On (Destructive) Impacts of Mathematical Realizations over the Security of Leakage Resilient Cryptographic Construction

Guangjun Fan ${ }^{1}$, Yongbin Zhou ${ }^{2}$, François-Xavier Standaert ${ }^{3}$, Dengguo Feng ${ }^{1}$
${ }^{1}$ Trusted Computing and Information Assurance Laboratory,Institute of Software, Chinese Academy of Sciences,Beijing, China
guangjunfan@163.com, feng@tca.iscas.ac.cn
${ }^{2}$ State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences,Beijing,China
zhouyongbin@iie.ac.cn
${ }^{3}$ UCL Crypto Group,Université catholique de Louvain,Belgium
fstandae@uclouvain.be

Abstract

Leakage resilient cryptography aims to address the issue of inadvertent and unexpected information leakages from physical cryptographic implementations at algorithmic level in a provable manner. In real world, for an abstract mathematical construction to be an actual physical implementation, it usually undergoes two phases: mathematical realization at algorithmic level and physical realization at implementation level. In the former process, an abstract and generic cryptographic construction is being transformed into an exact and specified mathematical scheme, while in the latter process the output of mathematical realization is being transformed into a physical cryptographic module that runs as a piece of software, or hardware, or combination of both.

It turns out that physical realization bears negatively and directly on the security of any cryptographic implementations, which means that the theoretical security of any mathematical cryptographic scheme in leakage free setting (a.k.a. black-box model) does not hold any more when it is implemented and running at physical realization level in leaky setting (e.g. in the context of side-channel attacks). However, it is not clear that whether or not the theoretical security of one leakage resilient cryptographic scheme will still remain secure with considering any details of mathematical realizations. In other words, whether or not the theoretical leakage resilience of one leakage resilient cryptographic construction will still keep unchanged and/or slightly changed, if this scheme is instantiated with cryptographic components that meet their claimed security properties.

In this paper, we try to answer this question of important theoretical values, by presenting attacks on three mathematical realizations of the leakage resilient ElGamal encryption scheme $E G^{*}$ in the paper of E. Kiltz et al. at Asiacrypt2010. Our results convincingly indicate that mathematical realizations of $E G^{*}$ really have significant destructive impact on its theoretical leakage resilience. This important discovery is not considered or neglected in previous work. Our results suggest that

> a leakage resilient scheme without considering the mathematical realiza- tion may not be secure any more.

Keywords: Leakage Resilient Cryptography, Mathematical Realization, PRNG, Lattice.

1 Introduction

Side-channel attacks belong to an important kind of cryptanalysis techniques on cryptographic implementations. As a matter of fact, many implementations of traditional cryptosystems even provably secure in black-box model were broken by side-channel attacks using electromagnetic radiation [3,7], running-time [4], fault detection [5], power consumption [6] and many more [23,24].

Broadly speaking, countermeasures for protecting against side-channel attacks are taken on three levels: the software level, the hardware level and the combination of the software level and the hardware level. For example, hiding [37] and masking [38] are two typical ones used to defend power analysis attacks on both two levels. However, most (even not all) software-based approaches proposed so far are only heuristic, and lack of any formal security proofs. On the other hand, the main problem of the countermeasures based on hardware is that the protection against all possible types of leakages is very hard to achieve [25], if not impossible. Moreover, even if the countermeasures based on hardware can be achieved, it is hard to make sure that the countermeasures is still effective in other attack scenario. Furthermore, the three kinds of countermeasure are ad-hoc, which means that they protect only against some specific attacks known at the moment, instead of providing security against a large well-defined class of attacks.

In order to solve these pressing issues, S. Dziembowski et al. [8] proposed one general and theoretical methodology called Leakage Resilient Cryptography (LRC). The goal of LRC is to defend side-channel attacks, but in an abstract and theoretical manner. The goal of LRC is to research a systematic method of designing cryptographic schemes so that already their mathematical description guarantees that they are provably secure, even if they are implemented on hardware that may be subject to any specific side-channel attack which belongs to a large well-defined class of such attacks.

There exists two processes for a cryptographic construction in applied cryptography. They are Mathematical Realization at algorithmic level and Physical Realization at implementation level.

Mathematical Realization refers to a process in which any generic and abstract cryptographic construction is being transformed into an exact and specified mathematical scheme. For example, it is well known that a public key encryption scheme can be constructed from an arbitrary family of one-way trapdoor permutations. The user of the public key encryption scheme chooses a specific family of one-way trapdoor permutation (such as RSA trapdoor permutation or Rabin trapdoor permutation) to realize the public key encryption scheme in this process.

Physical Realization refers to a process in which any specific cryptographic construction (the output of mathematical realization) is being transformed into a physical cryptographical module that runs as a piece of software, or hardware, or combination of both. Also considering the above example, after the user choosing a specific family of trapdoor permutation (For example, he chose the RSA trapdoor permutation.), an engineer writes code or makes ASIC for the specific public key encryption scheme. Broadly, and also more importantly, it has been turned out that physical realization have significant impact on the physical security of traditional cryptographic construction, so it is with those of any leakage resilient ones [35].

Motivations Under traditional black-box model (i.e. leakage-free setting), the security proof of any cryptographic construction generally work independently of mathematical realization. This means that any mathematical realization ${ }^{1}$ of the whole cryptographic construction would remain secure when it is instantiated with any specific cryptographic components (e.g. PRNG in this paper), provided that the components chosen meets the required cryptographic properties. However, it is not clear that whether or not the theoretical security of one leakage resilient cryptographic scheme will still remain secure with considering any details of mathematical realizations. In other words, whether or not the theoretical leakage resilience of one leakage resilient cryptographic construction will still keep unchanged and/or slightly changed, if this scheme is instantiated with cryptographic components that meet their claimed security properties. In this paper, we try to answer this important question.

In this paper, we only consider mathematical realization, not physical realization. That is to say, our work is regardless of any specific side-channel attack.

There are two ways to research this question. One way is to attack a specific implementation of a leakage resilient scheme in practice. The other way is to research this question in a theoretic way. For example, to execute a theoretic attack to a leakage resilient scheme. The latter is more suitable for the problem. Because LRC is trying to solving the problem of information leakage in a theoretic way. We will research the question in the latter way.

As an example, we consider two attacks about the public key encryption scheme $E G^{* 2}$ in [1]. This example (the attacks about $E G^{*}$) shows the destructive impacts of mathematical realization of a leakage resilient scheme on its claimed theoretical security. The scheme $E G^{*}$ is constructed in "Only Computation Leaks" model (OCL). In the OCL model, it is assume that only the memory content that is actually accessed during computing leak information. There is no leakage of information in the absence of computation. The only restriction

[^0]of leakage of OCL model is the amount of information that is leaked on each invocation is sufficient bounded. Furthermore, the leakage of information can occur at any position as long as the position is accessed in computation process in OCL model. In OCL model, the information can be leaked in any channel (For example, power consumption or electromagnetic radiation). As far as actual side-channel attacks are concerned, the OCL model is the most representative one due to it considers continuous leakage.
E. Kiltz et al. [1] said that an implementation of a leakage resilient primitive would be secure against every side-channel attack that fitted their general model (OCL model), i.e., as long as the amount of information that was leaked on each invocation is sufficient bounded, and the device adheres the "Only Computation Leaks" axiom. Security in this model meant that the hardware implementation of the cryptosystem only had to be protected to fit the OCL model; once that was done, the proof provided security of the scheme. Their model considered nothing about the details in mathematical realization. Therefore, we want to know whether or not their above conclusion is still correct with considering the details in mathematical realization. Unfortunately, our attacks show that the scheme $E G^{*}$ is not secure again with considering the details in mathematical realization.

Our findings indicate that a leakage resilient scheme may not be secure any more when the scheme is mathematical realized. Furthermore, a sound leakage resilient scheme should be secure after it is mathematical realized.

1.1 Our Contributions

Main contributions of this paper are two-fold as follows.
First, under traditional black-box model (i.e. leakage-free setting), any mathematical realization of the whole cryptographic scheme would remain secure when it is instantiated with any specific cryptographic components (e.g., PRNG in this paper), provided that the component chosen meets the required cryptographic properties. Our research shows that this statement does not hold, on the contrary, under the leaky setting. Specifically, taking several mathematical realizations of the specific leakage resilient ElGamal encryption scheme $E G^{*}$ as cases of study, this paper studies the destructive impacts of mathematical realization of a leakage resilient scheme on its claimed theoretical security (i.e. leakage resilience). Our result shows that a leakage resilient cryptographic construction may not be secure with considering the process of mathematical realization.

Second, in order to enhance the resistance of a cryptographic scheme to any attacks against its underlying mathematically hard problem, it is always a rule of thumb to increase the size of security-critical parameters in traditional blackbox cryptography. However, this method could lead to the decline of leakages of a leakage resilient cryptographic construction can tolerate in LRC, which is certainly undesirable in practice. Our results show that this commonly-used methodology might cause some leakage resilient scheme (e.g. $E G^{*}$) to tolerate less leakage when they are implemented using some specific cryptographic components (e.g. PRNG).

Third, for any given leakage resilient cryptographic scheme, leakage rate reflects its expected theoretical security. Therefore, (accurate and/or rough) estimation of information leakage rate of any leakage resilient scheme does make very good sense. This paper specifies one upper bound of leakage that $E G^{*}$ can tolerate when it is mathematically implemented or realized by-product. This upper bound is the best known so far, even thought it might not be the tightest.

1.2 Related Work

In recent years, in the field of LRC, several different kinds of leakage models have been proposed as of today. For example, Only Computation Leaks Model (OCL) [$8,9,33,34]$, Memory Attacks [10,11,12,13], Bounded Retrieval Model [$14,15,16,17,18,19]$ and Continuous Memory Attacks [20,21,22]. The OCL model is the start point of the line of our research. When the adversary is more powerful (as that in continuous memory attack model), whether or not our conclusions of this paper are still hold is a valuable research point.

1.3 Organization of This Paper

The rest of paper is organized as follows. In Section 2, we present the scheme $E G^{*}$ in [1] and some basic concepts. Section 3 describes our two attack methods against $E G^{*}$. In this section, we show how the process of mathematical realization of a leakage resilient construction will affect its claimed theoretical security. Our analyses are supported by experiments in Section 4. Section 5 concludes the whole paper.

2 Preliminaries

In this section, we will first briefly recall the scheme $E G^{*}$. Next, we will present some basic knowledge about lattice theory on which our attacks are based. We then will present some symbols and notations used throughout the paper in the end of this section.

If \mathbf{A} is a deterministic algorithm we write $y \leftarrow \mathbf{A}(x)$ to denote that \mathbf{A} outputs y on input x. If \mathbf{A} is randomized we write $y \stackrel{*}{\leftarrow} \mathbf{A}(x)$ or, $y \stackrel{r}{\leftarrow} \mathbf{A}(x)$ if we want to make the randomness r used by the algorithm explicit (for future reference).

2.1 Brief Description of $E G^{*}$

We describe the scheme $E G^{*}$ in the same way as that in [1]. The scheme $E G^{*}$ is described as a Key Encapsulation Mechanism (KEM) and is based on the assumption that "Only Computation leaks information".

The decapsulation algorithm of $E G^{*}=\left(K G_{E G}^{*}, E n c_{E G}^{*}, D e c 1_{E G}^{*}, D e c 2_{E G}^{*}\right)$ is stateful and formally split into two sequential stages $D e c_{E G}^{*}=\left(D e c 1_{E G}^{*}, D e c 2_{E G}^{*}\right)$. $G e n$ is a probabilistic algorithm that outputs a cyclic group \mathbb{G} of order p, where p is a strong prime.

The scheme $E G^{*}$ is as follows:
$K G_{E G}^{*}(n)$: Compute $(\mathbb{G}, p) \stackrel{*}{\leftarrow} G e n(n), g \stackrel{*}{\leftarrow} \mathbb{G}, x \stackrel{*}{\leftarrow}_{\leftarrow}^{\mathbb{Z}_{p}}, h=g^{x}$. Choose random $\sigma_{0} \stackrel{r}{\leftarrow} \mathbb{Z}_{p}^{*}$ and set $\sigma_{0}^{\prime}=x \sigma_{0}^{-1} \bmod (p)$. The public key is $p k=(\mathbb{G}, p, h=$ $\left.g^{x}\right)$ and two secret states are σ_{0} and σ_{0}^{\prime}.
$E n c_{E G}^{*}(p k)$: Choose random $s \leftarrow^{*} \mathbb{Z}_{p}$, let $C \leftarrow g^{s} \in \mathbb{G}$ and $K \leftarrow h^{s} \in \mathbb{G}$. The ciphertext is C, and the key is K.
$\operatorname{Dec} 1_{E G}^{*}\left(\sigma_{i-1}, C\right)$: choose random $r_{i} \stackrel{r}{\leftarrow} \mathbb{Z}_{p}^{*}, \sigma_{i}=\sigma_{i-1} r_{i} \bmod (p), K^{\prime}=C^{\sigma_{i}}$, return $\left(r_{i}, K^{\prime}\right)$.
$\operatorname{Dec} 2_{E G}^{*}\left(\sigma_{i-1}^{\prime},\left(r_{i}, K^{\prime}\right)\right)$: let $\sigma_{i}^{\prime}=\sigma_{i-1}^{\prime} r_{i}^{-1} \bmod (p)$, and $K=K^{\prime \sigma_{i}^{\prime}}$. The symmetric key is K and the updated state information are σ_{i} and σ_{i}^{\prime}.

A KEM achieves CCLA1 (Chosen Ciphertext with Leakage Attack) if for any probabilistic polynomial time adversary $\mathcal{F}, A d v_{K E M}^{c c l a}(\mathcal{F}, n, \lambda)=2|1 / 2-\mu|$ is negligible in n, where μ is the probability that the output b^{\prime} of the following experiment is equal to b, n is the security parameter and $\lambda \in \mathbb{N}$ is the leakage parameter.

Experiment $\operatorname{Exp}_{\mathrm{KEM}}^{\mathrm{cc1a}}(\mathcal{F}, \kappa, \lambda)$	Oracle $\mathcal{O}^{\text {ccla1 }}\left(C, f_{i}, g_{i}\right)$
$\begin{aligned} & \left(p k, \sigma_{0}, \sigma_{0}^{\prime}\right) \stackrel{*}{\leftarrow} K G(\kappa) \\ & \omega \stackrel{*}{\leftarrow} \mathcal{F}^{\mathcal{O}^{\text {cclat }}}(p k) \end{aligned}$	If $\left\|f_{i}\right\|>\lambda$ or $\left\|g_{i}\right\|>\lambda$ return \perp $i \leftarrow i+1$
$b \stackrel{*}{\leftarrow}\{0,1\}$	$\left(\sigma_{i}, \omega_{i}\right) \stackrel{r_{i}}{\leftarrow} \operatorname{Dec} 1^{*}\left(\sigma_{i-1}, C\right)$
$\left(C^{*}, K_{0}\right) \stackrel{*}{\leftarrow} \operatorname{Enc}(p k)$	$\left(\sigma_{i}^{\prime}, K_{i}\right) \stackrel{r_{i}^{\prime}}{\leftarrow} \operatorname{Dec} 2^{*}\left(\sigma_{i-1}^{\prime}, \omega_{i}\right)$
$K_{1} \stackrel{*}{\leftarrow} \mathcal{K}$	$\Lambda_{i} \leftarrow f_{i}\left(\sigma_{i-1}, r_{i}\right)$
$i \leftarrow 0$	$\Lambda_{i}^{\prime} \leftarrow g_{i}\left(\sigma_{i-1}^{\prime}, \omega_{i}, r_{i}^{\prime}\right)$
$b^{\prime} \stackrel{*}{\leftarrow} \mathcal{F}\left(\omega, C^{*}, K_{b}\right)$	return $\left(K_{i}, \Lambda_{i}, \Lambda_{i}^{\prime}\right)$

On the $i^{t h}$ invocation of decapsulation, the decapsulated key K_{i} is computed as follows

$$
\left(\sigma_{i}, \omega_{i}\right) \stackrel{r_{i}}{\leftarrow} \operatorname{Dec} 1^{*}\left(\sigma_{i-1}, C\right) \quad\left(\sigma_{i}^{\prime}, K_{i}\right) \stackrel{r_{i}^{\prime}}{\leftarrow} \operatorname{Dec} 2^{*}\left(\sigma_{i-1}^{\prime}, \omega_{i}\right),
$$

where r_{i} and r_{i}^{\prime} is the explicit randomness of the two randomized algorithms, σ_{i} and σ_{i}^{\prime} are the updated states and ω_{i} is some state information that is passed from $D e c 1^{*}$ to $D e c 2^{*}$.

In the security definition of CCLA1, after the $i^{\text {th }}$ querying the oracle $\mathcal{O}^{\text {ccla1 }}$, the adversary gets not only K_{i}, but also the leaked information $\Lambda_{i}=f_{i}\left(\sigma_{i-1}, r_{i}\right)$ and $\Lambda_{i}^{\prime}=g_{i}\left(\sigma_{i-1}^{\prime}, \omega_{i}, r_{i}^{\prime}\right)$. The leakage function f_{i} and g_{i} are efficient computable functions chosen by adversary and get as input only the secret state that is actually accessed during the invocation. The range of f_{i} and g_{i} are bounded by the leakage parameter λ. For the scheme $E G^{*}$, the leakage functions f_{i} and g_{i} are as follows:

$$
\Lambda_{i} \leftarrow f_{i}\left(\sigma_{i-1}, r_{i}\right), \quad \Lambda_{i}^{\prime} \leftarrow g_{i}\left(\sigma_{i-1}^{\prime},\left(r_{i}, K^{\prime}\right), r_{i}^{-1}\right)
$$

The authors of [1] didn't prove the security of $E G^{*}$, instead they presented the following conjecture.

Conjecture $1 E G^{*}$ is CCLA1 secure if $p-1$ has a large prime factor (say, $p-1=2 q$ for a prime q).

The authors of [1] pointed out that there exists some attack on $E G^{*}$ if $\lambda=$ $0.4 \cdot \log p$, using the method based on Hiding Number Problem presented in $[31,36]$. Furthermore, the authors of [1] conjectured that roughly $\lambda=0.25 \cdot \operatorname{logp}$ bits in [32]. Thus the total leakage bits of one decryption query are $2 \lambda=0.5 \cdot \operatorname{logp}$ bits.

2.2 Basics of Lattice Theory

We now give a brief introduction into basic terms of lattice theory on which our attacks are based.
\mathbb{R}^{m} denotes the m-dimensional real Euclidean vector space and e_{i} the $i^{t h}$ unit vector in \mathbb{R}^{m}. For any vector $v \in \mathbb{R}^{m},\|v\|=\left(\sum_{i=1}^{m} v_{i}^{2}\right)^{1 / 2}$ is the Euclidean norm. A lattice L is a discrete additive subgroup of the \mathbb{R}^{m} with

$$
L=\left\{y \in \mathbb{R}^{m} \mid y=a_{1} b_{1}+\cdots+a_{k} b_{k}, a_{i} \in \mathbb{Z}\right\}
$$

where $b_{1}, \ldots, b_{k} \in \mathbb{R}^{m}$ linear independently over \mathbb{R}^{m} and $k \leq m$. $\left\{b_{1}, \ldots, b_{k}\right\}$ is called a basis of the lattice L. The $i^{t h}$ successive minimum $\lambda_{i}(L)$ of a lattice L is the smallest positive real number z, such that there exists i linear independent vectors $l_{1}, \ldots, l_{i} \in L$ of maximum length z, i.e.

$$
\lambda_{i}(L)=\min _{l . u . l_{1}, \ldots, l_{i} \in L} \max _{j \in\{1, \ldots, i\}}\left\|l_{j}\right\|
$$

2.3 Symbols and Notations

We define some main symbols and notations in this subsection, while some other will be defined in more appropriate position in the following sections.

If S is a binary bit string, the most significant a bits of S is denoted by $S^{[a]}$ and the least significant b bits of S is denoted by $S_{[b]}$. The length of S is denoted by $|S|$. The absolute value of a numerical value v is denoted by $a b s(v)$. If M represents a matrix, then $\operatorname{det}(M)$ is the determinant of M and M^{\top} is the transpose of M. We assume that the representation for all elements belonging to \mathbb{Z}_{p} has the same length of binary bit string.

In order to simplify the notation, we ignore the subscript of leakage function f and g. The number of leakage bits about σ_{i} and σ_{i}^{\prime} from leakage function f and g in one invocation of the decryption query is denoted by t. In Section 3, we can see that the leakage bits are the most significant t bits of σ_{i} and σ_{i}^{\prime}.

The leakage information from leakage function f and g can be divided into two parts, one part is about the multiplicative shares $\sigma_{i-1}, \sigma_{i-1}^{\prime}$ and the other part is about the randomness r_{i}. For leakage function f, we use $\mu_{\sigma f}$ to denote the leakage bit number about σ_{i-1} and use $\mu_{r f}$ to denote the leakage bit number about r_{i} leaked from $f . \mu_{\sigma^{\prime} g}$ and $\mu_{r g}$ have the similar meaning for leakage function g. Therefore, we have $|f|=\mu_{\sigma f}+\mu_{r f}$ and $|g|=\mu_{\sigma^{\prime} g}+\mu_{r g}$.

Due to we present two attack methods in this paper, we use $\rho_{A T T A C K I}=$ $\frac{|f|+|g|}{|p|}$ to denote the leakage rate of the whole invocation for the first attack
method and use $\rho_{A T T A C K I I}=\frac{|f|+|g|}{|p|}$ to denote the leakage rate of the whole invocation for the second attack method. We define $\lambda_{A T T A C K I}=\max \{|f|,|g|\}$ and $\lambda_{A T T A C K I I}=\max \{|f|,|g|\}$ for our two attack methods respectively.

3 Our Non-Generic Attacks on Mathematical Realizations of $\boldsymbol{E} \boldsymbol{G}^{*}$

To show the destructive impact of the process of mathematical realization for a leakage resilient scheme, we choose the scheme $E G^{*}$ in [1] as an example. We will introduce two attacks about $E G^{*}$, from which show the aforementioned impact of mathematical realization. In this section, we first introduce the overview of our two attacks, and then present the details of them. We will give out a theoretic analysis for the two attacks in the end of the section.

3.1 Overview of Our Attacks

The goal of our two attacks is to recover the secret key x. To achieve this goal, we try to build two systems of linear congruence equations about the multiplicative secret shares σ_{i} and σ_{i}^{\prime} respectively. For this purpose, we need to continually invoke the decryption query dozens of times and get all the bits of the randomness r_{i} and few bits about σ_{i} and σ_{i}^{\prime} for each invocation from leakage information.

If the adversary has enough leakage bits about the multiplicative shares σ_{i} and σ_{i}^{\prime} for each invocation, by lattice theory and related analysis techniques, the systems of linear congruence equations have unique solution and the unique solution can be returned by an algorithm in polynomial time with very high probability. When the adversary gets all the bits of σ_{i} and σ_{i}^{\prime}, he can recover a candidate value $x^{\prime}\left(x^{\prime}=\sigma_{i} \sigma_{i}^{\prime} \bmod (p)\right)$ of the secret key x.

In our first attack method, we treat the underlying PRNG generating the randomness r_{i} of every invocation as a black box (without considering any mathematical realization of PRNG). We call this PRNG generic PRNG. In this way, the leakage functions f_{i} and g_{i} leak half bits about the randomness r_{i} respectively. Therefore, the minimum value of λ which the adversary needs to recover the secret key successfully is apparently larger than $0.5 \cdot \log (p)$ (because some other bits of information about the multiplicative secret shares also need to be leaked thorough leakage functions). In this case, the number of leaked bits per invocation of the decryption query of scheme $E G^{*}$ is larger than $\log (p)$.

Although the first attack method does not satisfy the restriction for the adversary in the security definition of the scheme $E G^{*}$, it is the basis of the second attack method (The authors of [1] conjecture that λ equals to $0.25 \cdot \log p$ in the security definition.). Furthermore, we introduce the first attack method here in order to make a comparison with the second attack method. This comparison shows the impact of mathematical realization for a leakage resilient scheme.

It is amazing that our second attack method shows that the minimum value of λ and the number of leakage bits per decryption query will decrease dramatically when the generic PRNG is mathematical realized using some specific

PRNGs. Because the adversary knows the mathematical structure of the specific PRNGs. This result shows the destructive impact of the process of mathematical realization for a leakage resilient scheme $\left(E G^{*}\right)$. Although it seems that the attacks are trivial because the adversary knows all the bits about the randomness r_{i} (from leakage information), what we want to show is not some attack methods about the scheme $E G^{*}$. What we want to show is the destructive impact of the process of mathematical realization for a leakage resilient scheme by the two attacks. Note that, our second attack method satisfy the restriction for the adversary in the security definition of the scheme $E G^{*}$ (CCLA1) rigorously.

The first attack is the basis of the second attack. Both attacks are based on the same lattice theory. In Section 3.2, we describe the first attack method and in Section 3.3, the second attack method will be presented. In Section 3.4, we give out a theoretical analysis for our non-generic attacks.

3.2 ATTACK I: Basic Attack Knowing Nothing about the Mathematical Structure of Underlying PRNG

Our first attack method (ATTACK I) is as follows:
In every invocation of the decryption query of $E G^{*}$, the adversary, in one decryption query, gets some most significant few bits of σ_{i} and σ_{i}^{\prime} and all bits of r_{i+1} through leakage functions f_{i+1} and g_{i+1}. Furthermore, he can get r_{i+1}^{-1} from r_{i+1} easily (Because p is a prime and also is public.). By continual invocations (e.g. n times), the adversary can build two systems of linear congruence equations about the rest of unknown bits of $\left\{\sigma_{i}, \sigma_{i+1}, \ldots, \sigma_{i+n-1}\right\}$ and $\left\{\sigma_{i}^{\prime}, \sigma_{i+1}^{\prime}, \ldots, \sigma_{i+n-1}^{\prime}\right\}$ respectively. By solving the two systems of congruence equations using lattice theory, the adversary can recover a candidate value of the secret key.

In the $(i+1)^{t h}$ decryption query of $E G^{*}$, the adversary obtains $\sigma_{i}^{[t]}$ (We will show the specific values of t for different size of p below.) and $r_{i+1}^{[|p| / 2]}$ simultaneously from $f_{i+1}\left(\sigma_{i}, r_{i+1}\right)$. He also gets $\sigma_{i}^{\prime[t]}$ and $r_{i+1[|p| / 2]}$ simultaneously from $g_{i+1}\left(\sigma_{i}^{\prime},\left(r_{i+1}, K^{\prime}\right), r_{i+1}^{-1}\right)$. In this case, the leakage functions are defined to be:

$$
\begin{gathered}
f_{i+1}\left(\sigma_{i}, r_{i+1}\right)=\left\langle\sigma_{i}^{[t]}, r_{i+1}^{[|p| / 2]}\right\rangle \\
g_{i+1}\left(\sigma_{i}^{\prime},\left(r_{i+1}, K^{\prime}\right), r_{i+1}^{-1}\right)=\left\langle\sigma_{i}^{\prime[t]}, r_{i+1[|p| / 2]}\right\rangle
\end{gathered}
$$

Figure 2 shows the attack process.
In the $(i+2)^{t h}$ decryption query, the adversary is able to get $\sigma_{i+1}^{[t]}$ and $\sigma_{i+1}^{\prime[t]}$ and the whole value of r_{i+2} similarly. At this point, the adversary knows r_{i+1} and $r_{i+2}, \sigma_{i}^{[t]}, \sigma_{i+1}^{[t]}, \sigma_{i}^{\prime[t]}$ and $\sigma_{i+1}^{\prime[t]}$. The adversary can rewrite σ_{i} as

$$
\sigma_{i}=\sigma_{i}^{H}+\sigma_{i}^{L}
$$

where the σ_{i}^{H} is equal to $\sigma_{i}^{[t]} 2^{|p|-t}$ and $\sigma_{i}^{L} \leq p 2^{-t}$. Similarly, The adversary can rewrite σ_{i+1} as

$$
\sigma_{i+1}=\sigma_{i+1}^{H}+\sigma_{i+1}^{L} .
$$

Thus, the adversary can get the following congruence equation:

$$
\sigma_{i}^{L} r_{i+1}-\sigma_{i+1}^{L} \equiv \sigma_{i+1}^{H}-\sigma_{i}^{H} r_{i+1} \bmod (p)
$$

In a similar way, $n-1$ congruence equations can be obtained from n continual invocations of the decryption query as follows:

$$
\begin{aligned}
\sigma_{i}^{L} r_{i+1}-\sigma_{i+1}^{L} \equiv & \sigma_{i+1}^{H}-\sigma_{i}^{H} r_{i+1} \bmod (p) \\
\sigma_{i+1}^{L} r_{i+2}-\sigma_{i+2}^{L} \equiv & \sigma_{i+2}^{H}-\sigma_{i+1}^{H} r_{i+2} \bmod (p) \\
& \cdots \ldots \\
\sigma_{i+n-2}^{L} r_{i+n-1}-\sigma_{i+n-1}^{L} \equiv & \sigma_{i+n-1}^{H}-\sigma_{i+n-2}^{H} r_{i+n-1} \bmod (p) .
\end{aligned}
$$

The leakage functions are defined to be:

$$
\begin{gathered}
f_{i+u}\left(\sigma_{i+u-1}, r_{i+u}\right)=\left\langle\sigma_{i+u-1}^{[t]}, r_{i+u}^{[|p| / 2]}\right\rangle \\
g_{i+u}\left(\sigma_{i+u-1}^{\prime},\left(r_{i+u}, K^{\prime}\right), r_{i+u}^{-1}\right)=\left\langle\sigma_{i+u-1}^{\prime[t]}, r_{i+u[|p| / 2]}\right\rangle
\end{gathered}
$$

for $u=1, \ldots, n-1$, and

$$
\begin{gathered}
f_{i+n}\left(\sigma_{i+n-1}, r_{i+n}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle \\
g_{i+n}\left(\sigma_{i+n-1}^{\prime},\left(r_{i+n}, K^{\prime}\right), r_{i+n}^{-1}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle
\end{gathered}
$$

We denote $d_{1}=\sigma_{i}^{L}, \ldots, d_{n}=\sigma_{i+n-1}^{L}, \beta_{2}=r_{i+1}, \ldots, \beta_{n}=r_{i+n-1}$ and $c_{1}=\sigma_{i+1}^{H}-\sigma_{i}^{H} r_{i+1}, \ldots, c_{n-1}=\sigma_{i+n-1}^{H}-\sigma_{i+n-2}^{H} r_{i+n-1}$, where $\left\{d_{1}, \ldots, d_{n}\right\}$ are all unknown, $\left\{\beta_{2}, \ldots, \beta_{n}\right\}$ and $\left\{c_{1}, \ldots, c_{n-1}\right\}$ are all known. The adversary can obtain the following $n-1$ congruence equations with n unknown quantity.

$$
\left\{\begin{array}{c}
d_{1} \beta_{2}-d_{2} \equiv c_{1} \bmod (p) \tag{1}\\
d_{2} \beta_{3}-d_{3} \equiv c_{2} \bmod (p) \\
\cdots \cdots . \\
d_{n-1} \beta_{n}-d_{n} \equiv c_{n-1} \bmod (p)
\end{array}\right.
$$

In order to solve the above system of linear congruence equations, the adversary can use the following Theorem 1 in [2].
Theorem 1. Let

$$
\sum_{j=1}^{n} b_{i j} d_{j} \equiv c_{i} \bmod (p)
$$

a system with $b_{i j}, c_{i} \in \mathbb{Z}, i=1, \ldots, s, p$ is a prime and $s \leq n$,

$$
L=\left\{y \in \mathbb{R}^{n} \mid y=\sum_{i=1}^{s} a_{i}\left(b_{i 1}, \ldots, b_{i n}\right)^{\top}+a_{s+1} p e_{1}+\cdots+a_{s+n} p e_{n}, a_{i} \in \mathbb{Z}\right\}
$$

a lattice in \mathbb{R}^{n} satisfying $\|d\| \leq p \lambda_{n}(L)^{-1} 2^{-1}$, then there exists at most one solution $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ for this system. If the $b_{i j}, c_{i}$ and p are all known for all i, j, then there exists an algorithm which computes for fixed n in polynomial time the solution d or proves that there is no solution.

The details of the algorithm for solving (1) are given in Algorithm 1 in Appendix A. The algorithm only need to compute the successive minima of a lattice and does not need to use LLL algorithm. We can see that the secret key x can be recovered from the solution of (1).

The applicability of Theorem 1 requires that $a b s\left(d_{i}\right) \leq p \lambda_{n}(L)^{-1} 2^{-1} n^{-1 / 2}$ and $d_{i} \leq p 2^{-t}$. For unknown d_{i}, this means that one needs to know the most significant $t=\log \lambda_{n}(L)+\frac{1}{2} \log n+1$ bits of every σ_{i}. Therefore, the number t of known bits in advance only depends on $\lambda_{n}(L)$. Similarly to [2], by Theorem 2, we could estimate the value of $\lambda_{n}(L)$.

Theorem 2. Let p be a prime, $\epsilon>0$ and

$$
L=\left\{y \in \mathbb{R}^{n} \mid y=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{n-1}+\mathbb{Z} p e_{1}+\cdots+\mathbb{Z} p e_{n}\right\}
$$

A lattice in \mathbb{Z}^{n}, where $b_{1}=\left(r_{2},-1,0, \ldots, 0\right), b_{2}=\left(0, r_{3},-1,0, \ldots, 0\right), \ldots, b_{n-1}=$ $\left(0, \ldots, 0, r_{n},-1\right)$ are randomly chosen in \mathbb{Z}^{n}. Then, with probability $\geq 1-\epsilon-$ $O\left(1 / p^{(n-1) / n}\right)$ it holds that

$$
\lambda_{n}(L) \leq\left(\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}\right)^{1 / n} n \epsilon^{-1 / n} p^{1-(n-1) / n}
$$

We can get the lower bound of t

$$
\begin{equation*}
t \geq \frac{1}{n} \log _{2} p+\log _{2} n+\frac{1}{n} \log _{2} \epsilon+3.06=t^{\prime} . \tag{3}
\end{equation*}
$$

Let $t_{\text {min }}$ denotes the minimum value of $t\left(t_{\min }=\left\lceil t^{\prime}\right\rceil\right)$. The adversary could get r_{u}^{-1} from $r_{u}(u=i+1, i+2, \ldots, i+n-1)$ easily. Therefore, knowing the value of $\sigma_{u}^{\prime H},(u=i, i+1, \ldots, i+n-1)$, the adversary could get the whole value of σ_{i}^{\prime} in a similar way. Thus, a candidate value of secret key can be recovered by computing $x^{\prime}=\sigma_{i} \sigma_{i}^{\prime} \bmod (p)$. It is clearly that $x^{\prime}=x$ if and only if $C^{x^{\prime}}=K$ for a correct plaintext-ciphertext pair (C, K). Figure 1 shows the decapsulation algorithm of $E G^{*}$ and where leakages take place.

For different size of prime p and different number of congruence equations (Denoted by $\#_{e q u}$, which means the adversary will consecutively invoke the decryption query $\#_{e q u}+1$ times), we show the percentage of $t_{\text {min }} /|p|$ in Table 1 and the value of $t_{m i n}$ in Figure 2.

Table 1. Percentage of $t_{\min } /|p|$ for different size of strong prime p

$\#$ equ	$\|p\|$	160	256	512
5	20%	18.75%	17.58%	17.18%
10	13.13%	11.72%	10.35%	9.67%
20	9.38%	7.81%	6.25%	5.47%
30	8.13%	6.64%	4.88%	4%
40	8.13%	5.86%	4.10%	3.32%
50	7.5%	5.47%	3.71%	2.83%

Fig. 1. Our attack on decapsulation of $E G^{*}$ with a generic and leakage-free PRNG

Fig. 2. Relationship between the number of equations and $t_{\text {min }}$ for strong prime p of different sizes

Therefore, if $\lambda=t_{\text {min }}+|p| / 2$, the adversary will recover the secret key x. By Table 1, we can see that if the adversary has 30 equations, the percentage of $\lambda /|p|$ equals to $58.13 \%(\lambda=13+80=93 \mathrm{bits})$ for 160 bits strong primes. For 1024 bits strong primes, the percentage of $\lambda /|p|$ equals to $54 \%(\lambda=41+512=553$ bits). Thus the number of leakage bits required to execute a successful attack per invocation of the decryption query is larger than $\log (p)$ bits.

Note that, the PRNG is considered as a black box in the first attack method. We do not consider any specific PRNG. However, in Mathematical Realization Level, the user always need to mathematical realize the generic PRNG used to generate $r_{u+1},(u=i, i+1, \ldots, i+n-1)$ by a specific PRNG. Therefore, if the adversary knows the concrete mathematical structure of the underlying PRNGs generating $r_{u+1},(u=i, i+1, \ldots, i+n-1)$, he may carry out a successful attack with less leakage bits.

3.3 ATTACK II: Attack Knowing Only the Mathematical Structure of the Underlying PRNG (Without Any Implementation Aspects)

Our second attack method (ATTACK II) also try to build the same system of linear congruence equations as our first attack method does. However, the difference is that the generic PRNG is mathematical realized by three specific widely used PRNGs. Therefore, the adversary knows the the concrete mathematical structure of the specific PRNG used by the scheme $E G^{*}$ in the process of mathematical realization. According to Kerckhoffs' principle, this assumption is reasonable.

When the algorithm $D e c 1_{E G}^{*}$ invokes one PRNG to generate the randomness r_{i} in the decryption query, the internal secret states of the specific PRNG could be leaked due to the assumption that "Only Computation Leaks information". The leakage of the internal secret states of the specific PRNG is reasonable because any memory contents which are actually accessed during computation can be leaked. The internal secret states of the specific PRNG could be leaked only from leakage function f. Furthermore, the output of the specific PRNG, namely r_{i}, can be leaked partially from leakage function g. Hence, the adversary can exploit the concrete mathematical structure of the specific PRNG, a part of leakage bits of the internal secret states of the specific PRNG (from f), and a part of leakage bits of the output of the specific PRNG (from g) to recover all the bits of the randomness r_{i}.

It is well known that the adversary can compute the output of a PRNG easily if he knows the whole internal secret states of the PRNG. Therefore, any attack method that needs to get all the internal secret states of a PRNG from leakage function f is meaningless. Our attacks for the three PRNGs do not need to leakage all the bits of the internal secret states of the PRNGs. In this way, our attacks are meaningful. We assume that the internal secret states of a specific PRNG are different in each decryption query. Therefore, the adversary must execute our attack in each decryption query.

We use three PRNGs to mathematical realize the generic PRNG in the scheme $E G^{*}$. They are ANSI X9.17 PRNG (denoted by PRNG A), ANSI X9.31 PRNG Using AES-128 (denoted by PRNG B), and FIPS 186 pseudorandom number generator for DSA per-message secrets (denoted by PRNG C). These PRNGs are very different in mathematical structure, structural parameter, and physical realization. Using different PRNG to mathematical realize the generic PRNG will not affect the theoretic security of a scheme in black box model, as long as the PRNG satisfies the requirement of a PRNG, namely generating pseudorandom number. Intuitively, these differences of the PRNGs should also not affect the theoretic security of a scheme in leakage setting as that in black box model. However, our second attack shows that mathematical realization of the generic PRNG in a leakage resilient scheme $\left(E G^{*}\right)$ will affect its theoretic security.

If the decapsulation algorithm of $E G^{*}$ continually invokes PRNG v times to generate r_{i}, then we will denote $r_{i}=($ output $[1]\|\ldots\|$ output $[v])$. The output of each invocation of PRNG is denoted by output $[u],(u=1,2, \ldots, v)$.

Due to our experiment environment (See section 4 for more details.), we assume that the adversary will build the system of linear congruence equations which has 30 equations (This case can be solved successfully by our experiment environment.). This means that the decryption query will be continually invoked for 31 times and there exists 31 unknown quantity in the system of the linear congruence equations ${ }^{1}$.

We introduce our attacks to the three PRNGs in Section 3.3.1-3.3.3 respectively.

3.3.1 PRNG A: ANSI X9.17 PRNG

The ANSI X9.17 PRNG [26] has been used as a general purpose PRNG in many applications. Let $E_{k}\left(\right.$ resp. $\left.D_{k}\right)$ denotes DES E-D-E two-key triple-encryption (resp. decryption) under a key k. The k is generated somehow at initialization time. It must be reserved exclusively used only for this generator. It is part of the secret state of PRNG which is never changed by any PRNG input.

The random bits generation algorithm of ANSI X9.17 PRNG is shown in Algorithm 2.

[^1]
Algorithm 2 ANSI X9.17 PRNG

INPUT: a random (and secret) 64-bit seed seed[1], integer v, and DES E-D-E triple-encryption with key k.

OUTPUT: v pseudorandom 64 -bit strings output $[1], \ldots$, output $[v]$.
Step 1 For i from 1 to v do the following:
1.1 Compute the intermediate value $I_{i}=E_{k}($ input $[i])$, where input $[i]$ is a 64 -bit representation of the date/time.
1.2 output $[i]=E_{k}\left(I_{i} \bigoplus\right.$ seed $\left.[i]\right)$
1.3 seed $[i+1]=E_{k}\left(I_{i} \bigoplus\right.$ output $\left.[i]\right)$

Step 2 Return (output[1], output[2], ...,output[v])
$\operatorname{input}[i],(i=1,2, \ldots, v)$ is a 64 -bit representation of the system date/time. Suppose that each input $[i]$ value has 10 bits that aren't already known to the adversary (For simplicity, let these 10 bits be the least significant 10 bits of input $[i]$.). This is a reasonable assumption for many systems (as described in [30]). For example, consider a millisecond timer, and an adversary who knows the nearest second when an output was generated. Before doing the attack, due to the fact that k is never changed, the adversary can obtain k from leakage function f by invoking the decryption query repeatedly. On knowing k, the adversary could continually queries the oracle $\mathcal{O}^{\text {ccla }}$ for n times and the leakage functions are defined to be as follows:

$$
\begin{gathered}
f_{i+u}\left(\sigma_{i+u-1}, r_{i+u}\right)=\left\langle\sigma_{i+u-1}^{[t]}, \text { input }[1]_{i+u[10]}, \ldots, \text { input }[v]_{i+u[10]}\right\rangle \\
g_{i+u}\left(\sigma_{i+u-1}^{\prime[t]},\left(r_{i+u}, K^{\prime}\right), r_{i+u}^{-1}\right)=\left\langle\sigma_{i+u-1}^{\prime[t]}, \text { output }[1]_{i+u}\right\rangle
\end{gathered}
$$

$u=1, \ldots, n-1$ and

$$
\begin{gathered}
f_{i+n}\left(\sigma_{i+n-1}, r_{i+n}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle \\
g_{i+n}\left(\sigma_{i+n-1}^{\prime},\left(r_{i+n}, K^{\prime}\right), r_{i+n}^{-1}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle
\end{gathered}
$$

For the first $n-1$ invocations, the adversary knows $\{$ input $[1], \ldots$, input $[v]\}$, and can compute seed $[1]=D_{k}($ output $[1]) \oplus E_{k}($ input $[1])$. Then the adversary can easily get seed $[u]=E_{k}\left(E_{k}(\right.$ input $[u-1]) \oplus$ output $\left.[u-1]\right)$ as well as output $[u]=E_{k}\left(E_{k}(\right.$ input $\left.[u]) \oplus \operatorname{seed}[u]\right),(u=2,3, \ldots, v)$. Note that, to simplify description, we omit the subscript in notations here. At this point, the adversary get $\sigma_{i+u-1}^{[t]}, \sigma_{i+u-1}^{\prime[t]}, r_{i+u},(u=1,2, \ldots, n-1)$ and $\sigma_{i+n-1}^{[t]}, \sigma_{i+n-1}^{\prime[t]}$. In this way, the adversary can build the systems of linear congruence equations as that in ATTACK I, and then recover the secret key x. Figure 7 in Appendix B shows the attack process.

Table 2.1 and Table 2.2 show the leakage bit number about leakage function f and g for two different parts for our two attack methods and different size of strong primes respectively. Table 3 shows the percentage of $\rho_{\{A T T A C K I, A T T A C K I I\}}$

Table 2.1. The specific leakage bit number for ANSI X9.17 PRNG of

$\|p\|$	Attacks	$\mu_{\sigma f}$	$\mu_{r f}$	f\|
448	ATTACK I	23	224	247
bits	ATTACK II	23	70	93
512	ATTACK I	25	256	281
bits	ATTACK II	25	80	105
640	ATTACK I	29	320	349
bits	ATTACK II	29	100	129
768	ATTACK I	33	384	417
bits	ATTACK II	33	120	153
896	ATTACK I	37	448	485
bits	ATTACK II	37	140	177
1024	ATTACK I	41	512	553
bits	ATTACK II	41	160	201

Table 2.2. The specific leakage bit number for ANSI X9.17 PRNG of

$\|p\|$	Attacks	$\mu_{\sigma^{\prime} g}$	$\mu_{r g}$	$g \mid$
448	ATTACK I	23	224	247
bits	ATTACK II	23	64	87
512	ATTACK I	25	256	281
bits	ATTACK II	25	64	89
640	ATTACK I	29	320	349
bits	ATTACK II	29	64	93
768	ATTACK I	33	384	417
bits	ATTACK II	33	64	97
896	ATTACK I	37	448	485
bits	ATTACK II	37	64	101
1024	ATTACK I	41	512	553
bits	ATTACK II	41	64	105

Table 3. The percentage of $\rho_{\{A T T A C K I, A T T A C K I I\}}$ and the specific value of $\lambda_{\{A T T A C K I, A T T A C K I I\}}$ about ANSI X9.17 PRNG in 30 equations case

$\|p\|$ (in bits)	$\rho_{\text {ATTACKI }}$	$\rho_{\text {ATTACKII }}$	$\lambda_{\text {ATTACKI }}$	$\lambda_{\text {ATTACKII }}$	v (times)
448	110.27%	40.18%	247	93	7
512	109.77%	37.89%	281	105	8
640	109.06%	34.69%	349	129	10
768	108.59%	32.55%	417	153	12
896	108.26%	31.03%	485	177	14
1024	108%	29.88%	553	201	16

and the specific value of $\lambda_{\{A T T A C K I, A T T A C K I I\}}$ for ANSI X9.17 PRNG of our two attacks when the number of equations is 30 .

From Table 3 and Figure $4-5$, it is clear that the scheme $E G^{*}$ is not secure any more, if it uses ANSI X9.17 PRNG for strong primes $|p| \geq 448$ bits. For strong primes longer than 1024 bits, the tolerance leakage rate ρ is much lower, and thus we don't present all the data in the paper.

Note that ANSI X9.31-1998 Appendix A.2.4 in [29] also introduces PRNG using 3-key triple DES and AES Algorithms. In 3-key triple DES case, due to the fact that input $[i]$, seed $[i]$ and output $[i]$ have the identical length as that of ANSI X9.17 PRNG, we could obtain the same attack results as those of the attack on ANSI X9.17 PRNG. Although the level of theoretical security of 3-key triple DES is higher than DES, the tolerate leakage rate of the two PRNGs is the same. This shows that higher level of theoretical security of some cryptographic primitive may not improve its tolerate leakage rate.

3.3.2 PRNG B: ANSI X9.31 PRNG Using AES-128

Let E_{k} (resp. D_{k}) denotes the AES-128 encryption (resp. decryption) under a 128 -bit key k. The random bits generation algorithm of ANSI X9.31 PRNG using AES-128 is the same as Algorithm 2, except that input $[i]$, seed $[i]$ and output $[i]$ $(i=1,2, \ldots, v)$ are 128 bits each and E_{k} is the AES-128 encryption.

As in PRNG A, we assume that each input $[i]$ has 10 bits entropy which the adversary doesn't know, and we also assume that these bits are the least significant 10 bits of input $[i],(i=1,2, \ldots, v)$. This assumption is also reasonable, as AES-128 is faster than 3DES.

After the adversary gets the 128-bits key k, he continually queries the oracle $\mathcal{O}^{\text {ccla }}$ for n times and the leakage functions are also similar as those in section 3.3.1. They are defined to be as follows.

$$
\begin{aligned}
& \quad f_{i+u}\left(\sigma_{i+u-1}, r_{i+u}\right)=\left\langle\sigma_{i+u-1}^{[t]}, \text { input }[1]_{i+u[10]}, \ldots, \text { input }[v]_{i+u[10]}\right\rangle \\
& g_{i+u}\left(\sigma_{i+u-1}^{\prime[t]},\left(r_{i+u}, K^{\prime}\right), r_{i+u}^{-1}\right)=\left\langle\sigma_{i+u-1}^{\prime[t]}, \text { output }[1]_{i+u}\right\rangle, \\
& u=1, \ldots, n-1
\end{aligned}
$$

$$
\begin{gathered}
f_{i+n}\left(\sigma_{i+n-1}, r_{i+n}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle \\
g_{i+n}\left(\sigma_{i+n-1}^{\prime},\left(r_{i+n}, K^{\prime}\right), r_{i+n}^{-1}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle .
\end{gathered}
$$

Through these leakage functions, the adversary can get $\sigma_{i+u-1}^{[t]}, \sigma_{i+u-1}^{[[t]}, r_{i+u}$, $(u=1,2, \ldots, n-1)$ and $\sigma_{i+n-1}^{[t]}, \sigma_{i+n-1}^{\prime[t]}$. Therefore, he can mount the attack. Similarly, we present results of the cases when the number of equations is 30 . Figure 8 in Appendix B shows the attack process.

Table 4.1 and Table 4.2 show the number of leaked bits about leakage function f and g for its two different parts, and the results correspond to two attacks and different size of strong primes when the number of equations is 30 .

Table 5 shows the percentage of $\rho_{\{A T T A C K I, A T T A C K I I\}}$ and the specific value of $\lambda_{\{A T T A C K I, A T T A C K I I\}}$ for ANSI X9.31 PRNG Using AES-128 and the number of iteration times v of the PRNG for different size primes when the number of equations is 30 .

From Table 5 and Figure $4-5$, it is clear that the scheme $E G^{*}$ is not secure any more, if it uses this ANSI X9.31 PRNG Using AES-128 when strong primes $|p| \geq 640$ bits. For strong primes longer than 1024 bits, the tolerance leakage rate is much lower, and thus we don't present all the data in the paper.

Additionally, PRNG B has similar mathematical structure with PRNG A. The structural parameter of the two PRNGs are different. This difference yields different leakage rate of the scheme $E G^{*}$ when using the two PRNGs to mathematical realize it.

Table 4.1. The specific leakage bit number for ANSI X9.31 PRNG Using AES-128
of leakage function f in 30 equations case

$\|p\|$	Attacks	$\mu_{\sigma f}$	$\mu_{r f}$	$\|f\|$
(40 bits	ATTACK I	29	320	349
	ATTACK II	29	50	79
68 bits	ATTACK I	33	384	417
	ATTACK II	33	60	93
896 bits	ATTACK I	37	448	485
	ATTACK II	37	70	107
1024 bits	ATTACK I	41	512	553
	ATTACK II	41	80	121

Table 4.2. The specific leakage bit number for ANSI X9.31 PRNG Using AES-128

$\|p\|$	Attacks	$\mu_{\sigma^{\prime} g}$	$\mu_{r g}$	$\|g\|$
640	ATTACK I	29	320	349
bits	ATTACK II	29	128	157
768	ATTACK I	33	384	417
bits	ATTACK II	33	128	161
896	ATTACK I	37	448	485
bits	ATTACK II	37	128	165
1024	ATTACK I	41	512	553
bits	ATTACK II	41	128	169

3.3.3 PRNG C: FIPS 186 PRNG for DSA per-message secrets

The Digital Signature Standard specification (FIPS 186) [27] also describes a fairly simple PRNG, which is used for generating the per-message secrets k to

Table 5. The percentage of $\rho_{\{A T T A C K I, A T T A C K I I\}}$ and the specific value of $\lambda_{\{A T T A C K I, A T T A C K I I\}}$ about ANSI X9.31 PRNG Using AES-128 in 30 equations case

$\|p\|$ (in bits)	$\rho_{A T T A C K I}$	$\rho_{\text {ATTACKII }}$	$\lambda_{\text {ATTACKI }}$	$\lambda_{\text {ATTACKII }}$	v (times)
640	109.06%	36.88%	349	157	5
768	108.59%	33.07%	417	161	6
896	108.26%	30.36%	485	165	7
1024	108.01%	28.32%	553	169	8

be used in signing messages. This PRNG uses a secret seed which should be randomly generated, and utilize a one-way function constructed by using either SHA-1 or DES. This PRNG is as shown in Algorithm 3.

Algorithm 3 FIPS 186 PRNG for DSA pre-message secrets
INPUT: an integer v and a 160-bit prime number q.
OUTPUT: v pseudorandom numbers output $[1], \ldots$, output $[v]$ in the interval $[0, q-1]$ which may be used as the per-message secret numbers k in the DSA.

Step 1 If the SHA based G function is to be used in step 4.1 then select an integer $160 \leq b \leq 512$. If the DES based G function is to be used in step 4.1 then set $b \leftarrow 160$.

Step 2 Generate a random (and secret) b-bit seed seed[1].
Step 3 Define the 160-bit string str $=e f c d a b 89$ 98badcfe 10325476 $c 3 d 2 e 1 f 067452301$ (in hexadecimal).

Step 4 For i from 1 to v do the following:
4.1 output $[i] \leftarrow G($ str, seed $[i]) \bmod (q)$.
4.2 seed $[i+1] \leftarrow(1+$ seed $[i]+$ output $[i]) \bmod \left(2^{b}\right)$.

Step 5 Return (output[1], output[2], ..., output[v]).
For general purpose PRNG, $\bmod q$ operation could be omitted. It is necessary only for DSS where all arithmetic is done $\bmod q$. In this paper, we only consider the case of that G function is based on DES. Therefore, the output of this PRNG is 160 bits long. When $|p|=640$ bits, one can generate r_{i} by invoking this PRNG only 4 times iteratively. The leakage functions are defined as follows.

$$
\begin{gathered}
f_{i+u}\left(\sigma_{i+u-1}, r_{i+u}\right)=\left\langle\sigma_{i+u-1}^{[t]}, \operatorname{seed}[1]_{i+u}^{[120]}\right\rangle \\
g_{i+u}\left(\sigma_{i+u-1}^{\prime[t]},\left(r_{i+u}, K^{\prime}\right), r_{i+u}^{-1}\right) \\
=\left\langle\sigma_{i+u-1}^{\prime[t]}, \text { output }[1]_{i+u}^{[40]}, \text { output }[2]_{i+u}^{[30]}, \text { output }[3]_{i+u}^{[30]}, \text { output }[4]_{i+u}^{[20]}\right\rangle,
\end{gathered}
$$

$u=1, \ldots, n-1$, and

$$
\begin{gathered}
f_{i+n}\left(\sigma_{i+n-1}, r_{i+n}\right)=\left\langle\sigma_{i+n-1}^{[t]}\right\rangle \\
g_{i+n}\left(\sigma_{i+n-1}^{\prime},\left(r_{i+n}, K^{\prime}\right), r_{i+n}^{-1}\right)=\left\langle\sigma_{i+n-1}^{\prime[t]}\right\rangle .
\end{gathered}
$$

For each $u=1,2, \ldots, n-1$, after the adversary gets $\operatorname{seed}[1]_{i+u}^{[120]}$ (not all the bits of seed[1]), he could try all possible values of the least significant 40 bits of seed $[1]_{i+u}$ (in a brute-force way), and he will get 2^{40} candidate values of seed $[1]_{i+u}$. Denote one candidate value by seed $[1]_{i+u}^{\prime}$.

The adversary could use the following procedure to verify the correctness of each guess. For every seed $[1]_{i+u}^{\prime}$, the adversary computes output $[1]_{i+u}^{\prime}=$ $G\left(\right.$ str, seed $\left.[1]_{i+u}^{\prime}\right)$. If output $[1]_{i+u}^{\prime[40]}=$ output $[1]_{i+u}^{[40]}$, then the adversary will compute seed $[2]_{i+u}^{\prime}$ and output $[2]_{i+u}^{\prime}=G\left(\operatorname{str}, \operatorname{seed}[2]_{i+u}^{\prime}\right)$; otherwise, the adversary will try the next candidate value of seed $[1]_{i+u}$. If output $[2]_{i+u}^{\prime[30]}=$ output $[2]_{i+u}^{[30]}$, then the adversary will compute seed $[3]_{i+u}^{\prime}$ and output $[3]_{i+u}^{\prime}=G\left(\operatorname{str}, \operatorname{seed}[3]_{i+u}^{\prime}\right)$; otherwise, the adversary will try the next candidate value of seed $[1]_{i+u}$. If output $[3]_{i+u}^{[30]}=$ output $[3]_{i+u}^{[30]}$ then the adversary will compute seed $[4]_{i+u}^{\prime}$ and output $[4]_{i+u}^{\prime}=G\left(\right.$ str, seed $\left.[4]_{i+u}^{\prime}\right)$; otherwise, the adversary will try the next candidate value of seed $[1]_{i+u}$. If output $[4]_{i+u}^{\prime[20]}=$ output $[4]_{i+u}^{[20]}$, the adversary will believe that the seed $[1]_{i+u}^{\prime}$ passes the test and it equals to seed $[1]_{i+u}$ with high probability; otherwise, the adversary will try the next candidate value of seed $[1]_{i+u}$.

Assuming that for every input a, the output of G function $G(s t r, a)$ is uniformly distributed over $\{0,1\}^{160}$. We will analyze the probability that a candidate seed[1]' (Note that, to simplify description, we omit the subscript in notations here.) passes the above test in every invocation of the decryption query.

For every seed $[1]^{\prime}$ and output $[1]^{\prime}, \operatorname{Pr}\left[\right.$ output $[1]^{[40]}=$ output $\left.[1]^{[40]}\right]=2^{120} / 2^{160}$ $=1 / 2^{40}$. For output $[2]^{\prime}=G\left(\right.$ str, output $\left.[1]^{\prime}\right), \operatorname{Pr}\left[\right.$ output $[2]^{\prime[30]}=$ output $\left.[2]^{[30]}\right]=$ $2^{130} / 2^{160}=1 / 2^{30}$. Similarly, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { output }[3]^{〔[30]}=\text { output }[3]^{[30]}\right]=2^{130} / 2^{160}=1 / 2^{30}, \\
& \operatorname{Pr}\left[\text { output }[4]^{\prime[20]}=\text { output }[4]^{[20]}\right]=2^{140} / 2^{160}=1 / 2^{20} .
\end{aligned}
$$

Therefore, the probability of seed $[1]^{\prime}$ passing the test is $1 / 2^{120}$. Due to the fact that the number of seed[1] ${ }^{\prime}$ is 2^{40} and there exists only one seed[1] ${ }^{\prime}$ equals to seed[1], the probability of generating more than one seed[1]' that pass the test is

$$
1-\left(1-\frac{1}{2^{120}}\right)^{2^{40}-1}
$$

So, using this simple verification method, the adversary can recover seed[1] with high probability and then could recover the randomness from

$$
r_{i}=(\text { output }[1]\|\ldots\| \text { output }[4])
$$

easily. Figure 3 shows the attack process.
When the size of p are 800 bits, 960 bits and 1120 bits, the probability of successful recovery remains unchanged, even though the recovery processes have a little difference from each other. The difference of recovery process for different size of p is that the leaked bit number for each output is different, while

Fig. 3. Our attack on decapsulation of $E G^{*}$ with a leaky FIPS 186 PRNG

Table 6. The specific leakage bit number of each output for different size p | $\|p\|$ (in bits) | output[1] | output[2] | output[3] | output [4] | output[5] | output [6] | output [7] |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

800	40	30	30	10	10	-	-
960	40	30	30	10	5	5	-
1120	40	30	20	10	10	5	5

the number of total leaked bits about the output are all 120 bits. Table 6 shows the specific leakage bit number for each output, for different sizes of p.

Table 7.1 and Table 7.2 show the leakage bit number about leakage function f and g for two different parts for our two attacks under different sizes of strong prime p when the number of equations is 30 .

Table 7.1. The specific leakage bit number for DSA PRNG of leakage function f in 30 equations case

$\|p\|$	Attacks	$\mu_{\sigma f}$	$\mu_{r f}$	$\|f\|$
640 bits	ATTACK I	29	320	349
	ATTACK II	29	120	149
	ATTACK I	34	400	434
	ATTACK II	34	120	154
960 bits	ATTACK I	39	480	519
	ATTACK II	39	120	159
1120 bits	ATTACK I	44	560	604
	ATTACK II	44	120	164

Table 7.2. The specific leakage bit number for DSA PRNG of leakage function g in 30 equations case

$\|p\|$	Attacks	$\mu_{\sigma^{\prime} g}$	$\mu_{r g}$	$\|g\|$
640 bits	ATTACK I	29	320	349
	ATTACK II	29	120	149
800 bits	ATTACK I	34	400	434
	ATTACK II	34	120	154
960	ATTACK I	39	480	519
	ATTACK II	39	120	159
1120 bits	ATTACK I	44	560	604
	ATTACK II	44	120	164

From Table 8 and Figure 4-5, it is clear that the scheme $E G^{*}$ is not secure any more, if it uses this DSA PRNG when strong primes $|p| \geq 640$ bits and when the number of equations is 30 . For strong primes longer than 1120 bits, the tolerance leakage rate is much lower, and thus we don't present all the data in the paper.

Note that, the attack result of this PRNG is independent with the size of p. This will not affect our conclusion at all. Reason one is that this PRNG satisfies the requirement of a PRNG, namely generating pseudorandom number. Therefore, it can be used to mathematical realize the generic PRNG. Reason two is that we don't discuss the relation between the attack result and the size of p.

Table 8. The percentage of $\rho_{\{A T T A C K I, A T T A C K I I\}}$ and the specific value of
$\lambda_{\{A T T A C K I, A T T A C K I I\}}$ about the DSA PRNG in 30 equations case

$\|p\|$ (in bits)	$\rho_{\text {ATTACKI }}$	$\rho_{\text {ATTACKII }}$	$\lambda_{\text {ATTACKI }}$	$\lambda_{\text {ATTACKII }}$	v (times)
640	109.06%	46.56%	349	149	4
800	108.5%	38.5%	434	154	5
960	108.13%	33.13%	519	159	6
1120	107.86%	29.29%	604	164	7

3.4 Analysis of Our Two Attacks

ATTACK I does not satisfy the restriction of the adversary in the security definition of the scheme $E G^{*}$, because $\lambda=0.5 \cdot \log (p)>0.25 \cdot \log (p)$. However, when the scheme $E G^{*}$ is mathematical realized with specific PRNGs, ATTACK II can break the theoretic security of the scheme $E G^{*}$. Furthermore, ATTACK II satisfy the restriction of the adversary in the security definition of the scheme $E G^{*}$ rigorously. The security definition of the scheme $E G^{*}$ assumes that as long as the amount of information that is leaked on each invocation is bounded by $\lambda=0.25 \cdot \log p$, then $E G^{*}$ is CCLA1 secure.

Note that, in ATTACK II, the adversary can choose the leakage function f according to the mathematical structure of the specific PRNG. Moreover, the leakage function g has no relation with the PRNGs.

The basic reason of the success of both our attacks is that the multiplicative secret shares σ_{i} and σ_{i}^{\prime} are not updated independently.

From the two attacks, we can see that mathematical realization has destructive impact on the security of a leakage resilient scheme.

By our ATTACK II, we can see that both the structural parameter and the mathematical complexity of the PRNGs have important impact on the attack result. When the PRNG has simpler mathematical complexity, we believe that ATTACK II will become more powerful, for example, considering the generic PRNG is mathematical realized with LFSR (e.g., Geffe Generator).

The three PRNGs have different mathematical structure. But the difference will not affect the theoretical security of $E G^{*}$ in black box model. Because they all satisfy the requirement of a PRNG, namely generating pseudorandom number. For comparison with the black box model, we choose these three PRNGs is reasonable in leakage setting. Because we want to see whether or not these PRNGs will affect the theoretical security of $E G^{*}$ in leakage setting.

By our attacks, we find that, with the increase of the size of the underlying hard problem, the tolerance leakage rate of $E G^{*}$ will decrease if the implementation of the scheme $E G^{*}$ invokes the PRNGs iteratively to generate r_{i}.

According to [31], a 512-bit modulus p provides only marginal security from concerted attack. As of 1996, a modulus p of at least 768 bits is recommended. For long-term security, 1024-bit or larger modulus should be used. Therefore, from section 3.3 , we can see that if the scheme $E G^{*}$ uses the above-mentioned three PRNGs to generate r_{i}, the scheme will not be secure any more. On the other hand, nowadays, larger size of p must be used in the ElGamal encryption scheme.

Interestingly enough, our attacks need less tolerance leakage rate when the size of p is larger. Therefore, we guess that our attacks could be more effective for the state-of-the-art ElGamal encryption scheme. Because of the reasons above, we need only considering the smaller size of p which could be used now. The smaller size of p reveals one lower bound for successful attacks.

Note that, the secret key x can also be recovered with other attack method based on Hidden Number Problem [28,36]. However, we do not research the attack method of the scheme $E G^{*}$ in this paper. We want to show the destructive impact of mathematical realizations of a leakage resilient scheme in this paper.

Figure 4 shows the tolerance leakage rate of $E G^{*}$ according to our first attack method and the three PRNGs in our second attack method in 30 equations case. Figure 5 shows the minimum percentage of $\lambda /|p|$ required to successfully recover x for different PRNGs in 30 equations case.

Fig. 4. Minimum leakage rate required to successfully recover x for different PRNGs (When the number of equations is 30)

4 Experimental Implementations of Our Non-Generic Attacks

We implemented all our attacks. For this purpose, we designed two groups of experiments. In our first group of experiments (refers to Phase I), we tried to recover r_{i} from the leakage information about each kind of PRNG in section 3.3. In our second group of experiment (refers to Phase II), we tested the success rate of recovering the secret key x by solving the system of linear congruence equations (1). We ran our experiments in 64-bit mode over an Intel Core 2 Quad

Fig. 5. Minimum percentage of $\lambda /|p|$ required to successfully recover x for different PRNGs (When the number of equations is 30)

Q9550 processor at 2.83 GHz with 4 GB of DDR3 SDRAM. Note that Phase I and Phase II are exactly based on the same sets of leakages from two leakage functions, not from different sets of leakages, even we divided our attacks into two phases.

4.1 PHASE I: Recovery of $\boldsymbol{r}_{\boldsymbol{i}}$

The first group of experiment showed how to recover r_{i} from the leakage information about the three PRNGs concerned in Section 3.3. We used VC++6.0, GMP4.1.2 and Crypto ++5.6 .1 to implement our programs.

ANSI X9.17 PRNG

In this experiment, we only considered the case of $|p|=768$ bits. For other size of strong primes, the processes remains the same. When $|p|=768$ bits, the PRNG, which uses DES E-D-E two-key triple-encryption algorithm, will be continually invoked 12 times to generate a $r_{i} \in \mathbb{Z}_{p}^{*}$. Denote the key of DES E-D-E two-key triple-encryption by $k=\{k e y 1, k e y 2\}$. The specific value of k used in our experiments was as follows.

$$
\begin{aligned}
& k e y 1=0 \mathrm{x} 210 \mathrm{x} 970 \mathrm{x} 880 \mathrm{x} 5 \mathrm{~A} 0 \mathrm{x} 6 \mathrm{D} 0 \mathrm{x} 8 \mathrm{C} 0 \mathrm{xFD} 0 \mathrm{x} 37, \\
& k e y 2=0 \mathrm{x} 810 \mathrm{x} 890 \mathrm{xFC} 0 \mathrm{xCA} 0 \mathrm{x} 46 \text { 0x87 0x42 0xFB. }
\end{aligned}
$$

We used the function GetLocalTime in $\mathrm{VC}++6.0$ to get the 64 bits system time (wHour,wMinute,wSecond and wMilliseconds). According to the result of the experiment, we found that the system time of one iteration of PRNG is
different from each other only in their least significant 8 bits. In the experiment, we chose input $[i]^{[56]}=0 \times 000 \times 0 \mathrm{~A} 0 \mathrm{x} 000 \times 260 \times 000 \mathrm{x} 100 \mathrm{x} 00,(i=1,2, \ldots, 12)$. Table 9 shows the least significant 8 bits of the system time of the 12 times continual invocation of the ANSI X9.17 PRNG.

Table 9. The least significant 8 bits of input $[i]$ for each iteration

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
input $[i]_{[8]}$	0x91	0x92	0x94	0x95	0x96	0x97
i	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
input $[i]_{[8]}$	0x98	0x99	0x9A	0x9B	0x9B	0x9C

In our attack, the leakage function will leak input $[i]_{[10]},(i=1,2, \ldots, 12)$. Moreover, the adversary already knows input []$^{[54]},(i=1,2, \ldots, 12)$. Therefore, the adversary completely knows input $[i],(i=1,2, \ldots, 12)$.

Furthermore, the adversary knows output [1] from leakage function g. In our experiment, we let output [1] =0x3D 0xB4 0xD2 0x54 0x63 0xAB 0x97 0xF3. The adversary can recover seed $[1]=0 x 670 x A D ~ 0 x 740 x F F ~ 0 x E C ~ 0 x 21 ~ 0 x 590 x 64$ by computing $D_{k}($ output $[1]) \oplus E_{k}($ input $[1])$. And then the adversary can compute output $[i],(i=2,3, \ldots, 12)$. Table 10 shows the outputs of 12 invocations of the underlying PRNGs.

Table 10. The output of ANSI X9.17 PRNG

output[1]	0x3D	xB	0xD2	0x54	0x63	0xAB	0x97	0xF
output[2]	0x20	0xA6	0x5F	0xA5	0x2E	0x7F	0xCF	0xA
output[3]	0xCC	0xD	$0 x$	0xDF	0xFE	0xF4	0x65	0xA
output[4]	0x53	0xEF	0xD8	0xF	0x	0x96	0x89	
output[5]	0x0E	0xA	0x1C	0xE	0x63	0x86	0xAB	
output[6]	0x11	0xB1	$0 \times 2 \mathrm{E}$	0xE0	0x54	0x87	0x32	
output [7]	0x95	0xB2	0xA1	0x1E	0xF3	0xB0	OxEF	
output[8]	0xF9	0x3C	0xA9	0x45	0xA8	0x5F	0x06	
output [9]	0x03	0x8D	0x8C	0x76	0xE	0x9	0x18	
output[10]	0x72	0xD9	0x69	0xD	0xEC	0x91	0x	
output[11]	0x52	0x27	0xF1	0xDE	0x10	0x0C	0x1B	
output[12]			0x9F					

ANSI X9.31 PRNG Using AES-128

In this experiment, we only considered the case of $|p|=1024$ bits. For other size of strong primes, the verification procedure remains almost the same. When $|p|=1024$ bits, the PRNG, which uses 128 bits AES encryption algorithm, will be invoked 8 times to generate a $r_{i} \in \mathbb{Z}_{p}^{*}$. Denote this 128 bits key for AES
encryption algorithm by k. The specific value of k used in our experiments was as follows.

$$
\begin{aligned}
& \text { 0x5F 0x5E 0x8D 0xE6 0x75 0xE1 0x3A 0xE4 } \\
& \text { 0x75 0x20 0x2F 0xAD 0x78 0xC2 0x62 0xD1. }
\end{aligned}
$$

We also used the function GetLocalTime in VC+ +6.0 to get the 128 bits system date and time (wYear,wMonth,wDay,wDayOfWeek,wHour,wMinute,wSecond and wMilliseconds). According to the result of the experiment, we found that the system time of one iteration of PRNG is different from each other only in their least significant 8 bits. In the experiment, we chose input $[i]^{[120]}=0 \times 07$ 0xDC 0x00 0x08 0x00 0x1C 0x00 0x02 0x00 0x0E 0x00 0x21 0x00 0x1B 0x03, $(i=1,2, \ldots, 8)$. Table 11 shows the least significant 8 bits of the system date and time of 8 continual invocations of the ANSI X9.31 PRNG using AES-128.

Table 11. The least significant 8 bits of input $[i]$ for each iteration

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
input $[i]_{[8]}$	0x0D	0x0D	0x0E	0x0E
i	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
input $[i]_{[8]}$	0x0F	0x0F	0x10	0x10

In our attack, the leakage function will leak input $[i]_{[10]},(i=1,2, \ldots, 8)$. Moreover, the adversary already knows input $[i]^{[118]},(i=1,2, \ldots, 8)$. Therefore, the adversary completely knows input $[i],(i=1,2, \ldots, 8)$.

Furthermore, the adversary knows output[1] from leakage function g. In our experiment, we assumed output $[1]=0 x 2 \mathrm{E} 0 \mathrm{x} 940 \mathrm{xB} 2$ 0x67 0x26 0x43 0xB4 $0 x 4 \mathrm{C} 0 \mathrm{xB} 40 \mathrm{xDA} 0 \mathrm{x} 4 \mathrm{~F} 0 \mathrm{x} 610 \mathrm{x} 090 \mathrm{x} 070 \mathrm{xD} 40 \mathrm{xB} 3$. The adversary can recover seed $[1]=0 \times 5 \mathrm{D} 0 \mathrm{xEF} 0 \mathrm{x} 560 \mathrm{x} 4 \mathrm{~B} 0 \mathrm{xBE} 0 \mathrm{x} 4 \mathrm{C} 0 \mathrm{x} 3 \mathrm{~F} 0 \mathrm{x} 36$ 0x21 0x18 0x43 0x26 $0 x 600 x 1 \mathrm{~A} 0 \mathrm{xE} 70 \mathrm{xF} 3$ by computing $D_{k}($ output $[1]) \oplus E_{k}($ input $[1])$. And then the adversary can compute output $[i],(i=2,3, \ldots, 8)$. Table 12 shows the outputs of 8 invocations of the underlying PRNG.

FIPS 186 PRNG for DSA Pre-message Secrets

In this experiment, we only considered the case of $|p|=960$ bits. For other size of strong primes, the verification procedure remains the same. When $|p|=960$ bits, the scheme $E G^{*}$ will invoke DSA PRNG 6 times to generate a $r_{i} \in \mathbb{Z}_{p}^{*}$.

In our attack, the adversary needs exhaustively try 2^{40} seed $[1]^{\prime}$ (For simpler description, we ignore the subscript here.). However, due to the fact that our computing resource was limited, we assumed that the adversary will get seed $[1]^{[125]}$, which is 5 bits more than our original assumption. Therefore, the adversary only needs exhaustively try 2^{35} seed $[1]^{\prime}$. Obviously, the difference of

Table 12. All the output of ANSI X9.31 PRNG Using AES-128

output[1]	0x2E	0x94	0xB2	0x67	0x26	0x43	0xB4	0x4C
	0xB4	0xDA	0x4F	0x61	0x09	0x07	0xD4	0xB3
output[2]	0x53	0x51	0x85	0x3A	0x5C	0x23	0x7E	0xE6
	0x13	0xCA	0x21	0xF0	0xF2	0xFB	0xE6	0xEB
output[3]	0xA5	0x1C	0xE3	0xAB	0x55	0x62	0x4C	0x31
	0x5B	0x37	0xC1	0x0B	0x2E	0xBF	0x97	0x06
output[4]	0xD5	0xE5	0x90	0x9B	0x40	0x10	0x59	0x51
	0xFC	0xC7	0x4E	0xE3	0xA4	0x4F	0xC0	0xE0
output[5]	0xB9	0x38	0x47	0x70	0x35	0x95	0x9F	0x67
	0x01	0x81	0x31	0x14	0x00	0x30	0xDE	0x4B
output[6]	0x51	0x40	0x44	0x7C	0x60	0xD5	0x57	0x60
	0xC0	0x3F	0x90	0x19	0x29	0xDE	0x02	0xDF
output[7]	0x09	0xE3	0x67	0xD0	0x40	0x68	0xBC	0xE5
	0xB9	0x7B	0xA6	0xFA	0xAF	0x84	0x4F	0x59
output[8]	0x93	0xFE	0x1B	0x7C	0x04	0x82	0x51	0x2E
	0x80	0x80	0xCA	0xFE	0x7D	0xFB	0x63	0x40

the corresponding experiment results between these two cases is extremely small, which could be neglected. Table 13 shows the specific leakage bit number corresponding to the output of each case for different size of p.

Table 13. The specific leakage bit number of each output for different size of p when the leakage function leaks seed $[1]^{[125]}$

$\|p\|$	output $[1]$	output $[2]$	output $[3]$	output $[4]$	output $[5]$	output $[6]$ output $[7]]$	
640 bits	40	30	30	25	-	-	-
800 bits	40	30	30	15	10	-	-
960 bits	40	30	30	10	10	5	-
1120 bits	40	30	20	10	10	10	5

We chose seed $[1]=01100011001010000011100101010111101110101101111$ 0010100100110100101000010011010100111110000100000000001100101011 1010100010010100010001100111001110001111001000111.

Specifically, the adversary will exhaustively try 2^{35} seed $[1]^{\prime}$. He has output $[1]^{[40]}$, output $[2]^{[30]}$,output $[3]^{[30]}$, output $[4]^{[10]}$, output $[5]^{[10]}$, output $[6]^{[5]}$. The experiment showed that the adversary can recover the unique seed[1], and then recover all the output $[i],(i=1,2, \ldots, 6)$. Table 14 shows all the outputs of DSA PRNG.

As expected, for cases $|p|=640$ bits, $|p|=800$ bits and $|p|=1120$ bits, only one seed $[1]^{\prime}$ passed the test and it really was seed $[1]$.

4.2 PHASE II: Recovery of Secret Key x by Solving Systems of Linear Congruence Equations about σ_{i} and σ_{i}^{\prime}

The goal of our second group of experiment was to check the success rate of recovering the secret key x by solving the systems of linear congruence equa-

Table 14. All the 6 output of DSA PRNG

output[1]	0x45	0x2A	0xBF	0x99	0xD4	0xCB	0x9C	0x4E	0xA4	0x54
	0x56	0xE7	0x7E	0x6B	0x8E	0x6C	0x93	0x2F	0xCE	0x14
output[2]	0x2D	0x4D	0xBC	0xAC	0xD3	0x76	0x8F	0x50	0x6F	0x42
	0x6B	0x17	0xBA	0xA7	0xB1	0x50	0x96	0xD7	0x46	0x73
output[3]	0x9E	0x34	0x52	0x94	0x39	0xC9	0xF2	0x0D	0xC7	0xD5
	0x6C	0x6A	0xEB	0x55	0xA3	0x4E	0x21	0xF4	0x01	0xB6
output[4]	0x72	0x3D	0xB7	0xB1	0x11	0x36	0xDD	0xE8	0x20	0xC9
	0xE9	0xC7	0x9C	0x81	0xA9	0xE7	0x30	0x86	0x98	0x9A
output[5]	0x80	0xC2	0xA3	0x75	0x45	0x19	0x93	0xEA	0xA7	0xA3
	0xE0	0x9E	0xC0	0xF5	0x77	0x3E	0x09	0x13	0x8C	0x80
output[6]	0x5A	0x99	0x98	0xBA	0xA5	0x12	0x3D	0x56	0xC6	0x28
	0x4B	0xF3	0x09	0xC7	0x49	0x77	0xBD	0x5D	0xEE	0x9

tions (1) about multiplicative secret shares σ_{i} and σ_{i}^{\prime}. In order to achieve this goal, we used VC++6.0, GMP4.1.2 and MAGMA V2.12-16 to implement the program solving the system of linear congruence equations (1). We chose four strong primes with their length being 160 bits, 256 bits, 512 bits and 1024 bits, respectively (These strong primes are listed in Appendix B.). For each size of strong prime p, we generated 100 sets of random data. For every set of these data, we tried to recover a candidate value of secret key x (denoted by x^{\prime}). Then we can verify the correctness of x^{\prime} by a correct plaintext-ciphertext pair (C, K). If $K=C^{x^{\prime}}$, then we can believe that $x^{\prime}=x$, which means that the secret key x is recovered successfully. We counted the number of how many test data from which the secret key can be recovered successfully.

The most critical part of the program for solving the system of linear congruence equations (1) is Step 1 of Algorithm 1 (We exploited the function SuccessiveMinima in MAGMA V2.12-16 to implement Step 1). We assumed that if Step 1 does not finish in 30 minutes, or the memory overflows, then the process of solving (1) fails.

Due to our computing ability, we assumed that the adversary builds the system of linear congruence equations (1) with 30 equations. Figure 6 shows the success rates of recovering the secret key x for different size of strong primes. During our experiment process, only one set of test data of 160 bits long strong prime returned a wrong answer $\left(x^{\prime} \neq x\right)$. The other unsuccessful set of test data failed because of timeout or memory overflow.

5 Conclusions and Future Work

Our research reveals the following observations:
First of all, our result shows that mathematical realization has destructive impacts on the theoretic security of a leakage resilient scheme. In fact, some theoretical attacks against one leakage resilient cryptographic construction which does not pose a threat might have a serious threat when this leakage resilient scheme is mathematically implemented using specific cryptographic component.

Fig. 6. Relationship between probability of successful recovery of x and size of p in bits

For other leakage resilient cryptographic constructions, we conjecture that this problem might still exists.

Second, when one leakage resilient scheme is mathematically implemented using some specific cryptographic component, the method of increasing the size of its underlying hard problem to resist classical attack against the hard problem scheme may make the scheme tolerate less information leakage. Our attacks clearly reveal this point.

Third, our result illustrates that at least in OCL model, the same number of leakage bits of a leakage resilient scheme has different value for adversaries according to different mathematical implementation technique. Therefore, the problem of designing leakage resilient scheme of which the tolerance leakage bits number is independent with the specific implementation technique is an open and interesting problem.

Finally, this work make us to consider such a question: where is a suitable frontier for leakage resilient cryptography, i.e. what should be asked to hardware engineers and what should be asked to cryptographers? We think that both the Algorithm Level and Mathematical Realization Level should be considered in leakage resilient cryptography.

Acknowledgments This work was supported by the National Basic Research Program of China (No.2013CB338002), National Natural Science Foundation of China (No. 61272478, 61073178, 60970135 and 61170282), Beijing Natural Science Foundation (No. 4112064), Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA06010701), and IIE Cryptography Research Project (No. Y2Z0011102).

References

1. E. Kiltz, K. Pietrzak.: Leakage Resilient ElGamal Encryption. ASIACRYPT2010, LNCS 6477, pp.595-612, 2010.
2. T. Römer, JP. Seifertl.: Information Leakage Attacks against Smart Card Implementations of the Elliptic Curve Digital Signature Algorithm. E-smart2001, LNCS 2140, pp.211-219, 2001.
3. K. Gandol, C. Mourtel and F. Olivier.: Electromagnetic Analysis: Concrete Results. CHES2001, LNCS 2162, pp.251-261, 2001.
4. Paul C. Kocher.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. CRYPTO1996, LNCS 1109, pp.104-113, 1996.
5. D. Boneh, R.A. DeMillo and R.J. Lipton.: On the Importance of Checking Cryptographic Protocols for Faults. EUROCRYPT1997, LNCS 1233, pp.37-51, 1997.
6. P. Kocher, J. Jaffe and B. Jun.: Differential Power Analysis. CRYPTO1999, LNCS 1666, PP.388-397, 1999.
7. D. Boneh, G. Durfee and Y. Frankel.: An Attack on RSA Given a Fraction of the Private Key Bits. ASIACRYPT1998, LNCS 1514, pp.25-34, 1998.
8. S. Dziembowski, K. Pietrzak.: Leakage-Resilient Cryptography. FOCS2008, pp.293302, 2008.
9. S. Micali, L. Reyzin.: Physically Observable Cryptography (Extended abstract). TCC2004, LNCS2951, pp.278-296, 2004.
10. J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J. Appelbaum and E.W. Felten.: Lest we remember: cold-boot attacks on encryption keys. Communications of the ACM - Security in the Browser Volume 52 Issue 5, pp.91-98, 2009.
11. F.-X. Standaert, O. Pereira, Yu Yu, J.J. Quisquater, M. Yung and E. Oswald.: Leakage Resilient Cryptography in Practice. Towards Hardware-Intrinsic Security, Information Security and Cryptography2010, Part 2, pp.99-134, 2010.
12. A. Akavia, S. Goldwasser and V. Vaikuntanathan.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. TCC2009, LNCS 5444, pp.474-495, 2009.
13. M. Naor, G. Segev.: Public-key Cryptosystems Resilient to Key Leakage. CRYPTO2009, LNCS 5677, pp.18-35, 2009.
14. S. Dziembowski.: Intrusion-Resilience Via the Bounded-Storage Model. TCC2006, LNCS 3876, pp.207-224, 2006.
15. S. Dziembowski.: On Forward-Secure Storage (Extended abstract). CRYPTO2006, LNCS 4117, pp.251-270, 2006.
16. D. Cash, Yan Zong Ding, Y. Dodis, W. Lee, R.J. Lipton, S. Walfish.: IntrusionResilient Key Exchange in the Bounded Retrieval Model. TCC2007, LNCS 4392, pp.479-498, 2007.
17. S. Dziembowski, K. Pietrzak.: Intrusion-Resilient Secret Sharing. FOCS2007, pp.227-237, 2007.
18. J. Alwen, Y. Dodis and D. Wichs.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. CRYPTO2009, LNCS 5677, pp.36-54,2009.
19. J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish and D. Wichs.: Public-Key Encryption in the Bounded-Retrieval Model. EUROCRYPT2010, LNCS 6110, pp.113134, 2010.
20. Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs.: Cryptography against Continuous Memory Attacks. FOCS2010, pp.511-520, 2010.
21. Z. Brakerski, Y.T. Kalai, J. Katz and V. Vaikuntanathan.: Overcoming the Hole in the Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage. FOCS2010. pp.501-510, 2010.
22. A. Lewko M. Lewko and B. Waters.: How to Leak on Key Updates. STOC2011, pp.725-734, 2011.
23. European Network of Excellence (ECRYPT). The side channel cryptanalysis lounge, http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html (retrieved on 29.03.2008)
24. J.-J. Quisquater, F. Koene.: Side channel attacks:State of the art, October 2002.[23].
25. R. Anderson, M. Kuhn.: Tamper resistance: a cautionary note. WOEC1996.
26. ANSI X 9.17 (Revised), American National Standard for Financial Institution Key Management (Wholesale)," American Bankers Association, 1985.
27. National Institute for Standards and Technology, Digital Signature Standard," NIST FIPS PUB 186, U.S. Department of Commerce, 1994.
28. Howgrave-Graham, Nguyen, and Shparlinski.: Hidden number problem with hidden multipliers, timed-release crypto, and noisy exponentiation. Math. Comput. 72(243): 1473-1485 (2003)
29. S.S. Keller.: NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms
30. J. Kelsey, B. Schneier, D. Wagner, and C. Hall.: Cryptanalytic Attacks on Pseudorandom Number Generators. Fifth International Workshop Proceedings(March 1998), Springer-Verlag, 1998, pp. 168-188.
31. A. Menezes, P. van Oorschot, and S. Vanstone.: Handbook of Applied Cryptography, Chapter 8, pp296, CRC Press,1996.
32. M.J. WIENER.: Cryptanalysis of Short RSA Secret Exponents. IEEE TRANSACTION ON INFORMATION THEORY.VOL.36.NO.3.MAY 1990.
33. http://www.spms.ntu.edu.sg/Asiacrypt2010/AsiaCrypt_slides/pietrzakAC11.pdf.
34. C. Petit, F.-X. Standaert, O. Pereira, T.G. Malkin, M. Yung.: A block cipher based pseudo random number generator secure against side-channel key recovery. ASIACCS2008, pp.56-65, 2008.
35. F.-X. Standaert.: How Leaky is an Extractor?. LATINCRYPT2010, LNCS6212, pp.294-304, 2010.
36. P.Q. Nguyen, I.E. Shparlinski.: The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces. J. of Cryptology, Vol. 15, Number 3, pp.151-176.
37. JS. Coron, I. Kizhvatov.: Analysis and Improvement of the Random Delay Countermeasure of CHES2009. CHES2010, LNCS 6225, pp.95-109,2010.
38. S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi.: Towards Sound Approaches to Counteract Power-Analysis Attacks. CRYPTO1999, LNCS 1666, pp.398-412, 1999.

Appendix A: The Core Part of Our Attacks

The description of the core part of our attacks is shown in Algorithm 1.
Assuming that the adversary obtains $n-1$ linear congruence equations. Let $b_{1}=\left(r_{2},-1,0, \ldots, 0\right)^{\top}, b_{2}=\left(0, r_{3},-1,0, \ldots, 0\right)^{\top}, \ldots, b_{n-1}=\left(0, \ldots, 0, r_{n},-1\right)^{\top}$ and we define the lattice

$$
\begin{equation*}
L=\left\{y \in \mathbb{R}^{n} \mid y=\sum_{i=1}^{n-1} a_{i} b_{i}+a_{n} p e_{1}, a_{i} \in \mathbb{Z}, i=1, \ldots, n\right\} \tag{2}
\end{equation*}
$$

Algorithm 1 The algorithm for attacking $E G^{*}$
Input: A lattice L like (2)
Output: A solution of the system of equations (1) or a symbol \perp
Step 1 Compute n linearly independent vectors for the given lattice L as follows:

$$
w_{1}, \ldots, w_{n} \in L
$$

with $\left\|w_{i}\right\|=\lambda_{i}(L)$ for $i=1, \ldots, n$. If there is no such vectors, return \perp.
Step 2 Compute integral $n \times(2 n-1)$ matrix M satisfying

$$
W=\left(\begin{array}{ccc}
w_{11} & \cdots & w_{1 n} \\
\vdots & \ddots & \vdots \\
w_{n 1} & \cdots & w_{n n}
\end{array}\right)=M\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n-11} & \cdots & a_{n-1 n} \\
p & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & p
\end{array}\right)
$$

If there is no such matrix M, then return \perp.
Step 3 Multiplying both sides of (1) from left with the matrix M, we get a new system

$$
\begin{equation*}
\sum_{j=1}^{n} w_{i j} d_{j}^{\prime}=c_{i}^{\prime}, i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

Choosing c_{i}^{\prime} such that $\left|c_{i}^{\prime}\right|<p / 2$. Computing the solution $D=\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ of (3) over \mathbb{Z}.

Step 4 Return D.

Appendix B: The Attack Process

Fig. 8. Our attack on decapsulation of $E G^{*}$ with a leaky ANSI X9.31 PRNG Using AES-128

[^0]: ${ }^{1}$ In most cases, there exit several methods to mathematical realize a special cryptographic construction.
 ${ }^{2}$ In [1], the author also introduced a leakage resilient scheme $B E G^{*}$ in generic group model. The proof of the scheme $B E G^{*}$ has its obvious weaknesses because the generic group model cannot be implemented. Hence, we do not consider the scheme $B E G^{*}$.

[^1]: ${ }^{1}$ The paper [2] built such a system of congruence equations with 40 equations and solve it successfully in practice.

