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Abstract. A combiner for collision-resistant hash functions takes two functions as input and imple-
ments a hash function with the guarantee that it is collision-resistant if one of the functions is. It has
been shown that such a combiner cannot have short output (Pietrzak, Crypto 2008); that is, its output
length is lower bounded by roughly 2n if the ingoing functions output n-bit hash values. In this paper,
we present two novel definitions for hash function combiners that allow to bypass the lower bound:
the first is an extended semi-black-box definition. The second is a new game-based, fully black-box
definition which allows to better analyze combiners in idealized settings such as the random-oracle
model or indifferentiability framework (Maurer, Renner, and Holenstein, TCC 2004). We then present
a new combiner which is robust for pseudorandom functions (in the traditional sense), which does not
increase the output length of its underlying functions and which is collision-resistant in the indifferen-
tiability setting. Our combiner is particularly relevant in practical scenarios, where security proofs are
often given in idealized models, and our combiner, in the same idealized model, yields strong security
guarantees while remaining short.
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1 Introduction

A Story. Once upon a time little Cryptess was walking through her favorite forest. As usual she was
thinking about a hard problem and thus did not pay much attention on where she was going. It thus
came that she suddenly found herself on a beautiful glade that she had never seen before. In its center
she could make out what seemed to be a fairy flapping her wings in a welcoming pattern. Little Cryptess
slowly approached the fairy and politely asked “Hello little one, who are you?” The fairy responded “I am
the fairy Cryptophia and since you have found my magical glade, I grant you one wish.” Little Cryptess
did not take long to come up with a wish: “Can you build me a hash-function combiner that while being
robust for collision resistance does not increase the output length of the hash functions?” “Of course I
can”, said the fairy. “Here it is. But beware, it is a magical combiner. Given access to two hash functions
H1 and H2 and a message M it returns H1(M) if and only if H1 is ‘more’ collision-resistant than H2.
Else it returns H2(M)”. Cryptess thought for a moment and then replied “I am sorry Cryptohia, but
your combiner is utterly useless. It is not robust for collision resistance after all. Assume I give it access
to two uniformly random functions R1 and R2 and I am given an oracle that computes collisions for the
combiner. As the oracle will only provide collisions for R1 no efficient reduction can compute collisions
for R2. This, as you should know, violates the definition of robustness and thus your combiner is useless
to me.” With this she turned around and went home.
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Hash-Function Combiners. Hash functions are an important cryptographic primitive but, as with
many primitives, efficient constructions used in practice are based on heuristics [49, 42, 4, 31, 55, 10, 25].
As history has shown, with time, it is not unlikely that cryptanalysists find plausible attacks [54, 52, 51,
53, 21, 3, 16] and it is thus a natural question to ask whether we can hedge against the failure of an
implemented hash function.

A hash-function combiner is a construction which, given access to two or more hash functions, itself
implements a hash function that, however, comes with certain guarantees. A combiner is called robust for
some property π if it guarantees to satisfy property π provided that sufficiently many input functions do.
The simplest version (and the one usually used in practice) is a combiner which takes two hash functions
as input and hedges against the failure of one of them, i.e., it obeys π if either of the input functions
does. This will also be the variant that we examine more closely in this paper. A practical example of the
application of hash-function combiners are the original versions of the TLS and SSL protocols [29, 22].

Assume CH1,H2 is a hash-function combiner given access to two hash functions H1 and H2, then
robustness for property π is usually defined via a reductionist approach. That is, the combiner is called
robust for π if there exists a reduction P such that if P is given access to any (breaking-)oracle B that
breaks π on the combiner with non-negligible probability, then PB,H1,H2 must in turn break π on both
input hash functions (H1 and H2) with non-negligible probability.

There are two folklore combiners for hash functions. The concatenation combiner

CH1,H2

‖ (M) := H1(M)||H2(M)

is, amongst others, robust for collision resistance (it should be difficult to find two distinct messages
that hash to the same value). It is easy to see that a collision on the combiner directly yields collisions
for both input functions. In other words, for a message pair (M,M ′) with M 6= M ′ it holds that
CH1,H2(M) = CH1,H2(M ′) if and only if H1(M) = H1(M

′) and H2(M) = H2(M
′). The concatenation

combiner is, however, not robust for pseudorandomness (no efficient distinguisher that is only given black-
box access should be able to distinguish between the hash function and a randomly chosen function with
the same domain and codomain). On the other hand, the exclusive-or combiner

CH1,H2
⊕ (M) := H1(M)⊕H2(M)

which computes the bitwise exclusive-or on the outputs of the two hash functions is robust for pseudo-
randomness if instantiated with two independent hash functions. However, it is not robust for collision
resistance, nor even collision-resistant preserving. Hash-function combiners that are robust for multiple
properties, in particular for collision resistance and pseudorandomness together, have been studied by
Fischlin et al. [26, 27].

Short Combiners. If we assume that H1 and H2 take on values in {0, 1}n then the concatenation
combiner doubles the output length, whereas the exclusive-or combiner does not. Furthermore, it is a
common property that all combiners robust for collision resistance share: their output length is in the
order of the sum of the output lengths of the input hash functions.

This observation lead to the question whether short hash-function combiners (combiners with an
output length significantly shorter than that of the concatenation combiner) that are robust for collision
resistance exist [14]. It has been shown that this is not the case, i.e., there exists a lower bound on
the output length for combiners that are robust for collision resistance as well as for related properties
[14, 15, 44, 45, 39] where the lower bound is roughly the output length achieved by the concatenation
combiner.
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Black-box vs. Non-black-box. Constructions in cryptography are usually fully black-box [46] in
that the construction (in our case the combiner) accesses the primitive (i.e., hash functions) as a black-
box and, similarly, the accompanying security reduction accesses the primitive and the adversary in a
black-box way. This ensures that the combiner does indeed work for any hash function and is secure in a
way such that any adversary against the combiner can be transformed into an efficient adversary against
the underlying hash functions.

A recent framework by Baecher et al. [5] allows to give a more fine-grained characterization of re-
ductions (and thus separation results) in terms of their “level of black-boxness”. Here reductions are
characterized using the CAP notation denoting whether the (C)onstruction has black-box access to the
primitive and whether the reduction accesses the (A)dversary and or the (P)rimitive in a black-box man-
ner. Each access can be either black-box or not resulting in eight possible combinations of CAP types
from {N, B}3. A BBB-combiner would, thus, work for any pair of hash functions (it only gets black-box
access) and the security reduction would need to turn any adversary into an efficient adversary against
the underlying hash functions itself only having black-box access to the hash functions.

The CAP classification becomes particularly interesting when considering impossibility results such
as that robust combiners for collision resistant hash functions must have long output [45]. On the outset
it seems to only rule out fully black-box combiners (in the terminology of [46]) but on closer inspection
it is, in fact, ruling out NNN-reductions (see Section 3). This, however, means that to circumvent the
impossibility result, a “mere switch” to non-black-box techniques would not suffice. Rather, it seems
that the definition of robustness must be changed.

For this, consider once more Cryptophia’s non-black-box magical combiner. Cryptess rejected the
combiner on the grounds that it is not robust for collision resistance. Indeed, she was right, as the combiner
only evaluates one of the two functions a collision on the combiner cannot possibly yield information
about collisions for the other function. Thus, robustness seems to require a combiner to be, in some
sense, stronger than the strongest ingoing function (be the access black-box or non-black-box). In terms
of security, however, this clearly goes against the intuition of what a combiner should capture: it should
be at least as strong as the stronger of the two functions, but not necessarily stronger.

Contributions and Outline. In this paper we examine the current definition of robust combiners
and the reason why it is necessary for combiners that are robust for collision resistance to satisfy a lower
bound on their output-length (Section 3). In Section 3.2, we extend the definition (in a semi black-
box way) in order to better capture the intuition: a combiner does only need to be as strong as the
strongest input function and not necessarily stronger. We then present a new game-based definition for
combiners (Section 3.3) which also allows to bypass the lower bounds while still being fully black-box.
This second notion is tailored to analyze combiners in idealized models such as the random oracle model
(ROM; [9]) or the indifferentiability framework introduced by Maurer, Renner and Holenstein [37, 19]
giving guarantees of the form: the combiner has property π if one of the input functions is ideal even
if the other function is completely under the control of the adversary and possibly even based on the
first function. We go on to present a new construction for a combiner which we analyze in this new
model (Section 4). The combiner does not increase the output length of its ingoing functions while
guaranteeing collision resistance (and related properties) provided that one of the two input functions
is indifferentiable from a random oracle (assuming ideal compression functions). Finally, we show that
our combiner is robust for pseudorandomness under the “traditional” definition of robustness without
needing to assume independence (as is the case for the “standard” xor-combiner). This yields the first
multi-property combiner with short output length, which is robust for pseudorandomness and which
gives additional guarantees about collision resistance and related properties such as pre-image resistance
or target collision resistance. As many security proofs for constructions used in practice (for example,
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[18, 7, 8, 13]) rely on idealized models in the first place, our combiner is especially interesting from a
practical point of view: under the same assumptions, it yields an efficient multi-property combiner with
the same or even better security guarantees than are given for traditional combiners, without having to
increase its output length.

2 Preliminaries

2.1 Notation

Lower-case letters, such as n ∈ N, usually represent natural numbers and by 1n we denote the unary
representation of n. Upper-case letters in standard typeface, like M , stand for bit-strings which we
usually call messages. By {0, 1}n we denote the set of all bit-strings M of length |M | = n, while {0, 1}∗
denotes the set of all bit-strings. For bit-strings X,Y ∈ {0, 1}∗ we denote with X||Y their concatenation
and with X ⊕ Y the bit-wise exclusive-or (XOR) operation. Note that for the exclusive-or operation we
always ensure that X and Y are of the same length.If X is a set then by M ← X we mean that M is
chosen uniformly from X . If X is a distribution then M ← X denotes that M is chosen according to the
distribution.

We model algorithms as (oracle) Turing machine where an oracle invocation is counted as a single
computation step. If A is an algorithm (often also called adversary) that has black-box access to one or
more oracles O1, ...,Oz we denote this by adding them in superscript, i.e., AO1,...,Oz . By X ← A(M)
we denote that algorithm A on input M outputs value X. Throughout this paper we assume 1n to
be a security parameter and we call an algorithm efficient if it runs in polynomial time in the security
parameter.

If X is a random variable, Prob[X = x] denotes the probability that X takes on value x. By H∞ (X)
we denote the min-entropy of variable X, defined as

H∞ (X) := min
x∈Supp(X)

log(1/Prob[X = x])

where the probability is over X. The (average) conditional min-entropy of random variable X conditioned
on variable Z is defined (in the style of [1]) as

H̃∞ (X|Z) := min
A

log(1/Prob[X = A(Z)])

where the probability is over X and Z and the random coins of A (which has no efficiency bounds).

2.2 Hash Functions and their Properties

Formally, a hash function H is defined as a family of functions together with a key generation algorithm
HKGen that picks one of the functions to be used. That is, a hash function (family) is a pair of efficient
algorithms H = (HKGen, H) where HKGen(1n) is a probabilistic algorithm that takes as input the
security parameter 1n and outputs a key k, while deterministic algorithm Hk(M) := H(k,M) takes a key
k and message M ∈ {0, 1}∗ as input and outputs a hash value Hk(M) ∈ {0, 1}n. Note that we will drop
the subscript and simply write H(M) whenever the key is clear from context.

2.2.1 Collision Resistance and Related Properties

A hash function H is called collision-resistant (cr) if no efficient adversary can find two distinct messages
(M,M ′) such that Hk(M) = Hk(M

′). More formally, a hash function is called collision-resistant, if for

4



any efficient adversary A there exists a negligible function negl such that:

Advcr
H(A) := Prob

[
k← HKGen(1n);

(M,M ′)← A(k)
:

M 6= M ′ ∧
Hk(M) = Hk(M

′)

]
≤ negl(n)

where the probability is over the choice of key and A’s internal coin tosses.
Two closely related properties are second pre-image resistance (spr) and target collision resistance

(tcr) (see [50] for an overview of several variants of these notions). Here the adversary’s task is not to
find an arbitrary collision but a specific one. In the second pre-image experiment, the adversary is given
a message M (sampled according to some distribution M) and has to output a second pre-image M ′

such that M 6= M ′ and Hk(M) = Hk(M
′). For this experiment the adversary’s advantage is defined over

the choice of key k and the choice of message M . In the target collision experiment1 the first pre-image
M is not sampled but specified by the adversary (without knowledge of key k). In a second step, the
adversary then gets access to the key and again has to find a second pre-image M ′ such that M 6= M ′

and Hk(M) = Hk(M
′). Here the adversary’s advantage is defined only over the choice of key k.

More formally, a hash function is called second pre-image resistant if for any efficient adversary A
there exists a negligible function negl such that:

Advspr
H (A) := Prob

 k← HKGen(1n);

M ←M(1n);

M ′ ← A(k,M)

: M 6= M ′ ∧Hk(M) = Hk(M
′)

 ≤ negl(n)

where the probability is over the choice of key, message and A’s internal coin tosses. The function family
is called target collision-resistant if for any efficient adversary A := (A1,A2) there exists a negligible
function negl such that:

Advtcr
H (A) := Prob

 (M, st)← A1(1
n);

k← HKGen(1n);

M ′ ← A2(k,M, st)

: M 6= M ′ ∧Hk(M) = Hk(M
′)

 ≤ negl(n)

where the probability is over the choice of key and the adversary’s (A1,A2) internal coin tosses.
Finally, we consider another variant of second pre-image resistance called pre-image resistance (also

often referred to as one-wayness). In the pre-image resistance experiment a message M is again chosen
according to some distribution M. Given only the resulting hash value Hk(M) (and not message M)
and key k, the adversary’s task is to find a corresponding pre-image M ′, i.e., a message M ′ such that
Hk(M) = Hk(M

′). More formally, a hash function is pre-image resistant, if for any efficient adversary A
there exists negligible function negl such that:

Advow
H (A) := Prob

 k← HKGen(1n);

M ←M(1n);

M ′ ← A(k, Hk(M))

: Hk(M) = Hk(M
′)

 ≤ negl(n)

where the probability is defined over the choice of message, the choice of key and A’s internal coin tosses.

2.2.2 Pseudorandomness and Message Authentication Codes

Besides collision resistance and its variants, hash functions are often assumed to be pseudorandom (or
a pseudorandom function; prf) or secure message authentication codes. Here the adversary is not given

1Note that target collision resistant hash functions are also known as universal one-way hash functions [41].
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access to the hash function’s key but only to a black-box implementing the hash function, i.e., the key
is kept private at all times. A hash function H is called pseudorandom if no efficient adversary can tell
whether it is given black-box access to the hash function H or to a random function f with the same
domain and range. More formally, for any efficient adversary A there exists a negligible function negl

such that:
Advprf

A (A) :=
∣∣∣Probk

[
AHk(1n) = 1

]
− Probf

[
Af (1n) = 1

]∣∣∣ ≤ negl(n)

The probability is over the adversary’s random coins and the choice of key in the first part and the choice
of function in the second, respectively.

A hash function is called a secure message authentication code (mac) if the advantage of any efficient
adversary A in the following security experiment is bounded by a negligible function negl:

Advmac
H (A) := Prob

[
k← HKGen(1n);

(t∗,M∗)← AHk(1n)

Hk(M
∗) = t∗ ∧

M∗ was not sent to hash oracle

]
≤ negl(n)

The probability is over the choice of key k and A’s internal coin tosses.

2.2.3 Random Oracles and Indifferentiability

Many security proofs are given in the random oracle model (ROM; [9]) where hash functions are modeled
as ideal, i.e., as truly random functions (e.g., [18, 7, 8, 13]). While random oracles have no structure
at all hash functions, on the other hand, are usually built from a fixed-length compression function and
some iteration scheme defining how arbitrarily long messages are hashed [38, 20, 49, 36, 4, 31, 55, 10, 25].

The indifferentiability notion introduced by Maurer, Renner and Holenstein in [37] can be seen as a
generalization of indistinguishability that allows to better analyze constructions—such as hash functions—
where internal state is publicly available. Coron et al. [19] applied the notion to hash functions and
proved several hash constructions to be indifferentiable from a random oracle. The composition theorem
for indifferentiability allows to reduce the security of a scheme in the random oracle model to the security
of the compression function, in case the random oracle is implemented by a hash construction that
is indifferentiable from a random oracle. As a compression function is a much more graspable object
than a random oracle, indifferentiability has become an accepted design criterion for hash functions;
indeed, many candidates to the SHA-3 competition [43], including the winner Keccak [10] enjoy proofs
of indifferentiability [17, 2, 40, 11, 12].

3 A Novel Definition of Combiners for Hash Functions

A (k, l)-combiner for property π (for example, collision resistance) is a construction that, given access
to l hash functions, satisfies property π as long as this is the case for at least k “input” hash functions.
Combiners in practice are usually (1, 2)-black-box-combiners, that is a construction which is given black-
box access to two hash functions and which obeys property π as long as either of the two functions does.
In this paper we restrict ourselves to this “practical” class of combiners.

In this section we will examine the current definition of robust black-box combiners and explain why
combiners robust under this definition must satisfy a lower bound on their output-length (Section 3.1).
We then present a semi-black box extension to this definition (Sections 3.2) as well as a new notion for
analyzing combiners in idealized models (Section 3.3). The two have in common that they allow us to
bypass the restriction on the output-length.
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3.1 Black-box Combiners for Hash Functions

Combiners for hash functions are traditionally defined in the following fashion (see, for example, [14, 45]
for a version of this definition for collision resistance): a hash-function combiner robust for property π
(e.g., collision resistance) is a construction that given black-box access to two hash functions H1 and H2

implements a hash function which obeys property π as long as H1 or H2 obeys property π. Formally,
a hash-function combiner C := (CKGen, C,P), robust for property π, is a triple of efficient algorithms,
where CKGen(1n,HKGen1,HKGen2) generates keys for hash functions H1 and H2 and possibly some
additional key kC for the combiner. Algorithm C is an efficient deterministic algorithm that on input keys
kH1 , kH2 , kC and M ∈ {0, 1}∗ returns a hash value CkH1

,kH2
,kC (M) := C(kH1 , kH2 , kC ,M) in target domain

{0, 1}n. We will usually simply write CH1,H2(M) indicating that the combiner gets black-box access to
the two hash functions. Algorithm P is a security reduction, i.e., P is a probabilistic polynomial-time
oracle Turing machine that given access to a (breaking-)oracle B that breaks property π on the combiner
(for example, samples collisions) breaks property π on both hash functions H1 and H2. Note that B may
be inefficient.

Folklore Combiners. The classical combiner for collision resistance (and related properties) is the
concatenation combiner defined as

CH1,H2

|| (M) := H1(M)||H2(M) .

Obviously, any collision on the combiner C|| directly yields collisions for hash functions H1 and H2.
The same applies for second pre-image resistance, target collision resistance and pre-image resistance.
This combiner is, however, trivially not robust for pseudorandomness. The traditional combiner for
pseudorandomness is the exclusive-or combiner

CH1,H2
⊕ (M) := H1(M)⊕H2(M)

although one has to make the additional assumption that the two functions are independent. Under this
assumption the combiner is robust for pseudorandomness, message authentication codes and indifferentia-
bility [28, 35]. Without this additional assumption it is, however, not even pseudorandomness preserving.
Take two (keyed) random oracles H1, H2 : {0, 1}∗ → {0, 1}n where H2 is defined as H2 := H1 ⊕ 1n. Indi-
vidually, these two functions are information-theoretically indistinguishable from random functions. The
XOR-combiner would, however, implement the constant 1n-function. The exclusive-or combiner is also
not robust for collision resistance, even assuming independent functions, as a collision on the combiner
does not require collisions under both input functions.

3.1.1 On the Level of Black-boxness

In a recently presented framework, Baecher et al. [5] extend the notions developed by Reingold et al. [46] to
precisely allow capturing the level of “black-boxness” of a reduction (resp. construction). Reductions are
classified according to the CAP terminology denoting whether the (C)onstruction accesses the primitive
in a black-box way, and whether the reduction makes black-box use of the (A)dversary and/or the
(P)rimitive. Each access can be either black-box or not resulting in eight possible combinations of CAP
types from {N, B}3. In terms of the definition of black-box combiners given, we have defined what would
be a BBB-combiner as the primitives (i.e., the hash functions) are accessed in a black-box way by the
construction (i.e., the combiner) and the reduction has to work for any breaking-oracle while also only
accessing the hash functions via black-box access. The framework is particularly useful to better classify
impossibility results as it allows to pinpoint possible ways to circumvent the result. As we will see, the
outlook for “short” combiners is rather grim.
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3.1.2 Short Combiners for Collision Resistance

A crucial difference between the two classical combiners (apart from being robust for different properties)
is that the concatenation combiner doubles the output length, i.e., if the two input hash functions have
range {0, 1}n, then the concatenation combiner outputs hash values in {0, 1}2n while the exclusive-or
combiner only outputs bit-strings of length n. A natural question to ask is: can we do better? That is,
does a secure combiner for collision resistance, which has a significantly shorter output length than the
concatenation combiner, exist? This question was first posed by Boneh and Boyen in [14] and has since
been answered negatively [14, 15, 44, 45]: combiners, robust for collision resistance, with significantly
shorter output length than the concatenation combiner do not exist. Recently, a similar result was proved
for second pre-image resistance, target collision resistance and pre-image resistance [39].

Let us quickly sketch the proof idea for collision-resistance. Assume we have a combiner for two
hash functions with range {0, 1}n. If the combiner compresses its output to below 2n bits, then by the
pigeonhole principle, there must exist collisions that result from compression rather than from collisions
on the original hash functions. This allows to show the existence of an adversary which only samples such
collisions that result from compression (note that the breaking oracle does not need to be efficient and
can, thus, search for such a collision). Naturally, these collisions do not help any security reduction P in
finding collisions on the input hash functions. For example, assume the input hash functions are random
oracles: then, a collision on the combiner which solely results from compression does not provide any
help in finding a collision for one of the random oracles. This allows to show that no security reduction
can exist if the combiner compresses. Hence, combiners with short output-length do not exist.

When we classify, in the framework of Beacher et al. [5], the reductions that are ruled out by the
impossibility result sketched above we see that not just BBB-constructions are ruled out, but essentially
NNN-construction. For this note, that the breaking oracle is indifferent to the construction or the reduction
having non-black-box access to the hash functions and that the breaking-oracle is furthermore universal
in that the reduction may depend on it. Thus, trying to find non-black-box techniques will not help in
circumventing the lower bound.

3.2 Extending the Traditional Definition

In the introduction we saw that Cryptophia’s magical combiner is not robust for collision resistance under
the traditional definition of robustness. In the following we extend the traditional definition of combiners
for collision-resistant hash functions such that it also captures the “magical” combiner. To this end, we
need to relax the requirements on the security reduction P while ensuring that, in doing so, we won’t
label any insecure combiners “secure”. The idea is to call a combiner robust for some property π if the
advantage of any efficient adversary against the combiner is upper-bounded by the maximal advantage
of any efficient adversary against any of the two input hash functions. That is, the combiner needs to be
at least as strong as the better of the two functions, but not necessarily stronger.

To formalize the idea, we need a notion of the maximum advantage of any adversary against some
property π.

Definition 3.1 Let t ∈ N be a natural number and n be a security parameter. The maximum t-advantage
AdvMaxtπ against property π on hash function H is defined as the maximum advantage of any adversary
running in time t against property π on hash function H:

AdvMaxtπ(H, 1n) := max
A

AdvπA(H, 1n) s.t. A runs in time t

We now present an extension to the current black-box definition of robust combiners for hash functions.
We extend the original definition such that all robust combiners remain robust under the new definition
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but we relax the requirements on the security reduction such that the combiner does not need to be
stronger than any of the input functions.

Definition 3.2 (extension) Let n be a security parameter. Let C := (CKGen, C) be a combiner for
hash functions H1 and H2 as defined earlier. Let π be a property on hash functions. We say C is a robust
combiner for property π if C is robust under the original definition, or if for all t ∈ N:

AdvMaxtπ(C, 1n) ≤ min
(
AdvMaxtπ(H1, 1

n),AdvMaxtπ(H2, 1
n)
)

Note that any combiner that is robust for some property π under the traditional definition is also
robust under our new definition. The introduced loophole, however, allows a combiner to be robust
even if no security reduction P exists. In this case, the combiner must guarantee that the advantage for
any adversary running in time t against property π on either H1 or H2 denotes an upper-bound on the
advantage of any adversary running in time t against the combiner.

Relaxing the Definition. The reduction guaranteed by the traditional definition needs to be efficient,
that is, run in polynomial time. A consequence is that an adversary against the combiner induces an
adversary against both input hash functions. However, the advantage of the induced adversary might be
much lower while its runtime is much higher than that of the adversary against the combiner. For our
extension, on the other hand, we have not allowed such a polynomial factor and require the combiner
to be at least as strong as the stronger of the two functions. This might be a point we want to relax
and only require that there exists a polynomial poly such that the advantage of an adversary against
the combiner that runs in time t is upper-bounded by an adversary against either H1 or H2 that runs in
time t · poly(n).

Similarly we could argue that it is sufficient if the advantage does not increase by more than a
polynomial factor. Thus we would yield a definition that is attributed by two polynomials p, p′:

AdvMaxtπ,p,p′(C, 1n) ≤ min
(
p′(n) ·AdvMaxt·p(n)π (H1, 1

n), p′(n) ·AdvMaxt·p(n)π (H2, 1
n)
)

Discussion. The extended definition captures the security of the “magical” (non black-box) combiner.
However, being a semi-black-box notion, it seems difficult to design an actual (non-magical) combiner
exploiting the loophole offered by this notion. In the following section we build upon the ideas developed
so far and present a fully black-box model which also allows to circumvent the lower bound on the output
length. For this, we strengthen the assumption on the “input functions” requesting that one of the
functions is ideal. Knowing that one of the functions is ideal then allows us to model that the combiner
should be as strong as the ideal function, while it can “ignore” the second function.

3.3 Secure Combiners in Idealized Models

In this section we use a different and more practical approach to bypass the lower bound. We present
a novel game-based security notion for black-box combiners that is tailored to be used in the idealized
random oracle setting. Being black-box makes it easy to design combiners for this new notion and
assuming, to a certain extend, idealized functions allows us to bypass the lower bound. In short, a
combiner proven secure in our new notion provides the guarantee that it has a certain property as long
as one of the two functions is ideal even in case the other function is highly dependent upon the first;
this is modeled by giving the adversary full control over the second function.

2In the Ideally Secure Combiner game (and in following security games) the random oracle is sampled such that its domain
and range matches allowed hash functions and the keys are sampled using the key generation algorithm of combiner C.
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Ideally Secure CombinerCA

HR
A , st←− A1(1

n)

R, k←− sample RO and keys2

return AR,HR
A

2 (st, k) breaks π for

combiner CR,HR
A or CHR

A ,R

Figure 1: Security of Combiners in Idealized Settings

We say that a combiner C is ideally secure for
some property π if no adversary can win the ide-
ally secure combiner game (see Figure 1). For this
we consider a two-stage adversary A = (A1,A2),
where A1 outputs some state st and a description
of an efficient function that can contain special or-
acle gates to call a random oracle. Then a random
oracle R and a key k for the combiner are sampled.
We say the adversary wins the game if A2 breaks property π on combiner C initialized with the random
oracle and the function output by A1: that is, A2 breaks property π on either combiner CR,H

R
A or on

combiner CH
R
A ,R (note the different order of oracles).

Definition 3.3 A combiner C is called ideally secure for property π if no efficient adversary A =
(A1,A2) can win the Ideally Secure Combiner game (Figure 1) with non-negligible advantage.

The security guarantees given in this model are that the combiner has property π as long as one of the
two functions is a random oracle. Furthermore, security may be reduced to the security of compression
functions, when analyzing the security in the indifferentiability model [37]. We find this notion particularly
useful from a practical point of view as many security proofs are only given in the random oracle model
(to name a few [18, 7, 8, 13]) and a combiner proven secure under our new notion allows us to hedge
against the failure of the instantiation of the random oracle in the corresponding scheme. Furthermore,
while our new notion makes stronger assumptions about the ingoing hash functions it allows to bypass the
restrictions given by the traditional definition. As these stronger assumptions are, however, frequently
needed in security proofs for practical constructions, we do not loose anything by also applying the very
same assumptions in the examinations of combiners to be used in these schemes. On the other hand,
there is lots to gain.

Further note that our new notion is far from trivial to fulfill although we know that one of the two
functions is ideal to begin with. Take the exclusive-or combiner (compare Section 3.1) as an example. If
one of the functions can depend on the other, most, if not all properties are easily breakable. Let, for
example, adversary A1 output function HRA (M) := R(M). In this setting the exclusive-or combiner would
implement the constant zero function C⊕(M) = R(M)⊕R(M) which is, of course, not collision-resistant
or pseudorandom.

Remark. Recently, Ristenpart et al. [48] gave the somewhat surprising result that the indifferentiability
composition theorem does not hold in general but only in what they call single-stage settings. A game
is called single-stage if we can assume a single global adversary. Note that this applies to all but one of
the security games considered in this paper (see Figures 1 and 2), as we usually allow adversaries to pass
on their current state without any restrictions. For the exception, Lemma 4.4, it can be shown that it
falls into the class of secure-1-pass-games in the terminology of [34]. The authors in [34] study multi-
stage games for which indifferentiability (with certain additions) suffices to allow composition. For games
falling into their class of secure-1-pass-games no additions are needed and thus plain indifferentiability
is sufficient to allow composition. The idea, why access to the underlying compression function does not
yield any advantage is that all “interesting” random oracle evaluations (notably, R(m⊕ k3), cf. Figure 3)
have a block-length of exactly 1. Thus, length extension attacks via the computation of inner compression
function evaluations do not yield any advantage over directly computing the full hash value.
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4 A Short Multi-Property Combiner for Hash Functions

In this section we present a new black-box combiner for two hash functions that does not increase the
output length. The combiner is robust for pseudorandomness (under the traditional definition of robust
combiners) without needing to assume independence of the input functions (cf. Section 3.1). Further, it
is ideally secure (cf. Definition 3.3) for collision resistance, second pre-image resistance, target collision
resistance and pre-image resistance, that is, it holds these properties if one of the hash functions is
instantiated with a random oracle or if one of the functions is indifferentiable from a random oracle
(assuming an ideal compression function, also see remark at end of last the section).

Our construction is based on the exclusive-or combiner where each message block is preprocessed. To
ease on notation, we will not explicitly model the key generation stage for hash functions but implicitly
assume that the functions are chosen from a family of functions (i.e., the key is implicit in the hash
function).

Construction 4.1 Let H1, H2 : {0, 1}∗ → {0, 1}n be two hash functions and m1|| . . . ||m` := M ||pad(M)
be a message from the joint domain of both hash functions padded to a multiple of the block length n. The
combiner is given by

CH1,H2(M) := GH1,H2
1 (M)⊕GH1,H2

2 (M)

where G1 and G2 are stateless and deterministic constructions given by

GH1,H2
1 (M) := H1

(
m̃1

1‖ . . . ‖ m̃1
`

)
GH1,H2

2 (M) := H2

(
m̃2

1 ‖ . . . ‖ m̃2
`

)
with preprocessed blocks

m̃1
j := H2(1 ‖ mj ⊕ k1)⊕mj ⊕ k2 ⊕H1(1 ‖ mj ⊕ k3)

m̃2
j := H1(0 ‖ mj ⊕ k4)⊕mj ⊕ k5 ⊕H2(0 ‖ mj ⊕ k6)

for j := 1, . . . , ` and for independently chosen keys ki ∈ {0, 1}n for i = 1, ..., 6.

Let us examine the combiner more closely before proving its security. First notice that the combiner
is symmetric, that is, it makes no difference if functions H1 and H2 are interchanged. Function G1(M)
can be thought of as simply calling hash function H1 on some preprocessed input. If the original input
m1|| . . . ||m` := M ||pad(M) consisted of ` blocks, then the preprocessed input also consists of ` blocks.
Each block mi is preprocessed independently and becomes

H2(1 ‖ mi ⊕ k1)⊕mi ⊕ k2 ⊕H1(1 ‖ mi ⊕ k3) .

The idea behind this construction is that the outer most hash function in G1 (i.e., H1(·)) cannot, given
its input, guess (or rather compute) the input that is going into the outer most hash function in G2, i.e.,
H2(·). This will become more evident when we prove security for various properties. Furthermore, note
that we achieve domain separation between the calls to functions within G1 and G2 (i.e., calls to H1 and
H2 are prefixed by 1 for G1 and by 0 for G2).

Finally, we want to note that the combiner can be efficiently implemented. If we take as measure the
number of hash block evaluations then the combiner increases the number of evaluations by a factor of
3. However, in contrast to other multi-property combiners [26, 27] it is completely parallelizable as each
block is preprocessed independently of others.

11



FindPreImageA

R, k1, . . . k6 ←− sample RO and keys

HR
A , st,X ←− A1(1

n)

τ ←− X

M ←− AR,HR
A

2 (st, CR,HR
A (τ), k1, . . . , k6)

return (CR,HR
A (M) = CR,HR

A (τ))

FindCollisionA

R, k1, . . . k6 ←− sample RO and keys

HR
A , st←− A1(1

n)

(M,M ′)←− AR,HR
A

2 (st, k1, . . . , k6)

return (CR,HR
A (M) = CR,HR

A (M ′))

Figure 2: Security Games

4.1 Security Analysis

We will first show that the combiner is pre-image resistant if one of its input functions is a random oracle.
Remember that the basic XOR-combiner is not necessarily pre-image resistant even if instantiated with
two random oracles (see Sections 3.1 and 3.3). We give the security experiments necessary for the following
proofs in Figure 2.

Proposition 4.2 Construction 4.1 is ideally secure for pre-image resistance (ow). That is, for any
efficient adversary A which outputs efficiently sampleable distributions X with super-logarithmic min-
entropy (H∞ (X ) ∈ ω(n)) it holds that its advantage in the FindPreImage game is bound by

AdvFindPreImage
A (1n) ≤ qA · 2−H∞(X )

where qA denotes an upper-bound on the number of combiner evaluations.

We prove Proposition 4.2 via an intermediate result about the preprocessed message blocks m̃b
j

(cf. Construction 4.1). These we regard as “preprocessing functions” of the form {0, 1}n → {0, 1}n
with oracle access to hash functions H1 and H2, parameterized by keys k1, k2, k3, taking message blocks
m ∈ {0, 1}n as input and outputting a preprocessed message block; we write m̃H1,H2

k1,k2,k3
(m). We show

that these pre-processed message blocks are, in fact, random variables with min-entropy n bits over the
choice of random oracle and keys k1, k2, k3. By applying the union bound, we can then argue that if an
efficient adversary with access to the random oracle and keys k1, . . . , k3 can choose message m it can at
most reduce the entropy to n −O(log n) bits, where the logarithmic reduction is bound by the number
of random oracle evaluations.

Lemma 4.3 The preprocessed blocks m̃H1,H2

k1,k2,k3
(·) in Construction 4.1 are random variables with min-

entropy n; that is, if Hb := R for b ∈ {1, 2} is a random oracle, then it holds for all message blocks
m ∈ {0, 1}n and functions H2−b+1 with restrictions as in Construction 4.1 that

H̃∞

(
m̃H1,H2

k1,k2,k3
(m)|m, k1, k2, k3

)
= n (1)

where the probability is over the choice of random oracle R and keys k1, . . . , k3.

DistR,k1,k2,k3
A (m)

m′ ←− AR(1n,m⊕ k3)

return R(m⊕ k1)⊕m⊕ k2 ⊕m′

Figure 3: Adversarially Controlled Distribution

To prove Lemma 4.3 we consider the following distribu-
tion (see Figure 3). The distribution is parameterized by an
(efficient) algorithm A, a random oracle from the function
space {0, 1}∗ → {0, 1}n and uniformly and independently
chosen keys k1, k2, k3 from {0, 1}n. To compute the map-
ping for message m, adversary A receives value m ⊕ k3 and
outputs a message m′. Value R(m⊕ k1)⊕m⊕ k2 ⊕m′ is returned as sample.
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Proof (of Lemma 4.3). In the adversarial distribution (Figure 3), the adversary can be regarded as
the adversarially created function HRA (·) in Construction 4.1.3 Thus, we have that the min-entropy of
the adversarial distribution (instantiated with any efficient adversary A) is an upper bound for the min-
entropy of m̃H1,H2

k1,k2,k3
:

H̃∞

(
m̃H1,H2

k1,k2,k3
(m)|m, k1, k2, k3

)
≥ H̃∞

(
DistR,k1,k2k3A (m)|m, k1, k2, k3

)
As the keys are chosen uniformly at random from {0, 1}n and in particular independently of the

random oracle, we know that for every message m value R(m⊕ k1) is uniformly distributed and thus:

H̃∞ (R(m⊕ k1)⊕m⊕ k2|m, k1, k2, k3) = n

To estimate the min-entropy of distribution DistR,k1,k2k3A (·) we thus need to analyze the effect of value m′

as output by adversary A on input m⊕ k3. In order to output m′ such that the min-entropy of

H̃∞
(
R(m⊕ k1)⊕m⊕ k2 ⊕m′|m, k1, k2, k3

)
(2)

is less than n bits, adversary A itself must have sufficient information on R(m ⊕ k1) ⊕m ⊕ k2 given its
sole input m ⊕ k3. To model, that A has access to the random oracle, we add its list of queries to the
conditions. Let qry(AR(m⊕ k3)) denote the query-answer pairs of adversary A to the random oracle on
input m⊕ k3. Note that this is a random variable over the coins of A and the random oracle R. Then,
we can formalize the uncertainty of A about value R(m⊕ k1)⊕m⊕ k2 by

H̃∞
(
R(m⊕ k1)⊕m⊕ k2|m⊕ k3, qry(AR(m⊕ k3))

)
(3)

It is easily seen that this denotes an upper bound for

H̃∞
(
R(m⊕ k1)⊕ k2|m, qry(AR(m))

)
(4)

where we removed the distortion of m by k3 on the conditions, which in turn allows us to remove message
m from the conditioned side. Note that values k2 andR(m⊕k1) are uniformly distributed and independent
(k2 is chosen independently of R and similarly m and k1 are chosen independently of R). Thus we can
analyze the two terms going into the exclusive-or operation individually; that is,

H̃∞
(
k2 ⊕R(m⊕ k1)|m, qry(AR(m))

)
≥

max
(

H̃∞
(
k2|m, qry(AR(m))

)
, H̃∞

(
R(m⊕ k1)|m, qry(AR(m))

))
(5)

As m is independent of keys k1 and k2 we have that both terms in the max-operation have n bits of
entropy and thus

H̃∞
(
k2 ⊕R(m⊕ k1)|m, qry(AR(m))

)
= n. (6)

It immediately follows that adversary A cannot output m′ such that the entropy in equation (2) is
reduced. �

By an application of the union bound it follows that for any message m that is generated by an efficient
adversary AH1,H2(k1, k2, k3) which is given the keys and that has oracle access to the hash functions, the
min-entropy of m̃H1,H2

k1,k2,k3
(m) is at most reduced by logarithmically (in n) many bits. For this note, that in

equation (5) message m is not necessarily independent of k1 and k2 any longer as it is chosen by adversary
A. This slightly complicates the argument.

3Note that although HR
A (·) is deterministic we analyze the adversarial distribution allowing the adversary to be proba-

bilistic.
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Lemma 4.4 Let the setup be as in Lemma 4.3. Then, for all efficient adversaries A it holds that

H̃∞

(
m̃H1,H2

k1,k2,k3
(m)|m← AH1,H2(1n, k1, k2, k3), k1, k2, k3

)
≥ n−O(log q) (7)

where q is an upper bound on random oracle evaluations by H2−b+1 and adversary A. The probability is
over the choice of keys k1, k2, k3, random oracle R and A’s internal coin tosses.

Proof. Let the setup be as in the previous proof for Lemma 4.3 up-to equation (5). Let us denote
the “inner” adversary in DistA2 by A2 and the “outer” adversary generating message m by A1. Note
that both adversaries are efficient. Let q be an upper bound on the number of hash queries by the two
adversaries. As the adversaries are efficient q is polynomial in the security parameter n.

As message m is now chosen by an efficient adversary A1 that has access to keys k1 and k2 and the
random oracle, the values R(m⊕ k1) and k2 are not necessarily independent any longer. Thus, we have
to deploy a slightly more complex argument to estimate the entropy (cf. equations (3) and (4)):

H̃∞
(
R(m⊕ k1)⊕ k2|m, qry(AR2 (m⊕ k3))

)
That is, now we consider the following setup:

m← AR1 (k1, k2)
Q← qryR(AR2 (m))

First m is chosen, then a set of queries to R are sampled by invoking AR2 (m) and now we need to estimate

H̃∞ (R(m⊕ k1)⊕ k2|m,Q) = min
A

log

(
1

Prob[R(m⊕ k1)⊕ k2 = A(m,Q)]

)
where A is an unbounded algorithm. It is easily seen that

H̃∞ (k1, k2|m,Q) = H̃∞ (k1, k2|m) ≥ 2n− |m| = n . (8)

The keys are independently chosen bit-strings each of length n bits. Furthermore, for the sampling of
Q the only information about the keys available is m and thus Q (given m) cannot further reduce the
entropy of k1 and k2. Now assume that A is indeed able to compute R(m ⊕ k1) ⊕ k2 with probability
greater than 2−n+O(log q). We can distinguish two cases: either (m⊕k1) ∈ Q, that is Q contains the query
m⊕ k1 or not. If it does not contain the query, then we can immediately deduce that

H̃∞ (R(m⊕ k1)⊕ k2|m,Q) ≥ n− log q

as by q many random oracle queries by A1, adversary A1 can choose m such that the entropy is reduced
by log q many bits. If Q on the other hand contains query m⊕k1 (with more than negligible probability),
then it must hold that

H̃∞ (m⊕ k1|m) ≤ O(log q)

as m is the only information given to AR2 (·) to generate query set Q. As k1 is a uniformly random string
this, however, binds n−O(log q) many bits of message m as chosen by adversary A1. From this and with
equation (8) it follows that then

H̃∞ (k2|m,Q) ≥ n−O(log q)

and thus again
H̃∞ (R(m⊕ k1)⊕ k2|m,Q) ≥ n−O(log q)

Thus, we have seen that adversary A2 in the adversarial distribution DistA2 has an uncertainty of
n−O(log q) bits about value R(m⊕ k1)⊕ k2 and can thus, by choosing m′ not reduce the min-entropy
of (2) below n−O(log q) bits which concludes the proof. �
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Remark. We have examined Lemmas 4.3 and 4.4 in the random oracle model using the information
theoretic min-entropy notion. We can, however, also analyze it in the privately keyed standard model
assuming a pseudorandom function instead of a random oracle. For this we need to switch to a compu-
tational version of entropy such as HILL entropy; we give an introduction to computational entropy in
Appendix B. The proof works analogously.

We now prove Proposition 4.2 by showing that the advantage of any adversary in winning the Find-
PreImage game is bounded by qA · 2−H∞(X ) where qA is the number of combiner evaluations. Let us
first examine the FindPreImage game. In a first step, a random oracle R is sampled from the space of
all functions of the form {0, 1}∗ → {0, 1}n together with keys k1, . . . , k6. Adversary A1 is then given the
security parameter and it outputs a target distribution X , some state st, and a description of a hash
function HRA which can contain special gates to evaluate random oracle R (note that A1 does not get
access to R while constructing HRA and that distribution X must have super-logarithmic min-entropy
given state st). In a next step a target message τ is sampled from distribution X . Then, adversary A2 is

given keys k1, . . . , k6 and and hash value CR,H
R
A (τ) and is given oracle access to R and HRA . It wins if it

outputs a message M which, under the combiner, yields value CR,H
R
A (τ), i.e.: CR,H

R
A (M) = CR,H

R
A (τ).

Proof (Proposition 4.2). Let us examine the preprocessed message blocks going into G
R,HR

A
2 (cf. Con-

struction 4.1) for some message m1, . . . ,m` := M‖PAD(M). Each block is of the form

R(0 ‖ mi ⊕ k4)⊕mi ⊕ k5 ⊕HRA (0 ‖ mi ⊕ k6) (9)

By Lemma 4.4 we can assume each of these blocks to be a random variable with min-entropy n bits
(note that the factor log(q) of Lemma 4.4 is implicit in the number of random oracle queries by the
adversary) and thus the combined blocks (via concatenation) to be a random variable of also at least n

bits. The same necessarily holds for for the blocks going into G
R,HR

A
1 . Furthermore, by achieving domain

separation for the random oracle calls (prefixing the input with 0 and 1, respectively) within G
R,HR

A
1 (·)

and G
R,HR

A
2 (·), we can assume the random variables for blocks of G1 to be independent of those for blocks

of G2.
If Un and U ′n are independent random variables from the message space to {0, 1}n with min-entropy

n bits, then we can write the combiner CR,H
R
A as

CR,H
R
A (M) := R(Un(M))⊕HRA (U ′n(M))

Hence, the probability for any message M to be mapped to CR,H
R
A (τ) under the combiner is 2−n. As

one possible pre-image (namely τ) is contained in the support of distribution X , the best strategy for an
adversary is to sample messages from X , which allows us to upper bound the advantage of an adversary
winning in the FindPreImage game by

AdvFindPreImage
A (1n) ≤ qA · 2−H∞(X )

where qA denotes the number of combiner queries by adversary A2. �

For second pre-image and target collision resistance it suffices to slightly change the FindPreImage
game to adapt it to the specifics in the examined property. We provide details in Appendix A.
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Collision Resistance. Collision resistance is examined using the FindCollision game (see Figure 2).
We show that the advantage of any efficient adversary is bound by q2A · 2−(n+1) where qA denotes the
number of combiner evaluations. In short we show that as the inputs to the outer hash functions in
G1 and G2 have entropy at least n−O(log q) bits, the problem of finding collisions can be rewritten as
finding collisions for

R(Un(M))⊕R(Un(M ′)) = HRA (U ′n(M))⊕HRA (U ′n(M))

where Un and U ′n are again independent random variables mapping from the message spaceto {0, 1}n and
having n bits of min-entropy (again the logarithmic factor is hidden in the number of Un evaluations by
the adversary).

Proposition 4.5 Construction 4.1 is ideally secure for collision resistance (cr). That is, the advantage
for any efficient adversary to win the FindCollision game is bound by

AdvFindCollision
A (1n) ≤ q2A · 2−(n+1)

where qA is the number of combiner evaluations.

Proof. In order to win against FindCollision adversary A2 has to output two distinct messages (M,M ′)
such that

CR,H
R
A (M) = CR,H

R
A (M ′)

which can be rewritten as

R(MR)⊕R(M ′R) = HRA (MA)⊕HRA (M ′A)

where (MR,M
′
R) denote the preprocessed messages given to the outer random oracle call and (MA,M

′
A)

the preprocessed messages given to the outer call to HRA (cf. Construction 4.1). By Lemma 4.4 we already
established, that MR and M ′R have at least n−O(log qA) bits of entropy and are independent of MA and
M ′A. If by U we denote a function chosen uniformly at random from {0, 1}∗ × {0, 1}∗ → {0, 1}n we can
upper-bound the advantage of an adversary finding collisions by the advantage of an adversary finding
messages M,M ′ such that

U(M,M ′) = HRA (M)⊕HRA (M ′)

As for each message pair the probability of a collision is 2−n, it holds by the union bound (resp. birthday
paradox) that

Advcr
A2

(1n) ≤ qA(qA − 1)

2n+1
<

q2A
2n+1

.

This concludes the proof. �

4.2 Pseudorandomnessand Message Authentication Codes

Finally, we show that our combiner is robust for pseudorandomness and ideally secure for message au-
thentication codes. For pseudorandomness we can directly show robustness in the standard model (that
is, without assuming a random oracle). We want to stress that, in contrast to the exclusive-or combiner,
we do not need to assume that the two ingoing functions H1 and H2 are independent (cf. Section 3.1).
For message authentication codes we only give the trivial statement that, if the combiner is instantiated
with one pseudorandom function, then the combiner yields a secure MAC. We leave as open question
whether the combiner can be proved robust also for message authentication codes.
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Proposition 4.6 The combiner given in construction 4.1 is robust for pseudorandomness.

Proof (sketch). We have already argued that we can analyze Lemma 4.3 and Lemma 4.4 also in the
standard model, using computational analogues of entropy (see remark following Lemma 4.4). Thus,
assuming that H1 is pseudorandom, Lemma 4.4 yields that the input to GH1,H2

1 (M) := H1(M̃) has
sufficiently high computational min-entropy and hence G1 is pseudorandom. Due to the symmetric
design of the combiner, this also yields that GH1,H2

2 is pseudorandom if H2 is pseudorandom. Note, that
due to the domain separation, the inputs to the outer hash evaluations in G1 and G2 are independent
and thus the further analysis can be reduced to the analysis of the exclusive-or combiner which we know
to be robust for pseudorandom functions assuming independent inputs. �

Corollary 4.7 The combiner given in construction 4.1 is a secure message authentication code if either
H1 or H2 is a pseudorandom function.

Proof. Follows with Proposition 4.6 and the fact that a pseudorandom function is a secure message
authentication code. �

Acknowledgments

I thank the anonymous reviewers for their valuable comments. This work was supported by CASED
(www.cased.de).

References

[1] Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval
model. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer
Science, vol. 5677, pp. 36–54. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 16–20,
2009) (Cited on page 4.)

[2] Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash function. In:
Garay, J.A., Prisco, R.D. (eds.) SCN 10: 7th International Conference on Security in Communication
Networks. Lecture Notes in Computer Science, vol. 6280, pp. 88–105. Springer, Berlin, Germany,
Amalfi, Italy (Sep 13–15, 2010) (Cited on page 6.)

[3] Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In:
Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer Science, vol.
5677, pp. 70–89. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 16–20, 2009) (Cited on

page 2.)

[4] Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to
NIST (Round 3) (2010), http://131002.net/blake/blake.pdf (Cited on pages 2 and 6.)

[5] Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. Cryptology ePrint
Archive, Report 2013/101 (2013), http://eprint.iacr.org/ (Cited on pages 3, 7, and 8.)

[6] Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In: RANDOM-
APPROX. pp. 200–215 (2003) (Cited on page 23.)

17

http://131002.net/blake/blake.pdf
http://eprint.iacr.org/


[7] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In:
Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. Lecture Notes in Computer Science,
vol. 4622, pp. 535–552. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 19–23, 2007)
(Cited on pages 4, 6, and 10.)

[8] Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged
public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.) Advances
in Cryptology – ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 232–249.
Springer, Berlin, Germany, Tokyo, Japan (Dec 6–10, 2009) (Cited on pages 4, 6, and 10.)

[9] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Ashby, V. (ed.) ACM CCS 93: 1st Conference on Computer and Communications Security. pp.
62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5, 1993) (Cited on pages 3 and 6.)

[10] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak SHA-3 submission. Submission to
NIST (Round 3) (2011), http://keccak.noekeon.org/Keccak-submission-3.pdf (Cited on pages 2

and 6.)

[11] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge
construction. In: Smart, N.P. (ed.) Advances in Cryptology – EUROCRYPT 2008. Lecture Notes in
Computer Science, vol. 4965, pp. 181–197. Springer, Berlin, Germany, Istanbul, Turkey (Apr 13–17,
2008) (Cited on page 6.)

[12] Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions
and optimal bounds of popular domain extensions. In: Roy, B.K., Sendrier, N. (eds.) Progress in
Cryptology - INDOCRYPT 2009: 10th International Conference in Cryptology in India. Lecture
Notes in Computer Science, vol. 5922, pp. 199–218. Springer, Berlin, Germany, New Delhi, India
(Dec 13–16, 2009) (Cited on page 6.)

[13] Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable hash and one-
way functions. In: Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT 2009. Lecture Notes
in Computer Science, vol. 5912, pp. 524–541. Springer, Berlin, Germany, Tokyo, Japan (Dec 6–10,
2009) (Cited on pages 4, 6, and 10.)

[14] Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resistant hash functions.
In: Dwork, C. (ed.) Advances in Cryptology – CRYPTO 2006. Lecture Notes in Computer Science,
vol. 4117, pp. 570–583. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 20–24, 2006)
(Cited on pages 2, 7, and 8.)

[15] Canetti, R., Rivest, R.L., Sudan, M., Trevisan, L., Vadhan, S.P., Wee, H.: Amplifying collision
resistance: A complexity-theoretic treatment. In: Menezes, A. (ed.) Advances in Cryptology –
CRYPTO 2007. Lecture Notes in Computer Science, vol. 4622, pp. 264–283. Springer, Berlin, Ger-
many, Santa Barbara, CA, USA (Aug 19–23, 2007) (Cited on pages 2 and 8.)

[16] Cannière, C.D., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In: Wagner, D. (ed.)
Advances in Cryptology – CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 179–
202. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 17–21, 2008) (Cited on page 2.)

[17] Chang, D., Nandi, M., Yung, M.: Indifferentiability of the hash algorithm BLAKE. Cryptology
ePrint Archive, Report 2011/623 (2011), http://eprint.iacr.org/ (Cited on page 6.)

18

http://keccak.noekeon.org/Keccak-submission-3.pdf
http://eprint.iacr.org/


[18] Chevallier-Mames, B., Phan, D.H., Pointcheval, D.: Optimal asymmetric encryption and signature
paddings. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 05: 3rd International Conference
on Applied Cryptography and Network Security. Lecture Notes in Computer Science, vol. 3531, pp.
254–268. Springer, Berlin, Germany, New York, NY, USA (Jun 7–10, 2005) (Cited on pages 4, 6, and 10.)

[19] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How to construct
a hash function. In: Shoup, V. (ed.) Advances in Cryptology – CRYPTO 2005. Lecture Notes in
Computer Science, vol. 3621, pp. 430–448. Springer, Berlin, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2005) (Cited on pages 3 and 6.)

[20] Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) Advances in Cryptology –
CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer, Berlin, Germany,
Santa Barbara, CA, USA (Aug 20–24, 1990) (Cited on page 6.)

[21] De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results and applications.
In: Lai, X., Chen, K. (eds.) Advances in Cryptology – ASIACRYPT 2006. Lecture Notes in Computer
Science, vol. 4284, pp. 1–20. Springer, Berlin, Germany, Shanghai, China (Dec 3–7, 2006) (Cited on

page 2.)

[22] Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Pro-
posed Standard) (Aug 2008), http://www.ietf.org/rfc/rfc5246.txt, updated by RFCs 5746,
5878, 6176 (Cited on page 2.)

[23] Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT 2004.
Lecture Notes in Computer Science, vol. 3027, pp. 523–540. Springer, Berlin, Germany, Interlaken,
Switzerland (May 2–6, 2004) (Cited on page 23.)

[24] Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual Symposium on
Foundations of Computer Science. pp. 293–302. IEEE Computer Society Press, Philadelphia, Penn-
sylvania, USA (Oct 25–28, 2008) (Cited on page 22.)

[25] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.:
The skein hash function family. Submission to NIST (Round 3) (2010), http://www.skein-hash.
info/sites/default/files/skein1.3.pdf (Cited on pages 2 and 6.)

[26] Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions. In: Canetti, R.
(ed.) TCC 2008: 5th Theory of Cryptography Conference. Lecture Notes in Computer Science, vol.
4948, pp. 375–392. Springer, Berlin, Germany, San Francisco, CA, USA (Mar 19–21, 2008) (Cited on

pages 2 and 11.)

[27] Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash functions revis-
ited. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
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A The Combiner is secure for Collision Resistance and Related Prop-
erties

Given the results for pre-image resistance and Lemma 4.4, we can give the following proposition that
establishes the security for second pre-image resistance and pre-image resistance.

Proposition A.1 Construction 4.1 is ideally secure for second pre-image resistance (spr) and target
collision resistance (tcr).

Proof. For target collision resistance simply consider FindPreImage where A1 outputs target message τ
instead of a target distribution and where A2 receives τ directly and wins if it finds message M such that
CR,H

R
A (M) = τ . The analysis is analogous.

For second pre-image resistance simply consider the game for target collision resistance where τ is
chosen randomly. �

B On Computational Analogues of Entropy

A good introduction to various notions of (computational) entropy is given by Reyzin [47]. We here give
a very brief introduction.

The statistical distance for two distributions X and Y is given by

δ(X,Y ) :=
1

2

∑
x

|Prob[X = x]− Prob[Y = x]| .

Let Dprob,{0,1}
s be the set of all probabilistic circuits of size s with binary output and Ddet,[0,1]

s be the set
of all deterministic circuits of size s with range [0, 1]. Given a distinguisher (circuit) D we define the
computational distance for two distributions X and Y as

δD(X,Y ) :=
∣∣∣E[D(X)]− E[D(Y )]

∣∣∣
This allows us to define a computational analogue of entropy introduced by H̊astad et al. [32].

Definition B.1 A distribution X has HILL entropy at least k denoted by HHILL
ε,s (X) ≥ k, if there exists

a distribution Y with min-entropy at least k, i.e., H∞ (Y ) ≥ k such that for all circuits D ∈ Dprob,{0,1}
s it

holds that δD(X,Y ) ≤ ε.

If we exchange the order of quantifiers we get the so called Metric type entropy. If we only consider de-
terministic distinguishers with range [0, 1] than we arrive at Metric* entropy introduced by Dziembowski
and Pietrzak in [24].
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Definition B.2 A distribution X has Metric* entropy at least k denoted by HMetric*
ε,s (X) ≥ k, if for all

deterministic distinguishers D ∈ Ddet,[0,1]
s there exists a distribution Y with min-entropy at least k, i.e.,

H∞ (Y ) ≥ k such that δD(X,Y ) ≤ ε.

A conditional version of HILL entropy and Metric entropy is presented in [33]. For Metric* entropy

simply exchange the quantifiers and only allow distinguishers in Ddet,[0,1]
s in the following definition.

Definition B.3 Let (X,Y ) be a pair of distributions. We say X has conditional HILL entropy at least
k conditioned on Y and denoted by H̃HILL

ε,s (X|Y ) ≥ k, if there exists a collection of distributions Zy for
each y ∈ Y , giving rise to a joint distribution (Z, Y ), such that Z has conditional min-entropy at least k,

i.e., H̃∞ (Z|Y ) ≥ k and for all D ∈ Dprob,{0,1}
s it holds that δD((X,Y ), (Z, Y )) ≤ ε.

The entropy notions HILL, Metric and Metric* can be converted into one another [6, 30]. HILL entropy
can losslessly be converted into Metric entropy and further into Metric* entropy. Metric* entropy can be
converted back to HILL entropy with only a small loss in s and ε.

For regular, conditional min-entropy the following statement holds [23] which yields a lower estimate:

Lemma B.4 For distributions X and Z it holds:

H̃∞ (X|Z) ≥ H∞ (X,Z)− log |Z|

where |Z| denotes the number of elements in Z.

For the computational HILL Entropy Lemma B.4 does not directly hold. However, Fuller, O’Neill
and Reyzin present in [30] an analogue for Metric* entropy:

Lemma B.5 For distributions X and Z it holds:

HMetric*

ε|Y|,s (X|Z) ≥ HMetric*

ε,s (X,Z)− log |Z|

where |Z| denotes the number of elements in Z.

Together with the transformation between HILL and Metric* entropy this then yields an analogous
statement for HILL entropy.

23


	Introduction
	Preliminaries
	Notation
	Hash Functions and their Properties
	Collision Resistance and Related Properties
	Pseudorandomness and Message Authentication Codes
	Random Oracles and Indifferentiability


	A Novel Definition of Combiners for Hash Functions
	Black-box Combiners for Hash Functions
	On the Level of Black-boxness
	Short Combiners for Collision Resistance

	Extending the Traditional Definition
	Secure Combiners in Idealized Models

	A Short Multi-Property Combiner for Hash Functions
	Security Analysis
	Pseudorandomnessand Message Authentication Codes

	The Combiner is secure for Collision Resistance and Related Properties
	On Computational Analogues of Entropy

