
On (Destructive) Impacts of Mathematical
Realizations over the Security of Leakage
Resilient Cryptographic Construction

Guangjun Fan1, Yongbin Zhou2, François-Xavier Standaert3, Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,Institute of
Software,Chinese Academy of Sciences,Beijing,China

guangjunfan@163.com , feng@tca.iscas.ac.cn
2 State Key Laboratory of Information Security,Institute of Information

Engineering,Chinese Academy of Sciences,Beijing,China
zhouyongbin@iie.ac.cn

3 UCL Crypto Group,Université catholique de Louvain,Belgium
fstandae@uclouvain.be

Abstract. Leakage resilient cryptography aims to address the issue of
inadvertent and unexpected information leakages from physical crypto-
graphic implementations at algorithmic level in a provable manner. In
real world, for an abstract mathematical construction to be an actual
physical implementation, it usually undergoes two phases: mathematical
realization at algorithmic level and physical realization at implementa-
tion level. In the former process, an abstract and generic cryptographic
construction is being transformed into an exact and specified mathe-
matical scheme, while in the latter process the output of mathematical
realization is being transformed into a physical cryptographic module
that runs as a piece of software, or hardware, or combination of both.

It turns out that physical realization bears negatively and directly on
the security of any cryptographic implementations, which means that the
theoretical security of any mathematical cryptographic scheme in leak-
age free setting (a.k.a. black-box model) does not hold any more when it
is implemented and running at physical realization level in leaky setting
(e.g. in the context of side-channel attacks). However, it is not clear that
whether or not the theoretical security of one leakage resilient crypto-
graphic scheme will still remain secure with considering any details of
mathematical realizations. In other words, whether or not the theoretical
leakage resilience of one leakage resilient cryptographic construction will
still keep unchanged and/or slightly changed, if this scheme is instan-
tiated with cryptographic components that meet their claimed security
properties.

In this paper, we try to answer this question of important theoret-
ical values, by presenting attacks on three mathematical realizations of
the leakage resilient ElGamal encryption scheme EG∗ in the paper of
E. Kiltz et al. at Asiacrypt2010. Our results convincingly indicate that
mathematical realizations of EG∗ really have significant destructive im-
pact on its theoretical leakage resilience. This important discovery is not

considered or neglected in previous work. Our results suggest that a leak-
age resilient scheme with considering the mathematical realization may
not be secure any more.

Keywords: Leakage Resilient Cryptography, Mathematical Realization,
PRNG, Lattice.

1 Introduction

Side-channel attacks belong to an important kind of cryptanalysis techniques on
cryptographic implementations. As a matter of fact, many implementations of
traditional cryptosystems even provably secure in black-box model were broken
by side-channel attacks using electromagnetic radiation [3,7], running-time [4],
fault detection [5], power consumption [6] and many more [23,24].

Broadly speaking, countermeasures for protecting against side-channel at-
tacks are taken on three levels: the software level, the hardware level and the
combination of the software level and the hardware level. For example, hiding
[37] and masking [38] are two typical ones used to defend power analysis attacks
on both two levels. However, most (even not all) software-based approaches pro-
posed so far are only heuristic, and lack of any formal security proofs. On the
other hand, the main problem of the countermeasures based on hardware is that
the protection against all possible types of leakages is very hard to achieve [25],
if not impossible. Moreover, even if the countermeasures based on hardware can
be achieved, it is hard to make sure that the countermeasures is still effective
in other attack scenario. Furthermore, the three kinds of countermeasure are
ad-hoc, which means that they protect only against some specific attacks known
at the moment, instead of providing security against a large well-defined class
of attacks.

In order to solve these pressing issues, S. Dziembowski et al. [8] proposed
one general and theoretical methodology called Leakage Resilient Cryptography
(LRC). The goal of LRC is to defend side-channel attacks, but in an abstract
and theoretical manner. The goal of LRC is to research a systematic method of
designing cryptographic schemes so that already their mathematical description
guarantees that they are provably secure, even if they are implemented on hard-
ware that may be subject to any specific side-channel attack which belongs to a
large well-defined class of such attacks.

There exists two processes for a cryptographic construction in applied cryp-
tography. They are Mathematical Realization at algorithmic level and Physical
Realization at implementation level.

Mathematical Realization refers to a process in which any generic and abstrac-
t cryptographic construction is being transformed into an exact and specified
mathematical scheme. For example, it is well known that a public key encryp-
tion scheme can be constructed from an arbitrary family of one-way trapdoor
permutations. The user of the public key encryption scheme chooses a specific
family of one-way trapdoor permutation (such as RSA trapdoor permutation or

2

Rabin trapdoor permutation) to realize the public key encryption scheme in this
process.

Physical Realization refers to a process in which any specific cryptographic
construction (the output of mathematical realization) is being transformed into
a physical cryptographical module that runs as a piece of software, or hard-
ware, or combination of both. Also considering the above example, after the
user choosing a specific family of trapdoor permutation (For example, he chose
the RSA trapdoor permutation.), an engineer writes code or makes ASIC for
the specific public key encryption scheme. Broadly, and also more importantly,
it has been turned out that physical realization have significant impact on the
physical security of traditional cryptographic construction, so it is with those of
any leakage resilient ones [35].

Motivations Under traditional black-box model (i.e. leakage-free setting),
the security proof of any cryptographic construction generally work independent-
ly of mathematical realization. This means that any mathematical realization1

of the whole cryptographic construction would remain secure when it is instan-
tiated with any specific cryptographic components (e.g. PRNG in this paper),
provided that the components chosen meets the required cryptographic proper-
ties. However, it is not clear that whether or not the theoretical security of one
leakage resilient cryptographic scheme will still remain secure with considering
any details of mathematical realizations. In other words, whether or not the
theoretical leakage resilience of one leakage resilient cryptographic construction
will still keep unchanged and/or slightly changed, if this scheme is instantiated
with cryptographic components that meet their claimed security properties. In
this paper, we try to answer this important question.

In this paper, we only consider mathematical realization, not physical real-
ization. That is to say, our work is regardless of any specific side-channel attack.

There are two ways to research this question. One way is to attack a specific
implementation of a leakage resilient scheme in practice. The other way is to
research this question in a theoretic way. For example, to execute a theoretic
attack to a leakage resilient scheme. The latter is more suitable for the prob-
lem. Because LRC is trying to solving the problem of information leakage in a
theoretic way. We will research the question in the latter way.

As an example, we consider two attacks about the public key encryption
scheme EG∗2 in [1]. This example (the attacks about EG∗) shows the destruc-
tive impacts of mathematical realization of a leakage resilient scheme on its
claimed theoretical security. The scheme EG∗ is constructed in “Only Computa-
tion Leaks” model (OCL). In the OCL model, it is assume that only the memory

1 In most cases, there exit several methods to mathematical realize a special crypto-
graphic construction.

2 In [1], the author also introduced a leakage resilient scheme BEG∗ in generic group
model. The proof of the scheme BEG∗ has its obvious weaknesses because the generic
group model cannot be implemented. Hence, we do not consider the scheme BEG∗.

3

content that is actually accessed during computing leak information. There is
no leakage of information in the absence of computation. The only restriction
of leakage of OCL model is the amount of information that is leaked on each
invocation is sufficient bounded. Furthermore, the leakage of information can
occur at any position as long as the position is accessed in computation process
in OCL model. In OCL model, the information can be leaked in any channel
(For example, power consumption or electromagnetic radiation). As far as actu-
al side-channel attacks are concerned, the OCL model is the most representative
one due to it considers continuous leakage.

E. Kiltz et al. [1] said that an implementation of a leakage resilient primitive
would be secure against every side-channel attack that fitted their general model
(OCL model), i.e., as long as the amount of information that was leaked on each
invocation is sufficient bounded, and the device adheres the “Only Computation
Leaks” axiom. Security in this model meant that the hardware implementation
of the cryptosystem only had to be protected to fit the OCL model; once that
was done, the proof provided security of the scheme. Their model considered
nothing about the details in mathematical realization. Therefore, we want to
know whether or not their above conclusion is still correct with considering the
details in mathematical realization. Unfortunately, our attacks show that the
scheme EG∗ is not secure again with considering the details in mathematical
realization.

Our findings indicate that a leakage resilient scheme may not be secure any
more when the scheme is mathematical realized. Furthermore, a sound leakage
resilient scheme should be secure after it is mathematical realized.

1.1 Our Contributions

Main contributions of this paper are two-fold as follows.
First, under traditional black-box model (i.e. leakage-free setting), any math-

ematical realization of the whole cryptographic scheme would remain secure
when it is instantiated with any specific cryptographic components (e.g., PRNG
in this paper), provided that the component chosen meets the required crypto-
graphic properties. Our research shows that this statement does not hold, on
the contrary, under the leaky setting. Specifically, taking several mathematical
realizations of the specific leakage resilient ElGamal encryption scheme EG∗ as
cases of study, this paper studies the destructive impacts of mathematical realiza-
tion of a leakage resilient scheme on its claimed theoretical security (i.e. leakage
resilience). Our result shows that a leakage resilient cryptographic construction
may not be secure with considering the process of mathematical realization.

Second, in order to enhance the resistance of a cryptographic scheme to any
attacks against its underlying mathematically hard problem, it is always a rule
of thumb to increase the size of security-critical parameters in traditional black-
box cryptography. However, this method could lead to the decline of leakages
of a leakage resilient cryptographic construction can tolerate in LRC, which
is certainly undesirable in practice. Our results show that this commonly-used
methodology might cause some leakage resilient scheme (e.g. EG∗) to tolerate

4

less leakage when they are implemented using some specific cryptographic com-
ponents (e.g. PRNG).

Third, for any given leakage resilient cryptographic scheme, leakage rate re-
flects its expected theoretical security. Therefore, (accurate and/or rough) es-
timation of information leakage rate of any leakage resilient scheme does make
very good sense. This paper specifies one upper bound of leakage that EG∗ can
tolerate when it is mathematically implemented or realized by-product . This
upper bound is the best known so far, even thought it might not be the tightest.

1.2 Related Work

In recent years, in the field of LRC, several different kinds of leakage models
have been proposed as of today. For example, Only Computation Leaks Mod-
el (OCL) [8,9,33,34], Memory Attacks [10,11,12,13], Bounded Retrieval Model
[14,15,16,17,18,19] and Continuous Memory Attacks [20,21,22]. The OCL model
is the start point of the line of our research. When the adversary is more powerful
(as that in continuous memory attack model), whether or not our conclusions of
this paper are still hold is a valuable research point.

1.3 Organization of This Paper

The rest of paper is organized as follows. In Section 2, we present the scheme
EG∗ in [1] and some basic concepts. Section 3 describes our two attack methods
against EG∗. In this section, we show how the process of mathematical realiza-
tion of a leakage resilient construction will affect its claimed theoretical security.
Our analyses are supported by experiments in Section 4. Section 5 concludes the
whole paper.

2 Preliminaries

In this section, we will first briefly recall the scheme EG∗. Next, we will present
some basic knowledge about lattice theory on which our attacks are based. We
then will present some symbols and notations used throughout the paper in the
end of this section.

IfA is a deterministic algorithm we write y ← A(x) to denote thatA outputs

y on input x. If A is randomized we write y
∗←− A(x) or, y

r←− A(x) if we want
to make the randomness r used by the algorithm explicit (for future reference).

2.1 Brief Description of EG∗

We describe the scheme EG∗ in the same way as that in [1]. The scheme EG∗

is described as a Key Encapsulation Mechanism (KEM) and is based on the
assumption that “Only Computation leaks information”.

The decapsulation algorithm of EG∗ = (KG∗
EG, Enc∗EG, Dec1∗EG, Dec2∗EG) is

stateful and formally split into two sequential stagesDec∗EG = (Dec1∗EG, Dec2∗EG).

5

Gen is a probabilistic algorithm that outputs a cyclic group G of order p, where
p is a strong prime.

The scheme EG∗ is as follows:
KG∗

EG(n): Compute (G, p)
∗←− Gen(n), g

∗←− G, x
∗←− Zp, h = gx. Choose

random σ0
r←− Z∗

p and set σ′
0 = xσ−1

0 mod (p). The public key is pk = (G, p, h =
gx) and two secret states are σ0 and σ′

0.

Enc∗EG(pk): Choose random s
∗←− Zp, let C ← gs ∈ G and K ← hs ∈ G. The

ciphertext is C, and the key is K.

Dec1∗EG(σi−1, C): choose random ri
r←− Z∗

p, σi = σi−1ri mod (p), K ′ = Cσi ,
return(ri,K

′).

Dec2∗EG(σ
′
i−1, (ri,K

′)): let σ′
i = σ′

i−1r
−1
i mod (p), and K = K ′σ′

i . The sym-
metric key is K and the updated state information are σi and σ′

i.

A KEM achieves CCLA1 (Chosen Ciphertext with Leakage Attack) if for
any probabilistic polynomial time adversary F , AdvcclaKEM (F , n, λ) = 2|1/2 − µ|
is negligible in n, where µ is the probability that the output b′ of the following
experiment is equal to b, n is the security parameter and λ ∈ N is the leakage
parameter.

Experiment Expccla
KEM (F , κ, λ) Oracle Occla1(C, fi, gi)

(pk, σ0, σ
′
0)

∗←− KG(κ) If |fi| > λ or |gi| > λ return ⊥
ω

∗←− FOccla1

(pk) i← i+ 1

b
∗←− {0, 1} (σi, ωi)

ri←− Dec1∗(σi−1, C)

(C∗,K0)
∗←− Enc(pk) (σ′

i,Ki)
r′i←− Dec2∗(σ′

i−1, ωi)

K1
∗←− K Λi ← fi(σi−1, ri)

i← 0 Λ′
i ← gi(σ

′
i−1, ωi, r

′
i)

b′
∗←− F(ω,C∗,Kb) return(Ki, Λi, Λ

′
i)

On the ith invocation of decapsulation, the decapsulated key Ki is computed
as follows

(σi, ωi)
ri←− Dec1∗(σi−1, C) (σ′

i,Ki)
r′i←− Dec2∗(σ′

i−1, ωi),

where ri and r′i is the explicit randomness of the two randomized algorithms, σi

and σ′
i are the updated states and ωi is some state information that is passed

from Dec1∗ to Dec2∗.
In the security definition of CCLA1, after the ith querying the oracle Occla1,

the adversary gets not only Ki, but also the leaked information Λi = fi(σi−1, ri)
and Λ′

i = gi(σ
′
i−1, ωi, r

′
i). The leakage function fi and gi are efficient computable

functions chosen by adversary and get as input only the secret state that is
actually accessed during the invocation. The range of fi and gi are bounded by
the leakage parameter λ. For the scheme EG∗, the leakage functions fi and gi
are as follows：

Λi ← fi(σi−1, ri), Λ′
i ← gi(σ

′
i−1, (ri,K

′), r−1
i).

6

The authors of [1] didn’t prove the security of EG∗, instead they presented
the following conjecture.

Conjecture 1 EG∗ is CCLA1 secure if p− 1 has a large prime factor (say,
p− 1 = 2q for a prime q).

The authors of [1] pointed out that there exists some attack on EG∗ if λ =
0.4 · logp, using the method based on Hiding Number Problem presented in
[31,36]. Furthermore, the authors of [1] conjectured that roughly λ = 0.25 · logp
bits in [32]. Thus the total leakage bits of one decryption query are 2λ = 0.5·logp
bits.

2.2 Basics of Lattice Theory

We now give a brief introduction into basic terms of lattice theory on which our
attacks are based.

Rm denotes the m-dimensional real Euclidean vector space and ei the ith

unit vector in Rm. For any vector v ∈ Rm, ∥ v ∥= (Σm
i=1v

2
i)

1/2 is the Euclidean
norm. A lattice L is a discrete additive subgroup of the Rm with

L = {y ∈ Rm | y = a1b1 + · · ·+ akbk, ai ∈ Z}

where b1, . . . , bk ∈ Rm linear independently over Rm and k ≤ m. {b1, . . . , bk} is
called a basis of the lattice L. The ith successive minimum λi(L) of a lattice L is
the smallest positive real number z, such that there exists i linear independent
vectors l1, . . . , li ∈ L of maximum length z, i.e.

λi(L) = minl.u.l1,...,li∈Lmaxj∈{1,...,i} ∥ lj ∥ .

2.3 Symbols and Notations

We define some main symbols and notations in this subsection, while some other
will be defined in more appropriate position in the following sections.

If S is a binary bit string, the most significant a bits of S is denoted by
S[a] and the least significant b bits of S is denoted by S[b]. The length of S is
denoted by |S|. The absolute value of a numerical value v is denoted by abs(v).
If M represents a matrix, then det(M) is the determinant of M and M⊤ is the
transpose of M . We assume that the representation for all elements belonging
to Zp has the same length of binary bit string.

In order to simplify the notation, we ignore the subscript of leakage function
f and g. The number of leakage bits about σi and σ′

i from leakage function f
and g in one invocation of the decryption query is denoted by t. In Section 3,
we can see that the leakage bits are the most significant t bits of σi and σ′

i.
The leakage information from leakage function f and g can be divided into

two parts, one part is about the multiplicative shares σi−1, σ
′
i−1 and the other

part is about the randomness ri. For leakage function f , we use µσf to denote
the leakage bit number about σi−1 and use µrf to denote the leakage bit num-
ber about ri leaked from f . µσ′g and µrg have the similar meaning for leakage
function g. Therefore, we have |f | = µσf + µrf and |g| = µσ′g + µrg.

7

Due to we present two attack methods in this paper, we use ρATTACKI =
|f |+|g|

|p| to denote the leakage rate of the whole invocation for the first attack

method and use ρATTACKII = |f |+|g|
|p| to denote the leakage rate of the whole

invocation for the second attack method. We define λATTACKI = max{|f |, |g|}
and λATTACKII = max{|f |, |g|} for our two attack methods respectively.

3 Our Non-Generic Attacks on Mathematical
Realizations of EG∗

To show the destructive impact of the process of mathematical realization for a
leakage resilient scheme, we choose the scheme EG∗ in [1] as an example. We will
introduce two attacks about EG∗, from which show the aforementioned impact
of mathematical realization. In this section, we first introduce the overview of our
two attacks, and then present the details of them. We will give out a theoretic
analysis for the two attacks in the end of the section.

3.1 Overview of Our Attacks

The goal of our two attacks is to recover the secret key x. To achieve this goal, we
try to build two systems of linear congruence equations about the multiplicative
secret shares σi and σ′

i respectively. For this purpose, we need to continually
invoke the decryption query dozens of times and get all the bits of the randomness
ri and few bits about σi and σ′

i for each invocation from leakage information.
If the adversary has enough leakage bits about the multiplicative shares σi

and σ′
i for each invocation, by lattice theory and related analysis techniques,

the systems of linear congruence equations have unique solution and the unique
solution can be returned by an algorithm in polynomial time with very high
probability. When the adversary gets all the bits of σi and σ′

i, he can recover a
candidate value x′ (x′ = σiσ

′
i mod (p)) of the secret key x.

In our first attack method, we treat the underlying PRNG generating the
randomness ri of every invocation as a black box (without considering any math-
ematical realization of PRNG). We call this PRNG generic PRNG. In this way,
the leakage functions fi and gi leak half bits about the randomness ri respec-
tively. Therefore, the minimum value of λ which the adversary needs to recover
the secret key successfully is apparently larger than 0.5 · log(p) (because some
other bits of information about the multiplicative secret shares also need to be
leaked thorough leakage functions). In this case, the number of leaked bits per
invocation of the decryption query of scheme EG∗ is larger than log(p).

Although the first attack method does not satisfy the restriction for the
adversary in the security definition of the scheme EG∗, it is the basis of the
second attack method (The authors of [1] conjecture that λ equals to 0.25·logp in
the security definition.). Furthermore, we introduce the first attack method here
in order to make a comparison with the second attack method. This comparison
shows the impact of mathematical realization for a leakage resilient scheme.

8

It is amazing that our second attack method shows that the minimum value
of λ and the number of leakage bits per decryption query will decrease dra-
matically when the generic PRNG is mathematical realized using some specific
PRNGs. Because the adversary knows the mathematical structure of the specific
PRNGs. This result shows the destructive impact of the process of mathematical
realization for a leakage resilient scheme (EG∗). Although it seems that the at-
tacks are trivial because the adversary knows all the bits about the randomness
ri (from leakage information), what we want to show is not some attack meth-
ods about the scheme EG∗. What we want to show is the destructive impact
of the process of mathematical realization for a leakage resilient scheme by the
two attacks. Note that, our second attack method satisfy the restriction for the
adversary in the security definition of the scheme EG∗ (CCLA1) rigorously.

The first attack is the basis of the second attack. Both attacks are based on
the same lattice theory. In Section 3.2, we describe the first attack method and
in Section 3.3, the second attack method will be presented. In Section 3.4, we
give out a theoretical analysis for our non-generic attacks.

3.2 ATTACK I: Basic Attack Knowing Nothing about the
Mathematical Structure of Underlying PRNG

Our first attack method (ATTACK I) is as follows:
In every invocation of the decryption query of EG∗, the adversary, in one de-

cryption query, gets some most significant few bits of σi and σ′
i and all bits of ri+1

through leakage functions fi+1 and gi+1. Furthermore, he can get r−1
i+1 from ri+1

easily (Because p is a prime and also is public.). By continual invocations (e.g. n
times), the adversary can build two systems of linear congruence equations about
the rest of unknown bits of {σi, σi+1, . . . , σi+n−1} and {σ′

i, σ
′
i+1, . . . , σ

′
i+n−1} re-

spectively. By solving the two systems of congruence equations using lattice
theory, the adversary can recover a candidate value of the secret key.

In the (i+1)th decryption query of EG∗, the adversary obtains σ
[t]
i (We will

show the specific values of t for different size of p below.) and r
[|p|/2]
i+1 simulta-

neously from fi+1(σi, ri+1). He also gets σ
′[t]
i and ri+1[|p|/2] simultaneously from

gi+1(σ
′
i, (ri+1,K

′), r−1
i+1). In this case, the leakage functions are defined to be:

fi+1(σi, ri+1) = ⟨σ[t]
i , r

[|p|/2]
i+1 ⟩

gi+1(σ
′
i, (ri+1,K

′), r−1
i+1) = ⟨σ

′[t]
i , ri+1[|p|/2]⟩

Figure 2 shows the attack process.

In the (i+ 2)th decryption query, the adversary is able to get σ
[t]
i+1 and σ

′[t]
i+1

and the whole value of ri+2 similarly. At this point, the adversary knows ri+1

and ri+2, σ
[t]
i ,σ

[t]
i+1,σ

′[t]
i and σ

′[t]
i+1. The adversary can rewrite σi as

σi = σH
i + σL

i ,

9

where the σH
i is equal to σ

[t]
i 2|p|−t and σL

i ≤ p2−t. Similarly, The adversary can
rewrite σi+1 as

σi+1 = σH
i+1 + σL

i+1.

Thus, the adversary can get the following congruence equation:

σL
i ri+1 − σL

i+1 ≡ σH
i+1 − σH

i ri+1 mod (p).

In a similar way, n−1 congruence equations can be obtained from n continual
invocations of the decryption query as follows:

σL
i ri+1 − σL

i+1 ≡ σH
i+1 − σH

i ri+1 mod (p)

σL
i+1ri+2 − σL

i+2 ≡ σH
i+2 − σH

i+1ri+2 mod (p)

......

σL
i+n−2ri+n−1 − σL

i+n−1 ≡ σH
i+n−1 − σH

i+n−2ri+n−1 mod (p).

The leakage functions are defined to be:

fi+u(σi+u−1, ri+u) = ⟨σ[t]
i+u−1, r

[|p|/2]
i+u ⟩

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨σ

′[t]
i+u−1, ri+u[|p|/2]⟩,

for u = 1, . . . , n− 1, and

fi+n(σi+n−1, ri+n) = ⟨σ[t]
i+n−1⟩

gi+n(σ
′
i+n−1, (ri+n,K

′), r−1
i+n) = ⟨σ

′[t]
i+n−1⟩.

We denote d1 = σL
i , . . . , dn = σL

i+n−1, β2 = ri+1, . . . , βn = ri+n−1 and
c1 = σH

i+1 − σH
i ri+1, . . . , cn−1 = σH

i+n−1 − σH
i+n−2ri+n−1, where {d1, . . . , dn} are

all unknown, {β2, . . . , βn} and {c1, . . . , cn−1} are all known. The adversary can
obtain the following n− 1 congruence equations with n unknown quantity.

d1β2 − d2 ≡ c1 mod (p)
d2β3 − d3 ≡ c2 mod (p)

......
dn−1βn − dn ≡ cn−1 mod (p)

(1)

In order to solve the above system of linear congruence equations, the adver-
sary can use the following Theorem 1 in [2].

10

Theorem 1. Let
n∑

j=1

bijdj ≡ ci mod (p)

a system with bij , ci ∈ Z, i = 1, . . . , s, p is a prime and s ≤ n,

L =

{
y ∈ Rn

∣∣∣∣ y =
s∑

i=1

ai(bi1, . . . , bin)
⊤ + as+1pe1 + · · ·+ as+npen, ai ∈ Z

}
a lattice in Rn satisfying ∥d∥ ≤ pλn(L)

−12−1, then there exists at most one
solution d = (d1, d2, ..., dn) for this system. If the bij, ci and p are all known for
all i, j, then there exists an algorithm which computes for fixed n in polynomial
time the solution d or proves that there is no solution.

The details of the algorithm for solving (1) are given in Algorithm 1 in
Appendix A. The algorithm only need to compute the successive minima of a
lattice and does not need to use LLL algorithm. We can see that the secret key
x can be recovered from the solution of (1).

The applicability of Theorem 1 requires that abs(di) ≤ pλn(L)
−12−1n−1/2

and di ≤ p2−t. For unknown di, this means that one needs to know the most
significant t = logλn(L) +

1
2 logn+1 bits of every σi. Therefore, the number t of

known bits in advance only depends on λn(L). Similarly to [2], by Theorem 2,
we could estimate the value of λn(L).

Theorem 2. Let p be a prime, ϵ > 0 and

L = {y ∈ Rn| y = Zb1 + · · ·+ Zbn−1 + Zpe1 + · · ·+ Zpen}.

A lattice in Zn, where b1 = (r2,−1, 0, . . . , 0), b2 = (0, r3,−1, 0, . . . , 0), . . . , bn−1 =
(0, . . . , 0, rn,−1) are randomly chosen in Zn. Then, with probability≥ 1 − ϵ −
O(1/p(n−1)/n) it holds that

λn(L) ≤
(

πn/2

Γ (n2 + 1)

)1/n

nϵ−1/np1−(n−1)/n.

We can get the lower bound of t

t ≥ 1

n
log2p+ log2n+

1

n
log2ϵ+ 3.06 = t′. (3)

Let tmin denotes the minimum value of t (tmin = ⌈t′⌉). The adversary could
get r−1

u from ru (u = i+ 1, i + 2, . . . , i+ n− 1) easily . Therefore, knowing the
value of σ′H

u , (u = i, i+1, . . . , i+n−1), the adversary could get the whole value
of σ′

i in a similar way. Thus, a candidate value of secret key can be recovered by

computing x′ = σiσ
′
i mod (p). It is clearly that x′ = x if and only if Cx′

= K
for a correct plaintext-ciphertext pair (C,K). Figure 1 shows the decapsulation
algorithm of EG∗ and where leakages take place.

For different size of prime p and different number of congruence equations
(Denoted by #equ, which means the adversary will consecutively invoke the

11

Fig. 1. Our attack on decapsulation of EG∗ with a generic and leakage-free PRNG

Table 1. Percentage of tmin/|p| for different size of strong prime p
HHHHH#equ

|p|
160 256 512 1024

5 20% 18.75% 17.58% 17.18%

10 13.13% 11.72% 10.35% 9.67%

20 9.38% 7.81% 6.25% 5.47%

30 8.13% 6.64% 4.88% 4%

40 8.13% 5.86% 4.10% 3.32%

50 7.5% 5.47% 3.71% 2.83%

12

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

The number of congruence equations in system (1)

M
in

im
um

 le
ak

ag
e

in
 b

its
 (

t m
in

)

1024 bits long p
512 bits long p
256 bits long p
160 bits long p

Fig. 2. Relationship between the number of equations and tmin for strong prime p of
different sizes

decryption query #equ + 1 times), we show the percentage of tmin/|p| in Table
1 and the value of tmin in Figure 2.

Therefore, if λ = tmin+ |p|/2, the adversary will recover the secret key x. By
Table 1, we can see that if the adversary has 30 equations, the percentage of λ/|p|
equals to 58.13% (λ = 13 + 80 = 93 bits) for 160 bits strong primes. For 1024
bits strong primes, the percentage of λ/|p| equals to 54% (λ = 41 + 512 = 553
bits). Thus the number of leakage bits required to execute a successful attack
per invocation of the decryption query is larger than log(p) bits.

Note that, the PRNG is considered as a black box in the first attack method.
We do not consider any specific PRNG. However, in Mathematical Realization
Level, the user always need to mathematical realize the generic PRNG used to
generate ru+1, (u = i, i+1, . . . , i+ n− 1) by a specific PRNG. Therefore, if the
adversary knows the concrete mathematical structure of the underlying PRNGs
generating ru+1, (u = i, i+1, . . . , i+n−1), he may carry out a successful attack
with less leakage bits.

3.3 ATTACK II: Attack Knowing Only the Mathematical Structure
of the Underlying PRNG (Without Any Implementation
Aspects)

Our second attack method (ATTACK II) also try to build the same system of
linear congruence equations as our first attack method does. However, the d-
ifference is that the generic PRNG is mathematical realized by three specific
widely used PRNGs. Therefore, the adversary knows the the concrete mathe-
matical structure of the specific PRNG used by the scheme EG∗ in the process

13

of mathematical realization. According to Kerckhoffs’ principle, this assumption
is reasonable.

When the algorithm Dec1∗EG invokes one PRNG to generate the randomness
ri in the decryption query, the internal secret states of the specific PRNG could
be leaked due to the assumption that “Only Computation Leaks information”.
The leakage of the internal secret states of the specific PRNG is reasonable
because any memory contents which are actually accessed during computation
can be leaked. The internal secret states of the specific PRNG could be leaked
only from leakage function f . Furthermore, the output of the specific PRNG,
namely ri, can be leaked partially from leakage function g. Hence, the adversary
can exploit the concrete mathematical structure of the specific PRNG, a part of
leakage bits of the internal secret states of the specific PRNG (from f), and a
part of leakage bits of the output of the specific PRNG (from g) to recover all
the bits of the randomness ri.

It is well known that the adversary can compute the output of a PRNG
easily if he knows the whole internal secret states of the PRNG. Therefore, any
attack method that needs to get all the internal secret states of a PRNG from
leakage function f is meaningless. Our attacks for the three PRNGs do not need
to leakage all the bits of the internal secret states of the PRNGs. In this way, our
attacks are meaningful. We assume that the internal secret states of a specific
PRNG are different in each decryption query. Therefore, the adversary must
execute our attack in each decryption query.

We use three PRNGs to mathematical realize the generic PRNG in the
scheme EG∗. They are ANSI X9.17 PRNG (denoted by PRNG A), ANSI X9.31
PRNG Using AES-128 (denoted by PRNG B), and FIPS 186 pseudorandom
number generator for DSA per-message secrets (denoted by PRNG C). These
PRNGs are very different in mathematical structure, structural parameter, and
physical realization. Using different PRNG to mathematical realize the generic
PRNG will not affect the theoretic security of a scheme in black box model,
as long as the PRNG satisfies the requirement of a PRNG, namely generating
pseudorandom number. Intuitively, these differences of the PRNGs should also
not affect the theoretic security of a scheme in leakage setting as that in black
box model. However, our second attack shows that mathematical realization of
the generic PRNG in a leakage resilient scheme (EG∗) will affect its theoretic
security.

If the decapsulation algorithm of EG∗ continually invokes PRNG v times to
generate ri, then we will denote ri = (output[1]∥ . . . ∥output[v]). The output of
each invocation of PRNG is denoted by output[u], (u = 1, 2, ..., v).

Due to our experiment environment (See section 4 for more details.), we
assume that the adversary will build the system of linear congruence equations
which has 30 equations (This case can be solved successfully by our experiment
environment.). This means that the decryption query will be continually invoked

14

for 31 times and there exists 31 unknown quantity in the system of the linear
congruence equations1.

We introduce our attacks to the three PRNGs in Section 3.3.1-3.3.3 respec-
tively.

3.3.1 PRNG A: ANSI X9.17 PRNG

The ANSI X9.17 PRNG [26] has been used as a general purpose PRNG in many
applications. Let Ek (resp. Dk) denotes DES E-D-E two-key triple-encryption
(resp. decryption) under a key k. The k is generated somehow at initialization
time. It must be reserved exclusively used only for this generator. It is part of
the secret state of PRNG which is never changed by any PRNG input.

The random bits generation algorithm of ANSI X9.17 PRNG is shown in
Algorithm 2.

Algorithm 2 ANSI X9.17 PRNG
INPUT: a random (and secret) 64-bit seed seed[1], integer v, and DES

E-D-E triple-encryption with key k.
OUTPUT: v pseudorandom 64-bit strings output[1], . . . , output[v].

Step 1 For i from 1 to v do the following:
1.1 Compute the intermediate value Ii = Ek(input[i]), where input[i]

is a 64-bit representation of the date/time.
1.2 output[i] = Ek(Ii

⊕
seed[i])

1.3 seed[i+ 1] = Ek(Ii
⊕

output[i])
Step 2 Return (output[1], output[2], . . . , output[v])

input[i], (i = 1, 2, . . . , v) is a 64-bit representation of the system date/time.
Suppose that each input[i] value has 10 bits that aren’t already known to the
adversary (For simplicity, let these 10 bits be the least significant 10 bits of
input[i].). This is a reasonable assumption for many systems (as described in
[30]). For example, consider a millisecond timer, and an adversary who knows
the nearest second when an output was generated. Before doing the attack, due
to the fact that k is never changed, the adversary can obtain k from leakage
function f by invoking the decryption query repeatedly. On knowing k, the
adversary could continually queries the oracle Occla1 for n times and the leakage
functions are defined to be as follows:

fi+u(σi+u−1, ri+u) = ⟨σ[t]
i+u−1, input[1]i+u[10], . . . , input[v]i+u[10]⟩

gi+u(σ
′[t]
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨σ

′[t]
i+u−1, output[1]i+u⟩

u = 1, . . . , n− 1 and

1 The paper [2] built such a system of congruence equations with 40 equations and
solve it successfully in practice.

15

fi+n(σi+n−1, ri+n) = ⟨σ[t]
i+n−1⟩

gi+n(σ
′
i+n−1, (ri+n,K

′), r−1
i+n) = ⟨σ

′[t]
i+n−1⟩.

For the first n− 1 invocations, the adversary knows {input[1], . . . , input[v]},
and can compute seed[1] = Dk(output[1]) ⊕ Ek(input[1]). Then the adver-
sary can easily get seed[u] = Ek(Ek(input[u − 1]) ⊕ output[u − 1]) as well as
output[u] = Ek(Ek(input[u])⊕ seed[u]), (u = 2, 3, . . . , v). Note that, to simplify
description, we omit the subscript in notations here. At this point, the adversary

get σ
[t]
i+u−1, σ

′[t]
i+u−1, ri+u, (u = 1, 2, . . . , n − 1) and σ

[t]
i+n−1, σ

′[t]
i+n−1. In this way,

the adversary can build the systems of linear congruence equations as that in
ATTACK I, and then recover the secret key x. Figure 7 in Appendix B shows
the attack process.

Table 2.1 and Table 2.2 show the leakage bit number about leakage function
f and g for two different parts for our two attack methods and different size of
strong primes respectively. Table 3 shows the percentage of ρ{ATTACKI,ATTACKII}
and the specific value of λ{ATTACKI,ATTACKII} for ANSI X9.17 PRNG of our
two attacks when the number of equations is 30.

Table 2.1. The specific leakage bit number for ANSI X9.17 PRNG of
leakage function f in 30 equations case

|p| Attacks µσf µrf |f |
448 ATTACK I 23 224 247
bits ATTACK II 23 70 93

512 ATTACK I 25 256 281
bits ATTACK II 25 80 105

640 ATTACK I 29 320 349
bits ATTACK II 29 100 129

768 ATTACK I 33 384 417
bits ATTACK II 33 120 153

896 ATTACK I 37 448 485
bits ATTACK II 37 140 177

1024 ATTACK I 41 512 553
bits ATTACK II 41 160 201

From Table 3 and Figure 4-5, it is clear that the scheme EG∗ is not secure
any more, if it uses ANSI X9.17 PRNG for strong primes |p| ≥ 448 bits. For
strong primes longer than 1024 bits, the tolerance leakage rate ρ is much lower,
and thus we don’t present all the data in the paper.

Note that ANSI X9.31-1998 Appendix A.2.4 in [29] also introduces PRNG
using 3-key triple DES and AES Algorithms. In 3-key triple DES case, due to
the fact that input[i], seed[i] and output[i] have the identical length as that of
ANSI X9.17 PRNG, we could obtain the same attack results as those of the
attack on ANSI X9.17 PRNG. Although the level of theoretical security of 3-key

16

Table 2.2. The specific leakage bit number for ANSI X9.17 PRNG of
leakage function g in 30 equations case

|p| Attacks µσ′g µrg |g|
448 ATTACK I 23 224 247
bits ATTACK II 23 64 87

512 ATTACK I 25 256 281
bits ATTACK II 25 64 89

640 ATTACK I 29 320 349
bits ATTACK II 29 64 93

768 ATTACK I 33 384 417
bits ATTACK II 33 64 97

896 ATTACK I 37 448 485
bits ATTACK II 37 64 101

1024 ATTACK I 41 512 553
bits ATTACK II 41 64 105

Table 3. The percentage of ρ{ATTACKI,ATTACKII} and the specific value of
λ{ATTACKI,ATTACKII} about ANSI X9.17 PRNG in 30 equations case

|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

448 110.27% 40.18% 247 93 7

512 109.77% 37.89% 281 105 8

640 109.06% 34.69% 349 129 10

768 108.59% 32.55% 417 153 12

896 108.26% 31.03% 485 177 14

1024 108% 29.88% 553 201 16

17

triple DES is higher than DES, the tolerate leakage rate of the two PRNGs is the
same. This shows that higher level of theoretical security of some cryptographic
primitive may not improve its tolerate leakage rate.

3.3.2 PRNG B: ANSI X9.31 PRNG Using AES-128

Let Ek (resp. Dk) denotes the AES-128 encryption (resp. decryption) under a
128-bit key k. The random bits generation algorithm of ANSI X9.31 PRNG using
AES-128 is the same as Algorithm 2, except that input[i], seed[i] and output[i]
(i = 1, 2, . . . , v) are 128 bits each and Ek is the AES-128 encryption.

As in PRNG A, we assume that each input[i] has 10 bits entropy which
the adversary doesn’t know, and we also assume that these bits are the least
significant 10 bits of input[i], (i = 1, 2, . . . , v). This assumption is also reasonable,
as AES-128 is faster than 3DES.

After the adversary gets the 128-bits key k, he continually queries the oracle
Occla1 for n times and the leakage functions are also similar as those in section
3.3.1. They are defined to be as follows.

fi+u(σi+u−1, ri+u) = ⟨σ[t]
i+u−1, input[1]i+u[10], . . . , input[v]i+u[10]⟩

gi+u(σ
′[t]
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨σ

′[t]
i+u−1, output[1]i+u⟩,

u = 1, . . . , n− 1.

fi+n(σi+n−1, ri+n) = ⟨σ[t]
i+n−1⟩

gi+n(σ
′
i+n−1, (ri+n,K

′), r−1
i+n) = ⟨σ

′[t]
i+n−1⟩.

Through these leakage functions, the adversary can get σ
[t]
i+u−1, σ

′[t]
i+u−1, ri+u,

(u = 1, 2, . . . , n − 1) and σ
[t]
i+n−1, σ

′[t]
i+n−1. Therefore, he can mount the attack.

Similarly, we present results of the cases when the number of equations is 30.
Figure 8 in Appendix B shows the attack process.

Table 4.1 and Table 4.2 show the number of leaked bits about leakage function
f and g for its two different parts, and the results correspond to two attacks and
different size of strong primes when the number of equations is 30.

Table 5 shows the percentage of ρ{ATTACKI,ATTACKII} and the specific
value of λ{ATTACKI,ATTACKII} for ANSI X9.31 PRNG Using AES-128 and the
number of iteration times v of the PRNG for different size primes when the
number of equations is 30.

From Table 5 and Figure 4-5, it is clear that the scheme EG∗ is not secure
any more, if it uses this ANSI X9.31 PRNG Using AES-128 when strong primes
|p| ≥ 640 bits. For strong primes longer than 1024 bits, the tolerance leakage
rate is much lower, and thus we don’t present all the data in the paper.

Additionally, PRNG B has similar mathematical structure with PRNG A.
The structural parameter of the two PRNGs are different. This difference yields
different leakage rate of the scheme EG∗ when using the two PRNGs to mathe-
matical realize it.

18

Table 4.1. The specific leakage bit number for ANSI X9.31 PRNG Using AES-128
of leakage function f in 30 equations case

|p| Attacks µσf µrf |f |
640 ATTACK I 29 320 349
bits ATTACK II 29 50 79

768 ATTACK I 33 384 417
bits ATTACK II 33 60 93

896 ATTACK I 37 448 485
bits ATTACK II 37 70 107

1024 ATTACK I 41 512 553
bits ATTACK II 41 80 121

Table 4.2. The specific leakage bit number for ANSI X9.31 PRNG Using AES-128
of leakage function g in 30 equations case

|p| Attacks µσ′g µrg |g|
640 ATTACK I 29 320 349
bits ATTACK II 29 128 157

768 ATTACK I 33 384 417
bits ATTACK II 33 128 161

896 ATTACK I 37 448 485
bits ATTACK II 37 128 165

1024 ATTACK I 41 512 553
bits ATTACK II 41 128 169

Table 5. The percentage of ρ{ATTACKI,ATTACKII} and the specific value of
λ{ATTACKI,ATTACKII} about ANSI X9.31 PRNG Using AES-128 in 30 equations case

|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

640 109.06% 36.88% 349 157 5

768 108.59% 33.07% 417 161 6

896 108.26% 30.36% 485 165 7

1024 108.01% 28.32% 553 169 8

19

3.3.3 PRNG C: FIPS 186 PRNG for DSA per-message secrets

The Digital Signature Standard specification (FIPS 186) [27] also describes a
fairly simple PRNG, which is used for generating the per-message secrets k to
be used in signing messages. This PRNG uses a secret seed which should be
randomly generated, and utilize a one-way function constructed by using either
SHA-1 or DES. This PRNG is as shown in Algorithm 3.

Algorithm 3 FIPS 186 PRNG for DSA pre-message secrets
INPUT: an integer v and a 160-bit prime number q.
OUTPUT: v pseudorandom numbers output[1], . . . , output[v] in the inter-

val [0, q − 1] which may be used as the per-message secret numbers k in the
DSA.

Step 1 If the SHA based G function is to be used in step 4.1 then select
an integer 160 ≤ b ≤ 512. If the DES based G function is to be used in step
4.1 then set b← 160.

Step 2 Generate a random (and secret) b-bit seed seed[1].
Step 3 Define the 160-bit string str = efcdab89 98badcfe 10325476

c3d2e1f0 67452301 (in hexadecimal).
Step 4 For i from 1 to v do the following:

4.1 output[i]← G(str, seed[i]) mod (q).
4.2 seed[i+ 1]← (1 + seed[i] + output[i]) mod (2b).

Step 5 Return (output[1], output[2], . . . , output[v]).

For general purpose PRNG,mod q operation could be omitted. It is necessary
only for DSS where all arithmetic is done mod q. In this paper, we only consider
the case of that G function is based on DES. Therefore, the output of this PRNG
is 160 bits long. When |p| = 640 bits, one can generate ri by invoking this PRNG
only 4 times iteratively. The leakage functions are defined as follows.

fi+u(σi+u−1, ri+u) = ⟨σ[t]
i+u−1, seed[1]

[120]
i+u ⟩

gi+u(σ
′[t]
i+u−1, (ri+u,K

′), r−1
i+u)

= ⟨σ′[t]
i+u−1, output[1]

[40]
i+u, output[2]

[30]
i+u, output[3]

[30]
i+u, output[4]

[20]
i+u⟩,

u = 1, . . . , n− 1, and

fi+n(σi+n−1, ri+n) = ⟨σ[t]
i+n−1⟩

gi+n(σ
′
i+n−1, (ri+n,K

′), r−1
i+n) = ⟨σ

′[t]
i+n−1⟩.

For each u = 1, 2, . . . , n − 1, after the adversary gets seed[1]
[120]
i+u (not all

the bits of seed[1]), he could try all possible values of the least significant 40
bits of seed[1]i+u (in a brute-force way), and he will get 240 candidate values of
seed[1]i+u. Denote one candidate value by seed[1]′i+u.

20

The adversary could use the following procedure to verify the correctness
of each guess. For every seed[1]′i+u, the adversary computes output[1]′i+u =

G(str, seed[1]′i+u). If output[1]
′[40]
i+u = output[1]

[40]
i+u, then the adversary will com-

pute seed[2]′i+u and output[2]′i+u = G(str, seed[2]′i+u); otherwise, the adversary

will try the next candidate value of seed[1]i+u. If output[2]
′[30]
i+u = output[2]

[30]
i+u,

then the adversary will compute seed[3]′i+u and output[3]′i+u = G(str, seed[3]′i+u);
otherwise, the adversary will try the next candidate value of seed[1]i+u. If

output[3]
′[30]
i+u = output[3]

[30]
i+u then the adversary will compute seed[4]′i+u and

output[4]′i+u = G(str, seed[4]′i+u); otherwise, the adversary will try the nex-

t candidate value of seed[1]i+u. If output[4]
′[20]
i+u = output[4]

[20]
i+u, the adversary

will believe that the seed[1]′i+u passes the test and it equals to seed[1]i+u with
high probability; otherwise, the adversary will try the next candidate value of
seed[1]i+u.

Assuming that for every input a, the output of G function G(str, a) is uni-
formly distributed over {0, 1}160. We will analyze the probability that a candi-
date seed[1]′ (Note that, to simplify description, we omit the subscript in nota-
tions here.) passes the above test in every invocation of the decryption query.

For every seed[1]′ and output[1]′,Pr[output[1]′[40] = output[1][40]] = 2120/2160

= 1/240. For output[2]′ = G(str, output[1]′), Pr[output[2]′[30] = output[2][30]] =
2130/2160 = 1/230. Similarly, we have

Pr[output[3]′[30] = output[3][30]] = 2130/2160 = 1/230,

Pr[output[4]′[20] = output[4][20]] = 2140/2160 = 1/220.

Therefore, the probability of seed[1]′ passing the test is 1/2120. Due to the
fact that the number of seed[1]′ is 240 and there exists only one seed[1]′ equals
to seed[1], the probability of generating more than one seed[1]′ that pass the
test is

1−
(
1− 1

2120
)240−1

.

So, using this simple verification method, the adversary can recover seed[1]
with high probability and then could recover the randomness from

ri = (output[1] ∥ . . . ∥ output[4])

easily. Figure 3 shows the attack process.
When the size of p are 800 bits, 960 bits and 1120 bits, the probability

of successful recovery remains unchanged, even though the recovery processes
have a little difference from each other. The difference of recovery process for
different size of p is that the leaked bit number for each output is different, while
the number of total leaked bits about the output are all 120 bits. Table 6 shows
the specific leakage bit number for each output, for different sizes of p.

Table 7.1 and Table 7.2 show the leakage bit number about leakage function
f and g for two different parts for our two attacks under different sizes of strong
prime p when the number of equations is 30.

21

Fig. 3. Our attack on decapsulation of EG∗ with a leaky FIPS 186 PRNG

Table 6. The specific leakage bit number of each output for different size p
|p| (in bits) output[1] output[2] output[3] output[4] output[5] output[6] output[7]

800 40 30 30 10 10 - -

960 40 30 30 10 5 5 -

1120 40 30 20 10 10 5 5

Table 7.1. The specific leakage bit number for DSA PRNG of
leakage function f in 30 equations case

|p| Attacks µσf µrf |f |
640 ATTACK I 29 320 349
bits ATTACK II 29 120 149

800 ATTACK I 34 400 434
bits ATTACK II 34 120 154

960 ATTACK I 39 480 519
bits ATTACK II 39 120 159

1120 ATTACK I 44 560 604
bits ATTACK II 44 120 164

22

Table 7.2. The specific leakage bit number for DSA PRNG of
leakage function g in 30 equations case

|p| Attacks µσ′g µrg |g|
640 ATTACK I 29 320 349
bits ATTACK II 29 120 149

800 ATTACK I 34 400 434
bits ATTACK II 34 120 154

960 ATTACK I 39 480 519
bits ATTACK II 39 120 159

1120 ATTACK I 44 560 604
bits ATTACK II 44 120 164

Table 8. The percentage of ρ{ATTACKI,ATTACKII} and the specific value of
λ{ATTACKI,ATTACKII} about the DSA PRNG in 30 equations case

|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

640 109.06% 46.56% 349 149 4

800 108.5% 38.5% 434 154 5

960 108.13% 33.13% 519 159 6

1120 107.86% 29.29% 604 164 7

From Table 8 and Figure 4-5, it is clear that the scheme EG∗ is not secure
any more, if it uses this DSA PRNG when strong primes |p| ≥ 640 bits and
when the number of equations is 30. For strong primes longer than 1120 bits,
the tolerance leakage rate is much lower, and thus we don’t present all the data
in the paper.

Note that, the attack result of this PRNG is independent with the size of
p. This will not affect our conclusion at all. Reason one is that this PRNG
satisfies the requirement of a PRNG, namely generating pseudorandom number.
Therefore, it can be used to mathematical realize the generic PRNG. Reason
two is that we don’t discuss the relation between the attack result and the size
of p.

3.4 Analysis of Our Two Attacks

ATTACK I does not satisfy the restriction of the adversary in the security def-
inition of the scheme EG∗, because λ = 0.5 · log(p) > 0.25 · log(p). However,
when the scheme EG∗ is mathematical realized with specific PRNGs, ATTACK
II can break the theoretic security of the scheme EG∗. Furthermore, ATTACK
II satisfy the restriction of the adversary in the security definition of the scheme
EG∗ rigorously. The security definition of the scheme EG∗ assumes that as long
as the amount of information that is leaked on each invocation is bounded by
λ = 0.25 · logp, then EG∗ is CCLA1 secure.

Note that, in ATTACK II, the adversary can choose the leakage function f
according to the mathematical structure of the specific PRNG. Moreover, the
leakage function g has no relation with the PRNGs.

23

The basic reason of the success of both our attacks is that the multiplicative
secret shares σi and σ′

i are not updated independently.
From the two attacks, we can see that mathematical realization has destruc-

tive impact on the security of a leakage resilient scheme.
By our ATTACK II, we can see that both the structural parameter and the

mathematical complexity of the PRNGs have important impact on the attack
result. When the PRNG has simpler mathematical complexity, we believe that
ATTACK II will become more powerful, for example, considering the generic
PRNG is mathematical realized with LFSR (e.g., Geffe Generator).

The three PRNGs have different mathematical structure. But the difference
will not affect the theoretical security of EG∗ in black box model. Because
they all satisfy the requirement of a PRNG, namely generating pseudorandom
number. For comparison with the black box model, we choose these three PRNGs
is reasonable in leakage setting. Because we want to see whether or not these
PRNGs will affect the theoretical security of EG∗ in leakage setting.

By our attacks, we find that, with the increase of the size of the underlying
hard problem, the tolerance leakage rate of EG∗ will decrease if the implemen-
tation of the scheme EG∗ invokes the PRNGs iteratively to generate ri.

According to [31], a 512-bit modulus p provides only marginal security from
concerted attack. As of 1996, a modulus p of at least 768 bits is recommended. For
long-term security, 1024-bit or larger modulus should be used. Therefore, from
section 3.3, we can see that if the scheme EG∗ uses the above-mentioned three
PRNGs to generate ri, the scheme will not be secure any more. On the other
hand, nowadays, larger size of pmust be used in the ElGamal encryption scheme.
Interestingly enough, our attacks need less tolerance leakage rate when the size
of p is larger. Therefore, we guess that our attacks could be more effective for
the state-of-the-art ElGamal encryption scheme. Because of the reasons above,
we need only considering the smaller size of p which could be used now. The
smaller size of p reveals one lower bound for successful attacks.

Note that, the secret key x can also be recovered with other attack method
based on Hidden Number Problem [28,36]. However, we do not research the
attack method of the scheme EG∗ in this paper. We want to show the destructive
impact of mathematical realizations of a leakage resilient scheme in this paper.

Figure 4 shows the tolerance leakage rate of EG∗ according to our first attack
method and the three PRNGs in our second attack method in 30 equations case.
Figure 5 shows the minimum percentage of λ/|p| required to successfully recover
x for different PRNGs in 30 equations case.

4 Experimental Implementations of Our Non-Generic
Attacks

We implemented all our attacks. For this purpose, we designed two groups of
experiments. In our first group of experiments (refers to Phase I), we tried to
recover ri from the leakage information about each kind of PRNG in section 3.3.
In our second group of experiment (refers to Phase II), we tested the success

24

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

The size of strong prime p in bits

T
he

 to
ta

l l
ea

ka
ge

 r
at

e
ρ

in
 o

ne
 d

ec
ry

pt
io

n
qu

er
y

Any generic PRNG
ANSI X9.17 PRNG
ANSI X9.31 AES−128 PRNG
FIPS 186 PRNG

Fig. 4. Minimum leakage rate required to successfully recover x for different PRNGs
(When the number of equations is 30)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

The size of strong prime p in bits

T
he

 p
er

ca
nt

ag
e

of
 λ

/|p
| i

n
on

e
de

cr
yp

tio
n

qu
er

y

Any generic PRNG
ANSI X9.17 PRNG
ANSI X9.31 AES−128 PRNG
FIPS 186 PRNG

Fig. 5. Minimum percentage of λ/|p| required to successfully recover x for different
PRNGs (When the number of equations is 30)

25

rate of recovering the secret key x by solving the system of linear congruence
equations (1). We ran our experiments in 64-bit mode over an Intel Core 2 Quad
Q9550 processor at 2.83GHz with 4GB of DDR3 SDRAM. Note that Phase I
and Phase II are exactly based on the same sets of leakages from two leakage
functions, not from different sets of leakages, even we divided our attacks into
two phases.

4.1 PHASE I: Recovery of ri

The first group of experiment showed how to recover ri from the leakage infor-
mation about the three PRNGs concerned in Section 3.3. We used VC++6.0,
GMP4.1.2 and Crypto++5.6.1 to implement our programs.

ANSI X9.17 PRNG
In this experiment, we only considered the case of |p| = 768 bits. For other

size of strong primes, the processes remains the same. When |p| = 768 bits,
the PRNG, which uses DES E-D-E two-key triple-encryption algorithm, will be
continually invoked 12 times to generate a ri ∈ Z∗

p. Denote the key of DES E-
D-E two-key triple-encryption by k = {key1, key2}. The specific value of k used
in our experiments was as follows.

key1 =0x21 0x97 0x88 0x5A 0x6D 0x8C 0xFD 0x37,

key2 =0x81 0x89 0xFC 0xCA 0x46 0x87 0x42 0xFB.

We used the function GetLocalTime in VC++6.0 to get the 64 bits system
time (wHour,wMinute,wSecond and wMilliseconds). According to the result of
the experiment, we found that the system time of one iteration of PRNG is
different from each other only in their least significant 8 bits. In the experiment,
we chose input[i][56] =0x00 0x0A 0x00 0x26 0x00 0x10 0x00, (i = 1, 2, . . . , 12).
Table 9 shows the least significant 8 bits of the system time of the 12 times
continual invocation of the ANSI X9.17 PRNG.

Table 9. The least significant 8 bits of input[i] for each iteration

i 1 2 3 4 5 6

input[i][8] 0x91 0x92 0x94 0x95 0x96 0x97

i 7 8 9 10 11 12

input[i][8] 0x98 0x99 0x9A 0x9B 0x9B 0x9C

In our attack, the leakage function will leak input[i][10], (i = 1, 2, . . . , 12).

Moreover, the adversary already knows input[i][54], (i = 1, 2, . . . , 12). Therefore,
the adversary completely knows input[i], (i = 1, 2, . . . , 12).

Furthermore, the adversary knows output[1] from leakage function g. In our
experiment, we let output[1] =0x3D 0xB4 0xD2 0x54 0x63 0xAB 0x97 0xF3. The

26

adversary can recover seed[1] =0x67 0xAD 0x74 0xFF 0xEC 0x21 0x59 0x64 by
computing Dk(output[1]) ⊕ Ek(input[1]). And then the adversary can compute
output[i], (i = 2, 3, . . . , 12). Table 10 shows the outputs of 12 invocations of the
underlying PRNGs.

Table 10. The output of ANSI X9.17 PRNG
output[1] 0x3D 0xB4 0xD2 0x54 0x63 0xAB 0x97 0xF3

output[2] 0x20 0xA6 0x5F 0xA5 0x2E 0x7F 0xCF 0xAC

output[3] 0xCC 0xD4 0xD6 0xDF 0xFE 0xF4 0x65 0xA8

output[4] 0x53 0xEF 0xD8 0xF1 0x8C 0x96 0x89 0x83

output[5] 0x0E 0xAA 0x1C 0xE7 0x63 0x86 0xAB 0xD4

output[6] 0x11 0xB1 0x2E 0xE0 0x54 0x87 0x32 0x75

output[7] 0x95 0xB2 0xA1 0x1E 0xF3 0xB0 0xEF 0xEB

output[8] 0xF9 0x3C 0xA9 0x45 0xA8 0x5F 0x06 0x70

output[9] 0x03 0x8D 0x8C 0x76 0xE5 0x9B 0x18 0x44

output[10] 0x72 0xD9 0x69 0xD6 0xEC 0x91 0x85 0xCF

output[11] 0x52 0x27 0xF1 0xDE 0x10 0x0C 0x1B 0x00

output[12] 0x43 0xD7 0x9F 0x03 0x0B 0x9A 0xEF 0x76

ANSI X9.31 PRNG Using AES-128
In this experiment, we only considered the case of |p| = 1024 bits. For other

size of strong primes, the verification procedure remains almost the same. When
|p| = 1024 bits, the PRNG, which uses 128 bits AES encryption algorithm, will
be invoked 8 times to generate a ri ∈ Z∗

p. Denote this 128 bits key for AES
encryption algorithm by k. The specific value of k used in our experiments was
as follows.

0x5F 0x5E 0x8D 0xE6 0x75 0xE1 0x3A 0xE4

0x75 0x20 0x2F 0xAD 0x78 0xC2 0x62 0xD1.

We also used the function GetLocalTime in VC++6.0 to get the 128 bits sys-
tem date and time (wYear,wMonth,wDay,wDayOfWeek,wHour,wMinute,wSecond
and wMilliseconds). According to the result of the experiment, we found that
the system time of one iteration of PRNG is different from each other only in
their least significant 8 bits. In the experiment, we chose input[i][120] =0x07
0xDC 0x00 0x08 0x00 0x1C 0x00 0x02 0x00 0x0E 0x00 0x21 0x00 0x1B 0x03,
(i = 1, 2, . . . , 8). Table 11 shows the least significant 8 bits of the system date
and time of 8 continual invocations of the ANSI X9.31 PRNG using AES-128.

In our attack, the leakage function will leak input[i][10], (i = 1, 2, . . . , 8).

Moreover, the adversary already knows input[i][118], (i = 1, 2, . . . , 8). Therefore,
the adversary completely knows input[i], (i = 1, 2, . . . , 8).

27

Table 11. The least significant 8 bits of input[i] for each iteration

i 1 2 3 4

input[i][8] 0x0D 0x0D 0x0E 0x0E

i 5 6 7 8

input[i][8] 0x0F 0x0F 0x10 0x10

Furthermore, the adversary knows output[1] from leakage function g. In our
experiment, we assumed output[1] =0x2E 0x94 0xB2 0x67 0x26 0x43 0xB4
0x4C 0xB4 0xDA 0x4F 0x61 0x09 0x07 0xD4 0xB3. The adversary can recov-
er seed[1] =0x5D 0xEF 0x56 0x4B 0xBE 0x4C 0x3F 0x36 0x21 0x18 0x43 0x26
0x60 0x1A 0xE7 0xF3 by computing Dk(output[1])⊕Ek(input[1]). And then the
adversary can compute output[i], (i = 2, 3, . . . , 8). Table 12 shows the outputs of
8 invocations of the underlying PRNG.

Table 12. All the output of ANSI X9.31 PRNG Using AES-128
output[1] 0x2E 0x94 0xB2 0x67 0x26 0x43 0xB4 0x4C

0xB4 0xDA 0x4F 0x61 0x09 0x07 0xD4 0xB3

output[2] 0x53 0x51 0x85 0x3A 0x5C 0x23 0x7E 0xE6
0x13 0xCA 0x21 0xF0 0xF2 0xFB 0xE6 0xEB

output[3] 0xA5 0x1C 0xE3 0xAB 0x55 0x62 0x4C 0x31
0x5B 0x37 0xC1 0x0B 0x2E 0xBF 0x97 0x06

output[4] 0xD5 0xE5 0x90 0x9B 0x40 0x10 0x59 0x51
0xFC 0xC7 0x4E 0xE3 0xA4 0x4F 0xC0 0xE0

output[5] 0xB9 0x38 0x47 0x70 0x35 0x95 0x9F 0x67
0x01 0x81 0x31 0x14 0x00 0x30 0xDE 0x4B

output[6] 0x51 0x40 0x44 0x7C 0x60 0xD5 0x57 0x60
0xC0 0x3F 0x90 0x19 0x29 0xDE 0x02 0xDF

output[7] 0x09 0xE3 0x67 0xD0 0x40 0x68 0xBC 0xE5
0xB9 0x7B 0xA6 0xFA 0xAF 0x84 0x4F 0x59

output[8] 0x93 0xFE 0x1B 0x7C 0x04 0x82 0x51 0x2E
0x80 0x80 0xCA 0xFE 0x7D 0xFB 0x63 0x40

FIPS 186 PRNG for DSA Pre-message Secrets

In this experiment, we only considered the case of |p| = 960 bits. For other size
of strong primes, the verification procedure remains the same. When |p| = 960
bits, the scheme EG∗ will invoke DSA PRNG 6 times to generate a ri ∈ Z∗

p.

In our attack, the adversary needs exhaustively try 240 seed[1]′ (For sim-
pler description, we ignore the subscript here.). However, due to the fact that
our computing resource was limited, we assumed that the adversary will get
seed[1][125], which is 5 bits more than our original assumption. Therefore, the
adversary only needs exhaustively try 235 seed[1]′. Obviously, the difference of
the corresponding experiment results between these two cases is extremely s-

28

mall, which could be neglected. Table 13 shows the specific leakage bit number
corresponding to the output of each case for different size of p.

Table 13. The specific leakage bit number of each output for different size of p
when the leakage function leaks seed[1][125]

|p| output[1] output[2] output[3] output[4] output[5] output[6] output[7]

640 bits 40 30 30 25 - - -

800 bits 40 30 30 15 10 - -

960 bits 40 30 30 10 10 5 -

1120 bits 40 30 20 10 10 10 5

We chose seed[1]=01100011001010000011100101010111101110101101111
0010100100110100101000010011010100111110000100000000001100101011
1010100010010100010001100111001110001111001000111.
Specifically, the adversary will exhaustively try 235 seed[1]′. He has output[1][40],

output[2][30],output[3][30],output[4][10],output[5][10],output[6][5]. The experiment
showed that the adversary can recover the unique seed[1], and then recover
all the output[i], (i = 1, 2, . . . , 6). Table 14 shows all the outputs of DSA PRNG.

As expected, for cases |p| = 640 bits, |p| = 800 bits and |p| = 1120 bits, only
one seed[1]′ passed the test and it really was seed[1].

Table 14. All the 6 output of DSA PRNG
output[1] 0x45 0x2A 0xBF 0x99 0xD4 0xCB 0x9C 0x4E 0xA4 0x54

0x56 0xE7 0x7E 0x6B 0x8E 0x6C 0x93 0x2F 0xCE 0x14

output[2] 0x2D 0x4D 0xBC 0xAC 0xD3 0x76 0x8F 0x50 0x6F 0x42
0x6B 0x17 0xBA 0xA7 0xB1 0x50 0x96 0xD7 0x46 0x73

output[3] 0x9E 0x34 0x52 0x94 0x39 0xC9 0xF2 0x0D 0xC7 0xD5
0x6C 0x6A 0xEB 0x55 0xA3 0x4E 0x21 0xF4 0x01 0xB6

output[4] 0x72 0x3D 0xB7 0xB1 0x11 0x36 0xDD 0xE8 0x20 0xC9
0xE9 0xC7 0x9C 0x81 0xA9 0xE7 0x30 0x86 0x98 0x9A

output[5] 0x80 0xC2 0xA3 0x75 0x45 0x19 0x93 0xEA 0xA7 0xA3
0xE0 0x9E 0xC0 0xF5 0x77 0x3E 0x09 0x13 0x8C 0x80

output[6] 0x5A 0x99 0x98 0xBA 0xA5 0x12 0x3D 0x56 0xC6 0x28
0x4B 0xF3 0x09 0xC7 0x49 0x77 0xBD 0x5D 0xEE 0x94

4.2 PHASE II: Recovery of Secret Key x by Solving Systems of
Linear Congruence Equations about σi and σ′

i

The goal of our second group of experiment was to check the success rate of
recovering the secret key x by solving the systems of linear congruence equa-
tions (1) about multiplicative secret shares σi and σ′

i. In order to achieve this
goal, we used VC++6.0, GMP4.1.2 and MAGMA V2.12-16 to implement the

29

program solving the system of linear congruence equations (1). We chose four
strong primes with their length being 160 bits, 256 bits, 512 bits and 1024 bits,
respectively (These strong primes are listed in Appendix B.). For each size of
strong prime p, we generated 100 sets of random data. For every set of these
data, we tried to recover a candidate value of secret key x (denoted by x′). Then
we can verify the correctness of x′ by a correct plaintext-ciphertext pair (C,K).
If K = Cx′

, then we can believe that x′ = x, which means that the secret key
x is recovered successfully. We counted the number of how many test data from
which the secret key can be recovered successfully.

The most critical part of the program for solving the system of linear con-
gruence equations (1) is Step 1 of Algorithm 1 (We exploited the function Suc-
cessiveMinima in MAGMA V2.12-16 to implement Step 1). We assumed that if
Step 1 does not finish in 30 minutes, or the memory overflows, then the process
of solving (1) fails.

Due to our computing ability, we assumed that the adversary builds the
system of linear congruence equations (1) with 30 equations. Figure 6 shows the
success rates of recovering the secret key x for different size of strong primes.
During our experiment process, only one set of test data of 160 bits long strong
prime returned a wrong answer (x′ ̸= x). The other unsuccessful set of test data
failed because of timeout or memory overflow.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The size of strong prime p in bits

T
he

 p
ro

ba
bi

lit
y

of
 s

uc
ce

ss
 r

co
ve

ry
 o

f t
he

 s
ec

re
t k

ey
 x

Fig. 6. Relationship between probability of successful recovery of x and size of p in
bits

5 Conclusions and Future Work

Our research reveals the following observations:

30

First of all, our result shows that mathematical realization has destructive
impacts on the theoretic security of a leakage resilient scheme. In fact, some
theoretical attacks against one leakage resilient cryptographic construction which
does not pose a threat might have a serious threat when this leakage resilient
scheme is mathematically implemented using specific cryptographic component.
For other leakage resilient cryptographic constructions, we conjecture that this
problem might still exists.

Second, when one leakage resilient scheme is mathematically implemented
using some specific cryptographic component, the method of increasing the size
of its underlying hard problem to resist classical attack against the hard problem
scheme may make the scheme tolerate less information leakage. Our attacks
clearly reveal this point.

Finally, our result illustrates that at least in OCL model, the same number
of leakage bits of a leakage resilient scheme has different value for adversaries
according to different mathematical implementation technique. Therefore, the
problem of designing leakage resilient scheme of which the tolerance leakage bits
number is independent with the specific implementation technique is an open
and interesting problem.

Acknowledgments This work was supported by the National Basic Research
Program of China (No.2013CB338002), National Natural Science Foundation
of China (No. 61272478, 61073178, 60970135 and 61170282), Beijing Natural
Science Foundation (No. 4112064), Strategic Priority Research Program of the
Chinese Academy of Sciences (No.XDA06010701), and IIE Cryptography Re-
search Project (No. Y2Z0011102).

References

1. E. Kiltz, K. Pietrzak.: Leakage Resilient ElGamal Encryption. ASIACRYPT2010,
LNCS 6477, pp.595-612, 2010.

2. T. Römer, JP. Seifertl.: Information Leakage Attacks against Smart Card Imple-
mentations of the Elliptic Curve Digital Signature Algorithm. E-smart2001, LNCS
2140, pp.211-219, 2001.

3. K. Gandol, C. Mourtel and F. Olivier.: Electromagnetic Analysis: Concrete Results.
CHES2001, LNCS 2162, pp.251-261, 2001.

4. Paul C. Kocher.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. CRYPTO1996, LNCS 1109, pp.104-113, 1996.

5. D. Boneh, R.A. DeMillo and R.J. Lipton.: On the Importance of Checking Cryp-
tographic Protocols for Faults. EUROCRYPT1997, LNCS 1233, pp.37-51, 1997.

6. P. Kocher, J. Jaffe and B. Jun.: Differential Power Analysis. CRYPTO1999, LNCS
1666, PP.388-397, 1999.

7. D. Boneh, G. Durfee and Y. Frankel.: An Attack on RSA Given a Fraction of the
Private Key Bits. ASIACRYPT1998, LNCS 1514, pp.25-34, 1998.

8. S. Dziembowski, K. Pietrzak.: Leakage-Resilient Cryptography. FOCS2008, pp.293-
302, 2008.

9. S. Micali, L. Reyzin.: Physically Observable Cryptography (Extended abstract).
TCC2004, LNCS2951, pp.278-296, 2004.

31

10. J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandri-
no, A.J. Feldman, J. Appelbaum and E.W. Felten.: Lest we remember: cold-boot
attacks on encryption keys. Communications of the ACM - Security in the Browser
Volume 52 Issue 5, pp.91-98, 2009.

11. F.-X. Standaert, O. Pereira, Yu Yu, J.J. Quisquater, M. Yung and E. Oswald.:
Leakage Resilient Cryptography in Practice. Towards Hardware-Intrinsic Security,
Information Security and Cryptography2010, Part 2, pp.99-134, 2010.

12. A. Akavia, S. Goldwasser and V. Vaikuntanathan.: Simultaneous Hardcore Bits
and Cryptography against Memory Attacks. TCC2009, LNCS 5444, pp.474-495,
2009.

13. M. Naor, G. Segev.: Public-key Cryptosystems Resilient to Key Leakage. CRYP-
TO2009, LNCS 5677, pp.18-35, 2009.

14. S. Dziembowski.: Intrusion-Resilience Via the Bounded-Storage Model. TCC2006,
LNCS 3876, pp.207-224, 2006.

15. S. Dziembowski.: On Forward-Secure Storage (Extended abstract). CRYPTO2006,
LNCS 4117, pp.251-270, 2006.

16. D. Cash, Yan Zong Ding, Y. Dodis, W. Lee, R.J. Lipton, S. Walfish.: Intrusion-
Resilient Key Exchange in the Bounded Retrieval Model. TCC2007, LNCS 4392,
pp.479-498, 2007.

17. S. Dziembowski, K. Pietrzak.: Intrusion-Resilient Secret Sharing. FOCS2007,
pp.227-237, 2007.

18. J. Alwen, Y. Dodis and D. Wichs.: Leakage-Resilient Public-Key Cryptography in
the Bounded-Retrieval Model. CRYPTO2009, LNCS 5677, pp.36-54,2009.

19. J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish and D. Wichs.: Public-Key En-
cryption in the Bounded-Retrieval Model. EUROCRYPT2010, LNCS 6110, pp.113-
134, 2010.

20. Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs.: Cryptography against
Continuous Memory Attacks. FOCS2010, pp.511-520, 2010.

21. Z. Brakerski, Y.T. Kalai, J. Katz and V. Vaikuntanathan.: Overcoming the Hole
in the Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage.
FOCS2010. pp.501-510 , 2010.

22. A. Lewko M. Lewko and B. Waters.: How to Leak on Key Updates. STOC2011,
pp.725-734, 2011.

23. European Network of Excellence (ECRYPT). The side channel cryptanaly-
sis lounge, http://www.crypto.ruhr-uni-bochum.de/en sclounge.html (retrieved on
29.03.2008)

24. J.-J. Quisquater, F. Koene.: Side channel attacks:State of the art, October
2002.[23].

25. R. Anderson, M. Kuhn.: Tamper resistance: a cautionary note. WOEC1996.
26. ANSI X 9.17 (Revised), American National Standard for Financial Institution Key

Management (Wholesale),” American Bankers Association, 1985.
27. National Institute for Standards and Technology, Digital Signature Standard,”

NIST FIPS PUB 186, U.S. Department of Commerce, 1994.
28. Howgrave-Graham, Nguyen, and Shparlinski.: Hidden number problem with hid-

den multipliers, timed-release crypto, and noisy exponentiation. Math. Comput.
72(243): 1473-1485 (2003)

29. S.S. Keller.: NIST-Recommended Random Number Generator Based on ANSI
X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms

30. J. Kelsey, B. Schneier, D. Wagner, and C. Hall.: Cryptanalytic Attacks on Pseu-
dorandom Number Generators. Fifth International Workshop Proceedings(March
1998), Springer-Verlag, 1998, pp. 168-188.

32

31. A. Menezes, P. van Oorschot, and S. Vanstone.: Handbook of Applied Cryptogra-
phy, Chapter 8, pp296, CRC Press,1996.

32. M.J. WIENER.: Cryptanalysis of Short RSA Secret Exponents. IEEE TRANSAC-
TION ON INFORMATION THEORY.VOL.36.NO.3.MAY 1990.

33. http://www.spms.ntu.edu.sg/Asiacrypt2010/AsiaCrypt slides/pietrzakAC11.pdf.
34. C. Petit, F.-X. Standaert, O. Pereira, T.G. Malkin, M. Yung.: A block cipher

based pseudo random number generator secure against side-channel key recovery.
ASIACCS2008, pp.56-65, 2008.

35. F.-X. Standaert.: How Leaky is an Extractor?. LATINCRYPT2010, LNCS6212,
pp.294-304, 2010.

36. P.Q. Nguyen, I.E. Shparlinski.: The Insecurity of the Elliptic Curve Digital Signa-
ture Algorithm with Partially Known Nonces. J. of Cryptology, Vol. 15, Number
3, pp.151-176.

37. JS. Coron, I. Kizhvatov.: Analysis and Improvement of the Random Delay Coun-
termeasure of CHES2009. CHES2010, LNCS 6225, pp.95-109,2010.

38. S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. CRYPTO1999, LNCS 1666, pp.398-412, 1999.

33

Appendix A: The Core Part of Our Attacks

The description of the core part of our attacks is shown in Algorithm 1.
Assuming that the adversary obtains n− 1 linear congruence equations. Let

b1 = (r2,−1, 0, . . . , 0)⊤, b2 = (0, r3,−1, 0, . . . , 0)⊤, . . . , bn−1 = (0, . . . , 0, rn,−1)⊤
and we define the lattice

L =

{
y ∈ Rn

∣∣∣∣ y =

n−1∑
i=1

aibi + anpe1, ai ∈ Z, i = 1, . . . , n

}
. (2)

Algorithm 1 The algorithm for attacking EG∗

Input: A lattice L like (2)
Output: A solution of the system of equations (1) or a symbol ⊥

Step 1 Compute n linearly independent vectors for the given lattice L as
follows:

w1, . . . , wn ∈ L
with ∥wi∥ = λi(L) for i = 1, . . . , n. If there is no such vectors, return ⊥.

Step 2 Compute integral n× (2n− 1) matrix M satisfying

W =

w11 · · · w1n

...
. . .

...
wn1 · · · wnn

 = M



a11 · · · a1n
...

. . .
...

an−11 · · · an−1n

p · · · 0
...

. . .
...

0 · · · p


If there is no such matrix M , then return ⊥.

Step 3 Multiplying both sides of (1) from left with the matrix M , we get
a new system

n∑
j=1

wijd
′
j = c′i, i = 1, 2, . . . , n. (3)

Choosing c′i such that |c′i| < p/2. Computing the solution D = (d′1, . . . , d
′
n) of

(3) over Z.
Step 4 Return D.

Appendix B: The Attack Process

34

F
ig
.
7
.
O
u
r
a
tt
a
ck

o
n
d
ec
a
p
su
la
ti
o
n
o
f
E
G

∗
w
it
h
a
le
a
k
y
A
N
S
I
X
9
.1
7
P
R
N
G

F
ig
.
8
.
O
u
r
a
tt
a
ck

o
n
d
ec
a
p
su
la
ti
o
n
o
f
E
G

∗
w
it
h
a
le
a
k
y
A
N
S
I
X
9
.3
1
P
R
N
G

U
si
n
g
A
E
S
-1
2
8

35

