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Abstract. In real world, in order to transform an abstract and generic
cryptographic scheme into actual physical implementation, one usually
undergoes two processes: mathematical realization at algorithmic level
and physical realization at implementation level. In the former process,
the abstract and generic cryptographic scheme is transformed into an
exact and specific mathematical scheme, while in the latter process the
output of mathematical realization is being transformed into a physical
cryptographic module runs as a piece of software, or hardware, or com-
bination of both. In black-box model (i.e. leakage-free setting), a crypto-
graphic scheme can be mathematically realized without affecting its both
theoretical security and practical security of mathematical realization as
long as the mathematical components meet the required cryptographic
properties. However, it is unknown that whether one can mathematical-
ly realize a leakage resilient cryptographic scheme in accustomed ways
without affecting its practical security of mathematical realization.

Our results give a negative answer to this important question by
introducing attacks against several kinds of mathematical realization of
a practical leakage resilient cryptographic scheme. Our results show the
big gap between theoretical security of leakage resilient cryptographic
scheme and practical security of mathematical realization of the same
scheme. Therefore, on one hand, we suggest that all (practical) leakage
resilient cryptographic schemes should at least come with a kind of math-
ematical realization whose practical security can be guaranteed. On the
other hand, our results inspire cryptographers to design advanced leakage
resilient cryptographic schemes whose practical security of mathematical
realization is independent of details of the mathematical realization.

Keywords: Physical Attacks, Leakage Resilient Cryptography, Mathe-
matical Realization, Physical Realization.



1 Introduction

Countermeasures for protecting against physical attacks (such as the most s-
tudied side-channel attacks) are taken on three levels: the software level, the
hardware level, and combination of the above two levels. However, these coun-
termeasures have many issues [2,3]. In order to solve these pressing issues, S.
Dziembowski et al. firstly proposed one general and theoretical methodology
called Leakage Resilient Cryptography (LRC) [2,3].

In real world, in order to transform an abstract and generic cryptographic
scheme into actual physical implementation, one usually undergoes two pro-
cesses: mathematical realization at algorithmic level and physical realization at
implementation level. Mathematical realization refers to a process in which an
abstract and generic cryptographic scheme is transformed into an exact and spe-
cific mathematical scheme (After this process, we say the cryptographic scheme
is mathematically realized.). This means that all the cryptographic components
utilized by the cryptographic scheme are instantiated with exact and specific
mathematical components. For example, it is well known that a public key en-
cryption scheme can be constructed from an arbitrary family of one-way trapdoor
permutations. The implementor chooses a specific family of one-way trapdoor
permutations (such as RSA trapdoor permutations or Rabin trapdoor permuta-
tions) to mathematically realize the public key encryption scheme in this process.
Another example is that the implementor chooses AES-128 or 3DES to mathe-
matically realize a cryptographic scheme which uses block ciphers as a building
block. Physical realization refers to a subsequent process in which any exact and
specific mathematical scheme (the output of mathematical realization) is trans-
formed into a physical cryptographic module that runs as a piece of software, or
hardware, or combination of both.

Both for cryptographic schemes in black-box model and leakage resilient
cryptographic schemes, their cryptographic security proofs generally work in-
dependent of both mathematical realization and physical realization. However,
both for the above two kinds of cryptographic schemes, it has been turned out
that physical security of physical realization highly depends on details of the
physical realization. For example, the physical cryptanalysis results of the leak-
age resilient cryptographic scheme in paper [24] do not contradict its security
proof and show that the tolerance leakage rate that is assumed in the theoretical
security depends on details of the physical realization.

Now, let’s concentrate on mathematical realization. We call a kind of math-
ematical realization of a cryptographic scheme in black-box model is practically
secure if the adversary can not break security of the scheme (e.g. IND-CPA of
a public key encryption scheme) even if the adversary knows all details of the
mathematical realization. Similarly, we call a kind of mathematical realization
of a leakage resilient cryptographic scheme is practically secure as long as (1)
the adversary knows all details of the mathematical realization and can not get
more leakage bits about all the secret states than those assumed in the theo-
retical security even if all internal states of all the mathematical components
can be leaked to him but the number of leakage bits in each invocation is less
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than the leakage parameter. For example, the number of leakage bits about a
secret state x is bounded by leakage parameter λ (i.e. |f(x)| ≤ λ, where f is
the leakage function.). The adversary can not obtain more leakage bits about x
than λ bits even if he can obtain at most λ bits about all internal states of all
the mathematical components. (2) the adversary can not break security of the
scheme.

Motivation In recent years, in the field of LRC, many leakage models have
been proposed. These leakage models are mainly based on two different leakage
assumptions.

“Only Computation Leaks Information” There are some leakage models that
follow the “Only Computation Leaks Information” axiom, which states that
memory contents that are not accessed during computation, do not leak [4].
Leakage resilient stream cipher [3], practical leakage resilient PRNG [26] and
leakage resilient ElGamal encryption scheme[1] follow this axiom are given out.

“Memory Attack” Inspired by [5], Akavia et al. [7] introduced the leakage
model of “security against memory attacks” where one requires that the scheme
remains secure even if a function f(sk) of the secret key sk is leaked once,
where the only restriction on f(·) one makes is that the output length of f(·)
is bounded. Public key encryption schemes in this model were introduced in [8].
Continuous Memory Attack [15,16,17] extends Memory Attack.

There are some other leakage models, such as Bounded Retrieval Model
[9,10,11,12,13,14] and Auxiliary Input Model [27,28].

Theoretical security of leakage resilient cryptographic schemes in these mod-
els ignores details of mathematical realization. In other words, theoretical secu-
rity only holds for a kind of mathematical realization which rigorously fits the
claimed leakage model.

In black-box model (i.e. leakage-free setting), a cryptographic scheme can be
mathematically realized without affecting both its theoretical security and prac-
tical security of mathematical realization as long as all the mathematical com-
ponents meet the required cryptographic properties. However, it is unknown
that whether one can mathematically realize a leakage resilient cryptographic
scheme in accustomed ways without affecting its practical security of mathemat-
ical realization. No previous work has concerned on this question.

In this paper, in order to answer this important question, we will take the
leakage resilient ElGamal encryption scheme instantiated over arbitrary groups
of prime order p (where p− 1 is not smooth) in the paper [1]1 (i.e. scheme EG∗)
as an example. The scheme EG∗ is constructed in a leakage model that follow
the “Only Computation Leaks Information” axiom which is regarded as the most

1 The same leakage resilient ElGamal scheme instantiated over bilinear groups of prime
order p (where p − 1 is not smooth) is leakage resilient in the generic-group model
(i.e. scheme BEG∗). However, it is very hard to implement the generic-group model in
practice. This drawback of the generic-group model goes against our recommendation
to at least provide mathematical realization for a cryptographic scheme. Therefore,
in this paper, we consider the scheme EG∗ which can be implemented in practice
easily.
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representative axiom according to side-channel attacks. For simplicity, we only
concentrate on how to mathematically realize the process of generating random
numbers for scheme EG∗ and ignore other abstract cryptographic components
which also need to be mathematically realized. We will introduce five different
kinds of mathematical realization of scheme EG∗. In each mathematical real-
ization, we use generic Random Number Generator (RNG) or Pseudorandom
Number Generator (PRNG) to mathematically realize the process of generating
random numbers (Note that, PRNG is used widely for generating random num-
bers in practice.). We want to see if the five kinds of mathematical realization
are practically secure by attacks against them.

Note that, in this paper, we only consider mathematical realization, not phys-
ical realization. That is to say, our work is regardless of any specific physical
attack against physical realization.

Our Contributions Main contributions of this paper are three-folds as fol-
lows. First, our results give a negative answer to the important question that
whether one can mathematically realize a leakage resilient cryptographic scheme
in accustomed ways without affecting its practical security of mathematical re-
alization by some counterexamples. For example, our research shows that if one
directly uses some PRNGs (even if international standard PRNGs or leakage
resilient PRNG) to mathematically realize the process of generating random
numbers for some leakage resilient cryptographic schemes, the mathematical re-
alization will not be practically secure. Furthermore, we have analyzed drawbacks
of mathematical structures of these PRNGs which cause the mathematical real-
ization with these PRNGs becomes practically insecure. Our results show that
there exists a big gap between theoretical security of leakage resilient crypto-
graphic scheme and practical security of mathematical realization of the same
scheme.

Second, we give out a suggested way to generate random numbers for scheme
EG∗ using exponentially hard PRNG and Extractor, which is a better choice to-
ward practical security of mathematical realization of scheme EG∗. According to
different leakage scenarios, the generated bit sequence of the suggested way can
not be distinguished from a true random bit sequence or has high min-entropy
(HILL pseudoentropy) for any probabilistic polynomial-time adversary. More-
over, the number of random bits needed by the suggested way is reduced. We
anticipate that the suggested way can also be exploited for other leakage resilien-
t cryptographic schemes which have similar drawbacks of practical security of
mathematical realization.

Third, for any leakage resilient cryptographic scheme, tolerance leakage rate
reflects its expected security. Therefore, (accurate or rough) estimation of toler-
ance leakage rate of any leakage resilient cryptographic scheme does make very
good sense. For each kind of mathematical realization of scheme EG∗, this paper
specifies an upper bound of practical tolerance leakage rate that scheme EG∗ can
tolerate by-product. These upper bounds are the best known so far, even thought
it might not be the tightest one.
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Organization of This Paper The rest of this paper is organized as follows.
In Section 2, we first present some basic symbols, notations, and concepts. Then,
we briefly review the scheme EG∗. Section 3 introduces five kinds of mathematical
realization of scheme EG∗ and their practical security. In section 4, we will suggest
a new way to generate random numbers for scheme EG∗. Section 5 concludes the
whole paper.

2 Preliminaries

In this section, we first present some symbols, notations and concepts used
throughout this paper. Then, we briefly review the scheme EG∗.

2.1 Symbols, Notations, and Concepts

If S is a binary bit string, we denote the most significant a bits of S by S[a] and
denote the least significant b bits of S by S[b]. We denote the length of S by |S|
and assume that the binary bit string representation of all elements in Zp has
the same length. We denote the least significant bit of S is the 1st bit of S and
the most significant bit of S is the |S|th bit of S. We use the symbol [S](i) to

denote the ith bit of S.
We use Un to denote the random variable with distribution uniform over

{0, 1}n. With X ∼ Y we denote that the two random variables X and Y have the
same distribution. Define the statistical distance between two random variables
X and Y over a common domain ν as δ(X;Y ) = 1

2

∑
s∈ν |Pr[X = s]−Pr[Y = s]|.

We say two random variables X and Y are statistically indistinguishable if
δ(X;Y ) < ϵ, where ϵ is negligible in the security parameter. With δD(X;Y )
denote the advantage of a circuit D in distinguishing the random variables X

and Y , i.e. δD(X;Y )
def
= |E[D(X)]−E[D(Y )]|. Let Ds denote the class of all prob-

abilistic circuits of size s with binary output {0, 1}. With δs(X;Y ) we denote
maxD{δD(X;Y )} where the maximum is over D ∈ Ds. We say that a random
variable Y has min-entropy k, denoted by H∞(Y ) = k, if maxy{Pr[Y = y]} =
2−k. We define HILL pseudoentropy as follows.

Definition 1.We say that X has HILL pseudoentropy k (denoted by HHILL
ϵ,s ≥ k),

if there exists a distribution Y where H∞(Y ) ≥ k and δs(X,Y ) ≤ ϵ.

In this paper, we also exploit the following cryptographic tools.

Definition 2. A function ext : {0, 1}next × {0, 1}rext → {0, 1}mext is an (ϵ, k) ex-
tractor if for any X with H∞(X) ≥ k and random input S ∼ Unext , it holds that
δ((ext(S,X), S); (Umext , S)) ≤ ϵ.

Definition 3. A function prng : {0, 1}nprng → {0, 1}mprng is a (ϵ, s)−secure pseu-
dorandom number generator if δs(prng(Unprng);Umprng) < ϵ.
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We say that a PRNG prng : {0, 1}nprng → {0, 1}mprng is exponentially hard if it is
a (2(c−1)nprng , 2cnprng)−secure pseudorandom number generator, where c ∈ (0, 1).
The paper [3] exploited exponentially hard PRNG to construct leakage resilient
stream cipher.

2.2 Brief Description of scheme EG∗

We describe the scheme EG∗ = (KG∗
EG,Enc

∗
EG,Dec1

∗
EG,Dec2

∗
EG) and the corre-

sponding security definition in the same way as that in the paper [1]. Let the
security parameter of scheme EG∗ is κ. Let Gen denote a probabilistic algorithm
that outputs a cyclic group G of order p, where p is a strong prime and |p| = κ.
The scheme EG∗ is described as a Key Encapsulation Mechanism (KEM) and is
shown as follows:

KG∗
EG(κ): Compute (G, p)

∗←− Gen(n), g
∗←− G, x

∗←− Zp, h = gx. Choose

random σ0
∗←− Z∗

p and set σ′
0 = xσ−1

0 mod (p). The public key is pk = (G, p, h)
and the secret key is sk = x. Two secret states are σ0 and σ′

0.

Enc∗EG(pk): Choose random r
∗←− Zp. Let C ← gr ∈ G and K ← hr ∈ G. The

ciphertext is C and the symmetric key is K.
Dec1∗EG(σi−1, C): Choose random ri

∗←− Z∗
p, σi = σi−1ri mod (p), K ′ = Cσi ,

return(ri,K
′).

Dec2∗EG(σ
′
i−1, (ri,K

′)): Set σ′
i = σ′

i−1r
−1
i mod (p), and K = K ′σ′

i . The sym-
metric key is K and the updated states are σi and σ′

i.
The security definition of scheme EG∗ is CCLA1 which was introduced in the

paper [1]. In CCLA1, the two leakage functions fi and gi are efficient computable
functions chosen by the adversary and get as inputs only the secret states that
are actually accessed during computation. The ranges of fi and gi are bounded
by leakage parameter λ. For scheme EG∗, the leakage functions fi and gi are as
follows:

Λi ← fi(σi−1, ri), Λ′
i ← gi(σ

′
i−1, (ri,K

′), r−1
i ), and |Λi| ≤ λ, |Λ′

i| ≤ λ .

Although the authors of the paper [1] didn’t prove theoretical security of
scheme EG∗ and only presented the following conjecture, the crucial technique
of scheme EG∗ (i.e. multiplicative secret sharing) is used widely in the context
of LRC [30,31,32] and scheme EG∗ is more practical than other leakage resilient
cryptographic schemes. Therefore, we take scheme EG∗ as an example.

Conjecture 1 The scheme EG∗ is CCLA1 secure if p− 1 has a large prime
factor (say, p− 1 = 2q for a prime q).

Therefore, authors of the paper [1] conjectured that roughly λ equals to
0.25|p| bits in [23]. Thus the number of total tolerance leakage bits in one de-
capsulation query equals to 2λ = 0.5|p| bits.

We use λ/|p| to denote tolerance leakage rate of scheme EG∗ and let ρ =
|fi|+|gi|

|p| . Any implementation of scheme EG∗ will be secure against every side-

channel attack that fits the leakage model, i.e. as long as the amount of informa-
tion that is leaked during each invocation is sufficiently bounded, and moreover
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the cryptographic device adheres the “Only Computation Leaks Information”
axiom. However, the authors said nothing about how to generate random num-
bers ri for scheme EG∗. Therefore, actual implementors may use True Random
Number Generator (TRNG) or PRNG to mathematically realize this process.

3 Five Kinds of Mathematical Realization of Scheme
EG∗ With Generic RNG or Specific PRNG and Their
Practical Security

It is well known that one can use TRNG or PRNG to generate random numbers.
Although there exist some TRNGs, PRNG is used more widely than TRNG in
practice. The reasons of this fact are in the following. First, TRNG requires
a naturally occurring source of randomness. Designing a hardware device or
software program to exploit this randomness and produce a bit sequence that is
free of biases and correlations is a difficult task. Second, for most cryptographic
applications, the random number generator must not be subject to observation
or manipulation by an adversary. However, TRNG is subject to influence by
external factors, and also to malfunction. Third, the generation of true random
number is an inefficient procedure in most practical environments. Finally, it
may be impractical to securely store and transmit a large number of true random
bits if these are required in applications. Therefore, we mainly consider the case
of utilizing PRNG to mathematically realize the process of generating random
numbers in this paper.

In this section, we will introduce five kinds of mathematical realization of
scheme EG∗. In each mathematical realization, the process of generating random
numbers is mathematically realized by generic RNG or PRNG (leakage resilient
PRNG). We want to see whether the five kinds of mathematical realization are
practically secure, by presenting specific attacks against them. The goal of all
our attacks is to recover the secret key x. To achieve this goal, our attacks
need to obtain all the bits of the random number ri for each invocation of the
decapsulation query of scheme EG∗. The adversary can recover all the bits of σi

and σ′
i (i = 0, 1, . . .) and obtain a candidate value x′ of the real secret key x.

The adversary can verify the correctness of x′ by a correct pair (C,K).
In the first kind of mathematical realization, we assume the process of gen-

erating random numbers ri is mathematically realized by generic RNG and the
adversary does not know the internal mathematical structure of the generic
RNG. The attack against this kind of mathematical realization (denoted by AT-
TACK I) can also be viewed as an attack against theoretical security of scheme
EG∗. ATTACK I satisfies the leakage model of scheme EG∗ defined in the paper
[1] except that it requires a high leakage rate. Therefore, ATTACK I poses no
threat on the theoretical security of scheme EG∗.

In the rest four kinds of mathematical realization, we assume the process of
generating random numbers ri is mathematically realized by a specific PRNG
(leakage resilient PRNG). For convenience, the attacks against the four kinds
of mathematical realization are denoted by ATTACK II. ATTACK II have the
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same basic principle as ATTACK I. However, it is amazing that the results of
ATTACK II show that practical tolerance leakage rate of mathematical realiza-
tion of scheme EG∗ will decrease dramatically when some specific PRNGs are
used to mathematically realize the process of generating random numbers ri.

In the following, we will introduce the five kinds of mathematical realization
and attacks against them. Finally, we will show some discussions and results
of the attacks. For both ATTACK I and ATTACK II, we assume the random
number ri is generated by Algorithm 1.

Algorithm 1 The Algorithm of Generating Random Numbers ri
Input: no input
Output: a random number ri
Step 1 Invoke generic RNG or PRNG to generate a new random number t and
|t| = |ri|.
Step 2 If t = 0 then return to Step 1 else go to Step 3.
Step 3 If t < p then go to Step 4 else go to Step 5.
Step 4 Let ri := t and return ri.
Step 5 Let ri := t mod p and return ri.

3.1 Mathematical Realization Using Generic RNG

If the process of generating random numbers ri is mathematically realized by
generic RNG, we can attack this kind of mathematical realization as follows
(ATTACK I):

In the 1st invocation of decapsulation query of scheme EG∗, the adversary
chooses the leakage functions as follows:

f1(σ0, r1) = ⟨[σ0](1), r
[|p|/2]
1 ⟩, g1(σ

′
0, (r1,K

′), r−1
1 ) = ⟨[σ′

0](1), r1[|p|/2]⟩.

Now, the adversary knows r1 (r1 := r
[|p|/2]
1 ∥ r1[|p|/2]), r

−1
1 (Note that, the

prime number p is public.), σ0[1], and σ′
0[1]. In the 2nd invocation of decapsulation

query, the adversary chooses the leakage functions as follows:

f2(σ1, r2) = ⟨[σ1r
−1
1 mod p](2), r

[|p|/2]
2 ⟩ = ⟨[σ0](2), r

[|p|/2]
2 ⟩,

g2(σ
′
1, (r2,K

′), r−1
2 ) = ⟨[σ′

1r1 mod p](2), r2[|p|/2]⟩ = ⟨[σ′
0](2), r2[|p|/2]⟩.

After the 2nd invocation of decapsulation query, the adversary knows r1, r
−1
1 ,

r2, r
−1
2 , σ0[2], and σ′

0[2]. LetR{a,b} :=
∏b

s=a rs mod p andR−1
{a,b} :=

∏b
s=a r

−1
s mod

p. In the ith (i = 2, . . . , |p| − 1) invocation of decapsulation query, the adversary
chooses the leakage functions as follows:

fi(σi−1, ri) = ⟨[σi−1R
−1
{1,i−1} mod p](i), r

[|p|/2]
i ⟩ = ⟨[σ0](i), r

[|p|/2]
i ⟩,
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gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1R{1,i−1} mod p](i), ri[|p|/2]⟩ = ⟨[σ′
0](i), ri[|p|/2]⟩.

In the |p|th invocation of decapsulation query, the adversary chooses the
leakage functions as follows:

f|p|(σ|p|−1, r|p|) = ⟨[σ|p|−1R
−1
{1,|p|−1} mod p](|p|)⟩ = ⟨[σ0](|p|)⟩,

g|p|(σ
′
|p|−1, (r|p|,K

′), r−1
|p| ) = ⟨[σ

′
|p|−1R{1,|p|−1} mod p](|p|)⟩ = ⟨[σ′

0](|p|)⟩.

In this way, after invoking the decapsulation query |p| times, the adver-
sary knows all the bits of σ0 and σ′

0. Then, he can recover a candidate value
x′ = σ0σ

′
0 mod p of the real secret key x. Then, the adversary can verify the

correctness of x′ by a correct pair (C,K). The attack process is shown in Figure
4 in Appendix B.

To successfully execute ATTACK I, the leakage parameter λ should achieve
0.5|p| + 1 bits, which is larger than 0.25|p|. Therefore, ATTACK I poses no
threat on the theoretical security of scheme EG∗. Note that, ATTACK I can
also be executed after the ith decapsulation query similarly. After the adversary
obtaining σi and σ′

i, he can recover a candidate value x′ = σiσ
′
i mod p of the

real secret key x.

3.2 Mathematical Realization Using PRNG

Now, we assume that the process of generating random numbers ri is math-
ematically realized by specific PRNG (leakage resilient PRNG). According to
Kerckhoffs’ principle, the adversary knows concrete mathematical structure of
the specific PRNG used by the mathematical realization. When the PRNG is
invoked to generate a random number ri in the decapsulation query, all internal
secret states of the PRNG can be leaked to the adversary due to the “Only
Computation Leaks Information” axiom.

We know that if one obtains all bits of all the secret states (such as the seed)
of any PRNG, he can totally recover the output of the PRNG trivially. There-
fore, for ATTACK II, we don’t allow the adversary to obtain all bits of all the
secret states of the PRNG from leakages directly in one invocation. Specifically
speaking, what the adversary can obtain from leakage functions in one invoca-
tion of decapsulation query of scheme EG∗ includes only part of bits about the
secret states of the PRNG and part of bits about the output of the PRNG. But
the amount of leakages is bounded by λ (the leakage parameter) bits. The central
idea of ATTACK II is that the adversary tries to recover all bits of the seed of
the PRNG (not from direct leakages) using the specific mathematical structure
of the PRNG with at most λ bits from leakages. In this manner, we show the im-
pacts of mathematical realization over practical security of the leakage resilient
scheme EG∗.

If the practical tolerance leakage rate of a kind of mathematical realization
of scheme EG∗ can not achieve 0.25 (i.e. the theoretical tolerance leakage rate
λ
|p| = 0.25), we say the mathematical realization is not practically secure (as
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the definition about practical security of mathematical realization of a leakage
resilient cryptographic scheme in Section 1).

We surprisingly find that practical tolerance leakage rate of scheme EG∗ will
reduce to a value less than 0.25 when four specific PRNGs are used to mathemat-
ically realize the process of generating random numbers ri. Therefore, mathe-
matical realization of scheme EG∗ is not practically secure when the four specific
PRNGs are used. The four specific PRNGs are ANSI X9.17 PRNG, ANSI X9.31
PRNG, FIPS 186 PRNG for DSA per-message secrets, and a leakage resilient
PRNG in [26] instantiated with AES-128. We also assume that the seed of the
specific PRNG is refreshed in each invocation of the decapsulation query.

3.2.1 Case 1: ANSI X9.17 PRNG and ANSI X9.31 PRNG

The ANSI X9.17 PRNG [18] has been used as a general purpose PRNG in
many applications. Let Ekey (resp. Dkey) denotes DES E-D-E two-key triple-
encryption (resp. decryption) under a key key, which is generated somehow at
initialization time and must be reserved exclusively used only for this generator.
The key is a internal secret state of the PRNG which is never changed for every
invocation of the PRNG. ANSI X9.17 PRNG is shown in Algorithm 2.

Algorithm 2 ANSI X9.17 PRNG

Input: a random (and secret) 64-bit seed seed[1], integer v, and Ekey.
Output: v pseudorandom 64-bit strings (denoted by output[1], . . . , output[v]).
Step 1 For l from 1 to v do the following:

1.1 Compute Il = Ekey(input[l]), where input[l] is a 64-bit representation of
the system date/time.

1.2 output[l] = Ekey(Il
⊕

seed[l])
1.3 seed[l + 1] = Ekey(Il

⊕
output[l])

Step 2 Return (output[1], output[2], . . . , output[v])

Suppose that each input[l] (l = 1, 2, . . . , v) has 10 bits that the adversary
does not know (We assume these 10 bits are the least significant 10 bits of each
input[l].). This is a reasonable assumption for many systems1 [22]. Before doing
our attack, due to the fact that key is never changed for every invocation of the
PRNG (stateless), the adversary can completely obtain key from leakage func-
tion fi by invoking the decapsulation query repeatedly. In each invocation, the
leakage function fi leaks only part of bits about key (not all the bits of key). Af-
ter knowing key completely, the adversary continually invoke the decapsulation
query for |p| times. Let

statei+u := {output[1]i+u, input[1]i+u[10], . . . , input[v]i+u[10]}

1 For example, consider a millisecond timer, and an adversary who knows the nearest
second when an output was generated.
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and the leakage functions are defined as follows:
For u = 1,

fi+u(σi+u−1, ri+u) = ⟨[σi](1), statei+u⟩,

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i](1)⟩.

For u = 2, . . . , |p| − 1,

fi+u(σi+u−1, ri+u) = ⟨[σi+u−1R
−1
{i+1,i+u−1} mod p](u), statei+u⟩,

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i+u−1R{i+1,i+u−1} mod p](u)⟩.

For u = |p|,

fi+u(σi+u−1, ri+u) = ⟨[σi+u−1R
−1
{i+1,i+u−1} mod p](|p|)⟩ = ⟨[σi](|p|)⟩

gi+u(σ
′
i+u−1, (ri+u,K

′), r−1
i+u) = ⟨[σ′

i+u−1R{i+1,i+u−1} mod p](|p|)⟩ = ⟨[σ′
i](|p|)⟩.

The adversary obtains

{output[1]i+u, input[1]i+u, . . . , input[v]i+u}, (u = 1, . . . , |p| − 1)

and he can further compute

seed[1]i+u := Dkey(output[1]i+u)⊕ Ekey(input[1]i+u).

Then the adversary can easily get

seed[s]i+u := Ekey(Ekey(input[s− 1]i+u)⊕ output[s− 1]i+u)

as well as

output[s]i+u := Ekey(Ekey(input[s]i+u)⊕ seed[s]i+u), (s = 2, 3, . . . , v).

Thus the adversary obtain all the bits of ri for every decapsulation query. Figure
1, Figure 2 and Table A.1 in Appendix A show that scheme EG∗ is not prac-
tically secure any more, if it uses ANSI X9.17 PRNG for strong prime p with
size larger than 700 bits. Note that ANSI X9.31-1998 Appendix A 2.4 in [21]
introduces PRNGs using 3-key triple DES or AES. In 3-key triple DES case,
due to the fact that input[l], seed[l] and output[l] have the same length as that
of ANSI X9.17 PRNG, we can obtain the same attack results as those of the
attack against ANSI X9.17 PRNG. Our attack is still valid for this PRNG using
AES-128 similarly. Therefore, we do not introduce the attack against this PRNG
for AES-128 case here.

Analysis Although this PRNG is not secure even in leakage-free setting if
the adversary knows the key, what we want to emphasize here is drawbacks of the
mathematical structure of this PRNG. The drawbacks make this PRNG become
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insecure in leakage setting. The designers of the two PRNGs exploit block ciphers
(such as 3DES and AES-128) to mathematically realize an abstract One-Way
Permutations (OWP). The PRNG (ANSI X9.17 PRNG or ANSI X9.31 PRNG)
itself can compute the output of the OWP because it knows the key of the
block cipher. In leakage-free setting, if the adversary does not know the key,
he can not recover the input of the block cipher (the seed of the PRNG) and
the “One-Way” property holds. However, in leakage setting, the adversary can
obtain key completely from leakages because it is stateless. This means that the
One-Way Permutation becomes to a One-Way Trapdoor Permutation and the
adversary knows the trapdoor (i.e. the stateless key) from leakages. Therefore,
the “One-Way” property does not hold.

Due to the drawbacks, we think possible solutions which can make this attack
become invalid are as follows: Solution 1 Using advanced mathematical compo-
nents to mathematically realize the abstract OWP to guarantee the “One-Way”
property in leakage setting. Solution 2 To make the key key become stateful
may be another solution. This means that the implementor needs to refresh the
key and to guarantee the adversary can not obtain the key completely in every
invocation of the PRNG.

3.2.2 Case 2: FIPS 186 PRNG for DSA Pre-message Secrets

The Digital Signature Standard (DSS) specification (FIPS 186) [19] also de-
scribes a fairly simple PRNG based on SHA or DES, which is used for generating
DSA per-message secrets. This PRNG is shown in Algorithm 3.

Algorithm 3 FIPS 186 PRNG for DSA pre-message secrets

Input: an integer v and a 160-bit prime number q.
Output: v pseudorandom numbers output[1], . . . , output[v] in the interval [0, q− 1],
which may be used as the per-message secret numbers in the DSA.

Step 1 If the SHA based G function is to be used in step 4.1 then select an integer
160 ≤ b ≤ 512. If the DES based G function is to be used in step 4.1 then set
b← 160.
Step 2 Generate a random (and secret) b-bit seed seed[1].
Step 3 Define the 160-bit string str = efcdab89 98badcfe 10325476 c3d2e1f0
67452301 (in hexadecimal).
Step 4 For l from 1 to v do the following:

4.1 output[l]← G(str, seed[l]) mod (q).
4.2 seed[l + 1]← (1 + seed[l] + output[l]) mod (2b).

Step 5 Return (output[1], output[2], . . . , output[v]).

For general purpose PRNG, mod q operation in this PRNG could be omitted.
It is necessary only for DSS where all arithmetic is done mod q. In this paper,
we only consider the DES version of this PRNG, where the G function is based
on DES. Therefore, the seed (as well as the output) of this PRNG is 160 bits
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long. We show the attack against this PRNG when |p| = 964 bits as an example.
To generate a 964 bits long random number, one needs to invoke this PRNG 7
times (v = 7) iteratively to obtain a 1120 bits long random number and discards
output[v][156]. Let

statei = {output[1][40]i , output[2]
[30]
i , output[3]

[20]
i ,

output[4]
[10]
i , output[5]

[10]
i , output[6]

[6]
i , output[7]

[4]
i }.

The leakage functions are as follows:
For i = 1,

fi(σi−1, ri) = ⟨[σ0](1), seed[1]
[120]
i , statei⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

0](1)⟩.

For i = 2, . . . , |p| − 1,

fi(σi−1, ri) = ⟨[σi−1R
−1
{1,i−1} mod p](i), seed[1]

[120]
i , statei⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1R{1,i−1} mod p](i)⟩.

For i = |p|,

fi(σi−1, ri) = ⟨[σi−1R
−1
{1,i−1} mod p](i)⟩ = ⟨[σ0](|p|)⟩,

gi(σ
′
i−1, (ri,K

′), r−1
i ) = ⟨[σ′

i−1R{1,i−1} mod p](i)⟩ = ⟨[σ′
0](|p|)⟩.

After the adversary getting the most significant 120 bits of the seed (i.e.

seed[1]
[120]
i (i = 1, 2, . . . , |p|−1)) from leakages, he could compute all the possible

values of the least significant 40 bits of seed[1]i (i.e. seed[1]i[40]) and gets 240

candidate values of seed[1]i. Denote a candidate value by seed[1]′i. For each
seed[1]′i, the adversary computes

state′i = {output[1]
′[40]
i , output[2]

′[30]
i , output[3]

′[20]
i ,

output[4]
′[10]
i , output[5]

′[10]
i , output[6]

′[6]
i , output[7]

′[4]
i }.

using seed[1]′i and test the correctness of this candidate value seed[1]′i using statei
obtained from leakages. For the correct candidate value seed[1]′i (i.e. seed[1]i),
state′i must equal to statei. This test fails with extremely low probability. For

larger size p, the adversary also obtain seed[1]
[120]
i from leakages. The number

of leakage bits about the output of the PRNG keeps 120 bits unchanged but the
distribution of the leakage bits is changed. For every output block output[l] (l =
1, 2, . . . , v), the adversary must obtain some bits about it from leakages (In other
words, there does not exist a block of the output of the PRNG (output[l],l ∈
{1, 2, . . . , v}) such that no bit of the block leaks.).
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We verified this attack by experiments for different size p. For each size of
|p| ∈ {1120, 1280, 1440, 1600} bits, we generated 500 sets of random data and
ran the above test with the 500 sets of random data. The success rates of all
experiments were 100%. Therefore, our attack is valid. Giving out theoretical
success rate of this attack would be interesting but is beyond the scope of this
paper. Figure 1, Figure 2 and Table A.2 in Appendix A show that the scheme
EG∗ is not practically secure any more, if it uses this PRNG for strong prime p
with size larger than 964 bits.

Analysis It is well known that 1 bit difference in the input of G function will
cause many bits difference in the output of G function. Moreover, this PRNG
is invoked iteratively to generate random numbers. These drawbacks make our
attack become valid.

3.2.3 Case 3: A Practical Leakage Resilient PRNG

In section 4 of the paper [26], a practical leakage resilient PRNG in the stan-
dard model was introduced. This practical leakage resilient PRNG is based on
(ϵ, s, n/ϵ)−secure weak Pseudorandom Function (wPRF) F(k, pr) : {0, 1}κ ×
{0, 1}n → {0, 1}m. The symbol pr denotes public randomness. The initial state

of this PRNG is (pr0, pr1, k0) for public randomness (pr0, pr1)
∗←− ({0, 1}n)2 and

the random seed k0
∗←− {0, 1}κ. The ith round of this PRNG is then computed

as (ki, oi) = F(ki−1, prρ(i−1)), where ρ(i) = i mod 2, ki is the secret key for the
next round and oi is the output of this round. In each round, the adversary can
obtain not only the output of the PRNG (i.e. oi), but also leakages from non
adaptive leakage function Li(ki−1, prρ(i−1)).

This leakage resilient PRNG can be instantiated with any length-expanding
wPRF (m > κ), which in turn can be mathematically realized from any secure
block cipher BC : {0, 1}κ×{0, 1}n → {0, 1}κ. That is, if BC is an (ϵ, s, 2q)−secure
wPRF, then F(k, prl ∥ prr) = BCk(prl) ∥ BCk(prr) is an (ϵ, s, q)−secure wPRF.

We assume the secure block cipher BC is mathematically realized using AES-
128 (i.e. κ = n = 128) which is the most studied one by side-channel attacks.
Similarly to the attack against FIPS 186 PRNG in Case 2, the adversary can
obtain 100 bits of k0 (|k0| = 128 bits) and 100 bits of the outputs (i.e. oi
(i = 0, 1, . . . , v)) from leakages, then he tries to recover k0 completely by brute-
force search. This attack against the leakage resilient PRNG was verified by
experiments and is also valid. Figure 1, Figure 2, and Table A.3 in Appendix A
show that scheme EG∗ is not practically secure any more, if it uses this leakage
resilient PRNG mathematically realized by AES-128 for strong prime p with size
larger than 804 bits.

However, what we want to emphasize is not the above attack against the
leakage resilient PRNG. What we want to emphasize is that the leakage resilient
PRNG is not suitable to mathematically realize the process of generating random
numbers for scheme EG∗. Note that, the amount of leakages this PRNG can
tolerate (denoted by λprng) equals to log(ϵ−1)/6 and depends on the hardness of
the underlying wPRF F [33]. Thus, if F is secure against adversaries of super-
polynomial size (i.e. ϵ = 2ω(logκ)), then the amount of leakages λprng equals to
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ω(logκ), which is quite small. If λ = 0.25|p| ≤ λprng, the size of the seed k0
(i.e. κ) should be much larger than |p|. In this case, it is not necessary for the
implementor to use this PRNG. The implementor should use |p| bits long random
number as ri directly. What’s worse, even if the wPRF F is exponentially hard
(i.e. ϵ = 2−Ω(κ)), this PRNG is also not suitable. In this case , ϵ = 2−aκ (a ∈
(0, 1]) and λprng = aκ/6, this PRNG is leakage resilient if and only if κ ≥ 1.5 · |p|.

This leakage resilient PRNG is not suitable to mathematically realize the
process of generating random numbers for some other leakage resilient crypto-
graphic schemes due to the similar reasons.

3.3 Discussions and The Results of Our Attacks

Figure 1. shows the minimum ρ required to successfully recover x for different
kinds of mathematical realization. Figure 2. shows the minimum λ/|p| required
to successfully recover x for different kinds of mathematical realization. Accord-
ing to [29], for long-term security, 1024-bit or larger modulus should be used.
Therefore, we can see that if scheme EG∗ uses the above-mentioned four PRNGs
to mathematically realize the process of generating random numbers ri, the
scheme will not be practically secure any more. Although practical tolerance
leakage rate can be made arbitrarily small for Case 2 and Case 3 with increase
of the size of p, the success of all our attacks against these PRNGs is not depend
on the size of p but is depend on the mathematical structures of these PRNGs.

The authors of the paper [1] conjectured that theoretical tolerance leakage
rate λ of scheme EG∗ equals to 0.25|p|. If the actual value of λ > 0.25|p|, all our
attacks are valid. Otherwise, if the actual value of λ < 0.25 · |p|, some attacks
against these PRNGs may become invalid. However, there still exist some kinds
of mathematical realization which are not practically secure. For example, for
large size p, the attacks against FIPS 168 PRNG and the leakage resilient PRNG
are still valid.

The process of generating random numbers ri for scheme EG∗ can also be
mathematically realized by TRNGs or other PRNGs. However, it is very dif-
ficult to guarantee all the possible mathematical realization using TRNGs or
other PRNGs in accustomed ways are practically secure when the actual value
of λ < 0.25|p|. Therefore, an accustomed way to mathematically realize the pro-
cess of generating random numbers will make the corresponding mathematical
realization become practically insecure with high probability.

Note that, the secret key x can also be recovered with an attack method based
on Hidden Number Problem [23,25] with lower theoretical tolerance leakage rate
(i.e. 3

8 |p|+ o(|p|)) than that of ATTACK I. However, practical tolerance leakage
rate of this attack method (also equals to 3

8 |p| + o(|p|)) is higher than that of
ATTACK II when only the process of generating random numbers is mathemat-
ically realized with PRNGs because this attack method requires leakages from
σi and σ′

i but does not require leakages from ri.
If we set t to ri in Algorithm 1 directly, our attacks can work with much less

practical tolerance leakage rate. The reason is that the bits about t (the output
of the PRNG) needed by the attacks can be leaked from leakage function gi.
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4 Our Suggested Way to Generate Random Numbers for
Scheme EG∗

From Section 3, we can see that the mathematical realization of scheme EG∗

is not practically secure when the process of generating random numbers ri is
mathematically realized by some PRNGs. In this section, we suggest to uti-
lize a sophisticated way which is based on abstract exponentially hard PRNG
and Extractor to to generate random numbers for scheme EG∗ under the “Only
Computation Leaks Information” axiom. According to different leakage scenar-
ios, the generated bit sequence of the suggested way can not be distinguished
from a true random bit sequence or has high min-entropy (HILL pseudoentropy)
for any probabilistic polynomial-time adversary. Although we do not give out
specific mathematical structures about the abstract exponentially hard PRNG
and Extractor in the suggested way, the suggested way is a better choice toward
the practical security of mathematical realization of scheme EG∗. The imple-
mentor should choose suitable mathematical components with no drawbacks to
mathematically realize the exponentially hard PRNG and Extractor respectively.

The security parameter of scheme EG∗ is κ which equals to |p|. We also assume
that λ equals to 0.25κ for introducing the suggested way. If the actual value of
λ does not equal to 0.25κ, the suggested way is still valid but with different
parameters. The suggested way merely need a random seed with length shorter
than κ bits and larger than 0.25κ bits. Therefore, the suggested way reduces the
number of random bits needed to generate random numbers for scheme EG∗.
If the seed of the suggested way is shorter than 0.25κ bits, the adversary can
directly obtain the seed completely from leakages and recover all bits of the
generated bit sequence.

Our suggested way is shown in Figure 3 and can be divided into two suc-
cessive phases. In the first phase, the suggested way chooses a seed uniformly
at random and computes the output of the exponentially hard PRNG with
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this seed. In the subsequent second phase, the output of the exponentially hard
PRNG is input into an Extractor and the output of the Extractor is comput-
ed. The output of the Extractor is the generated random bit sequence (denoted
by t). In Figure 3, we use “EH-PRNG(S1)” to denote the exponentially hard
PRNG prng : {0, 1}nprng → {0, 1}mprng with seed S1 ∈ {0, 1}nprng . The symbol
“Extractor(S2)” denotes the Extractor ext : {0, 1}next × {0, 1}mprng → {0, 1}mext

with random input S2 ∈ {0, 1}next . The random input S2 is chosen uniformly at
random from {0, 1}next at initialization time and it remains unchanged during
each invocation.

Fig. 3. Our Suggested Way to Generate Random Numbers for Scheme EG∗

According to “Only Computation Leaks Information” axiom, the two phases
leak information individually and we use two leakage functions (efficient com-
putable functions chosen by the adversary) to describe leakages during compu-
tation of the two phases. We use leakage function l1(S1) : {0, 1}nprng → {0, 1}λ1

to describe leakages from the first phase. The leakage function l1(S1) can sim-
ulate computation during the first phase (The adversary can encode the ex-
ponentially hard PRNG into l1.) and output information about both the seed
and the output of the exponentially hard PRNG prng(S1). But the length of
output of l1(S1) is bounded by leakage parameter λ1. We use leakage func-
tion l2(S2, prng(S1)) : {0, 1}next × {0, 1}mprng → {0, 1}λ2 to describe leakages
from computation of the second phase. We first do not allow the leakage func-
tion l2(S2, prng(S1)) to output any information about ext(S2, prng(S1)) (i.e. the
generated bit sequence). This means that the adversary only obtains leakages
from the internal states of the suggested way. We will discuss leakages from
the generated bit sequence later. Note that, no leakages occur at the absence
of computation during the two phases according to “Only Computation Leaks
Information” axiom.
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The following theorem guarantees that any probabilistic polynomial-time ad-
versary can not distinguish the bit sequence generated by the suggested way from
a true random bit sequence even if he obtains leakages from leakage functions
l1 (with sufficiently short output about both S1 and prng(S1)) and l2 when the
exponentially hard PRNG and Extractor satisfy some requirements.

Theorem 1. The seed S1 is chosen uniformly at random from {0, 1}dκ. Let
prng(S1) : {0, 1}dκ → {0, 1}mprng is a (2(c−1)dκ, 2cdκ)−secure pseudorandom ran-
dom number generator, where the constant c ∈ (0, 1). Let ext(S2, prng(S1)) :
{0, 1}next ×{0, 1}mprng → {0, 1}κ be a (ϵ,mprng − 2aκ− 0.5κ− 1) extractor, where
ϵ is negligible in κ and S2 is chosen uniformly at random from {0, 1}next . Let
l1(S1) : {0, 1}dκ → {0, 1}0.25κ (λ1 = 0.25κ) and l2(S2, prng(S1)) : {0, 1}next ×
{0, 1}mprng → {0, 1}0.25κ (λ2 = 0.25κ) be two leakage functions but l2(S2, prng(S1))
is restricted to output any information about ext(S2, prng(S1)). For a probabilis-
tic polynomial-time adversary A in κ, it holds that∣∣∣Pr[A(t, l1(S1), l2(S2, prng(S1))) = 1]− Pr[A(R, l1(S1), l2(S2, prng(S1))) = 1]

∣∣∣
< 2µ(κ) + ϵ

as long as

d ∈
(
max

{
Ω
(

1
κ22aκ

)
, (8a+1)κ+4

4(1−c)κ , 0.25
}
, 1
)
,

where µ(κ) = 2−aκ (The value a ∈ (0, 1) is a constant.) is negligible in κ and R
is chosen uniformly at random from {0, 1}κ.

Proof. We first prove the following Lemma holds.

Lemma 1 Let prng, l1, and l2 satisfy the requirements of Theorem 1. Then, for
any probabilistic polynomial-time adversary A in κ, it holds that∣∣∣Pr[A(l1(S1), l2(S2, prng(S1))) = 1]− Pr[A(l1(S1), l2(S2, Y )) = 1]

∣∣∣ < 2µ(κ),

where H∞(Y ) ≥ mprng − 2aκ− 0.25κ− 1.

Proof. We can prove Lemma 1 based on the following Lemma.

Lemma 2 Let prng(S1) : {0, 1}dκ → {0, 1}mprng is a (2(c−1)dκ, 2cdκ)−secure
pseudorandom random number generator, where the constant c ∈ (0, 1). Then if

2(c−1)dκ ≤ µ(κ)2

20.25κ − 2−2aκ−0.25κ−1

and S1 ∼ Udκ, it holds that
Pry[H

HILL
2µ(κ),Ω(µ2(κ)2cdκ/dκ)(prng(S1)|l1(S1) = y) ≥ mprng − 2aκ− 0.25κ− 1] ≥

1− µ(κ).
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This Lemma can be proved by Lemma 3 in [3] and Lemma 2.1 in [20]. For any
probabilistic polynomial-time adversary A in κ, we assume the adversary runs
in time κb, where b is a constant. According to Lemma 2, if the following three
inequations

2(c−1)dκ ≤ µ(κ)2

20.25κ − 2−2aκ−0.25κ−1,

2cdκ > κb,

κb ≥ Ω(µ2(κ)2cdκ/dκ)

hold simultaneously, the adversary A can not distinguish the output of prng (i.e.
prng(S1)) from a random variable Y that H∞(Y ) ≥ mprng−2aκ−0.25κ−1 even
if he obtains leakages about S1 with length at most 0.25κ bits. Then, Lemma 1
can be proven. It is clear that if prng and l1 satisfy the requirements of Theorem
1, the above three inequations hold simultaneously. �

The adversary can not distinguish the output of prng from a random variable
Y that H∞(Y ) ≥ mprng − 2aκ− 0.25κ− 1 even if he obtains l1(S1). Because the
adversary can only obtain at most 0.25κ bits leakage information about prng(S1)
from l2 and prng(S1) is input into a (ϵ,mprng− 2aκ− 0.5κ− 1) extractor. There-
fore, this theorem holds. �

Discussions Note that, the adversary A can also obtain the output of the
suggested way (i.e. t) from leakage function l2. In this case, according to different
leakage scenarios, it has that H∞(t) ≥ κ − λt from the adversary A’s view or
the adversary A can not distinguish t from a random variable Y such that
H∞(Y ) ≥ κ− λt, where λt denote the number of leakage bits about t.

From Theorem 1, we can see that the length of the seed of our suggested
way (i.e. dκ) depends on the security level (the value of a) and the size of the
adversary against the exponentially hard PRNG (the value of c). Specifically
speaking, on one hand, for a fixed security level, the length of the seed of our
suggested way should be longer for more powerful adversary. On the other hand,
for a fixed size adversary, the length of the seed of our suggested way should be
longer for higher security level. Our suggested way can also be used for other
leakage resilient cryptographic schemes similarly.

5 Conclusions and Future Work

Our results show that there exists a big gap between theoretical security of
leakage resilient cryptographic scheme and practical security of mathematical
realization of the same scheme. A leakage resilient cryptographic scheme may
not be practically secure when it is mathematically realized in accustomed ways
even if its theoretical security still holds.

It is well known that specifying all details of implementation in a leakage
model is tedious. Moreover, it is not clear if it is feasible at all to prove anything
without assuming some kind of bounded leakages at higher abstraction level (like
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mathematical realization at algorithmic level). For example, the paper [6] shows
that it is very difficult to state assumptions at logic gate level. So, even from
the practical point of view, working at higher abstraction level seems appealing.
Therefore, we suggest that all (practical) leakage resilient cryptographic schemes
should at least come with a kind of mathematical realization whose practical
security can be guaranteed. Our results also inspire cryptographers to design
advanced leakage resilient cryptographic schemes whose practical security of
mathematical realization is independent of specific mathematical realization.

In this paper, we only consider mathematical realization of the process of
generating random numbers. Whether mathematical realization of other crypto-
graphic components would affect practical security of mathematical realization
of a leakage resilient cryptographic scheme is still not known. For other leakage
resilient cryptographic schemes in different kinds of leakage models, we antici-
pate similar problems are also existent. These questions themselves are rather
interesting and worthy of research. Our results show a new perspective about
security of leakage resilient cryptographic schemes.
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15. Y. Dodis, K. Haralambiev, A. López-Alt and D. Wichs. Cryptography against
Continuous Memory Attacks. FOCS2010, pp.511-520, 2010.

16. Z. Brakerski, Y.T. Kalai, J. Katz and V. Vaikuntanathan. Overcoming the Hole
in the Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage.
FOCS2010. pp.501-510 , 2010.

17. A. Lewko, M. Lewko, and B. Waters. How to Leak on Key Updates. STOC2011,
pp.725-734, 2011.

18. ANSI X 9.17 (Revised), American National Standard for Financial Institution Key
Management (Wholesale),” American Bankers Association, 1985.

19. National Institute for Standards and Technology, Digital Signature Standard,”
NIST FIPS PUB 186, U.S. Department of Commerce, 1994.

20. B. Fuller, L. Reyzin. Computational Entropy and Information Leakage. IACR
Cryptology ePrint Archive 2012: 466, 2012.

21. S.S. Keller. NIST-Recommended Random Number Generator Based on ANSI
X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms

22. J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Cryptanalytic Attacks on Pseu-
dorandom Number Generators. Fifth International Workshop Proceedings(March
1998), Springer-Verlag, 1998, pp. 168-188.

23. http://www.spms.ntu.edu.sg/Asiacrypt2010/AsiaCrypt slides/pietrzakAC11.pdf.
24. F.-X. Standaert. How Leaky is an Extractor?. LATINCRYPT2010, LNCS 6212,

pp.294-304, 2010.
25. D. Galindo, S. Vivek. Limits of a conjecture on a leakage-resilient cryptogystem.

Information Processing Letters Vol. 114, Issue 4, pp.192-196, 2014.
26. Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical Leakage-Resilient Pseu-

dorandom Generators. CCS2010.
27. Y. Dodis, S. Goldwasser, Y.T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-

Key Encryption Schemes With Auxiliary Inputs. TCC2010, LNCS 5978, pp.361-
381, 2010.

28. Y. Dodis, Y.T. Kalai, and S. Lovett. On Cryptography With Auxiliary Input.
STOC2009.

29. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy, Chapter 8, pp.296, CRC Press,1996.

30. C. Clavier, M. Joye. Universal exponentiation algorithm. CHES2001, LNCS 2162,
pp.300-308, 2001.

31. P.C. Kocher. Timing Attacks On Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. Crypto1996, LNCS 1109, pp.104-113, 1996.

32. E. Trichina, A. Bellezza. Implementation of Elliptic Curve Cryptography with
Built-in Counter Measures against Side Channel Attacks. CHES2002, LNCS 2729,
pp.61-77, 2003.

33. K. Pietrzak. A Leakage Resilient Mode of Operation. EUROCRYPT2009, LNCS
5479, pp.462-482, 2009.

21



Appendix A: The Result of Our Attacks

We use ρATTACKI (resp. ρATTACKII) to denote the specific value of ρ for AT-
TACK I (resp. ATTACK II). We define λATTACKI (resp. λATTACKII) to denote
the specific value of leakage parameter λ for ATTACK I (resp. ATTACK II). We
use v to denote how many times the PRNG is invoked in order to generate the
random number ri.

Table A.1. Attack results about ANSI X9.17 PRNG
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

700 100.29% 25.14% 351 175 11

704 100.28% 25.00% 353 175 11

832 100.24% 23.56% 417 195 13

960 100.21% 22.50% 481 215 15

1088 100.18% 21.69% 545 235 17

Table A.2. Attack results about about FIPS 186 PRNG
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

964 100.21% 25.10% 483 241 7

1120 100.18% 21.61% 561 241 7

1280 100.16% 18.91% 641 241 8

1440 100.14% 16.81% 721 241 9

1600 100.13% 15.13% 801 241 10

Table A.3. Attack results about leakage resilient PRNG instantiated with AES-128
|p| (in bits) ρATTACKI ρATTACKII λATTACKI λATTACKII v (times)

804 100.24% 25.12% 403 201 7

896 100.22% 22.54% 449 201 7

1024 100.20% 19.73% 513 201 8

1152 100.17% 17.53% 577 201 9

1280 100.16% 15.78% 641 201 10

Appendix B: The Attack Processes

We show our attack processes in the following.
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