
Tight Security Bounds for Key-Alternating Ciphers

Shan Chen John Steinberger

Abstract

A t-round key-alternating cipher (also called iterated Even-Mansour cipher) can be viewed as an
abstraction of AES. It defines a cipher E from t fixed public permutations P1, . . . , Pt : {0, 1}n →
{0, 1}n and a key k = k0‖ · · · ‖kt ∈ {0, 1}n(t+1) by setting Ek(x) = kt⊕Pt(kt−1⊕Pt−1(· · · k1⊕P1(k0⊕
x) · · ·)). The indistinguishability of Ek from a truly random permutation by an adversary who also
has oracle access to the (public) random permutations P1, . . . , Pt was investigated in 1997 by Even
and Mansour for t = 1 and for higher values of t in a series of recent papers. For t = 1, Even and
Mansour proved indistinguishability security up to 2n/2 queries, which is tight. Much later Bogdanov

et al. (2011) conjectured that security should be 2
t

t+1
n queries for general t, which matches an easy

distinguishing attack (so security cannot be more) . A number of partial results have been obtained
supporting this conjecture, besides Even and Mansour’s original result for t = 1: Bogdanov et al.
proved security of 2

2
3
n for t ≥ 2, Steinberger (2012) proved security of 2

3
4
n for t ≥ 3, and Lampe,

Patarin and Seurin (2012) proved security of 2
t

t+2
n for all even values of t, thus “barely” falling short

of the desired 2
t

t+1
n.

Our contribution in this work is to prove the long-sought-for security bound of 2
t

t+1
n, up to a

constant multiplicative factor depending on t. Our method is essentially an application of Patarin’s
H-coefficient technique. The proof contains some coupling-like and inclusion-exclusion ideas, but the
main trick that pushes the computations through is to stick with the combinatorics and to refrain
from rounding any quantities too early. For the reader’s interest, we include a self-contained tutorial
on the H-coefficient technique.

Introduction

Given t permutations P1, . . ., Pt : {0, 1}n → {0, 1}n the t-round key-alternating cipher based on
P1, . . . , Pt is a blockcipher E : {0, 1}(t+1)n × {0, 1}n → {0, 1}n of keyspace {0, 1}(t+1)n and message
space {0, 1}n, where for a key k = k0‖k1‖ · · · ‖kt ∈ {0, 1}

(t+1)n and a message x ∈ {0, 1}n we set

E(k, x) = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · ·P1(k0 ⊕ x) · · ·)). (1)

(See Figure 1.) Plainly, E(k, ·) is a permutation of {0, 1}n for each fixed k ∈ {0, 1}(t+1)n ; we let E−1(k, ·)
denote the inverse permutation. The Pi’s are called the round permutations of E and t is the number

of rounds of E. Thus t and the permutations P1, . . . , Pt are parameters determining E.

k0

P1

k1

P2

k2

P3
b b b Pt

kt

Figure 1: A t-round key alternating cipher.

1

Key-alternating ciphers were first proposed (for values of t greater than 1) by the designers of
AES [4, 5], the Advanced Encryption Standard. Indeed, AES-128 itself can be viewed as a particular
instantiation of the key-alternating cipher paradigm in which the round permutations P1, . . . , Pt equal
a single permutation P (the Rijndael round function, in this case), in which t = 10, and in which only
a subset of the {0, 1}(t+1)n = {0, 1}11n possible keys are used (more precisely, the 11n bits of key are
derived pseudorandomly from a seed of n bits, making the key space {0, 1}n = {0, 1}128). However,
for t = 1 the design was proposed much earlier by Even and Mansour as a means of constructing a
blockcipher from a fixed permutation [6]. Indeed, key-alternating ciphers also go by the name of iterated
Even-Mansour ciphers.

Even and Mansour accompanied their proposal with “provable security” guarantees by showing that,
for t = 1, an adversary needs roughly 2n/2 queries to distinguish E(k, ·) for a random key k (k being
hidden from the adversary) from a true random permutation, in a model where the adversary is given
oracle access to E(k, ·), E−1(k, ·) as well as to P1, P

−1
1 , where P1 is modeled as a random permutation

(in the dummy world, the adversary is given oracle access to two independent random permutations
and their inverses). Their bound was matched by Daemen [3], who showed a 2n/2-query distinguishing
attack for t = 1.

For t > 1, we can generalize the Even-Mansour indistinguishability experiment by giving the ad-
versary oracle access to P1, . . . , Pt and their inverses and to E(k, ·), E−1(k, ·) in the real world (for a
randomly chosen, hidden k ∈ {0, 1}(t+1)n), and to a tuple of t + 1 independent random permutations
and their inverses in the “ideal” or “dummy” world (see Figure 2). In this case, Daemen’s attack can

be easily generalized to an attack of query complexity 2
t

t+1
n, as pointed out by Bogdanov et al. [2], but

the security analysis of Even and Mansour could not be easily generalized to match this bound (though
security of 2n/2 queries still holds, and is easy to prove in a black-box fashion from the Even-Mansour
result).

Bogdanov et al. did show, though, security of 2
2
3
n for t ≥ 2 (modulo lower-order terms), which is

tight for t = 2 as it matches the 2
t

t+1
n-query attack. Later Steinberger [14] improved this bound to

2
3
4
n queries for t ≥ 3 by modifying technical aspects of Bogdanov et al.’s analysis. Orthogonally and

simultaneously, Lampe, Patarin and Seurin [8] used coupling-based techniques to show security of 2
t

t+1
n

queries for nonadaptive adversaries and security 2
t

t+2
n for adaptive adversaries (and even values of t).

While the bound 2
t

t+2
n might seem “almost” sharp, we note that

2
t

t+2
n = 2

(t/2)
(t/2)+1

n

is actually the conjectured adaptive security for t/2 rounds. Indeed, Lampe et al. basically show that
an adaptive adversary attacking the t-round construction has no more advantage than a nonadapative
adversary attacking t/2 rounds (this reduction follows upon work of Maurer et al. [11, 12]). Seen this
way, Lampe et al.’s result appears less sharp. The issue is not only qualitative since their bound only
improves on Steinberger’s for t ≥ 8.

Our results. In this paper we finally prove security of 2
t

t+1
n queries for key-alternating ciphers, which

has been the conjectured security since the paper of Bogdanov et al., and which is provably tight by the
attack in the same paper. More precisely, we show that an adaptive adversary making at most q queries
to each of its oracles has distinguishing advantage bounded by O(1)qt+1/N t +O(1), where N = 2n and
the two O(1) terms depend on t. (See Section 1 for a formal statement.)

Our techniques are (maybe disappointingly) not as conceptually novel as those of [14] or [8], as we
simply apply Patarin’s H-coefficient technique. The crucial step is lower bounding the probability of a
certain event, namely of the event that q input-output values become linked when t partially defined
composed permutations (whose composition so far poses no contradiction to the linking of said q input-
output pairs) are randomly extended. The surprising aspect of these computations is that various

2

Ek P1
b b b b Pt

World 1

Q P1
b b b b Pt

World 2

D

Figure 2: The two worlds for the Even-Mansour security experiment. In World 1 the distinguisher D
has oracle access to random permutations P1, . . . , Pt and the key-alternating cipher Ek (cf. Eq. (1)) for
a random key k. In World 2, D has oracle access to t+ 1 independent random permutations. In either
world D also has oracle access to the inverse of each permutation.

“second-order” factors (that one might otherwise expect to not matter) actually need to be taken into
account. Informally, this can be ascribed to the fact that the values of q under consideration are far
beyond birthday.

Besides shedding some light on the structural and probabilistic aspects of key-alternating ciphers in
the ideal permutation model, we also hope this paper will serve as a useful additional tutorial on (or
introduction to) Patarin’s H-coefficient technique, which still seems to suffer from a lack of exposure.

We note that [8] also uses H-coefficient-based techniques and, indeed, our approach is much more
closely inspired by that of [8] than by [2, 14].

Paper organization. Definitions relating to key-alternating ciphers as well as a formal statement of
our main result are given in Section 1. An overview of the H-coefficient technique is given in Section 2.
The proof of the main theorem is given in Section 3.

Acknowledgments. The authors would like to thank Jooyoung Lee, Rodolphe Lampe and Yannick
Seurin for helpful conversations.

1 Definitions and Main Result

A t-round key-alternating cipher E has keyspace {0, 1}(t+1)n and message space {0, 1}n. We refer back to
equation (1) for the definition of E(k, x) (which implicitly depends on the choice of round permutations
P1, . . . , Pt). We note that E−1(k, y) has an analoguous formula in which P−1

t , . . . , P−1
1 are called. We

write Ek for the permutation E(k, ·).
We work in the ideal permutation model. For our purposes, the PRP security of a t-round key-

alternating cipher E against a distinguisher (or “adversary”) D is defined as

Adv
PRP
E,t (D) = Pr[k = k0 · · · kt ←− {0, 1}

(t+1)n ;DEk,P1,...,Pt = 1]− Pr[DQ,P1,...,Pt = 1] (2)

where in each experiment Q, P1, . . . , Pt are independent uniform random permutations, where DA

denotes that D has oracle access to A and A−1 (since all oracles are permutations), and where k =
k0 · · · kt is selected uniformly at random (and hidden from D). See Figure 2. We further define

Adv
PRP
E,t (qe, q) = max

D
Adv

PRP
E,t (D)

where the maximum is taken over all distinguishers D that make at most qe queries to their first oracle
at at most q queries to each of their other oracles. (The notation Adv

PRP
E,t (·) is thus overloaded.)

Accounting for cipher queries and permutation queries separately has the main advantage of clarifying
“which q is which” in the security bound. Lampe et al. [8] do an even more fine-grained query accounting,

3

with a separate variable for each permutation; this can be done here, too, but we judged the conceptual
gain wasn’t worth the notational complication. We also note that, besides t, n is a parameter on which
E (and hence Adv

PRP
E,t (q)) depends.

(As an aside, we note the above indistinguishability experiment differs from the recently popular
framework of indifferentiability by, among others, the presence of a secret key and the absence of a
simulator; the similarity, on the other hand, is that the adversary can query the internal components of
the structure. The end goal of the security proof is also different, since we simply prove PRP-security
(with tight bounds) whereas indifferentiability aims to prove something much stronger, but, typically,
with much inferior bounds. See [1] for indifferentiability results on key-alternating ciphers.)

Our main result is the following:

Theorem 1 Let N = 2n and let q ≤ N/3, t ≥ 1. Then for any constant C ≥ 1,

Adv
PRP
E,t (qe, q) ≤

qeq
t

N t
· Ct2(6C)t + (t+ 1)2

1

C
.

Interpretation. The presence of the adjustable constant C in Theorem 1 is typical of security proofs
that involve a threshold-based “bad event”. The constant corresponds to the bad event’s (adjustable)
threshold. Some terms in the security bound grow with C, others decrease with C. For every qe, q, N
there is some optimal value of C that minimizes the bound.

Taking C = 50t2 and qe = q, one can note that meaningful security is obtained for q up to about

N
t

t+1/300t2. Thus, our security bound diverges from N
t

t+1 by a polynomial factor in t. This seems
acceptable, since security bounds typically diverge from their exponential idealizations by a factor
polynomial in the security parameter (e.g., N/n versus N). Moreover t is thought of as a small constant
independent of the security parameter, so a polynomial factor in t seems preferable to a polynomial
factor in n. (Still, it would be nice to know whether the polynomial dependence on t is necessary or
not.)

Generalization. In the case when D’s queries are accounted for by t+1 separate variables qe, q1, . . . , qt,
the product qeq

t in Theorem 1 should simply be replaced by qeq1 · · · qt. The proof is this more general
fact is easy to reconstruct from the proof of Theorem 1.

2 The H-coefficient Technique in a Nutshell

In this section we give a quick high-level outline of Patarin’s H-coefficient technique. Indeed, we imagine
that many readers might feel more curiosity about the high-level approach than about the technical
details of our proof. This tutorial takes a broader view than Patarin’s own [13], but [13] mentions
refinements for nonadaptive adversaries and “plaintext only” attacks that we don’t touch upon here.
We emphasize that the material in this section is “informal by design” and should not be considered
part of our proof.

The general setting is that of a q-query information-theoretic distinguisher D interacting with one
of two oracles, the “real world” oracle or the “ideal world” oracle. (Each oracle might consist of several
interfaces for D to query.) By such interaction, D creates a transcript, which is a list of queries made
and answers returned. We can assume without loss of generality that D is deterministic, and makes its
final decision as a (deterministic) function of the transcript obtained.

We note the probability of obtaining a certain transcript might be different in either world (even
if nonzero in both worlds). If we denote by X the probability distribution on transcripts induced by
the real world, and by Y the probability distribution on transcripts induced by the ideal world (for
some fixed deterministic distinguisher D) then D’s distinguishing advantage (cf. (2)) is easily seen to

4

be upper bounded by

∆(X,Y) :=
1

2

∑

τ∈T

|Pr[X = τ]− Pr[Y = τ]|

(the so-called statistical distance or total variation distance between X and Y) where T denotes the set
of all possible transcripts.

Essentially, the main idea behind Patarin’s H-coefficient technique is to use the fact that

∆(X,Y) = 1− Eτ∼Y

[

min(1,Pr[X = τ]/Pr[Y = τ])
]

(3)

to upper bound ∆(X,Y). Here Eτ∼Y [Z(τ)] is the expectation of the random variable Z(τ) when τ is
sampled according to Y , and one assumes min(1,Pr[X = τ]/Pr[Y = τ]) = 1 if Pr[Y = τ] = 0. For
completeness we record the easy proof of (3):

∆(X,Y) =
∑

τ∈T :Pr[Y=τ]>Pr[X=τ]

(Pr[Y = τ]− Pr[X = τ])

=
∑

τ∈T :Pr[Y=τ]>Pr[X=τ]

Pr[Y = τ](1 − Pr[X = τ]/Pr[Y = τ])

=
∑

τ∈T

Pr[Y = τ](1−min(1,Pr[X = τ]/Pr[Y = τ]))

= 1− Eτ∼Y

[

min(1,Pr[X = τ]/Pr[Y = τ])
]

.

Thus, by (3), upper bounding the distinguisher’s advantage reduces to lower bounding the expecta-
tion

Eτ∼Y

[

min(1,Pr[X = τ]/Pr[Y = τ])
]

. (4)

Typically, some transcripts are better than others, in the sense that for some transcripts τ the ratio

Pr[X = τ]/Pr[Y = τ]

might be quite small (when we would rather the ratio be near 1), but these “bad” transcripts occur
with small probability. A typical proof classifies the set T of possible transcripts into a finite number
of combinatorially distinct classes T1, . . . ,Tk and exhibits values ε1, . . . , εk ≥ 0 such that

τ ∈ Ti =⇒ Pr[X = τ]/Pr[Y = τ] ≥ 1− εi. (5)

Then

Eτ∼Y

[

min(1,Pr[X = τ]/Pr[Y = τ])
]

≥
k
∑

i=1

Pr[Y ∈ Ti](1− εi)

and, by (3),

∆(X,Y) ≤
k
∑

i=1

Pr[Y ∈ Ti]εi.

The “ideal world” random variable Y often has a very simple distribution, making the probabilities
Pr[Y ∈ Ti] easy to compute. On the other hand, proving the lower bounds (5) for i = 1 . . . k can be
difficult, and we rediscuss this issue below.

Many proofs (including ours) have k = 2, with T1 consisting of the set of “good” transcripts and T2
consisting of the set of “bad” transcripts (i.e., those with small value of Pr[X = τ]/Pr[Y = τ]); then ε1
is small and ε2 is large, while (hopefully) Pr[Y ∈ T1] is large and Pr[Y ∈ T2] is small, and

∆(X,Y) ≤ Pr[Y ∈ T1]ε1 + Pr[Y ∈ T2]ε2 ≤ ε1 + Pr[Y ∈ T2].

5

The final upper bound on ∆(X,Y), in this case, can thus be verbalized as “one minus the probability
ratio of good transcripts [i.e., ε1], plus the probability of a transcript being bad” (the latter probability
being computed with respect to the distribution Y). This is the form taken by our own bound.

Theoretically, by using a sufficiently large (and possibly non-constant) value of k, the H-coefficient
technique can be used to give sharp indistinguishability bounds in any (information-theoretic) setting.
However, lower bounding the probability ratio Pr[X = τ]/Pr[Y = τ], even when some structure is
understood on τ , can sometimes reveal itself to be an intractable problem (but see below for some general
techniques). Moreover, other indistinguishability proof methods (such as game-playing or couplings)
may be more appropriate or easier to apply than the H-coefficient technique, depending on the situation.

Lower bounding the ratio Pr[X = τ]/Pr[Y = τ]. The random variables X and Y are, formally,
defined on underlying probability spaces that contain respectively all the coins needed for the real and
ideal world experiments. To be more illustrative, in the case of the key-alternating cipher distinguisha-
bility experiment X’s underlying probability space consists of all possible (t + 1)-tuples of the form
(k, P1, . . . , Pt) where k ∈ {0, 1}(t+1)n and where each Pi is a permutation of {0, 1}n, while Y ’s under-
lying probability space is all (t + 1)-tuples of the form (Q,P1, . . . , Pt) where Q as well as each Pi is a
permutation of {0, 1}n. (In either case the measure is uniform.) For the following, we write ΩX , ΩY for
the probability spaces on which respectively X and Y are defined; we assume for simplicity that these
probability spaces are finite and endowed with uniform measure (as is often the case). We also note
that each ω in ΩX or ΩY can be viewed as an oracle for D to interact with, thus we may use phrases
such as “D runs with oracle ω”, etc. To recapitulate, X and Y are (formally) functions X : ΩX → T ,
Y : ΩY → T , where X(ω) is the transcript obtained by running D with oracle ω ∈ ΩX , and where Y (ω)
is the transcript obtained by running D oracle ω ∈ ΩY .

There is usually an obvious notion of “compatibility” between a transcript τ and an element ω ∈ ΩX

or ω ∈ ΩY . For example, in the case of key-alternating ciphers, if τ contains a query to P1 and nothing
else, the ω’s in ΩX that are compatible with τ will be exactly those where the P1-coordinate of ω agrees
with the query in τ ; there are 2(t+1)n · (2n − 1)! · (2n!)t−1 such “compatible” ω’s in ΩX . For the same
transcript, there would be (2n − 1)! · (2n!)t compatible ω’s in ΩY . We write compX(τ) for the set of
ω’s in ΩX compatible with a transcript τ , and we define compY (τ) likewise with respect to ΩY . (We
agree that the definition of “compatibility” has not been formalized by the one example above, but we
remind the reader that we are only doing a high-level overview of ideas in this section.)

We note that the statement “ω is compatible with τ” is actually not equivalent to the statement
“running D with oracle ω produces τ”. Indeed, some τ ’s may never be produced by D at all; e.g., if a
transcript τ contains more than q queries, or if it contains queries to P1 when D is a distinguisher that
never queries P1, etc, then τ is never produced by D (i.e., Pr[X = τ] = Pr[Y = τ] = 0), but this does
not prevent compX(τ), compY (τ) from being well-defined.

A central insight of the H-coefficient technique (which is usually taken for granted and used without
mention) is that when τ is a possible transcript of D at all (i.e., if either Pr[X = τ] > 0 or Pr[Y = τ] > 0)
then

Pr[X = τ] =
|compX(τ)|

|ΩX |
and Pr[Y = τ] =

|compY (τ)|

|ΩY |
. (6)

We (informally) argue these equalities, focusing on the first one. Firstly, executing D with an ω ∈ ΩX ,
ω /∈ compX(τ) can obviously not produce τ as a transcript, since ω is not compatible with τ . It therefore
suffices to show that running D on an oracle ω ∈ compX(τ) produces the transcript τ . For this, we
know by assumption that there exists an ω′ ∈ ΩX ∪ ΩY such that running D on oracle ω′ produces τ .
However, one can show by induction on the number of queries made by D that the computations Dω

and Dω′

will not “diverge”, since every time D makes a query to ω′ this query appears in τ and, hence,
because ω ∈ compX(τ), will be answered the same by ω (also recall that D is deterministic). Hence Dω

will produce the same transcript as Dω′

, i.e., τ .

6

By (6), since

|compX(τ)|

|ΩX |
= Pr

ΩX

[ω ∈ compX(τ)] and
|compY (τ)|

|ΩY |
= Pr

ΩY

[ω ∈ compY (τ)] (7)

the ratio Pr[X = τ]/Pr[Y = τ] is equal to

PrΩX
[ω ∈ compX(τ)]

PrΩY
[ω ∈ compY (τ)]

(8)

and it therefore suffices to lower bound the latter ratio of probabilities. (One could also try directly
counting the size of the sets compX(τ), compY (τ), however, this is often intractable for compX(τ),
making a probabilistic approach preferable.)

Looking at (8) the reader may wonder whether anything substantial has been gained so far, or
whether notations are simply being shuffled around; after all, Pr[X = τ] and PrΩX

[ω ∈ compX(τ)] are
“obviously the same thing”1 (and the same for Y). However the probability PrΩX

[ω ∈ compX(τ)] offers
a considerable conceptual advantage over the probability Pr[X = τ], as PrΩX

[ω ∈ compX(τ)] refers to
an experiment with a non-adaptive flavor (a transcript τ is fixed, and a uniform random element of
ΩX is drawn—what is the probability of compatibility?) while the probability Pr[X = τ] refers, by
definition, to the adaptive interaction of D with its oracle, which is much messier to think about.

We note in passing that the ideal world probability PrΩY
[ω ∈ compY (τ)] is often quite trivial to

compute, due to the ideal world’s nice structure.
This is about all we can say about the H-coefficient technique at a high level. We do note that a

common way of computing PrΩX
[ω ∈ compX(τ)] is to write

Pr
ΩX

[ω ∈ compX(τ)] = Pr
ΩX

[ω ∈ comp′X(τ)] · Pr
ΩX

[ω ∈ compX(τ)|ω ∈ comp′X(τ)]

= (|comp′X(τ)|/|ΩX |) · Pr
comp′X(τ)

[ω ∈ compX(τ)]

for some set comp′X(τ) ⊆ ΩX such that compX(τ) ⊆ comp′X(τ). E.g., in the case of key-alternating
ciphers, comp′X(τ) might be defined as all points of ΩX that at least agree with τ on the queries to
P1, . . . , Pt, if not on the queries to P0. The question then becomes, when a uniform random element
ω ∈ comp′X(τ) is picked, what is the probability this ω also agrees with the queries to P0?

3 Proof of Theorem 1

We make the standard simplifying assumption that the distinguisher D is deterministic. This assump-
tion is without loss of generality since if D is randomized it is easy to see that D’s coins can be fixed
to value such that the resulting “induced” distinguisher D (running on the fixed random tape) has
advantage at least that of the original randomized D.

For simplicity, we also assume the distinguisher never makes redundant queries; e.g., queries Pi twice
on the same point, or queries Pi(x) obtaining answer y and then later queries P−1

i (y). Moreover, we
will assume that D makes exactly qe queries to its first oracle and exactly q queries to each of its other
oracles. This assumption is obviously without loss of generality.

We refer to the case where D has an oracle tuple of the type (Ek, P1, . . . , Pt) as the “real world” and
to the case when D has an oracle tuple of the type (Q,P1, . . . , Pt) as the “ideal world”. For convenience,
we will be generous with the distinguisher in the following way: at the end of the experiment (when
the distinguisher has made its (t + 1)q queries, but before the distinguisher outputs its decision) we

1In fact, as already pointed out, Pr[X = τ] and PrΩX
[ω ∈ compX(τ)] are not the same thing for τ ’s outside the range

of D.

7

reveal the key k = k0k1 · · · kt to the distinguisher in the real world, while in the ideal world we sample
a dummy key k′ = k′0k

′
1 · · · k

′
t and reveal this dummy key to the distinguisher. A distinguisher playing

this “enhanced” game is obviously at no disadvantage, since it can disregard the key if it wants.
For the remainder of the proof we consider a fixed distinguisher D conforming to the conventions

above. We can summarize D’s interaction with its oracles by a transcript consisting of a sequence of
tuples of the form (i, σ, x, y) where i ∈ {0, . . . , t}, σ ∈ {+,−} and x, y ∈ {0, 1}n, plus the key value k at
the end of the transcript. If σ = + such a tuple denotes that D made the query Pi(x) obtaining answer
y, or if σ = − that D made the query P−1

i (y) obtaining answer x, and D’s interaction with its oracles
(as well as D’s final output bit) can be uniquely reconstructed from such a sequence of tuples. In fact,
we can (and shall) encode the transcript as an unordered set of directionless tuples of the form (i, x, y)
(plus the key value k). Indeed, given that D is deterministic, D’s interaction can still be reconstructed
from such a transcript. (Consider that D always makes the same first query, since it is deterministic;
we can look up the answer to this query in the transcript, deduce the second query made by D again
since D is deterministic, and so on.) All in all, therefore, the transcript can be encoded as a tuple
(k, p0, p1, . . . , pt) where k ∈ {0, 1}(t+1)n is the key (real or dummy) and where pi, i ≥ 1, is a table
containing q pairs (x, y), where each such pair either indicates a query Pi(x) = y or a query P−1

i (y) = x
(which it is can be deduced from the transcript), and where p0 similarly contains the qe input-output
pairs queried to the cipher. One can also view pi as a bipartite graph with shores {0, 1}n and containing
q (resp. qe, in the case of p0) disjoint edges.

We let T denote the set of all possible transcripts, i.e., the set of all tuples of the form (k, p0, . . . , pt)

as described above. Thus |T | = 2(t+1)n
((2n

qe

)

2n!
(2n−qe)!

)

(
(2n

q

)

2n!
(2n−q)!

)t
. We note that some elements of

T—in fact, most elements—may never be obtained by D. For example, if D’s first query is P1(0
n) then

(this first query never varies and) any transcript obtained by D contains a pair of the form (0n, y) in
the table p1, for some y ∈ {0, 1}n.

Let P be the set of all permutations of {0, 1}n; thus |P| = (2n)!. Let Pt = P × · · · × P be the t-fold
direct product of P. Let ΩX = {0, 1}(t+1)n × Pt and let ΩY = {0, 1}(t+1)n × Pt+1. Elements of ΩX

can be viewed as “real world” oracles for D to interact with (in the obvious way) while elements of ΩY

can be viewed as “ideal world” oracles for D to interact with (also in the obvious way). (We note that
ΩY is slightly different from the ΩY appearing in the examples of Section 2, due to our convention of
giving away the key as part of the transcript.) We write X(ω) for the transcript obtained by running
D with oracle ω ∈ ΩX , and Y (ω) for the transcript obtained by running D with oracle ω ∈ ΩY . Thus
X : ΩX → T , Y : ΩY → T and by endowing ΩX , ΩY with the uniform probability distribution, X and
Y become random variables of range T , whose distributions are exactly those obtained by running D
in the real and ideal worlds respectively. Since D’s output is a deterministic function of the transcript,
D’s distinguishing advantage can be written

Pr[D(X) = 1]− Pr[D(Y) = 1]

(here identifying D with a function outputting a final decision from the transcript); thus D’s advantage
is upper bounded by

∆(X,Y) =
1

2

∑

τ∈T

|Pr[X = τ]− Pr[Y = τ]|

by standard considerations.
In order to upper bound ∆(X,Y) we make use of the equality

∆(X,Y) = 1− Eτ∼Y

[

min(1,Pr[X = τ]/Pr[Y = τ])
]

mentioned in Section 2. More precisely, we will identify a set T1 ⊆ T of “good” query transcripts, and
a set T2 ⊆ T of “bad” transcripts, such that T is the disjoint union of T1 and T2. Then, as shown in

8

Section 2,

∆(X,Y) ≤ ε1 + Pr[Y ∈ T2] (9)

where ε1 is a number such that
Pr[X = τ]

Pr[Y = τ]
≥ 1− ε1

for all τ ∈ T1 such that Pr[Y = τ] > 0.
We next discuss the definitions of T1 and T2; next we show Pr[Y ∈ T2] ≤ (t + 1)2 1

C ; and finally we

will show Pr[X = τ]/Pr[Y = τ] ≥ 1 − ε1 for τ ∈ T1 and ε1 = qe
(q
N

)t
Ct2(6C)t. We will assume for

these computations that Cqeq
t < N t. This assumption is without loss of generality since Theorem 1 is

vacuously true otherwise.

Bad Transcripts. Let τ = (k, p0, p1, . . . , pt) ∈ T be a transcript. We associate to τ a graph G(τ),
dubbed the round graph, that encodes the information contained in k as well as in p1, . . . , pt (but that
ignores p0). G(τ) has 2(t+1) · 2n vertices, grouped into “shores” of size 2n each, with each shore being
identified with a copy {0, 1}n. We index the 2(t + 1) shores as 0−, 0+, 1−, 1+, . . ., t−, t+. Vertex y
in shore i− is connected to vertex y ⊕ ki in shore i+ by an edge, and these are the only edges between
shores i− and i+. Moreover, for each (x, y) ∈ pi, 1 ≤ i ≤ t, we connect vertex x in shore (i − 1)+ to
vertex y in shore i−. Thus G(τ) consists of (t+1) full bipartite matchings (one per subkey) alternately
glued with q-edge partial matchings (one for each pi, 1 ≤ i ≤ t). Since G(τ) encodes all the information
in k, p1, . . . , pt, we can also write a transcript τ in the form τ = (p0, G) where G = G(τ).

Obviously, the presence of the full bipartite graphs corresponding to the subkeys k0, . . . , kt within
G(τ) is not topologically interesting. Call an edge of G(τ) a “key edge” if the edge joins the shores
i−, i+ for some i ∈ {0, . . . , t}. We then define the contracted round graph G̃(τ) obtained from G(τ) by
contracting all key edges; thus G̃(τ) has only t+ 1 shores; moreover, when an edge (y, y ⊕ ki) between
shores i−, i+ of G(τ) is contracted, the resulting vertex of G̃(τ) is given label y if 0 ≤ i ≤ t− 1, and is
given label y⊕ ki if i = t. (The labeling of vertices of G̃(τ) is somewhat unimportant and arbitrary, but
we adopt the above convention so that vertices in shores 0− and t+ of G(τ) keep their original labels
in G̃(τ). The latter ensures compatibility between these vertex labels and triples in p0.) We note that
a transcript τ is not determined by the pair (p0, G̃(τ)) (the key material being unrecoverable from the
latter pair) but, as we will see, Pr[X = τ] is determined by (p0, G̃(τ)).

An edge between shores (i− 1) and i of G̃(τ) is called an i-edge. (Each i-edge arises from an entry
in pi.) We write Zij(G̃(τ)) for the set of (necessarily edge-disjoint) paths that exists between shores i
and j of G̃(τ). We write Z−

ij (G̃(τ)), Z+
ij (G̃(τ)) for vertices of paths in Zij(G̃(τ)) that are respectively

in shores i and j of G̃(τ). We write p−0 = {x : (x, y) ∈ p0} and p+0 = {y : (x, y) ∈ p0} be the projection
of p0 to its first and second coordinates respectively.

We say a transcript τ is bad if there exist 0 ≤ i < j ≤ t such that

|Zij(G̃(τ))| >
Cqj−i

N j−i−1
(10)

or if there exists 0 ≤ i ≤ j ≤ t such that

|{(x, y) ∈ p0 : x ∈ Z−
0,i(G̃(τ)) ∧ y ∈ Z+

j,t(G̃(τ))}| >
Cqeq

i+t−j

N i+t−j
. (11)

The set of bad transcripts is denoted T2 and we let T1 = T \T2. Transcripts in T1 are called good.

Probability of Badness. We next upper bound Prτ∼Y [τ ∈ T2]. We view |Zij | = |Zij(G̃(τ))| as a
random variable defined on ΩY . Since k is independent of p0, p1, . . . , pt, any sequence

(xi+1, yi+1) ∈ pi+1, (xi+2, yi+2) ∈ pi+2, . . . , (xj , yj) ∈ pj

9

of j−i edges have probability (1/N)j−i−1 of becoming connected by ki+1, . . . , kj−1. (I.e., there is chance
(1/N)j−i+1 that kh = yh ⊕ xh+1 for h = i+ 1, . . . , j − 1.) By linearity of expectation, thus,

Eτ∼Y

[

|Zij |
]

=
qj−i

N j−i−1

since there are qj−i such sequences of edges in pi+1, . . . , pj. By Markov’s inequality, thus,

Pr
τ∼Y

[

|Zij | >
Cqj−i

N j−i−1

]

≤
1

C
(12)

for every 0 ≤ i < j ≤ t.
Because |p0| = qe, it is similarly easy to see that

Eτ∼Y

[

|{(x, y) ∈ p0 : x ∈ Z−
0,i ∧ y ∈ Z+

j,t}|
]

=
qeq

i+(t−j)

N i+t−j

for every 0 ≤ i ≤ j ≤ t, by which Markov again implies that

Pr
τ∼Y

[

|{(x, y) ∈ p0 : x ∈ Z−
0,i ∧ y ∈ Z+

j,t}| > C
qeq

i+(t−j)

N i+t−j

]

≤
1

C
(13)

for every 0 ≤ i ≤ j ≤ t.
Collecting the probabilities (12) for 0 ≤ i < j ≤ t and (13) for 0 ≤ i ≤ j ≤ t we obtain

Pr
τ∼Y

[τ ∈ T2] ≤

(

t+ 1

2

)

1

C
+

(

t+ 2

2

)

1

C
= (t+ 1)2

1

C
. (14)

Lower bounding Pr[X = τ]/Pr[Y = τ] for τ ∈ T1. An element ω = (k, P1, . . . , Pt) ∈ Ωx is
compatible with a transcript τ = (k∗, p0, . . . , pt) if k = k∗, if Pi(x) = y for every (x, y) ∈ pi, 1 ≤ i ≤ t,
and if Ek(x) = y for every (x, y) ∈ p0, where Ek stands for the Even-Mansour cipher instantiated with
permutations P1, . . . , Pt (and key k). We write compX(τ) for the set of w’s in ΩX that are compatible
with τ .

Analogously, an w = (k, P0, P1, . . . , Pt) ∈ ΩY is compatible with τ if the same conditions as above
are respected, but replacing the constraint Ek(x) = y with P0(x) = y for (x, y) ∈ p0. We write compY (τ)
for the set of ω’s in ΩY that are compatible with τ .

We also say ω = (k, P1, . . . , Pt) is partially compatible with τ = (k∗, p0, p1, . . . , pt) if k = k∗ and if
Pi(x) = y for all (x, y) ∈ pi, 1 ≤ i ≤ t. (Thus, the requirement that p0 agrees with Ek is dropped for
partial compatibility.) Likewise ω ∈ ΩY is partially compatible with τ if (exactly as above) k = k∗ and
Pi(x) = y for all (x, y) ∈ pi, 1 ≤ i ≤ t. (Thus, the requirement that p0 agrees with P0 is dropped.) We
write comp′X(τ), comp′Y (τ) for the set of ω’s in, respectively, ΩX or ΩY that are partially compatible
with τ . Note that

|comp′X(τ)|

|ΩX |
=
|comp′Y (τ)|

|ΩY |
=

1

N t+1
·

t
∏

i=1

(N − |pi|)!

N !
(15)

for any transcript τ = (k, p0, p1, . . . , pt), where |pi| denotes the number of pairs in pi.
We say that a transcript τ ∈ T is attainable if Pr[Y = τ] > 0. (Note that Pr[X = τ] > 0 =⇒

Pr[Y = τ] > 0.) In other words, a transcript is attainable if there exists an ω ∈ ΩY such that Dω

produces the transcript τ .

10

It is necessary and sufficient to lower bound Pr[X = τ]/Pr[Y = τ] for attainable transcripts τ ∈ T1.
It is easy to check that for an attainable transcript τ ,

Pr[Y = τ] =
|compY (τ)|

|ΩY |
, (16)

Pr[X = τ] =
|compX(τ)|

|ΩX |
. (17)

The elementary argument required to prove these identities is sketched in Section 2, and we omit it
here. Thus, by (15),

Pr[X = τ]

Pr[Y = τ]
=
|compX(τ)|

|comp′X(τ)|

/

|compY (τ)|

|comp′Y (τ)|
(18)

for τ such that Pr[Y = τ] > 0.
For the remainder of the argument we fix an arbitrary transcript τ = (k, p0, p1, . . . , pt) ∈ T1. We

aim to lower bound the right-hand side fraction in (18). (From here on, it no longer matters if τ is
attainable or not.)

For random permutations P1, . . . , Pt and partial permutations p1, . . . , pt, let Pi ↓ pi denote the event
that Pi extends pi, i.e., that Pi(x) = y for all (x, y) ∈ pi; then it is easy to see that

|compX(τ)|

|comp′X(τ)|
= Pr

[

Ek ↓ p0
∣

∣ k, P1 ↓ p1, . . . , Pt ↓ pk
]

(19)

where the underlying probability space is the choice of the uniform random permutations P1, . . . , Pt (the
notation conditions on τ ’s key k only to emphasize that k is not randomly chosen) and where Ek ↓ p0
is the event that Ek(x) = y for all (x, y) ∈ p0, where Ek is the Even-Mansour cipher with key k and
permutations P1, . . . , Pt. Similarly,

|compY (τ)|

|comp′Y (τ)|
= Pr

[

P0 ↓ p0
∣

∣ k, P1 ↓ p1, . . . , Pt ↓ pk
]

where the underlying probability space is the uniform random choice of P0, P1, . . . , Pt. In the latter
conditional probability however, the event P0 ↓ p0 is independent of the conditioned premise, so one
can already compute that

|compY (τ)|

|comp′Y (τ)|
= Pr

[

P0 ↓ p0
]

=

qe−1
∏

ℓ=0

1

N − ℓ
. (20)

To facilitate the computation of the conditional probability that appears in (19), let (in accordance
with the definition of the graph G̃(τ) above) p̃i be defined by

(x, y) ∈ p̃i ⇐⇒ (x⊕ ki−1, y) ∈ pi

for 1 ≤ i ≤ t− 1, and by
(x, y) ∈ p̃i ⇐⇒ (x⊕ ki−1, y ⊕ ki) ∈ pi

for i = t. Thus p̃1, . . . , p̃t are the t edge sets of the graph G̃(τ), i.e., p̃i is the set of edges between shores
i− 1 and i of G̃(τ). By elementary considerations, one has

Pr
[

Ek ↓ p0
∣

∣ k, P1 ↓ p1, . . . , Pt ↓ pk
]

= Pr
[

E0 ↓ p0
∣

∣P1 ↓ p̃1, . . . , Pt ↓ p̃k
]

(21)

where E0 denotes the Even-Mansour cipher instantiated with key 0(t+1)n, and where the probability is
taken (on either side) over the choice of the uniform random permutations P1, . . . , Pt. We will therefore
focus on the right-hand side probability in (21).

11

We say shore i of G̃(τ) is “to the left” of shore j if i < j. We also view paths in G̃(τ) as oriented
from left to right: the path “starts” at the leftmost vertex and “ends” at the rightmost vertex.

Let (x1, y1), . . . , (xqe , yqe) be the qe edges in p0. We write R(xℓ) for the rightmost vertex in the path
of G̃(τ) starting at xℓ, and L(yℓ) for the leftmost vertex in the path of G̃(τ) ending at yℓ. (More often
than not, xℓ and yℓ are not adjacent to any edges of G̃(τ), in which case R(xℓ) = xℓ, L(yℓ) = yℓ.) We
write the index of the shore containing vertex v as Sh(v). (Thus Sh(v) ∈ {0, 1, . . . , t}.) Because τ is
good, and because we are assuming Cqe(q/N)t < 1, Sh(R(xℓ)) < Sh(L(yℓ)) for 1 ≤ ℓ ≤ qe.

A vertex in shore i ≥ 1 is left-free if it is not adjacent to a vertex in shore i− 1. A vertex in shore
i ≤ t− 1 is right-free if it is not adjacent to a vertex in shore i+ 1.

To compute the conditional probability

Pr
[

E0 ↓ p0
∣

∣P1 ↓ p̃1, . . . , Pt ↓ p̃t
]

we imagine the following experiment in qe stages. Let G0 = G̃(τ). At the ℓ-th stage, Gℓ is inductively
defined from Gℓ−1. Let p̃

ℓ
i be the edges between shore i− 1 and i of Gℓ. Initially, Gℓ = Gℓ−1. Then, as

long as R(xℓ) is not in shore t, a value y is chosen uniformly at random from the set of left-free vertices
in shore Sh(R(xℓ)) + 1, and the edge (R(xℓ), y) is added to p̃ℓSh(R(xℓ))+1. Gℓ is the result obtained when

R(xℓ) reaches shore t. Thus, Gℓ has at most t more edges than Gℓ−1.
Since the permutations P1, . . . , Pt are uniformly random and independently chosen, it is easy to see

that
Pr
[

E0 ↓ p0
∣

∣P1 ↓ p̃1, . . . , Pt ↓ p̃t
]

= Pr
[

Gqe ↓ p0]

for the random graph Gqe defined in the process above, where the notation Gqe ↓ p0 is a shorthand
to indicate that vertices xℓ and yℓ are connected by a path in Gqe for 1 ≤ ℓ ≤ qe. Moreover, writing
xℓ → yℓ for the event that xℓ and yℓ are connected by a path in Gℓ (and thus in Gqe), and writing
Gℓ ↓ p0 for the event xj → yj for 1 ≤ j ≤ ℓ, we finally find

|compX(τ)|

|comp′X(τ)|
=

qe−1
∏

ℓ=0

Pr[xℓ+1 → yℓ+1 |Gℓ ↓ p0]. (22)

This formula should be compared with (20). Indeed, (20) and (22) imply that

|compX(τ)|

|comp′X(τ)|

/

|compY (τ)|

|comp′Y (τ)|
=

qe−1
∏

ℓ=0

Pr[xℓ+1 → yℓ+1 |Gℓ ↓ p0]

1/(N − ℓ)
(23)

which suggests that to lower bound Pr[X = τ]/Pr[Y = τ] one should compare Pr[xℓ+1 → yℓ+1 |Gℓ ↓ p0]
and 1/(N − ℓ). (More specifically, give a lower bound for the former that is not much less than the
latter.)

Some preliminary quantitative intuition for (23). Up to now, the proof has mostly been
notational setup. (The possible exception is the upper bounding of Pr[τ ∈ T2], but this is just an
application of Markov’s inequality, and the definition of T2 is also the obvious one.) The heart of the
proof, indeed, is lower bounding the product that appears in (23). At this stage we “pause” the proof to
give some quantitative intuition about this product. This intuition shows, in particular, the need for a
conservative computation. We will make the simplifying assumption that Sh(R(xℓ)) = 0, Sh(L(yℓ)) = t
for all 1 ≤ ℓ ≤ qe. (Which, as it turns out, still captures the most interesting features of the problem.)

As a warm-up we can consider the case t = 1. In this case, firstly, the “simplifying assumption”
Sh(R(xℓ)) = 0, Sh(L(yℓ)) = 1 actually holds with probability 1 for all τ ∈ T1, by the second bad event
in the definition of a bad transcript (i.e., (11)), and by our wlog assumption that

1 > Cqe(q/N)t = Cqeq/N. (24)

12

(In more detail, the right-hand side of (11) is Cqeq/N for i = j = 0 or i = j = 1. Thus, if there exists
an (xℓ, yℓ) ∈ p0 such that either R(xℓ) = 1 or L(yℓ) = 0, then τ ∈ T2.) Next (still for t = 1) it can be
directly observed that

Pr
[

xℓ+1 → yℓ+1|Gℓ ↓ p0
]

=
1

N − q − ℓ

since p̃1 = p̃01 contains q edges and since ℓ additional edges have been drawn by the time Gℓ+1 is
constructed. In fact, the ratio 1/(N − q− ℓ) is greater than 1/(N − ℓ), which means that in this case the
product (23) is also greater than 1, and one can therefore use ε1 = 0. I.e., for t = 1 the distinguisher’s
advantage is upper bounded by

ε1 Pr[Y ∈ T1] + ε2 Pr[Y ∈ T2] ≤ 0 · Pr[Y ∈ T1] + 1 · Pr[Y ∈ T2] = Pr[Y ∈ T2] ≤
2qeq

N

where the last inequality is obtained by direct inspection of the event τ ∈ T2 for t = 1. (For t = 1,
the only thing that can cause a transcript to be bad is if p−0 ⊕ k0 ∩ p−1 6= ∅ or if p+0 ⊕ k1 ∩ p+1 6= ∅.)
Note that even while Pr[X = τ]/Pr[Y = τ] ≥ 1 for all τ ∈ T1 such that Pr[Y = τ] > 0, one has
Pr[X = τ]/Pr[Y ∈ τ] = 0 for most τ ∈ T2 such that Pr[Y = τ] > 0. This is why ε1 can attain zero.

In passing, note we have proved the (2qeq/N)-security of the key-alternating cipher for t = 1, which
exactly recovers Even and Mansour’s original result for t = 1. The difference is that the H-coefficient
technique “mechanizes” the bound-proving, to a certain extent. (Even and Mansour’s proof is more
complicated, though it pursues the same basic idea.)

Given these auspicious beginnings for t = 1 one might feel inclined to optimism and to conjecture,
say, that the product (23) is always greater than 1 for good transcripts. However, let us start by dashing
these hopes with an example for t = 2. For the example, assume that p̃1 and p̃2 are disjoint, i.e., no
edge in p̃1 touches an edge in p̃2. (Thus G0 = G̃(τ) contains no paths of length 2.) The example will
be clearer if we start by examining the case p̃1 = ∅ (i.e., when there are no edges between shore 0 and
shore 1). Then one can compute that2

Pr[x1 → y1] =

(

1−
|p̃2|

N

)

1

N − |p̃2|
=

(

N − |p̃2|

N

)

1

N − |p̃2|
=

1

N
.

Similarly,

Pr[x2 → y2|G1 ↓ p0] =

(

1−
|p̃2|

N − 1

)

1

N − 1− |p̃2|
=

1

N − 1

since the vertex in shore 1 to which x2 is connected is sampled uniformly from a set of size N − 1, and
similarly the new vertex sampled in shore 2 (if such vertex is sampled) comes uniformly from a set of
size N − 1− |p̃2|. More generally, thus,

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] =

(

1−
|p̃2|

N − ℓ

)

1

N − ℓ− |p̃2|
=

1

N − ℓ
.

This is exactly the same probability as in the ideal case. So far so good, but these computations are
under the false assumption that p̃1 = ∅!

We now remove the assumption p̃1 = ∅, but keep the assumption that p̃1 and p̃2 are disjoint. In this
case, one has

Pr[x1 → y1] =

(

1−
|p̃2|

N − |p̃1|

)

1

N − |p̃2|
=

(

N − 2q

N − q

)

1

N − q
=

N − 2q

(N − q)2
.

2In more detail: when we travel from x1 to y1, the sampling process first chooses a random endpoint in shore 1 to attach
x1 to, and this endpoint has probability |p̃2|/N of “hitting” an edge in p̃2 (in which case we have no hope of reaching y1).
If we don’t hit an edge in p̃2, there is further chance 1/(N − |p̃2|) that we reach y1, since the vertex in shore 2 is sampled
uniformly at random from a set of size N − |p̃2|.

13

As our interest is to compare this quantity to 1/N , we further massage this expression by writing

N − 2q

(N − q)2
=

1

N
−

1

N
+

N − 2q

(N − q)2
=

1

N
−

(N − q)2

N(N − q)2
+

N(N − 2q)

N(N − q)2
=

1

N
−

q2

N(N − q)2
.

More generally, one finds that

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] =

(

1−
|p̃2|

N − ℓ− |p̃1|

)

1

N − ℓ− |p̃2|
=

1

N − ℓ
−

q2

(N − ℓ)(N − ℓ− q)2
(25)

as can be seen by substituting N by N − ℓ everywhere in the first computation. Thus the probability
Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] is now slightly lower than 1/(N − ℓ), which already rules out our optimistic
conjecture above. As for the value of the product (23) one finds, by (25),

qe−1
∏

ℓ=0

(

1−
q2

(N − ℓ− q)2

)

≥

(

1−
q2

(N − 2q)2

)qe

≥ 1−
qeq

2

(N − 2q)2
.

This is acceptably close to 1 (i.e., taking ε1 = qeq
2/(N − 2q)2 is acceptably close to zero) as long as

qeq
2 ≪ N2. We are (coincidentally or not, since the assumption qeq

2 ≪ N2 has already been used to
upper bound Pr[τ ∈ T2]) “bumping into” the security bound for t = 2. Thus, the approach still works
for t = 2, but this time the approach “barely works”.

In fact, the simplifying assumption that p̃1 and p̃2 are disjoint can easily be removed since, as is not
hard to see, having p̃1 and p̃2 disjoint is actually the worst case possible3 for t = 2. Moreover, the initial
simplifying assumption that R(xℓ) = 0, L(yℓ) = 2 for all ℓ is also easy to remove for t = 2, because
Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] actually increases to 1/(N − q − ℓ) (cf. the case t = 1) when either4 R(xℓ) = 1
or L(yℓ) = 1. Thus, the above computations essentially prove security of qeq

2/N2 for t ≥ 2 (indeed,
security is easily seen to “transfer upwards” from smaller to larger values of t), which is the main result
of Bogdanov et al. [2]. The proof sketched above is arguably simpler than Bogdanov et al.’s, though.
(Also, Bogdanov et al. seem to forget that if the only goal is to prove security of qeq

2/N2 for t ≥ 2 it
suffices to restrict oneself to the case t = 2. Their general approach, however, can be pushed slightly
further to cover the case t = 3, as shown by Steinberger [14].)

Going onwards and upwards, we now consider the case t = 3. Already, doing an exact probability
computation for the conditional probability Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] (as done in (25) for t = 2)
promises to be quite tedious for t = 3, so we can look at doing back-of-the-envelope estimates instead.
The simplest estimate is to lower bound the probability of xℓ+1 reaching yℓ+1 by upper bounding the
probability that the path being constructed meets a pre-existing edge in either shore 1 or shore 2, viz.,

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] ≥

(

1−
2q

N − ℓ− q

)

1

N − ℓ− q
(26)

where 2q/(N − ℓ− q) is a (crude) upper bound on the probability that the path touches a pre-existing
edge in either shore 1 or shore 2, and where 1/(N − ℓ − q) is the probability of reaching yℓ+1 if the
path reaches a right-free vertex in shore 2. However, (26) is worse than (25), so we are heading at best
for security of qeq

2/N2 if we use this estimate. One can argue that 2q/(N − ℓ− q) can be replaced by
q/(N−ℓ−q) in (26) (because: if we hit an edge in p̃1 that is not adjacent to an edge in p̃2 this only helps
us, and if we hit an edge in p̃1 that is adjacent to an edge in p̃2 this can be “billed” to the corresponding

3 On the other hand, we cannot count on p̃1 and p̃2 having a small intersection in order to possibly repair our optimistic
conjecture. Indeed, the distinguisher could make sure that p̃1 and p̃2 are almost certainly disjoint. For example, the
distinguisher could make q P2-queries with values that start with n/3 0’s, and also make q P−1

1 -queries with values that
start with n/3 0’s. Then p̃1 and p̃2 are disjoint unless the first n/3 bits of the key are 0, which occurs with negligible
probability.

4Note that one always has R(xℓ) < L(yℓ) by the definition of T2 and by the wlog assumption Cqt+1 < N t.

14

edge in p̃2) but even so we are headed towards a security of qeq
2/N2, by comparison with (25). In fact,

we can reflect that any approach that doesn’t somehow seriously take into account the presence of three
rounds is doomed to fail, because the computation for t = 2 is actually tight (cf. footnote 3), and thus
cannot be tweaked to give security better than qeq

2/N2.
As it turns out, the “exact but tedious” probability computation that we shied from above does

deliver a bound that implies the desired security of qeq
3/N3, even while back-of-the-envelope estimates

indicate a security bound of qeq
2/N2. Intuitively, the gain that occurs is due to the fact that when the

path hits an edge of p̃1 not connected to an edge of p̃2—and at most Cq2/N ≪ q edges in p̃1 are adjacent
to edges in p̃2, by definition of T2—this is actually better than not hitting any edge at all in shore 1,
because it guarantees we won’t hit an edge in p̃2. While this intuition is easy to see, it is somewhat
harder to believe such a small “second-order” effect would make a crucial difference in the final security
bound. Yet, this is exactly so. In fact, given the “completeness” of the H-coefficient method it makes
sense to have faith that the exact probability computation (if doable) will deliver security qeq

3/N3.
Though in reality even this is not a given: by giving away the key at the end of each transcript we have
been more generous to the adversary than those who devised the security conjecture of qeq

t/N t, so it’s
possible to conceive that it’s the “key’s fault” if the security is (apparently) topping off at qeq

2/N2 (as
opposed to the fault of our lossy estimates). Note that even if we have the correct intuition, and we
believe it isn’t the “key’s fault” and that the approach is theoretically sound, we are still up against
the problem of actually doing the computations in a such way that the desired security gain becomes
apparent.

We will show the “exact” probability computation for t = 3 in the next subsection, where we will
see it is neither more nor less terrible than might be expected. The t = 3 computation also serves as a
useful reference point for the general case.

Before that, we will estimate what kind of lower bound is actually needed for Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0]
in order to reach security ≈ qeq

t/N t. Writing

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] =
1

N − ℓ
+ zt

where zt is an “error term” whose magnitude will determine ε1, we find that

qe−1
∏

ℓ=0

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0]

1/(N − ℓ)
=

qe−1
∏

ℓ=0

(1 − (N − ℓ)zt) ≥ (1−N |zt|)
qe ≥ 1−Nqe|zt|.

Thus we will have ε1 ≈ Nqe|zt| and so we need need Nqe|zt| ≪ 1 in order for ε1 to be small. Having

|zt| = qt/N t+1 (27)

gives us precisely this under the assumption qeq
t/N t ≪ 1. The quantity qt/N t affords a natural

interpretation that resurfaces in the proof, so we will pre-emptively point out this interpretation here.
Let 0 ≤ i0 < . . . < is = t be some strictly increasing sequence of shore indices, s ≤ t. If we select a
vertex uniformly at random from shore ij of (say, for simplicity) G0 = G̃(τ) for 1 ≤ j ≤ s then the
probability that the selected vertex in shore ij is a vertex in Zij−1ij for 1 ≤ j ≤ s is upper bounded by

s
∏

j=1

|Zij−1ij |

N
≤

s
∏

j=1

(

Cqij−ij−1

N ij−ij−1−1

/

N

)

= Cs
(q

N

)t−i0

given the definition of T2. Discarding the (constant) factor of Cs, we see this probability is as small
as qt/N t as long as i0 = 0. As we will see in the general proof, the error term zt can be written as a
linear combination of probabilities that are (close to) the form above, but involving nonzero values of
i0. We will break up these probabilities into smaller (similar) probabilities such that all terms cancel

15

except those with i0 = 0. The latter terms are small enough so that the sum of their absolute values is
an “acceptable” upper bound on |zt|. (The number of such small terms will be exponentially many in
t, as reflected in the bound of Theorem 1.) These hand-wavy ideas will make more sense after we see
the case t = 3.

Details on the case t = 3. Let Uij be the set of paths from shore i to shore j in G(τ), 0 ≤ i < j ≤ 3,
such that the vertex of the path in shore i is left-free (i.e., is the head of the path), but where the vertex
in shore j may or may not be right-free. (These are therefore “half-open” paths.) Note |Uij | ≤ |Zij| ≤
Cqj−1/N j−i−1. For notational consistency with Lemma 1 below we rename p̃i as Ei for i = 1, 2, 3. Thus
|Ei| = q and Ei is the set of edges between shores (i − 1) and i of G̃(τ). Moreover, one can note that
Ei =

⋃

0≤j<i Uji for all i, with the latter being a disjoint union.
We start by computing Pr[x1 → y1], from which the general case Pr[xℓ+1 → yℓ+1|Gℓ → p0] will be

easy to deduce. We view the underlying probability space as the selection of three vertices u1, u2 and
u3 from shores 1, 2 and 3 of G̃(τ) respectively, such that ui is selected independently and uniformly
at random from the set of left-free vertices in shore i. This defines a path w0 := x1, w1 := u1, w2, w3

where w2 equals u2 if u1 is right-free and equals the other endpoint of the edge adjacent to u1 otherwise,
and where w3 equals u3 if w2 is right-free, otherwise equals the vertex in shore 3 adjacent to w2. Then
Pr[x1 → y1] is equal to the probability that w3 = y1.

Since y1 is left-free we have

w3 = y1 ⇐⇒ (u3 = y1) ∧ ¬(w1 ∈ U13 ∨ w2 ∈ U23).

(The event ¬(w1 ∈ U13 ∨ w2 ∈ U23) coincides with the event that w2 is right-free.) Note the event
u3 = y1 is independent from the event ¬(w1 ∈ U13 ∨ w2 ∈ U23), and also that the events w1 ∈ U13 and
w2 ∈ U23 are disjoint. Moreover,

w2 ∈ U23 ⇐⇒ (u2 ∈ U23) ∧ ¬(w1 ∈ U12)

since the vertices in shore 2 of U23 are left-free. By independence of u1 and u2, thus,

Pr[w2 ∈ U23] = Pr[u2 ∈ U23] · (1− Pr[w1 ∈ U12])

=
|U23|

N − |E2|

(

1−
|U12|

N − |E1|

)

=
|U23|

N − |E2|
−

|U12||U23|

(N − |E1|)(N − |E2|)
.

Thus

Pr[w3 = y1] = Pr[u3 = y1](1− Pr[w1 ∈ U13]− Pr[w2 ∈ U23])

=
1

N − |E3|

(

1−
|U13|

N − |E1|
−

|U23|

N − |E2|
+

|U12||U23|

(N − |E1|)(N − |E2|)

)

=
1

N − |E3|
−

|U13|

(N − |E1|)(N − |E3|)
−

|U23|

(N − |E2|)(N − |E3|)

+
|U12||U23|

(N − |E1|)(N − |E2|)(N − |E3|)
.

(Note that none of the terms above are as small as ≈ q3/N4 (cf. (27)), even with the approximation
1

N−|Ei|
≈ 1

N , so none of the terms above can (yet) be folded into the error term.) Adding and subtracting

the “ideal” probability 1
N to 1

N−|E3|
gives

1

N
−

1

N
+

1

N − |E3|
=

1

N
+

|E3|

N(N − |E3|)
=

1

N
+
|U03|+ |U13|+ |U23|

N(N − |E3|)

16

(Here |U03|
N(N−|E3|)

is basically the same order of magnitude as q3/N4, given that |U03| ≤ |Z03| ≤ Cq3/N2.

So we can leave this term alone.) Next,

|U13|

N(N − |E3|)
−

|U13|

(N − |E1|)(N − |E3|)
= −

|E1||U13|

N(N − |E1|)(N − |E3|)
= −

|U01||U13|

N(N − |E1|)(N − |E3|)

(same order of magnitude as q3/N4, given that |U13| ≤ Cq2/N), and

|U23|

N(N − |E3|)
−

|U23|

(N − |E2|)(N − |E3|)
= −

|E2||U13|

N(N − |E2|)(N − |E3|)

= −
|U02||U13|

N(N − |E2|)(N − |E3|)
−

|U12||U23|

N(N − |E2|)(N − |E3|)

where only |U02||U13|
N(N−|E2|)(N−|E3|)

is small enough to fit inside the error term. But then, of course, we lastly
compute that

−
|U12||U23|

N(N − |E2|)(N − |E3|)
+

|U12||U23|

(N − |E1|)(N − |E2|)(N − |E3|)

=
|E1||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)

=
|U01||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)

which is small enough to fit inside the error term. Collecting the leftovers after the various cancellations
above, thus, we find

Pr[w3 = y1] =
1

N
+

|U03|

N(N − |E3|)
−

|U01||U13|

N(N − |E1|)(N − |E3|)

−
|U02||U13|

N(N − |E1|)(N − |E3|)
+

|U01||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)
(28)

where all the terms except 1
N are “error-term small”. Moreover, when we compute Pr[xℓ+1 → yℓ+1|Gℓ ↓

p0] for ℓ ≥ 1 we can discard the ℓ completed paths from shore 0 to shore 3 linking the vertex pairs
(x1, y1), . . . , (xℓ, yℓ), and thus reduce to the case ℓ+1 = 1 with N replaced by N− ℓ. I.e., the expression
for Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] will be identical to (28) except with N replaced by N − ℓ throughout.

From here the proof for t = 3 can be finished without many suprises. (For more details, see how the
general case is treated after Lemma 1.) The crux of the proof is indeed the very simple idea of adding
and subtracting 1

N from the probability, and of letting cancellations occur. This approach is purely
algebraic. In Lemma 1 below, when we carry out the same process for an arbitrary value of t, we will
adopt a combinatorial approach instead by recasting the algebraic manipulations as manipulations of
events. (This seems more satisfying because, in particular, it gives a combinatorial interpretation for
the final error term.) Doing so requires enlarging the probability space beyond its original confines.
Indeed, for example, the original probability space has no event that occurs with probability 1

N , even
while factors of 1

N are ubiquitous in the final expression. Details follow below.

Main Lemma. To accurately lower bound the probability Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] we will abstract
the setup within which that probability computation takes place. Let G be a graph with r + 1 shores
equal to {0, 1}n indexed 0, 1, . . . , r. (Eventually, r will correspond to L(yℓ+1)− R(xℓ+1), and G will be
the graph Gℓ with shores 0, . . . ,R(xℓ+1)− 1 and L(yℓ+1) + 1, . . . , t deleted.) The edges of G are divided
into r sets E1, . . . , Er where Ei is a (partial) matching between shores i− 1 and i. Moreover, G has two
distinguished vertices u, v in shores 0, r, respectively, such that u is right-free and that v is left-free.
These will eventually correspond to xℓ+1 and yℓ+1.

17

As above we define Uij, 0 ≤ i < j ≤ r, to be the set of paths from shore i to shore j of G such that
the vertex in shore i is left-free, but where the vertex in shore j may or may not be right-free.

For 1 ≤ i ≤ r we let ui be a vertex chosen uniformly at random from the set of left-free vertices in
shore i. The choice of u1, . . . , ur defines a path w0, w1, . . . , wr in the following way: we put w0 = u and

wi =

{

y if there exists an edge (wi−1, y) ∈ Ei,

ui otherwise

for 1 ≤ i ≤ r. We write PrG[u → v] = PrG[wr = v] for the probability that we arrive at vertex v in
shore r by following this path. (In order not to confuse matters we do not view the above experiment
as defining new edges that are added to G. Thus G is a static graph.)

The next lemma constitutes the technical heart of our proof.

Lemma 1 Let G be as described above, with Uij as described above. Then

Pr
G
[u→ v] =

1

N
−

1

N

∑

σ

(−1)|σ|
|σ|
∏

j=1

|Uij ij−1 |

N − |Eij |

where the first sum is taken over all sequences σ = (i0, . . . , is) with 0 = i0 < . . . < is = r, and where

|σ| = s.

Proof. A sequence σ = (i0, . . . , is) such that 0 ≤ i0 < . . . < is ≤ r is called an i0is-partition of size s.
We write |σ| = s, as in the lemma statement. We write Sij for the set of all ij-partitions. For example,
the sum in the lemma statement is taken over S0r. We allow s = 0 and note that Sii contains the
partition σ = (i) of size zero.

It will be notationally convenient if we add an (r + 1)-th shore to G, with a single edge between
shores r and r+ 1 having endpoint at v in shore r. We extend the definitions of the set of paths Uij to
allow j = r+1. Note that Ui(r+1) = ∅ for all i < r because v is left-free and that Ur(r+1) consists of the
single edge adjacent to v.

For 1 ≤ i < j ≤ r + 1 (thus, in particular, 1 ≤ i ≤ r) let ⊙ij denote the event that ui ∈ Uij and
let ⊗ij denote the event that wi ∈ Uij . Then ⊙r(r+1) is the event that ur = v and ⊗r(r+1) is the event
that wr = v. In particular Pr[u→ v] = Pr[⊗r(r+1)]. (For the proof, we write simply Pr[u→ v] instead
of PrG[u→ v].)

We will use “arithmetical” notation for boolean operations on events: AB means the conjunction
of events A and B, 1 − A means the complement of A, etc. When using such notation, one should
identify an event A with characteristic function 1A; thus A+A 6= A (even though A ∪A = A) because
1A+1A = 2·1A 6= 1A. While intermediate expressions may evaluate to functions that are not 0,1-valued,
the final value of most expressions we give are 0,1-functions on the probability space (occasionally, the
final value is a 0, -1-function). Moreover, if A1+. . .+Ag−B1 . . .−Bh is a linear combination of events that
sums to a 0,1-function, then Pr[A1+ . . .−Bh] makes sense and Pr[A1+ . . .−Bh] = Pr[A1]+ . . .−Pr[Bh].
(On the other hand Pr[AB] = Pr[A] Pr[B] if and only A and B are independent.) Finally, in this
arithmetic an empty product corresponds to the certain event.

We note that

⊗ij = ⊙ij(1−⊗1i −⊗2i − . . .−⊗(i−1)i) (29)

for all 1 ≤ i < j ≤ r + 1. Indeed, for the path w1, . . . , wr to “hit” the head of a path in Uij , we need
ui to be the head of a path in Uij (this is the event ⊙ij) and we also need the path not to have been

18

“hijacked” by a pre-existing path in G that goes at least up to shore i; this “hijack” occurs if and only
if the event

⊗1i +⊗2i + . . .+⊗(i−1)i (30)

occurs. (Note the events in (30) are disjoint.) Whence (29). We note that only ⊙ij depends on j in the
right-hand side of (29).

In particular, for j in the relevant ranges,

⊗1j = ⊙1j

⊗2j = ⊙2j(1−⊗12) = ⊙2j(1−⊙12) = ⊙2j −⊙12 ⊙2j

⊗3j = ⊙3j(1−⊗13 −⊗23) = ⊙3j(1−⊙13 −⊙23 +⊙12⊙23)

= ⊙3j −⊙13 ⊙3j −⊙23 ⊙3j +⊙12 ⊙23 ⊙3j

By repeatedly “unfolding” in this fashion the definition of the ⊗ij ’s in terms of the ⊙ij’s we arrive at
the inclusion-exclusion formula

⊗ij = ⊙ij

i
∑

y=1

∑

σ∈Syi

(−1)|σ|
|σ|
∏

h=1

⊙ih−1ih (31)

where the partition σ that appears in the sum is notated (i0, . . . , i|σ|). (We keep this convention, which
already appeared in the lemma statement, for all sums with an index σ.)

We note, for completeness, the very standard proof of (31) by induction on i. The expression clearly
holds for i = 1 since then the sum over σ contains a single element consisting of (−1)0 times an empty
product. Now assume i > 1 and that (31) holds for smaller values of i. By (29) and the induction
hypothesis,

⊗ij = ⊙ij

(

1−
i−1
∑

x=1

⊗xi

)

= ⊙ij

1−
i−1
∑

x=1

⊙xi

x
∑

y=1

∑

σ∈Syx

(−1)|σ|
|σ|
∏

h=1

⊙ih−1ih

= ⊙ij

1−
i−1
∑

y=1

i−1
∑

x=y

∑

σ∈Syx

(−1)|σ|

|σ|
∏

h=1

⊙ih−1ih

⊙xi

= ⊙ij

1−
i−1
∑

y=1

∑

σ∈Syi

(−1)|σ|−1

|σ|
∏

h=1

⊙ih−1ih

= ⊙ij

1 +
i−1
∑

y=1

∑

σ∈Syi

(−1)|σ|
|σ|
∏

h=1

⊙ih−1ih

 (32)

= ⊙ij

i
∑

y=1

∑

σ∈Syi

(−1)|σ|
|σ|
∏

h=1

⊙ih−1ih

19

which proves (31). In particular, (31) gives us the formulas

⊗r(r+1) = ⊙r(r+1)

r
∑

y=1

∑

σ∈Syr

(−1)|σ|
|σ|
∏

h=1

⊙ih−1ih

 (33)

= ⊙r(r+1) +⊙r(r+1)

r−1
∑

y=1

∑

σ∈Syr

(−1)|σ|
|σ|
∏

h=1

⊙ih−1ih (34)

for the event ⊗r(r+1).
We next introduce a brand new probability space. For 1 ≤ i ≤ r let u′i be a vertex uniformly chosen

in shore i, and let u′′i be a vertex uniformly and independently chosen among all left-free vertices in
shore i. (So u′′i has the same distribution as ui.) The vertices u′′1, . . . , u

′′
r are independently distributed

and also independent from the u′i’s. However, we will introduce some correlations among u′1, . . . , u
′
r.

Specifically, if u′i is not right-free, i ≤ r−1, then u′i+1 must be (with probability 1) the other endpoint of
the edge in Ei+1 adjacent to u′i; otherwise, if u

′
i is right-free, u

′
i+1 should be left-free. To see that random

variables u′1, . . . , u
′
r really can be defined with this property (including the fact that u′i is, individually,

uniform in shore i) we imagine the following experiment: first u′1 is chosen uniformly at random from
shore 1; if u′1 is adjacent to an edge in E2, u

′
2 is defined as the other endpoint of that edge; otherwise u′2

is chosen uniformly at random from the set of left-free vertices in shore 2, and so on (with the sampling
of u′3 depending on whether u′2 is right-free or not). It is easy to see by induction on the shore index
that each u′i is uniformly distributed in its shore. (One can reflect that u′1, . . . , u

′
r have a very similar

distribution to the “real path” vertices w1, . . . , wr defined above, except for the fact that u′1 might not
be left-free in G, while w1 is always left-free in G.)

We next define a vertex u′′′i which is a deterministic function of u′i and u′′i . Specifically, u
′′′
i is defined

as being u′i if u
′
i is left-free, and is defined as being u′′i otherwise. Thus u′′′i is always left-free, like ui.

We next argue that u′′′1 , . . . , u
′′′
r are independent, despite the dependencies among u′1, . . . , u

′
r. To see

this it’s sufficient to argue that u′′′i is independent from u′′′1 , . . . , u
′′′
i−1. If u

′
i−1 is right-free then u′′′i = u′i

and this is obvious. If u′i−1 is not right-free then u′′′i = u′′i and this is again obvious. Hence u′′′1 , . . . , u
′′′
r

are independent.
Since u′′′1 , . . . , u

′′′
r are independent they are equidistributed with u1, . . . , ur. In fact, we will identify

ui with u′′′i . That is, we will choose to think of the actual process whereby u1, . . . , ur are sampled as
being the following: u′1, . . . , u

′
r and u′′1, . . . , u

′′
r are sampled as described aboved; then we set ui := u′′′i

for u′′′i as defined above from u′i and u′′i . Since u′′′1 , . . . , u
′′′
r are (totally) independent and since each

u′′′i is uniformly distributed among all left-free vertices in shore i, this definition of u1, . . . , ur produces
an identical random experiment. Having identified u′′′i with ui, we will make no further mention of
u′′′1 , . . . , u

′′′
r , these being replaced by u1, . . . , ur. To summarize, u′i is the “primary choice” for ui, and if

this primary choice fails (because it is not left-free), ui falls back onto the “secondary choice” u′′i , which
is left-free by design.

We define events △ij and �ij with respect to u′i and u′′i the same way ⊙ij is defined with respect to
ui. More precisely, for 0 ≤ i < j ≤ r+1, the event △ij occurs if u

′
h ∈ Uij for any i ≤ h ≤ j. Note that if

u′h ∈ Uij for some h in the range i ≤ h ≤ j, then u′z ∈ Uij for all h in the range max(1, i) ≤ h ≤ min(r, j),
by the way the u′i’s are defined. (We need max(1, i) and min(r, j) because u′0 and u′r+1 are not defined.)
We note that it would make little sense to define an event such as ⊙01, since u0 is not defined, but it
does make sense to define △01, since u

′
1 may or may not be in U01. The definition of the �ij ’s is exactly

analogous to the ⊙ij ’s: for 1 ≤ i < j ≤ r + 1, �ij occurs if u′′i is in Uij .
We note that (i) △ij is independent from �i′j′ if i 6= i′; (ii) △ij is independent from ⊙i′j′ if i

′ 6= i;
(iii) �ij is independent from ⊙i′j′ if i

′ 6= i. We leave it to the reader to check these three facts, which
can be argued using a similar case analysis as when we checked the independence of the u′′′i ’s above.

20

Note that for any 1 ≤ i < j ≤ r + 1 one has

⊙ij = △ij +
i−1
∑

x=0

△xi�ij

because for the event ui ∈ Uij to occur we either need u′i ∈ Uij or else we need that u′′i ∈ Uij and that
u′i is not left-free, which means that u′i ∈ Ei =

⋃i−1
x=0 Uxi, where the latter is a disjoint union. In fact,

we even have the equality of events

⊙ij = △ij +

i−1
∑

x=0

△xi ⊙ij . (35)

because △xi�ij if and only if △xi⊙ij for x < i, as is easy to verify.
Applying (35) to the first term ⊙i0i1 in each product of (34) as well as to standalone term ⊙r(r+)

on the left of (34) yields

⊗r(r+1) =

(

△r(r+1) +

r−1
∑

x=0

△xr⊙r(r+1)

)

+⊙r(r+1)

r−1
∑

y=1

∑

σ∈Syr

(−1)|σ|

(

△i0i1 +

i0−1
∑

x=0

△xi0⊙i0i1

) |σ|
∏

h=2

⊙ih−1ih

=

△r(r+1) +
r−1
∑

x=0

∑

σ∈Sxr ,|σ|=1

△i0i1⊙r(r+1)

+⊙r(r+1)

r−1
∑

y=1

∑

σ∈Syr

(−1)|σ|△i0i1

|σ|
∏

h=2

⊙ih−1ih

+⊙r(r+1)

r−1
∑

y=1

∑

σ∈Syr

(−1)|σ|

(

i0−1
∑

x=0

△xi0⊙i0i1

)

|σ|
∏

h=2

⊙ih−1ih

= △r(r+1) +⊙r(r+1)

r−1
∑

x=0

∑

σ∈Sxr ,|σ|=1

△i0i1

+⊙r(r+1)

r−1
∑

y=1

∑

σ∈Syr

(−1)|σ|△i0i1

|σ|
∏

h=2

⊙ih−1ih

+⊙r(r+1)

r−2
∑

x=0

r−1
∑

y=x+1

∑

σ∈Syr

(−1)|σ|△xi0 ⊙i0i1

|σ|
∏

h=2

⊙ih−1ih

= △r(r+1) −⊙r(r+1)

r−1
∑

x=0

∑

σ∈Sxr ,|σ|=1

(−1)|σ|△i0i1

+⊙r(r+1)

r−1
∑

y=1

∑

σ∈Syr

(−1)|σ|△i0i1

|σ|
∏

h=2

⊙ih−1ih

−⊙r(r+1)

r−2
∑

x=0

∑

σ∈Sxr ,|σ|≥2

(−1)|σ|△i0i1

|σ|
∏

h=2

⊙ih−1ih

21

= △r(r+1) −⊙r(r+1)

∑

σ∈S0r

(−1)|σ|△i0i1

|σ|
∏

h=2

⊙ih−1ih

Taking probabilities, we finally obtain, Pr[△ij] =
|Uij |
N and Pr[⊙ij] =

|Uij |
N−|Ei|

, and since |Ur(r+1)| = 1,

Pr[⊗r(r+1)] =
1

N
−

1

N − |Er|

∑

σ∈S0r

(−1)|σ|
|Ui0i1 |

N

|σ|
∏

h=2

|Uih−1ih |

N − |Eih−1
|

=
1

N
−

1

N

∑

σ∈S0r

(−1)|σ|
|σ|
∏

h=1

|Uih−1ih |

N − |Eih |

as claimed. �

Reflections on the proof of Lemma 1. As noted in the proof the vertices u′1, . . . , u
′
r are always “path-

compatible” with G, in the sense that if u′i is not right-free then u′i+1 is the other endpoint of the edge
to the right of u′i. Moreover, it’s not hard to see that if wi = u′i for some i, then wj = u′j for all j ≥ i,
and in particular wr = u′r. For example, if u′1 is left-free then w1 = u′1 = u1 and wr = u′r. More
generally, if there exists an i ≤ r such that wi and u′i are both left-free in G, then wi = u′i and wr = u′r.
Conceptually, thus, the introduction of the “primary choices” u′1, . . . , u

′
r can be seen as establishing a

coupling5 between the endpoint u′r of an “ideal path” in G (“ideal” because vertices are uniform in each
shore, and in particular u′r is uniform in shore r) and the endpoint wr of the “real path”.

While the proof of Lemma 1 can indeed be recast, with appropriate changes, as a coupling argument,
the current proof isn’t a coupling, technically speaking. More exactly, a coupling argument consists
(philosophically at least) in “deforming” the probability space underlying a “real” random variable to
better compare the behavior of the “real” random variable with that of an “ideal” random variable
(whereby the two probability spaces become “aligned” or “almost aligned”). In the proof of Lemma 1
we carry through the deformation (or alignment) but eschew the comparison with the “ideal” random
variable. Indeed, we don’t need to compare against the “ideal” random variable when we can exactly
compute the “real” random variable probability of interest to us!

Finishing the proof of Theorem 1. We now apply Lemma 1 to lower bounding the product (23).
For 1 ≤ r ≤ t, let

Lr = {ℓ : L(yℓ)− R(xℓ) = r} ⊆ {1, . . . , qe}

where (we recall) the elements of p0 are (x1, y1), . . . , (xqe , yqe). By the definition of T2, L1, . . . ,Lt cover
{1, . . . , qe} (i.e., there is no ℓ with R(xℓ) ≥ L(yℓ)). Assuming the event Gℓ ↓ p0, we apply Lemma 1
with the graph G obtained by removing shores 1, . . . ,R(xℓ+1)− 1, L(yℓ+1) + 1, . . . , t from Gℓ, and also
(mainly for convenience) removing completed paths between xh and yh for 1 ≤ h ≤ ℓ. (Thus the shores
of G will have size N − ℓ, not N . Indeed, we committed a white lie when we stated in Lemma 1 that the
shores of G would be copies of {0, 1}n. Of course, all that mattered was the size of those shores, and
we can apply Lemma 1 by replacing N with N − ℓ throughout in the main bound.) Also, u = R(xℓ+1),
v = L(yℓ+1). We note that with this definition of G, |Uij| ≤ |Z(i+R(xℓ+1))(j+R(xℓ+1))| ≤ Cqj−i/N j−i−1

(by the definition of T2) for 0 ≤ i < j ≤ t, and |Ei| ≤ q for 1 ≤ i ≤ r. Thus for ℓ + 1 ∈ Lr we obtain,

5This remark is made for the benefit of readers who know what couplings are. Basically, random variables X and Y
defined on a common probability space and having a common range are “coupled” if some special effort has been made
to define X and Y in such way that Pr[X 6= Y] is small, while preserving predefined distributions of X and Y over their
ranges. Doing a coupling is useful because one has, among others, that ∆(X,Y) ≤ Pr[X 6= Y] for any X, Y defined over
the same probabilty space (without the latter condition, the expression Pr[X 6= Y] doesn’t makes sense).

22

by Lemma 1,

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0] =
1

N − ℓ
−

1

N − ℓ

∑

σ∈S0r

(−1)|σ|
|σ|
∏

h=1

|Uih−1ih |

N − ℓ− |Eih |

≥
1

N − ℓ
−

1

N − ℓ

∑

σ∈S0r

|σ|
∏

h=1

Cqih−ih−1/N ih−ih−1−1

N − ℓ− q

=
1

N − ℓ
−

1

N − ℓ
2r−1

(q

N

)r
(

CN

N − ℓ− q

)|σ|

≥
1

N − ℓ
−

1

N − ℓ

(

2q

N

)r (CN

N − 2q

)r

≥
1

N − ℓ
−

1

N − ℓ

(

6Cq

N

)r

.

Moreover |Lr| ≤ t · Cqeqt−r

Nt−r by the definition of T2, so

∏

ℓ+1∈Lr

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0]

1/(N − ℓ)
≥

∏

ℓ+1∈Lr

(

1−

(

6Cq

N

)r)

≥ 1−
Ctqeq

t−r

N t−r

(

6Cq

N

)r

= 1−
Ctqeq

t

N t
(6C)r

Thus

qe−1
∏

ℓ=0

Pr[xℓ+1 → yℓ+1|Gℓ ↓ p0]

1/(N − ℓ)
≥ 1−

t
∑

r=1

Ctqeq
t

N t
(6C)r

≥ 1−
qeq

t

N t
Ct2(6C)t.

This means
Pr[X = τ]

Pr[Y = τ]
≥ 1− ε1

for ε1 = qeqt

Nt Ct2(6C)t, for all τ ∈ T1 such that Pr[Y = τ] > 0. Having already established that
Pr[Y ∈ T2] ≤ (t+ 1)2 1

C , this concludes the proof of Theorem 1 by (9).

References

[1] Elena Andreevna, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, John Steinberger, Indiffer-
entiability of Key-Alternating Ciphers.

[2] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert, John Steinberger
and Elmar Tischhauser, Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small
Number of Public Permutations. EUROCRYPT 2012, LNCS 7237, pp. , Springer-Verlag, 2012.

[3] Joan Daemen, Limitations of the Even-Mansour Construction. ASIACRYPT 1991, LNCS 739,
pp. 495-498, Springer-Verlag, 1991.

[4] Joan Daemen and Vincent Rijmen, The Design of Rijndael. Springer-Verlag, 2002.

23

[5] Joan Daemen and Vincent Rijmen, The Wide Trail Design Strategy. IMA Int. Conf., LNCS 2260,
pp. 222-238, Springer-Verlag, 2001.

[6] Shimon Even and Yishay Mansour, A Construction of a Cipher From a Single Pseudorandom
Permutation. ASIACRYPT 1991, LNCS 739, pp. 210–224, Springer-Verlag, 1993.

[7] Shimon Even and Yishay Mansour, A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptology, vol. 10, num. 3, pp. 151-162, 1997.

[8] Rudolphe Lampe, Jacques Patarin and Yannick Seurin, An Asymptotically Tight Security Analysis
of the Iterated Even-Mansour Cipher, Asiacrypt 2012, Lecture Notes in Computer Science Volume
7658, pp 278-295, 2012.

[9] Michael Luby and Charles Rackoff, How to Construct Pseudorandom Permutations from Pseudo-
random Functions. SIAM J. Comput., vol. 17, num. 2, pp. 373-386, 1988.

[10] Ben Morris, Phillip Rogaway and Till Stegers, How to Encipher Messages on a Small Domain:
Deterministic Encryption and the Thorp Shuffle. CRYPTO 2009. LNCS 5677, Springer, pp. 286-
302, 2009.

[11] Ueli Maurer and Krzysztof Pietrzak, Composition of Random Systems: When Two Weak Make
One Strong. TCC 2004, LNCS 2951, pp. 410427, Feb 2004.

[12] Ueli Maurer, Krzysztof Pietrzak and Renato Renner: Indistinguishability Amplification. CRYPTO
2007, LNCS 4622, pp. 130149, 2007.

[13] Jacques Patarin, The “Coefficients H” Technique, Selected Areas in Cryptography, LNCS 5381,
2009, pp. 328-345.

[14] John Steinberger, Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance,
http://eprint.iacr.org/2012/481.pdf.

[15] Serge Vaudenay: Decorrelation: A Theory for Block Cipher Security. J. Cryptology, vol. 16,
num. 14, pp. 249-286, 2003.

24

