
a single instantiation. For example, when a tampering verifier interacts with a prover sequentially
in poly(n) repetitions while the prover keeps an internal state (as it was the case in witness-hiding
protocols in Section 6.3), we consider this a single instantiation.

In order to apply the pseudorandomness-based approach of previous sections to a primitive and
make its implementation resilient to p-tampering for p = 1/ poly(n), it is sufficient to have both of
the following two conditions:

1. The threshold of the security game is 0 (i.e., adversary needs to with with 1/poly(n)).

2. The number of randomized components of the primitive P which are instantiated during the
security game are at most n−β for a constant β < α where p = n−α.

When we have the above two conditions, all we have to do is to use pseudorandomness to execute
the components of P as follows: each component uses a seed s of length nγ as the key to a PRF
g where γ = α − β and uses gs(1), gs(2), . . . to get its “random” bits during its execution. Note
that, for any fixed polynomial t, the sequence [gs(1), gs(2), . . . , gs(t)] is pseudorandom. So after
fixing the complexity of the adversary Adv who interacts with the challenger, each instantiated
component of P is using a PRG that stretches a seed s of length nγ to the needed number of random
bits. Each of these seeds could be p-tampered with by the adversary in an instantiation during the
security game, and so their joint min-entropy loss (compared to a truly random seed) is at most
O(nβ ·nγ ·n−α) = O(1). Therefore, any event E that the original (non-tampering) adversary could
make it happen with probability ρ, will happen in the security game with the tampering attack
with probability at most 2O(1)ρ, which remains negl(n) assuming that ρ was already negligible.

6.6 Beyond Threshold-0 Primitives

Here we describe a general method that allows us to make a cryptographic primitive tamper-resilient
to p-tampering attacks for any constant p < 1, as long as there are two honest parties involved
in the primitive (that know each other). We start by describing a solution for the task of key
agreement (which is a primitive in which both parties are honest and the adversary is a passive
eavesdropper), and then describe how it can be generalized to more settings by relying the work
of [KLR09] at the cost of non-standard computational assumptions.

6.6.1 Tamper-Resilient Key Agreement

A tampering adversary attacking a key agreement protocol Π̂ between Alice and Bob sends tam-
pering circuits TamA and TamB to Alice and Bob where each tampering circuit tampers with the
randomness of the corresponding party. In this section we prove the following theorem.

Theorem 6.12. Suppose Π is a secure key agreement protocol. Then for every constant p <
√

2−1
there is another key agreement protocol Π̂ which is secure against p-tampering adversaries.

40

Proof. We show how Alice and Bob can start from 2n bits of tampered random bits and obtain
Ω(n) bits XA, XB each in a way that (XA, XB) are (jointly) statistically close to uniform.

Alice and Bob divide their original 2n-bit random strings into two equal parts and call them
(X1

A, X
2
A) and (X1

B, X
2
B) where the bits in X1

A (resp. X1
B) are tossed before the bits in X2

A (resp.

X2
B). Suppose the tampered values of these random seeds are (X̂2

A, X̂
2
A), (X̂2

B, X̂
2
B). We use the

following lemma which is implied by Theorem 1 of [DO03].

Lemma 6.13 (Strong Two-Source Extractors). Suppose X and Y are two random variables defined
over {0, 1}n with min-entropy α ·n and α > 1/2, then there is an efficient function Ext : {0, 1}2n 7→
{0, 1}m (independent of X,Y) for m = Ω(n) such that (Ext(X,Y), Y) is negl(n)-close to (Um, Y).

Description of Π̂: Alice (resp. Bob) will send X̂1
A (resp. X̂1

B) to the other party. Then Alice

(resp. Bob) will apply the strong extractor of Lemma 6.13 and gets XA = Ext(X̂2
A, X̂

1
B) (resp.

XB = Ext(X̂2
B, X̂

1
A)). Then they use (XA, XB) as their randomness and execute Π. Note that By

taking n large enough, XA, XB would be long enough to execute Π.
Since the tampering circuits TamA and TamB cannot communicate, it follows that the random

variables X̂2
A and X̂1

B are independent. Since, p <
√

2 − 1, the min-entropy of the “source” X̂2
A

is at least α for α > 1/2 even conditioned on the publicly revealed message X̂1
A, simply because

X̂2
A was tampered with after X̂1

A. Therefore, the extracted XA will remain statistically close to a
secret Um for m = Ω(n) in eyes of the adversary, even conditioned on the information sent over the
public channel. The same argument holds for the uniformity of XB. Thus, Alice and Bob can use
the (statistically close to) pure random seeds XA, XB to run the protocol Π securely.

Remark 6.14 (Synchronization Issue). A subtle point here is that Alice and Bob should toss coin
and obtain (X̂2

A, X̂
1
A) and (X̂2

B, X̂
1
B) before sending X̂1

A and X̂1
B to each other. Otherwise, if say

Alice tosses coin after receiving X̂1
B, then the tampering circuit TamA could tamper X2

A into X̂2
A with

the knowledge of X̂1
B which makes X̂1

B and X̂2
A dependent and thus we cannot apply Lemma 6.13.

References

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In Omer Reingold, editor, Theory
of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco,
CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer
Science, pages 474–495. Springer, 2009. 1

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance – a cautionary note. In Proceed-
ings of the Second USENIX Workshop on Electronic Commerce, pages 1–11, Novem-
ber 1996. 1

[Ale96] One Aleph. Smashing the stack for fun and profit. http: // www. shmoo. com/

phrack/ Phrack49/ p49-14 , 1996. 1

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of checking
cryptographic protocols for faults. In International conference on the theory and
applications of cryptographic techniques, pages 37–51. Springer, 1997. 1, 6

41

http://www. shmoo. com/phrack/Phrack49/p49-14
http://www. shmoo. com/phrack/Phrack49/p49-14

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. In Foundations of Computer Science (FOCS), 2010 51st Annual
IEEE Symposium on, pages 501–510. IEEE, 2010. 1

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-party
secure computation. In Annual International Cryptology Conference–CRYPTO, pages
80–97. Springer, 1999. 24

[BPR14] Mihir Bellare, Kenneth G Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In Advances in Cryptology–CRYPTO 2014,
pages 1–19. Springer, 2014. 4

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
Annual international cryptology conference–CRYPTO, pages 513–525. Springer, 1997.
1

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 235–244. ACM, 2000. 2

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper resilience.
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 740–758. Springer, 2011. 1, 6

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In Daniele
Micciancio, editor, Theory of Cryptography, 7th Theory of Cryptography Conference,
TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978 of
Lecture Notes in Computer Science, pages 361–381. Springer, 2010. 1

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryp-
tography against continuous memory attacks. In Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium on, pages 511–520. IEEE, 2010. 1

[DO03] Yevgeniy Dodis and Roberto Oliveira. On extracting private randomness over a pub-
lic channel. In Approximation, Randomization, and Combinatorial Optimization..
Algorithms and Techniques, pages 252–263. Springer, 2003. 34, 41

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im)
possibility of cryptography with imperfect randomness. In Foundations of Computer
Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 196–205. IEEE,
2004. 5, 8, 21, 23, 27

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In Foun-
dations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium
on, pages 293–302. IEEE, 2008. 1

42

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
Journal of the ACM (JACM), 65(4):20, 2018. 1, 6

[DSK12] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-
rate tampering. In Advances in Cryptology–CRYPTO 2012, pages 533–551. Springer,
2012. 1

[FB09] Ariel J. Feldman and Josh Benaloh. On subliminal channels in encrypt-on-cast vot-
ing systems. In Proceedings of the 2009 conference on Electronic voting technol-
ogy/workshop on trustworthy elections, EVT/WOTE’09, pages 12–12, Berkeley, CA,
USA, 2009. USENIX Association. 4

[FPV11] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits:
How to trade leakage for tamper-resilience. In International Colloquium on Automata,
Languages, and Programming, pages 391–402. Springer, 2011. 1, 6

[Fry00] Niklas Frykholm. Countermeasures against buffer overflow attacks. RSA Tech Note,
pages 1–9, 2000. 1

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Al-
gorithmic tamper-proof (ATP) security: Theoretical foundations for security against
hardware tampering. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in
Computer Science, pages 258–277. Springer, 2004. 1, 3, 6

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984. 39

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994. 9, 27, 28, 29

[GR12] Shafi Goldwasser and Guy Rothblum. How to compute in the presence of leakage. In
IEEE Symposium on Foundations of Computer Science, 2012. 1

[HDWH12] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining
your Ps and Qs: Detection of widespread weak keys in network devices. In Proceedings
of the 21st USENIX Security Symposium, August 2012. 2

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999. 33, 37, 38

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography. In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science (FOCS), pages 230–235, 1989. 4, 35, 36

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits
II: Keeping secrets in tamperable circuits. In Serge Vaudenay, editor, Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
308–327. Springer, 2006. 1, 6

43

[KK08] Seny Kamara and Jonathan Katz. How to encrypt with a malicious random number
generator. In Fast Software Encryption, pages 303–315. Springer, 2008. 5

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with
tamperable and leaky memory. In Annual Cryptology Conference, pages 373–390.
Springer, 2011. 1, 6

[KLR09] Yael Tauman Kalai, Xin Li, and Anup Rao. 2-source extractors under computational
assumptions and cryptography with defective randomness. In Foundations of Com-
puter Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages 617–626.
IEEE, 2009. 34, 40

[KLR12] Yael Kalai, Allison Lewko, and Anup Rao. Formulas resilient to short-circuit errors.
In IEEE Symposium on Foundations of Computer Science, 2012. 1

[LHA+12a] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Klein-
jung, and Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417
of Lecture Notes in Computer Science, pages 626–642. Springer, 2012. 2

[LHA+12b] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Klein-
jung, and Christophe Wachter. Ron was wrong, whit is right. Cryptology ePrint
Archive, Report 2012/064, 2012. http://eprint.iacr.org/. 2

[LL10] Feng-Hao Liu and Anna Lysyanskaya. Algorithmic tamper-proof security under prob-
ing attacks. In International Conference on Security and Cryptography for Networks,
pages 106–120. Springer, 2010. 1

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state
model. In Crypto, 2012. 1, 6

[MR04] Micali and Reyzin. Physically observable cryptography (extended abstract). In Theory
of Cryptography Conference (TCC), LNCS, volume 1, 2004. 1

[PB04] Jonathan D. Pincus and Brandon Baker. Beyond stack smashing: Recent advances
in exploiting buffer overruns. IEEE Security & Privacy, 2(4):20–27, 2004. 1

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 552–569.
Springer, 2012. 1

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, Feb 1978. 1

[Sim94] Gustavus J Simmons. Subliminal channels; past and present. Transactions on Emerg-
ing Telecommunications Technologies, 5(4):459–474, 1994. 4

44

http://eprint.iacr.org/

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from
semi-random sources. J. Comput. Syst. Sci., 33(1):75–87, 1986. 3, 10, 11

[YY96] Young and Yung. The dark side of ‘black-box’ cryptography, or: Should we trust
capstone? In CRYPTO: Proceedings of Crypto, 1996. 4

45

	Introduction
	Our Results
	Related Work
	Our Techniques
	Biasing Bounded-Value Functions
	Impossibility Results for Tamper-Resilient Cryptography

	Preliminaries
	Biasing Functions via Online Tampering
	Preliminaries: Calculating the Effect of a Single Variable
	The Boolean Case
	Tampering with Bounded-Value Functions—The General Case
	Tampering with One Bit

	Computational Splitting from Efficient Biasing
	Impossibility of Tamper Resilient Cryptographic Primitives
	Encryption
	Tamper-Resilient Commitments and Secure Computation
	Impossibility of Tamper-Resilient Zero-Knowledge for NP
	Proof of Theorem 5.15

	Achieving Tamper Resilience Using Pseudorandomness
	Tamper Resilient Signatures
	Identification Schemes
	Witness Hiding Protocols
	Weak Semantic Security
	Generalization to Threshold-0 Primitives
	Beyond Threshold-0 Primitives
	Tamper-Resilient Key Agreement

