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Abstract. In real world, in order to transform an abstract and generic
cryptographic scheme into actual physical implementation, one usually
undergoes two processes: mathematical realization at algorithmic level
and physical realization at implementation level. In the former process,
the abstract and generic cryptographic scheme is being transformed into
an exact and specific mathematical scheme, while in the latter process the
output of mathematical realization is being transformed into a physical
cryptographic module runs as a piece of software, or hardware, or com-
bination of both. It is well known that the process of generating random
numbers can be mathematically realized with Pseudorandom Number
Generator (PRNG) for cryptographic schemes in traditional leakage-free
context without affecting their practical security of mathematical real-
ization. However, it is unknown that whether one can use PRNG to
mathematically realize this process for leakage resilient cryptographic
schemes without affecting practical security of mathematical realization.

Our results show that if one directly uses PRNG to mathematically
realize this process, some leakage resilient cryptographic schemes may
not be practical secure any more. Furthermore, we give out a suggest-
ed way to mathematically realize this process with exponentially hard
PRNG and extractor without affecting practical security of mathematical
realization of a leakage resilient scheme. Our results show the big gap be-
tween theoretical security of leakage resilient cryptographic scheme and
practical security of mathematical realization of the same scheme when
the process of generating random numbers is mathematically realized by
PRNG.
Keywords: Leakage Resilient Cryptography, Mathematical Realization.

1 Introduction

In real world, in order to transform any abstract and generic cryptographic
scheme into actual physical implementation, one usually undergoes two pro-



cesses: mathematical realization at algorithmic level and physical realization at
implementation level. Mathematical realization refers to a process in which any
abstract and generic cryptographic scheme is being transformed into an exact
and specific mathematical scheme (After this process, the cryptographic con-
struction is mathematically realized.). This means that all the cryptographic
components used by the cryptographic scheme are instantiated with exact and
specific mathematical schemes. For example, it is well known that a public key
encryption scheme can be constructed from an arbitrary family of one-way trap-
door permutations. The user of the public key encryption scheme chooses a
specific family of one-way trapdoor permutation (such as RSA trapdoor per-
mutation or Rabin trapdoor permutation) to mathematically realize the public
key encryption scheme in this process. Physical realization refers to a process in
which any exact and specific mathematical scheme of the cryptographic scheme
(the output of mathematical realization) is being transformed into a physical
cryptographic module that runs as a piece of software, or hardware, or com-
bination of both. Broadly, and also more importantly, it has been turned out
that physical realization has significant impact on the practical security of the
cryptographic scheme in black-box model (i.e. leakage-free setting), so it is with
those of any leakage resilient cryptographic schemes [24].

We say a kind of mathematical realization of a leakage resilient cryptograph-
ic scheme is practical secure as long as (1) The adversary can not get more
leakage information about all secret states than the amount of leakage informa-
tion defined in the leakage model even if all the internal states of mathematical
cryptographic components can be leaked to the adversary but the amount of in-
formation leaked in each invocation remains the same as the amount of leakage
information defined in the leakage model. For example, in the leakage model,
the amount of leakage information about a secret state x is bounded by leakage
parameter λ (i.e. |f(x)| ≤ λ, where f is the leakage function.). The adversary
can not obtain more leakage information about the secret state x than λ bits.
(2) The exact and specific mathematical scheme satisfies the requirement of the
leakage model and can not be broken by the adversary.

Motivation In recent years, in the field of LRC, many leakage models have
been proposed. These leakage models are mainly based on two different leakage
assumptions.

“Only Computation Leaks information” There are some leakage models follow
the “Only Computation Leaks information” axiom, which stats that memory
content that is not accessed during an invocation, does not leak [4]. Leakage
resilient stream cipher [3] and leakage resilient ElGamal encryption [1] follow
this axiom are given out.

“Memory Attack” Akavia et al. [6] introduced the leakage model of “security
against memory attacks” where one requires that the scheme remains secure even
if a function f(sk) of the secret key sk is leaked once, where the only restriction
on f(·) one makes is that the the output length of f(·) is bounded. A lot of
leakage resilient cryptographic schemes are build under this assumption [5,7,8].
Continuous Memory Attack [15,16,17] extends Memory Attack.
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There are some other leakage models, such as Bounded Retrieval Model
[9,10,11,12,13,14] and Auxiliary Input Model [27,28]. Theoretical security of leak-
age resilient schemes in these models ignores any specific mathematical realiza-
tion of the schemes. In other words, theoretical security only holds for mathe-
matical realization of the scheme which fits the claimed leakage model.

Some cryptographic schemes (e.g. probabilistic encryption schemes) exploit
random numbers to guarantee theoretical security. If one wants to transform
such a abstract cryptographic scheme into actual physical implementation, the
process of generating random numbers must also be mathematically realized.
In traditional leakage-free context (i.e. black-box model), this process can be
mathematically realized by True Random Number Generator (TRNG) or Pseu-
dorandom Number Generator (PRNG) without affecting theoretical security of
the cryptographic scheme (as well as practical security of mathematical realiza-
tion of the cryptographic scheme).

Now, let us only consider the process of generating random numbers and
ignore other possible cryptographic components which also need to be mathe-
matically realized. For a leakage resilient cryptographic scheme, if the process
of generating random numbers is mathematically realized by TRNG, theoreti-
cal security of the cryptographic scheme still holds. Moreover, the mathematical
realization of the leakage resilient cryptographic scheme is practical secure. Al-
though there are some TRNGs, PRNGs are used more widely in practice. The
reasons of this fact are in the following. First, TRNG requires a naturally oc-
curring source of randomness. Designing a hardware device or software program
to exploit this randomness and produce a bit sequence that is free of biases and
correlations is a difficult task. Second, for most cryptographic applications, the
random number generator must not be subject to observation or manipulation
by an adversary. However, TRNG is subject to influence by external factors, and
also to malfunction. Third, the generation of true random number is an ineffi-
cient procedure in most practical environments. Finally, it may be impractical
to securely store and transmit a large number of true random bits if these are
required in applications.

However, it is unknown that whether mathematical realization of a leakage
resilient cryptographic scheme is practical secure when the process of generat-
ing random numbers is mathematically realized by PRNG (or leakage resilient
PRNG). Furthermore, if mathematical realization of a leakage resilient crypto-
graphic scheme is not practical secure when the process of generating random
numbers is mathematically realized by PRNG, whether there exists some sophis-
ticated way to mathematically realize this process with PRNG without affecting
practical security of mathematical realization of the cryptographic scheme? No
previous work has concerned on these questions.

In this paper, in order to answer these important questions, we will introduce
four different kinds of mathematical realization of the leakage resilient ElGamal
scheme instantiated over arbitrary groups of prime order p (where p − 1 is not
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smooth) in the paper of E. Kiltz et al. at Asiacrypt20101 [1] (i.e. the scheme
EG∗). In each mathematical realization, we use a PRNG or a leakage resilient
PRNG to mathematically realize the process of generating random numbers. We
want to see if the four kinds of mathematical realization are practical secure by
attacks against the four kinds of mathematical realization.

Note that, in this paper, we only consider mathematical realization, not phys-
ical realization. That is to say, our work is regardless of any specific side-channel
attacks.

Our Contributions Main contributions of this paper are two-folds as fol-
lows. First, our research shows that if one directly uses PRNG to mathematical-
ly realize the process of generating random numbers for some leakage resilient
cryptographic schemes, the mathematical realization may not be practical se-
cure. Therefore, one should carefully mathematically realize this process with
PRNG. Second, we prove that one can use exponentially hard PRNG and ex-
tractor to mathematically realize the process of generating random numbers
without affecting practical security of mathematical realization. The generated
bit sequence can not be distinguish with a random bit sequence for probabilistic
polynomial time adversary even if he obtains leakages from the computation of
this process. Moreover, the length of the seed used by the exponentially hard
PRNG is shorter than the length of the required bit sequence. Hence, it is not
necessary to use TRNG to generate random numbers for some leakage resilient
cryptographic schemes.

Organization of This Paper The rest of paper is organized as follows. In
Section 2, we first present some basic symbols, notations, and concepts. Then, we
briefly review the scheme EG∗. Section 3 introduce several kinds of mathematical
realization of EG∗ with TRNG or PRNG and their practical security. In section 4,
we suggest a new way to mathematically realize the process of generating random
numbers with exponentially hard PRNG and extractor. Section 5 concludes the
whole paper.

2 Preliminaries

In this section, we first present some symbols, notations and concepts used
throughout this paper. Then, we briefly review the scheme EG∗.

2.1 Symbols, Notations, and Concepts

If S is a binary bit string, we denote the most significant a bits of S by S[a] and
denote the least significant b bits of S by S[b]. We denote the length of S by |S|
and assume that the binary bit string representation of all elements in Zp has

1 The same leakage resilient ElGamal scheme instantiated over bilinear groups of prime
order p (where p − 1 is not smooth) is leakage resilient in the generic-group model
(i.e. the scheme BEG∗). However, it is very hard to implement the generic-group
model in practice. Therefore, we do not consider the scheme BEG∗ in this paper. We
only consider the scheme EG∗ which can be implemented in practice easily.
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the same length. We denote the least significant bit of S is the 1st bit of S and
the most significant bit of S is the |S|th bit of S. We use the symbol [S](i) to

denote the ith bit of S.

We use Un to denote random variable with distribution uniform over {0, 1}n.
With X ∼ Y we denote that the two random variables X and Y have the same
distribution. Define the statistical distance between two random variables X and
Y over a common domain ν as δ(X;Y ) = 1

2

∑
s∈ν |Pr[X = s] − Pr[Y = s]|.

We say two random variables X and Y are statistically indistinguishable if
δ(X;Y ) < ϵ, where ϵ is negligible in the security parameter. With δD(X;Y )
the advantage of a circuit D in distinguishing the random variables X,Y , i.e.

δD(X;Y )
def
= |E[D(X)]−E[D(Y )]|. Let Ds denote the class of all probabilistic cir-

cuits of size s with binary output {0, 1}. With δs(X;Y ) we denotemaxDδ
D(X;Y )

where the maximum is over D ∈ Ds. We say that a random variable Y has min-
entropy k, denoted by H∞(Y ) = k, if maxyPr[Y = y] = 2−k. We define HILL
pseudoentropy as follows.

Definition 1.We say that X has HILL pseudoentropy k (denoted by HHILL
ϵ,s ≥ k),

if there exists a distribution Y where H∞(Y ) ≥ k and δs(X,Y ) ≤ ϵ.

In this paper, we also exploit the following cryptographic tools.

Definition 2. A function ext : {0, 1}next × {0, 1}rext → {0, 1}mext is an (ϵ, k) ex-
tractor if for any X with H∞(X) ≥ k and random input S ∼ Unext , it holds that
δ((ext(S,X), S); (Umext , S)) ≤ ϵ.

Definition 3. A function prng : {0, 1}nprng → {0, 1}mprng is a (ϵ, s)−secure pseu-
dorandom number generator if δs(prng(Un);Um) < ϵ.

We say that a PRNG prng : {0, 1}nprng → {0, 1}mprng is exponentially hard if it
is a (2(c−1)nprng , 2cnprng)−secure pseudorandom number generator, where c ∈ (0, 1).
The paper [3] exploited exponentially hard PRNG to construct leakage resilient
stream cipher.

2.2 Brief Description of EG∗

We describe the scheme EG∗ = (KG∗
EG,Enc

∗
EG,Dec1

∗
EG,Dec2

∗
EG) and the corre-

sponding security definition in the same way as that in the paper [1]. Let the
security parameter of EG∗ is κ. Let Gen denotes a probabilistic algorithm that
outputs a cyclic group G of order p, where p is a strong prime and logp = κ.
The scheme EG∗ is described as a Key Encapsulation Mechanism (KEM) and is
shown as follows:

KG∗
EG(κ): Compute (G, p)

∗←− Gen(n), g
∗←− G, x

∗←− Zp, h = gx. Choose

random σ0
∗←− Z∗

p and set σ′
0 = xσ−1

0 mod (p). The public key is pk = (G, p, h)
and the secret key is sk = x. Two secret states are σ0 and σ′

0.
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Enc∗EG(pk): Choose random r
∗←− Zp. Let C ← gr ∈ G and K ← hr ∈ G. The

ciphertext is C and the symmetric key is K.

Dec1∗EG(σi−1, C): Choose random ri
∗←− Z∗

p, σi = σi−1ri mod (p), K ′ = Cσi ,
return(ri,K

′).

Dec2∗EG(σ
′
i−1, (ri,K

′)): Set σ′
i = σ′

i−1r
−1
i mod (p), and K = K ′σ′

i . The sym-
metric key is K and the updated state information are σi and σ′

i.

The security definition of EG∗ is CCLA1 which was introduced in [1]. In
CCLA1, the two leakage functions fi and gi are efficient computable functions
chosen by the adversary and get as inputs only the secret states that are actually
accessed during computation. The ranges of fi and gi are bounded by leakage
parameter λ. For EG∗, the leakage functions fi and gi are as follows:

Λi ← fi(σi−1, ri), Λ′
i ← gi(σ

′
i−1, (ri,K

′), r−1
i ), and |Λi| ≤ λ, |Λ′

i| ≤ λ .

In [1], E. Kiltz et al. didn’t prove the theoretical security of EG∗ and only
presented the following conjecture. They also pointed out that there exists some
attack about EG∗ [23,25], which exploits the method of Hiding Number Problem
if λ ≥ 3

8 logp + o(logp). Therefore, they conjectured that roughly λ equals to
0.25 · logp bits in [23]. Thus the number of total tolerance leakage bits in one
decryption query equals to 2λ = 0.5 · logp bits.

Conjecture 1 EG∗ is CCLA1 secure if p − 1 has a large prime factor (say,
p− 1 = 2q for a prime q).

We use λ/|p| to denote tolerance leakage rate of the scheme EG∗ and let

ρ = |fi|+|gi|
|p| . Any implementation of the scheme EG∗ will be secure against ev-

ery side-channel attack that fits the leakage model, i.e. as long as the amount
of information that is leaked on each invocation is sufficiently bounded, and
moreover the cryptographic device adheres the “Only Computation Leaks infor-
mation” axiom. However, the authors said nothing about how to generate the
random number ri for scheme EG∗. Therefore, the user may use TRNG or PRNG
to mathematically realize this process.

3 Several Kinds of Mathematical Realization of Scheme
EG∗ With TRNG or PRNG and Their Practical
Security

In this section, we will introduce four kinds of mathematical realization of scheme
EG∗. In each mathematical realization, the process of generating random num-
bers is mathematically realized by TRNG or PRNG (leakage resilient PRNG).
We want to see whether the four kinds of mathematical realization are practical
secure, by presenting specific attacks against them. The goal of our attacks is
to recover the secret key x. To achieve this goal, our attacks need to obtain all
the bits of the random number ri and 1 bit of each one of the two multiplicative
secret shares σi and σ′

i in each continual invocation of the decryption query. The
adversary can use these leakage bits to recover all the bits of σ0 and σ′

0 (σi and
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σ′
i) and then recover a candidate value x′ of the secret key x. The adversary can

verify the correctness of x′ by a correct pair (C,K).

In the first kind of mathematical realization, we assume the process of gen-
erating random numbers ri is mathematically realized by TRNG. The attack a-
gainst this mathematical realization (denoted by ATTACK I) can also be viewed
as an attack method against theoretical security of the scheme EG∗ and satisfies
the leakage model of the scheme EG∗ except that it requires a high leakage rate.
Therefore, ATTACK I poses no threat on the theoretical security of the scheme
EG∗.

In the rest three kinds of mathematical realization, we assume the process
of generating random numbers ri is mathematically realized by PRNG (leakage
resilient PRNG). The attacks against the three kinds of mathematical realiza-
tion are denoted by ATTACK II. ATTACK II has the same basic principle as
ATTACK I. However, it is amazing that the results of ATTACK II show that
the practical tolerance leakage rate of mathematical realization of the scheme
EG∗ will decrease dramatically when PRNG is used to mathematically realize
the process of generating random numbers ri. Because, the adversary can ob-
tain leakages from the seed of the PRNG. Therefore, mathematical realization
of the scheme EG∗ is not practical secure when the process of generating random
numbers ri is mathematically realized with these PRNGs. For ATTACK I and
ATTACK II, we assume the random number ri is generated by Algorithm 1.

Algorithm 1 The Algorithm of Generating Random Number ri
Input: no input
Output: a random number ri
Step 1 Invoke TRNG or PRNG to generate a new random number t and |t| = |ri|.
Step 2 If t = 0 then return to Step 1 else go to Step 3.
Step 3 If t < p then go to Step 4 else go to Step 5.
Step 4 Let ri = t and return ri.
Step 5 Let ri = t mod p and return ri.

In the following, we will introduce the four kinds of mathematical realization
and attacks against them. Finally, we will show results of the attacks.

3.1 Mathematical Realization Using TRNG

If the process of generating random numbers ri is mathematically realized by
TRNG, we can attack this kind of mathematical realization with the following
attack method (ATTACK I):

In the 1st invocation of decryption query of the scheme EG∗, the adversary
chooses the leakage functions as follows:

f1(σ0, r1) = ⟨[σ0](1), r
[|p|/2]
1 ⟩, g1(σ

′
0, (r1,K

′), r−1
1 ) = ⟨[σ′

0](1), r1[|p|/2]⟩.
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Now, the adversary knows r1, r
−1
1 (The prime number p is public.), σ0[1], and

σ′
0[1]. In the 2nd invocation of decryption query of the scheme EG∗, the adversary

chooses the leakage functions as follows:

f2(σ1, r2) = ⟨[σ1r
−1
1 mod p](2), r

[|p|/2]
2 ⟩ = ⟨[σ0](2), r

[|p|/2]
2 ⟩,

g2(σ
′
1, (r2,K

′), r−1
2 ) = ⟨[σ′

1r1 mod p](2), r2[|p|/2]⟩ = ⟨[σ′
0](2), r2[|p|/2]⟩.

After the 2nd invocation of decryption query, the adversary knows r1, r
−1
1 ,

r2, r
−1
2 , σ0[2], and σ′

0[2]. Let R0 = R−1
0 = 1. For i > 0, let Ri =

∏i
j=1 ri mod p

and R−1
i =

∏i
j=1 r

−1
i mod p. Clearly, after the (i − 1)th (i > 1) invocation of

decryption query, the adversary knows Ri−1, R
−1
i−1, σ0[i−1], and σ′

0[i−1]. In the

ith invocation of decryption query of the scheme EG∗, the adversary chooses the
leakage functions as follows:

fi(σi−1, ri) = ⟨[σi−1R
−1
i−1 mod p](i), r

[|p|/2]
i ⟩ = ⟨[σ0](i), r

[|p|/2]
i ⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1Ri−1 mod p](i), ri[|p|/2]⟩ = ⟨[σ′
0](i), ri[|p|/2]⟩.

In this way, after invoking the decryption query logp times, the adversary
knows all the bits of σ0 and σ′

0 and can recover a candidate value x′ = σ0σ
′
0 mod p

of the secret key x. Then, the adversary can verify the correctness of x′ by a
correct pair (C,K). The attack process is shown in Figure 4 in Appendix B.

To successfully execute ATTACK I, the leakage parameter λ should achieve
0.5 · logp + 1 bits, which is lager than 0.25 · logp. Therefore, ATTACK I poses
no threat on the theoretical security of the scheme EG∗.

Note that, ATTACK I can also be executed after ith decryption query sim-
ilarly. The adversary can obtain σi and σ′

i and can recover a candidate value
x′ = σiσ

′
i mod p of the secret key x.

3.2 Mathematical Realization Using PRNG

Now, we assume that the process of generating random numbers ri is mathe-
matically realized by PRNG (leakage resilient PRNG). According to Kerckhoffs’
principle, the adversary knows concrete mathematical structure of the specific
PRNG. When the PRNG is invoked to generate a random number ri in the
decryption query, all internal secret states of the PRNG can be leaked to the
adversary due to the “Only Computation Leaks information” axiom. Therefore,
if the adversary obtains all bits of the seed of the PRNG from leakage function
fi, he will recover the output of the PRNG and the random number ri

1. The
leakage functions of ATTACK II are in the following form:

fi(σi−1, ri) = ⟨[σi−1R
−1
i−1 mod p](i), seedi⟩ = ⟨[σ0](i), seedi⟩,

1 For some PRNG, the adversary need to obtain some other internal states from
leakage function fi.
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gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1Ri−1 mod p](i)⟩ = ⟨[σ′
0](i)⟩.

The symbol seedi represents the seed of the PRNG when it is invoked to generate
the random number ri.

We conjecture the practical tolerance leakage rate of the scheme EG∗ is also
0.25 (i.e. λ

|p| = 0.25) like the theoretical tolerance leakage rate. However, we

surprisingly find that practical tolerance leakage rate of the scheme EG∗ will
be reduced when four specific PRNGs are used to mathematically realize the
process of generating random numbers ri. Therefore, mathematical realization
of the scheme EG∗ is not practical secure when the four specific PRNGs are
used. The four specific PRNGs are ANSI X9.17 PRNG, ANSI X9.31 PRNG,
FIPS 186 PRNG for DSA per-message secrets, and a leakage resilient PRNG
in [26] instantiated with AES-128. We also assume that the seed of a specific
PRNG is refreshed in each invocation of the decryption query.

3.2.1 Case 1: ANSI X9.17 PRNG and ANSI X9.31 PRNG

The ANSI X9.17 PRNG [18] has been used as a general purpose PRNG in
many applications. Let Ekey (resp. Dkey) denotes DES E-D-E two-key triple-
encryption (resp. decryption) under a key key, which is generated somehow at
initialization time and must be reserved exclusively used only for this generator.
The key key is part of the secret state of the PRNG which is never changed by
any PRNG input. ANSI X9.17 PRNG is shown in Algorithm 2.

Algorithm 2 ANSI X9.17 PRNG

Input: a random (and secret) 64-bit seed seed[1], integer v, and Ekey.
Output: v pseudorandom 64-bit strings (denoted by output[1], . . . , output[v]).
Step 1 For l from 1 to v do the following:

1.1 Compute Il = Ekey(input[l]), where input[l] is a 64-bit representation of
the system date/time.

1.2 output[l] = Ekey(Il
⊕

seed[l])
1.3 seed[l + 1] = Ekey(Il

⊕
output[l])

Step 2 Return (output[1], output[2], . . . , output[v])

Suppose that each input[l] (l = 1, 2, . . . , v) has 10 bits that the adversary
does not know (We assume these 10 bits are the least significant 10 bits of each
input[l].). This is a reasonable assumption for many systems1 [22]. Before doing
our attack, due to the fact that key is never changed, the adversary can obtain
key from leakage function fi by invoking the decryption query repeatedly. After
knowing key, the adversary continually invoke the decryption query for logp
times and the leakage functions are defined as follows:

fi+1(σi, ri+1) = ⟨[σi](1), seed[1]i+1, input[1]i+1[10], . . . , input[v]i+1[10]⟩,
1 For example, consider a millisecond timer, and an adversary who knows the nearest
second when an output was generated.
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gi+1(σ
′
i, (ri+1,K

′), r−1
i+1) = ⟨[σ′

i](1)⟩,

fi+u(σi+u−1, ri+u) = ⟨[σi+u−1(ri+1 · . . . · ri+u−1)
−1 mod p](u),

seed[1]i+u, input[1]i+u[10], . . . , input[v]i+u[10]⟩,

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i+u−1(ri+1 · . . . · ri+u−1) mod p](u)⟩,

u = 2, . . . , logp.

Let {seed[1]i+u, input[1]i+u, . . . , input[v]i+u}, (u = 1, . . . , logp) denote the
secret states of this PRNG when it is used to generate the random number ri+u.
In the logp invocation of the decryption query, the adversary knows all bits about
the secret states {seed[1]i+u, input[1]i+u, . . . , input[v]i+u} and can compute the
random numbers ri+u, (u = 1, . . . , logp). Therefore, our attack is valid. The
attack process is shown in Figure 5 in Appendix B.

Figure 1, Figure 2 and Table A.1 in Appendix A show that the scheme EG∗

is not practical secure any more, if it uses ANSI X9.17 PRNG for strong prime
p with size larger than 700 bits. Note that ANSI X9.31-1998 Appendix A 2.4 in
[21] introduces PRNGs using 3-key triple DES or AES. In 3-key triple DES case,
due to the fact that input[l], seed[l] and output[l] have the same length as that
of ANSI X9.17 PRNG, we can obtain the same attack results as those of the
attack against ANSI X9.17 PRNG. Our attack is still valid for this PRNG using
AES-128 similarly. Therefore, we do not introduce attack against this PRNG
here.

3.2.2 Case 2: FIPS 186 PRNG for DSA Pre-message Secrets

The Digital Signature Standard specification (FIPS 186) [19] also describes a
fairly simple PRNG based on SHA or DES, which is used for generating DSA
per-message secrets. This PRNG is shown in Algorithm 3.

Algorithm 3 FIPS 186 PRNG for DSA pre-message secrets

Input: an integer v and a 160-bit prime number q.
Output: v pseudorandom numbers output[1], . . . , output[v] in the interval [0, q− 1],
which may be used as the per-message secret numbers in the DSA.

Step 1 If the SHA based G function is to be used in step 4.1 then select an integer
160 ≤ b ≤ 512. If the DES based G function is to be used in step 4.1 then set
b← 160.
Step 2 Generate a random (and secret) b-bit seed seed[1].
Step 3 Define the 160-bit string str = efcdab89 98badcfe 10325476 c3d2e1f0
67452301 (in hexadecimal).
Step 4 For l from 1 to v do the following:

4.1 output[l]← G(str, seed[l]) mod (q).
4.2 seed[l + 1]← (1 + seed[l] + output[l]) mod (2b).

Step 5 Return (output[1], output[2], . . . , output[v]).
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For general purpose PRNG, mod q operation in this PRNG could be omitted.
It is necessary only for DSS where all arithmetic is done mod q. In this paper,
we only consider the DES version of this PRNG, where the G function is based
on DES. Therefore, the seed (as well as the output) of this PRNG is 160 bits
long. If the adversary obtains all the bits of the seed, he can recover the output
of the PRNG. Therefore, our attack is valid. Figure 1, Figure 2 and Table A.2
in Appendix A show that the scheme EG∗ is not practical secure any more, if it
uses this PRNG for strong prime p with size larger than 644 bits.

3.2.3 Case 3: A Practical Leakage Resilient PRNG

In section 4 of the paper [26], a practical leakage resilient PRNG in the stan-
dard model was introduced1. This practical leakage resilient PRNG is based
on (ϵ, s, n/ϵ)−secure weak pseudorandom function(wPRF) F(k, pr) : {0, 1}κ ×
{0, 1}n → {0, 1}m. The symbol pr denotes public randomness. The initial s-

tate of this PRNG is (pr0, pr1, k0) for public randomness (pr0, pr1)
∗←− ({0, 1})2

and secret key k0
∗←− {0, 1}κ. The ith round of this PRNG is then computed as

(ki, oi) = F(ki−1, prρ(i−1)), where ρ(i) = i mod 2, ki is the secret key for the
next round and oi is the output of this round. In each round, the adversary can
obtain not only the output of the PRNG (i.e. oi), but also leakages from non
adaptive leakage function Li(ki−1, prρ(i−1)).

This PRNG can be instantiated with any length-expanding wPRF (m >
κ), which in turn can be realized from any secure block cipher BC : {0, 1}κ ×
{0, 1}n → {0, 1}κ. That is, if BC is an (ϵ, s, 2q)−secure wPRF, then F(k, prl ∥
prr) = BCk(prl) ∥ BCk(prr) is an (ϵ, s, q)−secure wPRF.

Clearly, if the secret key k0 is leaked to the adversary totally, the adversary
can recover all outputs of this PRNG due to the randomness (pr0, pr1) are public.
We assume the secure block cipher BC is instantiated with AES-128. Figure 1,
Figure 2, and Table A.3 in Appendix A show that the scheme EG∗ is not practical
secure any more, if it uses this PRNG for strong prime p with size larger than
516 bits.

When λ = 0.25logp and ϵ = 2−aκ (The value a ∈ (0, 1] is a constant.),
this PRNG is leakage resilient if and only if the length of the seed is larger than
1.5logp

a ≥ 1.5logp. In this case, we can directly use TRNG to generate the random
number ri. Therefore, this PRNG is not suitable to generate random numbers
for scheme EG∗.

3.3 The Results of Our Two Attacks

Note that Attack II is still valid for mathematical realization using other PRNGs
whose seeds are shorter than 0.25logp bits. Figure 1. shows the minimum ρ re-
quired to successfully recover x for different PRNGs. Figure 2. shows the mini-
mum λ/|p| required to successfully recover x for different PRNGs.

1 We use the same symbol as the paper [26]. See the paper [26] for more details.
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Fig. 1. Minimum ρ required to successful-
ly recover x for different random number
generators
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Fig. 2. Minimum λ/|p| required to suc-
cessfully recover x for different random
number generators

According to [29], a 512-bit modulus p provides only marginal security from
concerted attack. As of 1996, a modulus p of at least 768 bits is recommended.
For long-term security, 1024-bit or larger modulus should be used. Therefore,
we can see that if the scheme EG∗ uses the above-mentioned four PRNGs to
generate random numbers ri, the scheme will not be practical secure any more.

Note that, the secret key x can also be recovered with an attack method based
on Hidden Number Problem [23,25] with lower theoretical tolerance leakage rate
(i.e. 3

8 logp+o(logp)) than that of ATTACK I. However, practical tolerance leak-
age rate of this attack method (also equals to 3

8 logp + o(logp)) is higher than
that of ATTACK II when the process of generating random numbers is math-
ematically realized with PRNGs because this attack method requires leakages
from σi and σ′

i but does not require leakages from ri.

4 Our Suggested Way to Generate Random Numbers for
Scheme EG∗ Without Affecting Practical Security

From Section 3, we can see that mathematical realization of scheme EG∗ is not
practical secure when the process of generating random numbers ri is mathemat-
ically realized by some PRNGs. In this section, we try to find a sophisticated way
to mathematically realize this process with PRNG. This suggested way should
not affect practical security of mathematical realization of scheme EG∗ and de-
pends on random seed with length shorter than κ = logp bits and larger than
0.25logp bits. Therefore, it is not necessary to use TRNG to mathematically
realize the process of generating random numbers ri for scheme EG∗.

Our suggested way is shown in Figure 3 and is based on exponentially hard
PRNG and extractor. The output of the exponentially hard PRNG is then in-
put into an extractor. The output of the extractor is the generated random bit
sequence (denoted by t).

12



Fig. 3. Our Suggested Way to Generate Random Numbers for Scheme EG∗

In Figure 3, we use “EH-PRNG(S1)” to denote the exponentially hard
PRNG prng : {0, 1}nprng → {0, 1}mprng with seed S1 ∈ {0, 1}nprng . The symbol
“Extractor(S2)” denotes the extractor ext : {0, 1}next × {0, 1}mprng → {0, 1}mext

with random input S2 ∈ {0, 1}next . The random input S2 is chosen uniformly at
random from {0, 1}next at initialization time and it remains unchanged during
each invocation.

We use leakage function l1(S1) : {0, 1}nprng → {0, 1}λ1 to denote leakages from
the seed of the exponentially hard PRNG. Note that, because l1 is an efficiently
computable leakage function like fi and gi, it can output all the intermediate
results during the computation of the PRNG1. But the length of output of l1(S1)
is bounded by leakage parameter λ1. We use leakage function l2(S2, prng(S1)) :
{0, 1}next × {0, 1}mprng → {0, 1}λ2 to denote leakages from computation of the
extractor.

The following theorem guarantees that the output of our suggested way is s-
tatistically indistinguishable with Uκ even if the adversary obtains leakages from
leakage functions l1 and l2 when the exponentially hard PRNG and the extractor
satisfy some requirements.

Theorem 1. The seed S1 is chosen uniformly at random from {0, 1}dκ. Let
prng(S1) : {0, 1}dκ → {0, 1}mprng is a (2(c−1)dκ, 2cdκ)−secure pseudorandom ran-
dom number generator, where the constant c ∈ (0, 1). Let ext(S2, prng(S1)) :
{0, 1}next ×{0, 1}mprng → {0, 1}κ be a (ϵ,mprng − 2aκ− 0.5κ− 1) extractor, where
ϵ is negligible in κ and S2 is chosen uniformly at random from {0, 1}next . Let
l1(S1) : {0, 1}dκ → {0, 1}0.25κ and l2(S2, prng(S1)) : {0, 1}next × {0, 1}mprng →
{0, 1}0.25κ are any two leakage functions. For a probabilistic polynomial-time
adversary in κ, it still holds that

δ((ext(S2, prng(S1)), S2); (Uκ, S2)) ≤ ϵ

1 The adversary knows algorithm structure of the PRNG.
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even if the adversary obtains {l1(S1), l2(S2, prng(S1))} as long as

d ∈
(
max

{
Ω
( 1

κ22aκ

)
,
(8a+ 1)κ+ 4

4(1− c)κ
, 0.25

}
, 1
)
,

where parameter a ∈ (0, 1) depends on the security level.

Proof. Let function µ(κ) = 2−aκ (The value a ∈ (0, 1) is a constant.) is negligi-
ble in κ. We first prove the following Lemma holds.

Lemma 1 Let prng, l1, and l2 satisfy the requirements of Theorem 1. Then, for
any probabilistic polynomial-time adversary A in κ, it holds that

|Pr[A(l1(S1), l2(S2, prng(S1))) = 1]− Pr[A(l1(S1), l2(S2, Y )) = 1]| < 2µ(κ),

where H∞(Y ) ≥ mprng − 2aκ− 0.25κ− 1.

Proof. Due to the following Lemma, we can proof Lemma 1.

Lemma 2 Let prng(S1) : {0, 1}dκ → {0, 1}mprng is a (2(c−1)dκ, 2cdκ)−secure
pseudorandom random number generator, where the constant c ∈ (0, 1). Then if

2(c−1)dκ ≤ µ(κ)2

20.25κ − 2−2aκ−0.25κ−1 and S1 ∼ Udκ, it holds that

Pry[H
HILL
2µ(κ),Ω(µ2(κ)2cdκ/dκ)(prng(S1)|l1(S1) = y) ≥ mprng − 2aκ− 0.25κ− 1] ≥

1− µ(κ).

This Lemma can be proved by Lemma 3 in [3] and Lemma 2.1 in [20]. Space
does not permit to show the proof here.

For any probabilistic polynomial-time adversary A in κ, we assume the ad-
versary runs in time κb, where b is a constant. If 2cdκ > κb, the adversary A can
not distinguish the output of prng and Umprng with non-negligible probability. In
additional, if κb ≥ Ω(µ2(κ)2cdκ/dκ), the adversary A can not distinguish the
output of prng and a random variable Y that H∞(Y ) ≥ mprng− 2aκ− 0.25κ− 1.
Therefore, if the following three inequations

2(c−1)dκ ≤ µ(κ)2

20.25κ − 2−2aκ−0.25κ−1,

2cdκ > κb,

κb ≥ Ω(µ2(κ)2cdκ/dκ)

hold simultaneously, Lemma 1 can be proven. It is clear that if prng, l1, and l2
satisfy the requirements of Theorem 1, the above three inequations hold simul-
taneously. �

The adversary can not distinguish the output of prng and a random variable
Y that H∞(Y ) ≥ mprng − 2aκ − 0.25κ − 1. Because the output of prng is input
into a (ϵ,mprng − 2aκ − 0.5κ − 1) extractor and the adversary can only obtain
at most 0.25logp bits leakage information from l2. Therefore, the adversary can
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not distinguish the bit sequence generated by our suggested way and a random
variable Z ∼ Uκ. Therefore, this theorem holds. �

From Theorem 1, we can see that it is possible for our suggested way to output
a bit sequence that can not be distinguished by a probabilistic polynomial-time
adversary with a random bit sequence when the seed S1 is shorter than logp.
Therefore, it is not necessary to use TRNG to mathematically realize the process
of generating random numbers ri for scheme EG∗. Our suggested way can also
be used for other leakage resilient cryptographic schemes similarly.

5 Conclusions and Future Work

Our results show that if one directly uses PRNG to mathematically realize the
process of generating random numbers, some leakage resilient cryptographic
scheme may not be practical secure any more. We give out a suggested way
to solve this problem. The suggested way is based on exponentially hard PRNG
and extractor. This observation shows the big gap between theoretical security
of leakage resilient cryptographic scheme and practical security of mathematical
realization of the same cryptographic scheme when one uses PRNG to mathemat-
ically realize the process of generating random numbers. In this paper, we only
consider mathematical realization of the process of generating random numbers.
Whether mathematical realization of other cryptographic components will affect
practical security of mathematical realization of a leakage resilient cryptographic
scheme is still not known and may be the future work. This is a new perspective
about security of leakage resilient cryptographic schemes. We also believe that
there are more security drawbacks when we further consider practical security
of physical realization of a leakage resilient cryptographic scheme.
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Appendix A: The Result of Our Attacks

We use ρATTACKI (resp. ρATTACKII) to denote the specific value of ρ for AT-
TACK I (resp. ATTACK II). We define λATTACKI (resp. λATTACKII) to denote
the specific value of leakage parameter λ for ATTACK I (resp. ATTACK II). We
use v to denote how many times the PRNG is invoked in order to generate the
random number ri.

Table A.1. Attack results about ANSI X9.17 PRNG
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

700 100.29% 25.14% 351 175 11

704 100.28% 25.00% 353 175 11

832 100.24% 23.56% 417 195 13

960 100.21% 22.50% 481 215 15

1088 100.18% 21.69% 545 235 17

1216 100.16% 21.05% 609 255 19

Table A.2. Attack results about about FIPS 186 PRNG
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

644 100.31% 25.16% 323 161 5

800 100.25% 20.25% 401 161 5

960 100.21% 16.88% 481 161 6

1120 100.18% 14.46% 561 161 7

1280 100.16% 12.66% 641 161 8

Table A.3. Attack results about leakage resilient PRNG instantiated with AES-128
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

516 100.39% 25.19% 259 129 5

640 100.31% 20.31% 321 129 5

768 100.26% 16.93% 385 129 6

896 100.22% 14.51% 449 129 7

1024 100.20% 12.70% 513 129 8

1152 100.17% 11.28% 577 129 9

1280 100.16% 10.16% 641 129 10

Appendix B: The Attack Processes

We show our attack processes in the following.
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