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Abstract

Trace and revoke is broadcast encryption with the traitor tracing functionality. It is a very powerful
primitive since it can revoke users whose private keys are compromised by finding them using a tracing
algorithm if a pirate decoder is given. Public-key trace and revoke (PKTR) is a special type of trace
and revoke such that anyone can run the tracing algorithm and anyone can create an encrypted message
by using a public key. Although public-key trace and revoke schemes are attractive tools, the currently
known PKTR schemes are a little bit inefficient in terms of the private key size and the public key size
compared with public-key broadcast encryption schemes.

In this paper, we propose a new technique to construct an efficient PKTR scheme by using the subset
cover framework. First, we introduce a new concept of public-key encryption named single revocation
encryption (SRE) and propose an efficient SRE scheme in the random oracle model. The universe of
SRE consists of many groups and each group consists of many members. A user in SRE is represented
as a group that he belongs and a member in the group. In SRE, a sender can create a ciphertext for a
specified group where one member in the group is revoked, and a receiver can decrypt the ciphertext if
he belongs to the group in the ciphertext and he is not revoked in the group.

Second, we show that the subset difference (SD) scheme (or the layered subset difference (LSD)
scheme) and a SRE scheme can be combined to construct a PKTR scheme. Our PKTR scheme using the
LSD scheme and our SRE scheme has the ciphertext size of O(r), the private key size of O(log1.5 N),
and the public key size of O(1) where N is the total number of users in the system and r is the size of a
revoked set. Our PKTR scheme is the first one that achieves the private key size of O(log1.5 N) and the
public key size of O(1).

Keywords: Public-key encryption, Broadcast encryption, Traitor tracing, Trace and revoke, Bilinear
map.

1 Introduction

Broadcast encryption (BE), introduced by Fiat and Naor [12], is a mechanism to efficiently send an en-
crypted message to a set S of receivers by using a broadcast channel. The application of BE includes
pay-TV systems, DVD content distribution systems, and file systems and many others. BE itself is a very
powerful primitive, but the functionality of BE also can be increased when it is combined with traitor tracing
functionality. Traitor tracing (TT) was introduced by Chor, Fiat, and Naor [8], and it enables a tracer to find
a traitor who participated the creation of a pirate decoder when a pirate decoder is given to the tracer. Trace
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and revoke (TR) is a mechanism that combines BE and TT, and it first finds a traitor by using the tracing
algorithm of TT and then revoke him by using the broadcast algorithm of BE [7, 20, 22].

Public-key trace and revoke (PKTR) is a special type of TR such that anyone can trace a traitor and
revoke the users by using a publicly known public key. Although PKTR is a powerful primitive, we can
not construct a PKTR scheme by simply combining a public-key BE (PKBE) scheme and a public-key TT
(PKTT) scheme since a simply combined PKTR scheme is not secure against a collusion attack [7]. There
are two general methods for the construction of fully collusion resistant PKTR schemes. The first method is
to combine a subset cover (SC) scheme in the framework of Naor, Naor, and Lotspiech [20] and an identity-
based encryption (IBE) scheme (or a hierarchical IBE (HIBE) scheme) [11, 20]. The PKTR schemes of
this method are suitable for the revocation scenario where a small number of users are revoked since the
ciphertext size of the schemes is linear to the size of revoked users. However, the most efficient scheme of
this method that combines the layered subset difference (LSD) scheme of Halevy and Shamir [18] and the
HIBE scheme of Boneh et al. [3] has a demerit such that the size of private keys is O(log2.5 N) where N is the
total number of users in the system. The second method is to combine a private linear broadcast encryption
(PLBE) scheme that was introduced by Boneh, Sahai, and Waters [6] and a PKBE scheme [7, 15, 26]. The
PKTR schemes of this method are quite efficient in terms of the ciphertext size since the size of ciphertexts
is independent of the size of a receiver set. However, the storage requirement of these schemes are quite
large since the size of private keys and public keys of these schemes is O(

√
N) where N is the total number

of users in the system.
Reducing the size of private keys is very important since these cryptographic key materials are securely

stored in expensive tamper-resistant memory. In case of small devices like sensor nodes, the size of private
keys and public keys is critical issue since the manufacturing cost of the sensor nodes is limited. Although
there are many PKBE schemes that can meet this requirement [19], there is no acceptable PKTR scheme as
far as we know.

1.1 Our Contributions

In this paper, we revisit the method of Dodis and Fazio [11] that combines the SD scheme in the SC frame-
work and the variation scheme of IBE to construct an efficient PKTR scheme, and propose a new method for
PKTR that can reduce the size of private keys and public keys. The subset cover (SC) framework of Naor et
al. [20] was very successful to construct BE or TR schemes in the symmetric-key setting [17, 18, 20]. How-
ever, the TR schemes of the SC framework in the public-key setting does not provide the same efficiency
parameter as that in the symmetric-key setting since the underlying HIBE scheme multiplies the private key
size and the public key size of PKTR by logN factor [3, 11]. For instance, the PKTR scheme that combines
the LSD scheme and the HIBE scheme of Boneh et al. [3] has the ciphertext size of O(r), the private key
size of O(log2.5 N), and the public key size of O(logN).

To construct an efficient PKTR scheme by using the SC framework, we first introduce single revocation
encryption (SRE) that can be efficiently combined with the subset difference (SD) scheme, and propose an
efficient SRE scheme that is secure in the random oracle model. A user in SRE is represented as a group
label and a member label in the group, and a sender can send an encrypted message to one specified group
except one member that was revoked in that group. If a user who belongs to the group is not revoked in the
group, then he can decrypt the ciphertext by using this private key. Our SRE scheme has the ciphertext size
of O(1), the private key size of O(1), and the public key size of O(1), and it is secure in the random oracle
model under q-type assumption.

Next, we show that it is possible to construct an efficient PKTR scheme by combining the SD scheme
(or the LSD scheme) and the SRE scheme. Compared to the PKTR scheme that combines the LSD scheme
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Table 1: Comparison of public-key broadcast encryption schemes

Scheme Tracing CT Size SK Size PK Size Decrypt Time Assumption

BGW [5] No O(1) O(1) O(N) 2P q-Type

BGW [5] No O(
√

N) O(1) O(
√

N) 2P q-Type

Delerablée [9] No O(1) O(1) O(smax) 2P q-Type

LSW [19] No O(r) O(1) O(1) rE + 2P q-Type

DF [11] Yes O(r) O(log2.5 N) O(logN) 2P q-Type

BW [7] Yes O(
√

N) O(
√

N) O(
√

N) 4P Static

Ours Yes O(r) O(log1.5 N) O(1) 2P + 2E q-Type

N = the number of users in the system, smax = the maximum size of a receiver set, r = the size of a revoked set

E = exponentiation, P = pairing

and the HIBE scheme of Boneh et al. [3], our PKTR scheme that combines the LSD scheme and our SRE
scheme has the shorter size of private keys and public keys. The comparison between previous PKBE
schemes, PKTR schemes, and our schemes is given in the Table 1. In the table, the PKTR scheme of Dodis
and Fazio is a scheme that combines the LSD scheme and the HIBE scheme of Boneh et al. [3], and our
PKTR scheme is a scheme that combines the LSD scheme and our SRE scheme.

1.2 Our Technique

The main idea of our PKTR scheme is to invent a new type of public-key encryption (PKE) that has short
private key size and can be integrated with the SD scheme of the SC framework. In order to understand our
technique, we first review the SD scheme of Naor et al. [20]. In a full binary tree T , a subtree Ti rooted at a
node vi is defined as the set of all nodes in Ti and a subtree Ti, j is defined as the set of nodes in Ti−Tj where
a node v j is a descendant of a node vi. In the SD scheme, a user in the SD scheme is assigned to a leaf node
in T , and a subset Si, j is defined as the set of leaf nodes in Ti, j. A user in a leaf node vu is associated with
the set PVu of subsets Si, j where vi and v j are two nodes in the path from the root node of T to the leaf node
vu. The set S of receivers is associated with the set CV of disjoint subsets Si, j that covers S. If a user u is
not revoked, then he can find two subsets Si, j ∈CV and Si′, j′ ∈ PVu such that vi = vi′ , d j = d j′ , and v j 6= v j′

where d j is the depth of a node v j. Next, the user can decrypt the ciphertext component that is related with
Si, j by using the private key components that are related with PVu.

One critical condition of the decryption using the SD scheme is that the inequality v j 6= v j′ should be
satisfied. For this inequality, Naor et al. [20] used the key derivation property of a key assignment algorithm,
and Dodis and Fazio [11] used the delegation property of a key generation algorithm in HIBE. To devise
a new technique to solve this issue, we look at the IBRE scheme of Lewko, Sahai, and Waters [19]. The
notable property of the IBRE scheme is that the decryption is successful only when ID is not equal to
ID′ where ID is associated with a ciphertext and ID′ is associated with a private key. However, the direct
combination of the IBRE scheme and the SD scheme is not successful since the IBRE scheme does not
support an equality condition. Therefore, we construct a SRE scheme by modifying the IBRE scheme to
support two conditions of equality and inequality.

As described in the previous section, a user in SRE is represented as labels (GL,ML) where GL is a
group label and ML is a member label in the group, and a sender creates a ciphertext with labels (GL′,ML′)
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for all member in the group GL′ except the one member ML′ in the group. Thus a receiver who has a private
key with labels (GL,ML) can decrypt the ciphertext with labels (GL′,ML′) if (GL = GL′)∧ (ML 6= ML′).
Therefore, SRE supports the equality of group labels and the inequality of member labels. To integrate the
SRE scheme that uses group and member labels (GL,ML) with the SD scheme that uses subsets Si, j in a full
binary tree, we need a mapping from the subset Si, j to the labels (GL,ML). A subset Si, j is defined by two
nodes vi,v j and a subtree Ti is define by one node vi. For the mapping function from the subset Si, j to labels
(GL,ML), we define the set of all nodes in the subtree Ti that has the same depth with v j as a one group, and
we also define the nodes in the group as the members of the group. That is, if the nodes vi and v j of Si, j in
the SD scheme have identifiers Li and L j respectively, then the labels in the SRE scheme are represented as
GL = Li||d j and ML = L j where d j is the depth of v j.

1.3 Related Work

Broadcast Encryption. The concept of broadcast encryption (BE) was introduced by Fiat and Naor [12]
and BE can efficiently send an encrypted message to a set of receivers through a broadcast channel. Many
BE schemes including the scheme of Fiat and Naor were designed to be secure against a collusion of t users.
In this case, if an attacker can compromise the private keys of more than t users, then he can easily breaks
the security of the BE scheme.

To construct a fully collusion resilient BE scheme that is secure without a bound on the number of col-
luded users, Naor, Naor, and Lotspiech [20, 21] proposed a general method called the subset cover (SC)
framework, and they proposed symmetric-key revocation schemes such that a center can broadcast an en-
crypted message to all users except r number of revoked users. They proposed two BE schemes of the SC
framework, named as the complete subtree (CS) and the subset difference (SD) scheme. The CS scheme
has the ciphertext size of O(r logN/r) and the private key size of O(logN), and the SD scheme has the
ciphertext size of O(r) and the private key size of O(log2 N) where N is the number of users in the system
and r is the number of revoked users. Halevy and Shamir [18] proposed the layered subset difference (LSD)
scheme that has the ciphertext size of O(r) and the private key size of O(log1.5 N), and Goodrich et al. [17]
proposed the stratified subset difference (SSD) scheme that has the ciphertext size of O(r) and the private
key size of O(logN).

Public-key broadcast encryption (PKBE) is a special type of BE such that anyone can send an encrypted
message to a set of receivers through a broadcast channel by using a public key. Naor et al. [20,21] observed
that their CS scheme can be combined with the identity-based encryption (IBE) scheme of Boneh and
Franklin [4] to reduce the size of public keys in PKBE. Dodis and Fazio [11] showed that the SD scheme
(or the LSD scheme) also can be combined with a hierarchical IBE (HIBE) scheme to construct an efficient
PKBE scheme. For instance, if the LSD scheme is combined with the HIBE scheme of Boneh, Boyen and
Goh [3], then the PKBE scheme has the ciphertext size of O(r), the private key size of O(log2.5 N), and the
public key size of O(logN). Note that the private key size of this PKBE scheme is larger than that of the
original LSD scheme in the symmetric-key setting.

The PKBE scheme of the SC framework could be inefficient when the set of revoked users is a medium
sized set such as

√
N since the size of ciphertexts is linear to r. To solve this problem, Boneh, Gentry, and

Waters [5] proposed the first fully collusion-resistant PKBE scheme that has constant size of ciphertexts
based on bilinear groups. Their first PKBE scheme has the ciphertext size of O(1), the private key size of
O(1), and the public key size of O(N), and their second PKBE scheme has the ciphertext size of O(

√
N),

the private key size of O(1), and the public key size of O(
√

N) where N is the number of users in the
system. After the construction of Boneh et al. [5], many other PKBE schemes based on bilinear groups were
proposed [10, 16, 23, 27]. Delerablée [9] proposed an identity-based broadcast encryption (IBBE) scheme
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such that the total number of users is not fixed, the ciphertext is related to the set S of receivers, and the
public key size is linear to the maximum size of receiver sets. Lewko et al. [19] proposed an identity-based
revocation encryption (IBRE) scheme such that the ciphertext is related to the set of revoked users R instead
of the set of receiver users S. Their IBRE scheme has the ciphertext size of O(r), the private key size of
O(1), and the public key size of O(1).

Traitor Tracing. The concept of traitor tracing (TT) was introduced by Chor, Fiat, and Naor [8] and TT
enables a tracer who is given a pirate decoder to detect at least one user who participated the creation of the
pirate decoder. Many TT schemes were designed to be secure against a collusion of t users. Fully collusion
resistant TT schemes were proposed based on bilinear groups [6, 15, 24]. Abdalla et al. [1] proposed the
concept of identity-based TT (IBTT) and constructed an IBTT scheme.

Trace and Revoke. Trace and revoke (TR) is broadcast encryption (BE) combined with traitor tracing (TT)
such that it first find a user whose private key is compromised by using the tracing algorithm of TT and then
it revokes the user by using the revocation algorithm of BE [20,22]. Many TR schemes were secure against
a collusion of t users [2]. Naor et al. [20,21] proposed the first fully collusion resistant TR schemes by using
the general method of the SC framework.

Public-key trace and revoke (PKTR) is a special type of TR such that anyone can trace traitors and revoke
the user by using a public key. The PKBE scheme of Dodis and Fazio [11] also can be a PKTR scheme
since their scheme also follows the SC framework. Boneh and Waters [7] proposed a fully collusion resistant
PKTR scheme based on composite order bilinear groups and proved its adaptive security by combining the
PKBE scheme of Boneh et al. [5] and the TT scheme of Boneh et al. [6]. The efficiency of this scheme was
improved by using prime order bilinear groups [15, 26]. Furukawa and Attrapadung [14] proposed a PKTR
scheme with short private keys, but the public key size of this is quite large and the security is only proven
in the generic group model.

2 Preliminaries

In this section, we briefly review bilinear groups and introduce the complexity assumption of our scheme.

2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a generator of G. The bilinear map
e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G,GT are bilinear groups if the group operations in G and GT as well as the bilinear map e are
all efficiently computable.

2.2 Complexity Assumptions

To prove the security of our PKRE scheme, we introduce a new assumption called q-Simplified Multi-
Exponent Bilinear Diffie-Hellman (q-SMEBDH) assumption. This q-SMEBDH assumption is derived from
the q-Multi-Exponent Bilinear Diffie-Hellman (q-MEBDH) assumption that was introduced by Lewko, Sa-
hai, and Waters [19] with a slight simplification. Our new assumption is secure in the generic group model
by using the master theorem of Boneh, Boyen, and Goh [3].
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q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) Assumption Let (p,G,GT ,e) be a
description of the bilinear group of prime order p with the security parameter λ . Let g be a generator of G.
The q-SMEBDH assumption is that if the challenge values

D = ((p,G,GT ,e), g, {gai , gb/ai}1≤i≤q, {gbai/a j}1≤i, j,i 6= j≤q, gc) and T

are given, no PPT algorithm B can distinguish T = T0 = e(g,g)bc from T = T1 = e(g,g)d with more
than a negligible advantage. The advantage of B is defined as Advq-SMEBDH

B (λ ) =
∣∣Pr[B(D,T0) = 0]−

Pr[B(D,T1) = 0]
∣∣ where the probability is taken over the random choice of a1, . . . ,aq,b,c,d ∈ Zp.

3 Single Revocation Encryption

In this section, we define single revocation encryption (SRE) and the security model of SRE, and then we
propose a SRE scheme and prove its security in the random oracle model.

3.1 Definitions

Single revocation encryption (SRE) is a special type of public-key broadcast encryption (PKBE) such that
a single user in a group can be revoked. That is, a sender in SRE can securely transmit a message to the
members of a specified group except the single revoked member of the group. In SRE, the universe U is
defined as the set of many groups that consist of many members. Note that the maximum number of groups
and the maximum number of members in a group is a polynomial number in a security parameter. A center
first generates a master key and a public key for SRE by using a setup algorithm, and each users specified
by a group label and a member label can receive his private key from the center. To transmit a message,
a sender computes a ciphertext by specifying a group label and a revoked member in the group. If a user
belongs to the group in the ciphertext and he is not revoked, then he can decrypt the ciphertext by using his
private key. The following is the syntax of SRE.

Definition 3.1 (Single Revocation Encryption). A SRE scheme for the universe U of groups and members
consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,U). The setup algorithm takes as input a security parameter 1λ and the universe U of groups
and members. It outputs a master key MK and a public key PK.

GenKey((GL,ML),MK,PK). The key generation algorithm takes as input labels (GL,ML), the master key
MK, and the public key PK. It outputs a private key SK for the labels (GL,ML).

Encrypt((GL,ML),M,PK). The encryption algorithm takes as input labels (GL,ML), a message M ∈M,
and the public key PK. It outputs a ciphertext CT for (GL,ML) and M.

Decrypt(CT,SK,PK). The decryption algorithm takes as input a ciphertext CT for labels (GL,ML), a
private key SK for labels (GL′,ML′), and the public key PK. It outputs an encrypted message M or
⊥.

The correctness property of SRE is defined as follows: For all MK,PK generated by Setup, all u,S, any SKu

generated by GenKey, and any M, it is required that

• If (GL = GL′)∧ (ML 6= ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′,ML′),PK) = M.
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• If (GL 6= GL′)∨ (ML = ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′,ML′),PK) =⊥ with all
but negligible probability.

The security property of SRE is defined as indistinguishability. The distinguishing game of SRE can be
similarly defined by modifying the distinguishing game of PKBE. In this game, an adversary is first given a
public key of SRE, and then he can obtain many private keys for labels. In the challenge step, the adversary
submits challenge labels and two challenge messages, and then he receives a challenge ciphertext. Finally,
the adversary outputs a guess for the random coin that is used to create the challenge ciphertext. If the guess
of the adversary is correct, then the adversary wins the game. The following is the formal definition of
indistinguishability.

Definition 3.2 (Indistinguishability). The indistinguishability property of SRE under a chosen plaintext
attack is defined in terms of the following game between a challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,U) to generate a master key MK and a public key PK. It keeps MK to itself
and gives PK to A.

2. Query: A adaptively requests private keys for labels (GL1,ML1), . . . ,(GLq,MLq). In response, C
gives the corresponding private keys SK1, . . . ,SKq to A by running GenKey((GLi,MLi),MK,PK).

3. Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗0 ,M
∗
1 with the equal length

subject to the restriction: for all (GLi,MLi) of private key queries, it is required that (GLi 6= GL∗)∨
(MLi = ML∗). C flips a random coin γ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by
running Encrypt((GL∗,ML∗),M∗γ ,PK).

4. Guess: A outputs a guess γ ′ ∈ {0,1} of γ , and wins the game if γ = γ ′.

The advantage of A is defined as AdvSRE
A (λ ) =

∣∣Pr[γ = γ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A SRE scheme is indistinguishable under a chosen plaintext attack if for all PPT
adversary A, the advantage of A in the above game is negligible in the security parameter λ .

3.2 Construction

Our SRE scheme is inspired by the IBRE scheme of Lewko, Sahai, and Waters [19] and the IBE scheme of
Park and Lee [25] that employ the “two equation” technique. In the two equation technique, a ciphertext
is associated with a revoked set R = {ID1, . . . , IDr} of users and a user is associated with an identity ID.
If a user is not revoked (ID 6= IDi), then he will obtain two independent equations and can decrypt the
ciphertext. However, if a user is revoked (ID = IDi), then he will obtain two dependent equations and thus
cannot decrypt the ciphertext. Lewko et al. [19] constructed a IBRE scheme that has private keys of constant
size, public keys of constant size, and ciphertexts of O(r) size. We construct a SRE scheme that enables
a sender to broadcast a ciphertext to a given group except a one specified member in the group by slightly
modifying the IBRE scheme of Lewko et al. First, the IBRE scheme can be modified to revoke a single
user instead of multiple users, and then the modified scheme has a private key SK = (gαwr,(hwID)r,g−r)
and a ciphertext CT = (e(g,g)αtM,gt ,(hwID)t) where ID is a user identifier. However this modified scheme
does not support groups. To support groups, we first represent a user identifier ID as labels (GL,ML)
of a group and a member, and use hash functions H1,H2 to select unique h,w values for each groups.
Then the modified scheme has a private key SK = (gαH2(GL)r,(H1(GL)H2(GL)ML)r,g−r) and a ciphertext
CT = (e(g,g)αt ,gt ,(H1(GL)H2(GL)ML)t) where GL is a group label and ML is a member label.

7



Let U = {(GLi,{ML j})} be the universe of groups and members where the maximum number Ug of
groups is a polynomial number in a security parameter and the maximum number Um of members in a group
is also a polynomial numbers in a security parameter. Our SRE scheme for the universe U is described as
follows:

SRE.Setup(1λ ,U): This algorithm first generates the bilinear groups G of prime order p of bit size Θ(λ ).
It chooses a random element g ∈ G. It selects a random exponent α ∈ Zp. It outputs a master key
MK = gα and a public key as

PK =
(
(p,G,GT ,e), g, H1,H2, Ω = e(g,g)α

)
.

SRE.GenKey((GL,ML),MK,PK): This algorithm takes as input labels (GL,ML), the master key MK, and
the public key PK. It selects a random exponent r ∈ Zp and outputs a private key by implicitly
including (GL,ML) as

SK(GL,ML) =
(

K0 = gαH2(GL)r, K1 = (H1(GL)H2(GL)ML)r, K2 = g−r
)
.

SRE.Encrypt((GL,ML),M,PK): This algorithm takes as input labels (GL,ML), a message M ∈ GT , and
the public key PK. It chooses a random exponent t ∈ Zp and outputs a ciphertext by implicitly
including (GL,ML) as

CT(GL,ML) =
(

C0 = Ω
tM, C1 = gt , C2 = (H1(GL)H2(GL)ML)t

)
.

SRE.Decrypt(CT(GL,ML),SK(GL′,ML′),PK): This algorithm takes as input a ciphertext CT(GL,ML), a private
key SK(GL′,ML′), and the public key PK. If (GL = GL′)∧ (ML 6= ML′), then it outputs a message as

M =C0 · e(C1,K0)
−1 · (e(C1,K1) · e(C2,K2))

1/(ML′−ML).

Otherwise, it outputs ⊥.

The correctness of the above SRE scheme is easily verified by the following equation.

e(C1,K0)/(e(C1,K1) · e(C2,K2))
1/(ML′−ML)

= e(gt ,gαH2(GL)r)/
(

e(gt ,(H1(GL)H2(GL)ML′)r) · e((H1(GL)H2(GL)ML)t ,g−r)
)1/(ML′−ML)

= e(gt ,gαH2(GL)r)/
(

e(g,H2(GL))tr·(ML′−ML)
)1/(ML′−ML)

= e(g,g)αt .

3.3 Security

Theorem 3.3. The above SRE scheme is indistinguishable under a chosen plaintext attack in the random
oracle model if the q-SMEBDH assumption holds where Um ≤ q.

Proof. Suppose there exists an adversary A that breaks the distinguishing game of the SRE scheme with a
non-negligible advantage. A simulator B that solves the q-SMEBDH assumption using A is given: a chal-
lenge tuple D = ((p,G,GT ,e),g,{gai ,gb/ai}1≤i≤q,{gbai/a j}1≤i, j,i6= j≤q,gc) and T where T = T0 = e(g,g)bc or
T = T1 = e(g,g)d . Then B that interacts with A is described as follows:
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Setup: B first guesses challenge labels (GL′,ML′) such that ML′ is a member of GL′. Next, it initializes
two lists H1-List and H2-List for random oracles as empty sets. It implicitly sets α = b and creates
the public key as PK =

(
(p,G,GT ,e),g, H1,H2,Ω = e(ga1 ,gb/a1)

)
.

Query: Amay adaptively request hash queries or private key queries. Let MS(GL) be a function that takes
a group label GL as an input and outputs the set {MLi} of members in the group, ρ(GL,ML) be a
function that takes a group label GL and a member label ML as inputs and outputs an index k of the
member in the group, and RSGL′,ML′(GL) be a function that outputs MS(GL) if GL 6= GL′ or {ML′}
if GL = GL′. For notational convenience, we use RS(GL) instead of RSGL′,ML′(GL).

If this is an i-th H1 hash query on a label GL, then B handles this query as follows:

1. If there exists a tuple (GL,−,−) in the H1-List, then it returns H1(GL) from the H1-List.

2. It sets H1(GL) = ∏∀MLk∈RS(GL)(g
aρ(GL,MLk))−MLk ·gh1,i by choosing a random exponent h1,i ∈ Zp.

Note that if GL = GL′, then it sets H1(GL′) = (g
aρ(GL,ML j′ ))−ML′gh1,i since RS(GL′) = {ML′}

where j′ is the index of ML j′ such that ML′ = ML j′ .

3. It saves a tuple (GL,h1,i,H1(GL)) to the H1-List and returns H1(GL).

If this is a H2 hash query on a label GL, then B handles this query as follows:

1. If there exists a tuple (GL,−,−) in the H2-List, then it returns H2(GL) from the H2-List.

2. It sets H2(GL) = ∏∀MLk∈RS(GL) gaρ(GL,MLk) · gh2,i by choosing a random exponent h2,i ∈ Zp. Note
that if GL = GL′, then it sets H2(GL′) = g

aρ(GL,ML j′ )gh2,i since RS(GL′) = {ML′} where j′ is the
index of ML j′ such that ML′ = ML j′ .

3. It saves a tuple (GL,h2,i,H2(GL)) to the H2-List and returns H2(GL).

If this is a private key query for labels (GL,ML) where ML=ML j and ρ(GL,ML) = j, then B handles
this query as follows:

1. If (GL = GL′)∧ (ML 6= ML′), then it aborts since it cannot create a private key.

2. It first retrieves a tuple (GL,h1,i,H1(GL)) for GL from H1-List and a tuple (GL,h2,i,H2(GL)) for
GL from H2-List.

3. Next, it selects a random exponent r′ ∈ Zp and creates a private key SK(GL,ML) by implicitly
setting r =−b/aρ(GL,ML j)+ r′ as

K0 = ∏
∀MLk∈RS(GL)\{ML j}

(gaρ(GL,MLk)
/aρ(GL,ML j)·b)−1(g1/aρ(GL,ML j)·b)−h1,i ·H2(GL)r′ ,

K1 = ∏
∀MLk∈RS(GL)\{ML j}

(gaρ(GL,MLk)
/aρ(GL,ML j)·b)MLk−ML j(g1/aρ(GL,ML j)·b)−h1,i−h2,iML j ·

(
H1(GL)H2(GL)ML j

)r′
,

K2 = g1/aρ(GL,ML j)·bg−r′ .

Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗0 ,M
∗
1 . If (GL′ 6= GL∗)∨ (ML′ 6=

ML∗), then B aborts the simulation since it failed to guess the challenge labels. Otherwise, B flips a

9



random coin γ ∈ {0,1} internally. Next, it retrieves tuples (GL∗,h∗1,H1(GL∗)) and (GL∗,h∗2,H2(GL∗))
from H1-List and H2-List respectively. It implicitly sets t = c and creates a challenge ciphertext as

C0 = T ·M∗γ , C1 = gc, C2 = (gc)h∗1+h∗2ML∗ .

Output: Finally, A outputs a guess γ ′. If γ = γ ′, B outputs 0. Otherwise, it outputs 1.

To finish the proof, we first show that hash outputs, private keys, and the challenge ciphertext are cor-
rectly distributed. The hash outputs are correctly distributed since new random elements h1 and h2 are
chosen for H1 and H2 hash queries. The private key is correctly distributed since it satisfies the following
equation

K0 = gαH2(GL)r = gb(
∏

∀MLk∈RS(GL)
gaρ(GL,MLk) ·gh1,i

)−b/aρ(GL,ML j)+r′

= ∏
∀MLk∈RS(GL)\{ML j}

(gaρ(GL,MLk)
/aρ(GL,ML j)·b)−1(g1/aρ(GL,MLk)

·b)−h1,i ·H2(GL)r′ ,

K1 =
(
H1(GL)H2(GL)ML j

)r

=
(

∏
∀MLk∈RS(GL)

(gaρ(GL,MLk))−MLk ·gh1,i ·
(

∏
∀MLk∈RS(GL)

gaρ(GL,MLk) ·gh2,i
)ML j

)−b/aρ(GL,ML j)+r′

= ∏
∀MLk∈RS(GL)\{ML j}

(gaρ(GL,MLk)
/aρ(GL,ML j)·b)MLk−ML j · (g1/aρ(GL,ML j)·b)−h1,i−h2,iML j ·

(
H1(GL)H2(GL)ML j

)r′
,

K2 = g−r = gb/aρ(GL,ML j)−r′
= g1/aρ(GL,ML j)·bg−r′ .

Note that it cannot create a private key for (GL,ML) such that (GL = GL′)∧ (ML 6= ML′) since the ele-
ment gb cannot be removed because of RS(GL′) \ {ML j} = /0. The challenge ciphertext is also correctly
distributed since it satisfies the following equation

C0 = e(g,g)αtM∗γ = e(g,g)bcM∗γ ,

C1 = gt = gc,

C2 = (H1(GL∗)H2(GL∗)ML∗)t =
(
(gaρ(GL∗ ,ML∗))−ML∗gh∗1 · (gaρ(GL∗ ,ML∗)gh∗2)ML∗)c

= (gc)h∗1+h∗2ML∗ .

Finally, we analyze the success probability of the above simulation. Let Good be the event that the simulator
successfully guesses the challenge labels. We have that Pr[Good] ≥ 1

Ug·Um
. If the event Good occurs, then

the simulator does not abort. Therefore, the success probability of the simulation is bounded by 1
Ug·Um

. This
completes our proof.

3.4 Discussions

Fast Decryption. The simple decryption algorithm of our SRE scheme requires three pairing operations and
a one exponentiation operation. We can improve the performance of the decryption algorithm by modifying
the computation of the algorithm as M = C0 · e(C1,K−1

0 K1/(ML′−ML)
1 ) · e(C2,K

1/(ML′−ML)
2 ). In this case, the

decryption algorithm just consists of two pairing operations and two exponentiation operations.
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Chosen-Ciphertext Security. The security of indistinguishability under a chosen-ciphertext attack (IND-
CCA) is similar to the security of indistinguishability under a chosen-plaintext attack (IND-CPA) except
that an adversary is allowed to request decryption queries on ciphertexts. Note that the adversary may
request decryption queries after the challenge step. To provide the security of IND-CCA, we can use the
transformation of Fujisaki and Okamoto [13] since our scheme is proven in the random oracle model.

Removing Random Oracles. The proposed SRE scheme is only secure when two hash functions H1 and
H2 are modeled as random oracles. We can easily remove the random oracles by simply selecting random
group elements hi and wi for H1(GLi) and H2(GLi) in the public key since the set of group labels is fixed
and the total number of group labels is a polynomial number in a security parameter. However, the public
key size of this method is quite large.

4 Subset Cover Framework

In this section, we define the subset cover framework and describe the subset difference (SD) scheme and
the layered subset difference (LSD) scheme.

4.1 Definitions

The subset cover (SC) framework, introduced by Naor, Naor, and Lotspiech [20], is a general methodology
to construct efficient revocation systems. They constructed symmetric-key broadcast encryption schemes
by combining their SC framework that includes a key assignment method with a symmetric-key encryp-
tion scheme. In this paper, we define a SC scheme by excluding the key assignment method from the SC
framework since we apply the SC scheme in public-key settings.

In the SC scheme, a center first define a collection S of subsets S1, . . . ,Sw such that Si ⊆ N where N
is the set of all users. A user u ∈ N is assigned a private set PVu that consists of subsets Si associated
with u by the center. The user may obtain the real private keys that are related with the private set PVu

from the center by running the key generation algorithm of symmetric-key encryption (SKE) or public-key
encryption (PKE). A sender finds a covering set CVR that is a partition of the non-revoked users N \R into
disjoint subsets Si1 , . . . ,Sim . The sender may construct the ciphertext of broadcast encryption by running the
encryption algorithm of SKE or PKE. A receiver can find matching sets from the covering set and the private
set by running the matching algorithm. The receiver may recover a message from the ciphertext by running
the decryption algorithm of SKE or PKE. The following is the syntax of the SC scheme.

Definition 4.1 (Subset Cover). A subset cover (SC) scheme for the set N = {1, . . . ,N} of users consists of
four PPT algorithms Setup, Assign, Cover, and Match, which are defined as follows:

Setup(N). The setup algorithm takes as input the maximum number N of users and outputs a collection S
of subsets S1, . . . ,Sw where Si ⊆N .

Assign(S,u). The assigning algorithm takes as input the collection S and a user u ∈ N , and outputs a
private set PVu = {S j1 , . . . ,S jn} that is associated with the user u.

Cover(S,R). The covering algorithm takes as the collection S and a revoked set R ⊂ N of users, and
outputs a covering set CVR = {Si1 . . . ,Sim} that is a partition of the non-revoked users N \R into
disjoint subsets Si1 , . . . ,Sim such that S \R =

⋃m
k=1 Sik .
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Match(CVR,PVu). The matching algorithm takes as input a covering set CVR = {Si1 , . . . ,Sim} and a private
set PVu = {S j1 , . . . ,S jn} of a user u. It outputs (Sik ,S jk′ ) such that Sik ∈CVR, u ∈ Sik , and S jk′ ∈ PVu,
or it outputs ⊥.

The correctness property of SC is defined as follows: For all S generated by Setup, all PVu generated by
Assign, and any R, it is required that:

• If u /∈ R, then Match(Cover(S,R),PVu) = (Sik ,S jk′ ).

• If u ∈ R, then Match(Cover(S,R),PVu) =⊥.

4.2 Full Binary Tree

A full binary tree T is a tree data structure where each node except the leaf nodes has two child nodes. Let
N be the number of leaf nodes in T . The number of all nodes in T is 2N−1 and for any 1≤ i≤ 2N−1 we
denote by vi a node in T . The depth di of a node vi is the length of the path from the root node to the node.
The root node is at depth zero. The depth of T is the length of the path from the root node to a leaf node. A
level of T is a set of all nodes at given depth. For any node vi ∈ T , Ti is defined as a subtree that is rooted at
vi. For any two nodes vi,v j ∈ T such that v j is a descendant of vi, Ti, j is defined as a subtree Ti−Tj, that is,
all nodes that are descendants of vi but not v j. For any node vi ∈ T , Si is defined as the set of leaf nodes in
Ti. Similarly, Si, j is defined as the set of leaf nodes in Ti, j, that is, Si, j = Si \S j.

For any node vi ∈ T , Li is defined as an identifier that is a fixed and unique string. The identifier of each
node in the tree is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether
the edge is connected to its left or right child node. The identifier Li of a node vi is defined as the bitstring
obtained by reading all the labels of edges in the path from the root node to the node vi. We define ID(vi)
be a mapping from a node vi to an identifier Li. We also define ID(Ti) be a mapping from a subtree Ti to
the identifier Li of the node vi and ID(Ti, j) be a mapping from a subtree Ti, j to a tuple (Li,L j) of identifiers.
Similarly, we can define ID(Si) = ID(Ti) and ID(Si, j) = ID(Ti, j).

For a full binary tree T and a subset R of leaf nodes, ST (T ,R) is defined as the Steiner Tree induced by
the set R and the root node, that is, the minimal subtree of T that connects all the leaf nodes in R and the
root node. we simply denote ST (T ,R) by ST (R).

4.3 SD Scheme

The subset difference (SD) scheme is the SC scheme proposed by Naor et al. [20]. We describe the SD
scheme with a slight modification for the integration with our SRE scheme.

SD.Setup(N): This algorithm takes as input the maximum number N of users. Let N = 2n for simplicity.
It first sets a full binary tree T of depth n. Each user is assigned to a different leaf node in T . The
collection S of SD is the set of all subsets {Si, j} where vi,v j ∈ T and v j is a descendant of vi. It
outputs the full binary tree T .

SD.Assign(T ,u): This algorithm takes as input the tree T and a user u ∈ N . Let vu be the leaf node of T
that is assigned to the user u. Let (vk0 ,vk1 , . . . ,vkn) be the path from the root node vk0 to the leaf node
vkn = vu. It first sets a private set PVu as an empty one. For all i, j ∈ {k0,k1, . . . ,kn} such that v j is a
descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PVu. It outputs
the private set PVu = {Si, j}.
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SD.Cover(T ,R): This algorithm takes as input the tree T and a revoked set R of users. It first sets a subtree
T as ST (R), and then it builds a covering set CVR iteratively by removing nodes from T until T consists
of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does not
contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v such
that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left, it
makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CVR; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.

SD.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si, j} and a private set PVu =
{S′i, j}. It finds two subsets Si, j and S′i′, j′ such that Si, j ∈CVR, S′i′, j′ ∈ PVu, i = i′, d j = d j′ , and j 6= j′

where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,S′i′, j′). Otherwise, it outputs
⊥.

The correctness of the SD scheme is easy to show. We first show that if u /∈ R, then the matching
algorithm finds two subsets that meet the conditions. A covering set CVR contains only one subset Si, j such
that vu ∈ Si, j if u /∈ R since the covering algorithm outputs disjoint subsets that cover the non-revoked users
N \R. The subset Si, j is represented by two nodes vi and v j where vi is an ancestor of a leaf node vu and
v j is not an ancestor of the leaf node vu since vu ∈ Si, j. A private set PVu for the user u contains all subsets
S′i′, j′ that are represented by two nodes vi′ and v j′ where vi′ and v j′ are nodes in the path from the root node
to the leaf node vu. That is, vi′ and v j′ of any S′i′, j′ are ancestors of vu. Therefore, the matching algorithm
can find two subsets Si, j ∈CVR and S′i′, j′ ∈ PVu such that vu ∈ Si, j, vi = vi′ , d j = d j′ , and v j 6= v j′ since v j is
not an ancestor of vu where d j is the depth of v j. We next show that if u ∈ R, then any algorithm cannot find
two subsets that meet the conditions. Suppose there exists two subsets Si, j ∈CVR and S′i′, j′ ∈ PVu such that
vi = vi′ ,d j = d j′ , and v j 6= v j′ . In this case, vi is an ancestor of vu but v j is not an ancestor of vu. This means
that vu ∈ Si, j. However, this contradicts the condition u ∈ R. Therefore, if u ∈ R, any algorithm cannot find
two subsets.

Lemma 4.2 ( [20]). Let N be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the SD scheme, the size of a private set is O(log2 N) and the size of a covering set is at most 2r−1.

4.4 LSD Scheme

The layered subset difference (LSD) scheme is the SC scheme proposed by Halevy and Shamir [18]. The
LSD scheme can reduce the size of a private set that is given to a user by increasing the size of a covering
set. We describe the LSD scheme with a slight modification for the integration with our SRE scheme.

LSD.Setup(N): This algorithm takes as input the maximum number N of users. Let N = 2n for simplicity.
It first sets a full binary tree T of depth n. Each user is assigned to a different leaf node in T . Some
levels of T are defined as “special”. The root node is at a special level, and every level of depth
k
√

logN as special for k = 1 to
√

logN. The levels between and including adjacent special levels are
defined as “layer”. The collection S of LSD is the set of all subsets {Si, j} where vi,v j ∈ T and v j is a
descendant of vi with the restriction that vi and v j belong to the same layer, or vi is at a special level.
It outputs the full binary tree T .
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LSD.Assign(T ,u): This algorithm takes as input the tree T and a user index u ∈N . Let vu be the leaf node
of T that is assigned to the user u. Let (vk0 ,vk1 , . . . ,vkn) be the path from the root node vk0 to the leaf
node vkn = vu. It first sets a private set PVu as an empty one. For all i, j ∈ {k0, . . . ,kn} such that v j is a
descendant of vi, it proceeds as follows: If vi is at special level, then it adds Si, j into PVu. Otherwise,
that is vi is at layer level, it adds Si, j into PVu if vi and v j are at the same layer. It outputs a private set
PVu = {Si, j}.

LSD.Cover(T ,R): This algorithm takes as input the tree T and a revoked set R of users. It first finds a
covering set CV ′R by running the covering algorithm of the SD scheme. For all Si, j ∈CV ′R, it proceeds
as follows: If vi and v j are not at the same layer, then it splits Si, j into Si,k and Sk, j where vk is at
special level and vi,vk,v j are nodes which occur in this order on a path from vi to v j in the tree. It
adds Si,k,Sk, j into CVR. Otherwise, that is vi and v j are at the same layer, then it adds Si, j into CVR. It
outputs the covering set CVR = {Si, j}.

LSD.Match(CVR,PVu): This algorithm is the same as the matching algorithm of the SD scheme.

Lemma 4.3 ( [18]). Let N be the number of leaf nodes in a full binary tree and r be the size of a revoked set.
In the LSD scheme, the size of a private set is O(log1.5 N) and the size of a covering set is at most 4r−2.

5 Revocation Encryption

In this section, we first propose a public-key revocation encryption (PKRE) scheme by combining the SRE
scheme and the SC scheme, and then we prove its security.

5.1 Definitions

Broadcast encryption (BE), introduced by Fiat and Naor [12], is an encryption method that can efficiently
transmit a ciphertext to a receiver set S of users. Revocation encryption (RE) is a slight variation of BE
such that the encryption algorithm is specified by a revoked set R instead of a receiver set S1. Public-key
revocation encryption (PKRE) is a special type of RE such that anyone can create a ciphertext for all users
except a revoked set R of users by using a public key [11, 19]. The following is the syntax of PKRE.

Definition 5.1 (Public-Key Revocation Encryption). A public-key revocation encryption (PKRE) scheme for
the set N = {1, . . . ,N} of users consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which
are defined as follows:

Setup(1λ ,N). The setup algorithm takes as input a security parameter 1λ and the maximum number N of
users. It outputs a master key MK and a public key PK.

GenKey(u,MK,PK). The key generation algorithm takes as input a user’s index u ∈ N , the master key
MK, and the public key PK. It outputs a private key SKu for the user u.

Encrypt(R,M,PK). The encryption algorithm takes as input a revoked set R of users such that R ⊆ N , a
message M ∈M, and the public key PK. It outputs a ciphertext CTR for R and M.

1In the public-key setting, RE is equivalent to BE since a receiver set can be specified as S =N \R where N is the set of all
users in the system and the size of N is a polynomial number in a security parameter. However, in the identity-based setting, RE is
not equivalent to BE since the size of all users in the system is an exponential number in a security parameter.
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Decrypt(CTR,SKu,PK). The decryption algorithm takes as input a ciphertext CTR for a revoked set R, a
private key SKu for an index u, and the public key PK. It outputs an encrypted message M or ⊥.

The correctness property of PKRE is defined as follows: For all MK,PK generated by Setup, all u,S, any
SKu generated by GenKey, and any M, it is required that

• If u /∈ R, then Decrypt(Encrypt(R,M,PP),SKu,PP) = M.

• If u ∈ R, then Decrypt(Encrypt(R,M,PP),SKu,PP) =⊥ with all but negligible probability.

The security property of PKRE is defined as indistinguishability. The distinguishing game of PKRE can
be easily defined by slightly modifying the distinguishing game of PKBE [5,20]. In this game, an adversary
is first given a target public key, and then he may adaptively request many private keys of users. In the
challenge step, the adversary submits a challenge revoked set R∗ and two challenge messages M∗0 ,M

∗
1 , and

then he is given a challenge ciphertext. Finally, the adversary outputs a guess for the random coin that is
used to create the challenge ciphertext. If the guess of the adversary is correct, then he wins. The following
is the formal definition of indistinguishability.

Definition 5.2 (Indistinguishability). The indistinguishability property of PKRE under a chosen plaintext
attack is defined in terms of the following game between a challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,N) to generate a master key MK and a public key PK. It keeps MK to itself
and gives PK to A.

2. Query: A may adaptively request private keys for users u1, . . . ,uq ∈ N . In response, C gives the
corresponding private keys SKu1 , . . . ,SKuq to A by running GenKey(ui,MK,PP).

3. Challenge: A submits a challenge revoked set R∗ of users and two messages M∗0 ,M
∗
1 with the equal

length subject to the restriction: for all ui of private key queries, ui ∈ R∗. C flips a random coin
γ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running Encrypt(R∗,M∗γ ,PK).

4. Guess: A outputs a guess γ ′ ∈ {0,1} of γ , and wins the game if γ = γ ′.

The advantage of A is defined as AdvPKRE
A (λ ) =

∣∣Pr[γ = γ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A PKRE scheme is indistinguishable under a chosen plaintext attack if for all PPT
adversary A, the advantage of A in the above game is negligible in the security parameter λ .

5.2 Construction

The basic idea of our PKRE scheme is to combine the SD scheme and the SRE scheme that is a special
type of public-key encryption (PKE). The idea of combining the SD scheme with a PKE scheme is not a
new one since Dodis and Fazio [11] already constructed a PKRE scheme by combining the SD scheme with
an HIBE scheme. Dodis and Fazio showed that the key assignment method of Naor et al. [20] for the SD
scheme can be mimicked by using the delegation property of HIBE. In contrast to the method of Dodis and
Fazio, we show that a subset Si, j in the SD scheme can be easily mapped to the group and member labels
(GL,ML) of the SRE scheme by using the revocation property of the SRE scheme that can revoke a single
member in a group. That is, a subset Si, j in the SD scheme is defined as the set of leaf nodes that belong to
Ti but not belong to Tj where Ti and Tj are subtrees with root nodes vi and v j respectively. This subset Si, j is
represented by two nodes vi and v j that have labels Li and L j respectively. To map the subset Si, j to labels
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(GL,ML), we define a group GL as the set of nodes in Ti at the same level with the node v j and define a
revoked member ML as the node v j.

Before presenting our PKRE scheme, we first define the universe U of SRE that is derived from a full
binary tree T as follows: Let Ti be a subtree of T that is rooted at vi. A single group in U is defined
as a set of nodes that are in the same level of Ti except the level of vi. Suppose that the tree T has the
number N of leaf nodes. In this case, the maximum number of groups in U is N logN and the maximum
number of members in a groups is N since the number of internal nodes is N− 1 and the maximum depth
of each subtrees is logN−1. The subset Si, j of the SD scheme that uses T is easily converted to the labels
(GL = Li||d j,ML = L j) of the SRE scheme where (Li,L j) is the identifier of Si, j and d j is the depth of L j.

Our PKRE scheme for the set N = {1, . . . ,N} of users is described as follows:

PKRE.Setup(1λ ,N): This algorithm first define a full binary tree T by running SD.Setup(N). Next, it
obtains MKSRE and PKSRE by running SRE.Setup(1λ ,U) where U is defined from T . It outputs a
master key MK = MKSRE and a public key as PK = (T ,PKSRE).

PKRE.GenKey(u,MK,PK): This algorithm takes as input a user u ∈ N , the master key MK, and the
public key PK. It first obtains a private set PVu = {Si, j} by running SD.Assign(T ,u). Let d j be the
depth of a node v j associated with L j. For all Si, j ∈ PVu, it obtains (Li,L j) by applying ID(Si, j) and
computes SKSRE,Si, j by running SRE.GenKey((Li||d j,L j),MKSRE ,PKSRE). It outputs a private key as
SK = (PVu,{SKSRE,Si, j}Si, j∈PVu).

PKRE.Encrypt(R,M,PK): This algorithm takes as input a revoked set R ⊆ N , a message M ∈ GT , and
the public key PK. It first finds a covering set CVR = {Si, j} by running SD.Cover(T ,R). Let d j be
the depth of a node v j associated with L j. For all Si, j ∈CVR, it obtains (Li,L j) by applying ID(Si, j)
and computes CTSRE,Si, j by running SRE.Encrypt((Li||d j,L j),M,PKSRE). It outputs a ciphertext as
CT = (CVR,{CTSRE,Si, j}Si, j∈CVR).

PKRE.Decrypt(CT,SK,PK): This algorithm takes as input a ciphertext CT , a private key SK, and the
public key PK. It first finds a matching tuple (Si, j,S′i, j) by running SD.Match(CVR,PVu). If it found a
tuple, then it outputs a message M by running SRE.Decrypt(CTSRE,Si, j ,SKSRE,S′i, j ,PKSRE). Otherwise,
it outputs ⊥.

The correctness of the above PKRE scheme easily follows the correctness of the SD scheme and that of
the SRE scheme. If u /∈ R, then a user u can obtain two subsets Si, j ∈CVR and S′i′, j′ ∈ PVu from a ciphertext
CT and his private key SK such that i = i′,d j = d j′ , and j 6= j′ from the correctness of the SD scheme. Next,
he can derive two labels (GL= Li||d j,ML= L j) and (GL′= Li′ ||d j′ ,ML′= L j′) for the SRE scheme from the
two subsets Si, j and S′i′, j′ where (Li,L j) = ID(Si, j) and (Li′ ,L j′) = ID(S′i′, j′). Note that Li = Li′ ,d j = d j′ , and
L j 6= L j′ . Therefore, he can obtains a message M from the correctness of the SRE scheme since GL = GL′

and ML 6= ML′. If u ∈ R, then a user u cannot obtain two subsets Si, j ∈ CVR and S′i′, j ∈ PVu such that
i = i′,d j = d j′ , and j 6= j′ from the correctness of the SD scheme. Note that the correctness property is only
satisfied when an honest user simply runs the decryption algorithm of our PKRE scheme.

5.3 Security

Theorem 5.3. The above PKRE scheme is indistinguishable under a chosen plaintext attack if the SRE
scheme is indistinguishable under a chosen plaintext attack.
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Proof. The basic idea of this proof is to convert the challenge ciphertext of the PKRE scheme from an
encryption on a message M∗0 to an encryption on a message M∗1 by using hybrid games that change each
ciphertext components of the SRE scheme from an encryption on M∗0 to an encryption on M∗1 . If an adversary
cannot distinguish the changes of each ciphertext components of the SRE scheme with more than a non-
negligible probability, then he also cannot distinguish the changes of the challenge ciphertext of the PKRE
scheme with more than a non-negligible probability since the number of hybrid games is just polynomial.

Suppose that CVR∗ is the covering set of the challenge revoked set R∗ and the size of CVR∗ is w. The chal-
lenge ciphertext is described as CT ∗ = (CVR,CTSRE,1, . . . ,CTSRE,w). The hybrid games G0, . . . ,Gi, . . . ,Gw

for the security proof are defined as follows:

Game G0 In this game, all ciphertext components CTSRE, j of the challenge ciphertext are encryption on the
message M∗0 . That is, the challenge ciphertext CT ∗ is an encryption on the message M∗0 . Note that this
game is the original security game except that the challenge bit γ is fixed to 0.

Game Gh This game is almost identical to the game Gh−1 except the ciphertext component CTSRE,h since
CTSRE,h in this game is an encryption on the message M∗1 . Specifically, in this game, the ciphertext
component CTSRE, j for j ≤ h is an encryption on the message M∗1 and the ciphertext component
CTSRE, j for h < j is an encryption on the message M∗0 .

Game Gw In this game, all ciphertext components CTSRE, j of the challenge ciphertext are encryption on the
message M∗1 . That is, the challenge ciphertext CT ∗ is an encryption on the message M∗1 . Note that this
game is the original security game except that the challenge bit γ is fixed to 1.

Let AdvGh
A be the advantage of A in Gh. That is, AdvGh

A = |Pr[γ = γ ′|γ = 0]− 1
2 |. We have AdvGw

A =
|Pr[γ = γ ′|γ = 0]− 1

2 |= |Pr[γ = γ ′|γ = 1]− 1
2 | since Gw is the same as the original security game except that

γ is fixed to 1. In Lemma 5.4, we prove that it is hard for A to distinguish Gh−1 from Gh if the SRE scheme
is secure. Thus, we have that

AdvG0
A −AdvGw

A = AdvG0
A +

w−1

∑
h=1

(AdvGh
A −AdvGh

A )−AdvGw
A

≤
w

∑
h=1
|AdvGh−1

A −AdvGh
A | ≤ 2w ·AdvSRE

B (λ ).

Finally, we obtain the following inequality relation as

AdvPKRE
A (λ ) =

∣∣Pr[γ = 0] ·Pr[γ = γ
′|γ = 0]+Pr[γ = 1] ·Pr[γ = γ

′|γ = 1]− 1
2

∣∣
=
∣∣1
2
· (Pr[γ ′ = 0|γ = 0]− 1

2
)+

1
2
· ((1−Pr[γ ′ = 0|γ = 1])− 1

2
)
∣∣

=
1
2
·
∣∣(Pr[γ ′ = 0|γ = 0]− 1

2
)− (Pr[γ ′ = 0|γ = 1]− 1

2
)
∣∣

≤ 1
2
·
∣∣AdvG0

A −AdvGw
A
∣∣≤ w ·AdvSRE

B (λ ).

Note that we already have AdvSRE(λ )≤ N2 logN ·Advq-SMEBDH(λ ) from Theorem 3.3 since Ug ≤ N logN
and Um ≤ N. This completes our proof.

Lemma 5.4. If the SRE scheme is indistinguishable under a chosen plaintext attack, then no polynomial
time adversary can distinguish between Gh−1 and Gh with non-negligible advantage.
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Proof. Suppose there exists an adversary A that distinguishes between Gh−1 and Gh with non-negligible
advantage. A simulator B that breaks the distinguishing game of the SRE scheme is first given: a challenge
public key PK′SRE . Then B that interacts with A is described as follows:

Setup: B first sets a full binary tree T by running SD.Setup(N) and gives PK = (T ,PK′SRE) to A.

Query: A adaptively requests a private key query for a user u ∈N . B proceeds this query as follows:

1. It obtains a private set PVu = {Si, j} by running SD.Assign(T ,u).
2. For each Si, j ∈ PVu, it sets labels (GL,ML) from Si, j and requests a private key SKSRE,Si, j for

labels (GL,ML) to the key generation oracle that simulates SRE.GenKey.

3. It sets the private key SKu = {SKSRE,Si, j} and gives this to A.

Challenge: A outputs a challenge revoked set R∗ and two challenge messages M∗0 ,M
∗
1 subject to the

restrictions. It sets γ = 0 and proceeds as follows:

1. It obtains a covering set CVR∗ = {Si1, j1 , . . . ,Siw, jw} by running SD.Cover(T ,R∗).
2. For 1 ≤ k ≤ h−1, it computes CTSRE,Sik , jk

by running SRE.Encrypt((Lik ||d jk ,L jk),M
∗
1 ,PK′SRE)

where (Lik ,L jk) = ID(Sik, jk) and d jk is the depth of the node v jk .

3. For k = h, it gives challenge labels GL′ = Lih ||d jh ,ML′ = L jh and challenge messages M′0 =
M∗0 ,M

′
1 = M∗1 to the challenge oracle that simulates SRE.Encrypt, and receives CT ′SRE . It sets

CTSRE,h =CT ′SRE .

4. For h+1≤ k ≤ w, it computes CTSRE,Sik , jk
by running SRE.Encrypt((Lik ||d jk ,L jk),M

∗
0 ,PK′SRE)

where (Lik ,L jk) = ID(Sik, jk) and d jk is the depth of the node v jk .

5. It gives a challenge ciphertext CT = (CVR∗ ,CTSRE,Si1 , j1
, . . . ,CTSRE,Siw, jw

) to A.

Guess: Finally, A outputs a bit γ ′. B sets c′ = γ ′ and outputs c′.

To finish the proof, we first show that the distribution of the above simulation is correct. It is easy to
check that the public key and the private keys are correctly distributed. Let c be the challenger oracle’s
random bit of the SRE scheme. If c = 0, then CT ′SRE is the encryption of labels (GL′,ML′) and a message
M∗0 . If c = 1, then CT ′SRE is the encryption of labels (GL′,ML′) and a message M∗1 . Thus, the challenge
ciphertext is the same as Gh−1 if c = 0. Similarly, we obtain that the challenge ciphertext is the same as Gh
if c = 1.

We next show that the above simulation satisfies the restriction of the SRE distinguishing game. The
restriction of the SRE distinguishing game is that for all labels (GLi,MLi) of SRE private keys, it is re-
quired that (GLi 6= GL′)∨ (MLi = ML′) where GL′,ML′ are the labels of the challenge SRE ciphertext.
The restriction of the PKRE distinguishing game is that for all user index u of PKRE private keys, it is
required that u ∈ R∗ where R∗ is the revoked set of users in the challenge PKRE ciphertext. The above
simulator honestly uses the algorithms of the SD scheme when it generates private keys and challenge
ciphertext for the PKRE scheme. If u ∈ R, there are no two subsets Si, j ∈ CVR,S′i′, j′ ∈ PVu such that
(vi = vi′)∧ (d j = d j′)∧ (v j 6= v j′) from the correctness of the SD scheme. Thus if u ∈ R, then any two
subset Si, j ∈ CVR,S′i′, j′ satisfy (vi 6= vi′)∨ (d j 6= d j′)∨ (v j = v j′). If (vi 6= vi′)∨ (d j 6= d j′), then GL 6= GL′

since the group label is defined as GLi = Li||d j where Li is the identifier of vi. If (v j = v j′), then (ML = ML′)
since the member label is defined as ML j = L j where L j is the identifier of v j. Therefore, we obtains the
restriction (GLi 6= GL′)∨ (MLi = ML′) of the SRE distinguishing game from the restriction u ∈ R∗ of the
PKRE distinguishing game.
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Therefore, we obtain the following equation

AdvSRE
B (λ ) = Pr[c = 0] ·

∣∣Pr[c′ = c|c = 0]− 1
2

∣∣+Pr[c = 1] ·
∣∣Pr[c′ = c|c = 1]− 1

2

∣∣
=

1
2
·
∣∣Pr[γ ′ = 0|c = 0]− 1

2

∣∣+ 1
2
·
∣∣Pr[γ ′ = 1|c = 1]− 1

2

∣∣
=

1
2
·
∣∣Pr[γ ′ = 0|c = 0]− 1

2

∣∣+ 1
2
·
∣∣(1−Pr[γ ′ = 0|c = 1])− 1

2

∣∣
≥ 1

2
· (Pr[γ ′ = 0|c = 0]− 1

2
)− 1

2
· (Pr[γ ′ = 0|c = 1]− 1

2
)

=
1
2
· (Pr[γ ′ = 0|γ = 0,c = 0]− 1

2
)− 1

2
· (Pr[γ ′ = 0|γ = 0,c = 1]− 1

2
)

=
1
2
·AdvGh−1

A − 1
2
·AdvGh

A .

This completes our proof.

5.4 Discussions

Efficiency. In our PKRE scheme, a public key consists of O(1) group elements, a private key consists of
O(log2 N) group elements, and a ciphertext consists of O(r) group elements where r is the size of a revoked
set. Additionally, the decryption algorithm of our PKRE scheme just requires one decryption operation of
the SRE scheme that consists of two pairing operations and two exponentiation operations.

LSD Scheme. To construct a PKRE scheme, we combined our SRE scheme with the SD scheme. We can
also combine our SRE scheme with the LSD scheme to construct a PKRE scheme since the LSD scheme is
just a special case of the SD scheme. If the LSD scheme is used instead of the SD scheme, then the group
elements of a private key can be reduced from O(log2 N) to O(log1.5 N) by doubling the number of group
elements in a ciphertext.

Chosen-Ciphertext Security. By combining a SRE scheme that provides the IND-CCA security and an
one-time signature (OTS) scheme that provides the strong unforgeability (i.e., an adversary is unable to
forge a new signature on the previously signed message.), we can construct a PKRE scheme that achieves
the IND-CCA security. That is, the encryption algorithm of PKRE first generates the public key OPK and
the signing key OSK of OTS, and then it builds ciphertext components by running the encryption algorithm
of SRE on OV K||M instead of M. At last, it creates a ciphertext by attaching an one-time signature on the
ciphertext components by running the signing algorithm of OTS.

6 Trace and Revoke

In this section, we propose a public-key trace and revoke (PKTR) scheme and prove its security. The
proposed PKTR scheme essentially uses the well-known fact that the broadcast encryption of the subset
cover framework can support the traitor tracing functionality. We describe our PKTR scheme that uses the
traitor tracing algorithm of Naor et al. [20] for the completeness of this paper.

6.1 Definitions

Public-key trace and revoke (PKTR) is PKRE with an additional tracing algorithm that can find a traitor
who leaked his private key to create a pirate decoder. Traitor tracing (TT), introduced by Chor, Fiat, and
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Naor [8], is a mechanism that provides the tracing functionality such that a tracer who is given a pirate
decoder can find at least one user who participated to create a pirate decoder by using his private key. PKTR
is a mechanism that can find a user suspected to be a traitor and revoke the user permanently [6, 7, 20]. A
PKTR scheme consists of the four algorithm of PKRE and one additional tracing algorithm that calls a pirate
decoder as a black-box. The following is the syntax of PKTR.

Definition 6.1 (Public-Key Trace and Revoke). A public-key trace and revoke (PKTR) scheme for the set
N = {1, . . . ,N} of users consists of five algorithms Setup, GenKey, Encrypt, Decrypt, and TraceD, which
are defined as follows:

Setup(1λ ,N). The setup algorithm takes as input a security parameter 1λ and the maximum number N of
users. It outputs a master key MK and a public key PK.

GenKey(u,MK,PK). The key generation algorithm takes as input a user’s index u ∈ N , the master key
MK, and the public key PK. It outputs a private key SKu for the user u.

Encrypt(R,M,PK). The encryption algorithm takes as input a set R of revoked users such that R ⊆ N , a
message M ∈M, and the public key PK. It outputs a ciphertext CTR for R and M.

Decrypt(CTR,SKu,PK). The decryption algorithm takes as input a ciphertext CTR for a set R, a private key
SKu for an index u, and the public key PK. It outputs an encrypted message M or ⊥.

TraceD(R,ε,PK). The tracing algorithm takes as input a revoked set R of users, a parameter ε , and the
public key PK. It interacts with a pirate decoder D and outputs a set T ⊆N .

The correctness property of PKTR is defined as follows: For all MK,PK generated by Setup, all u,S, any
SKu generated by GenKey, and any M, it is required that

• If u /∈ R, then Decrypt(Encrypt(R,M,PP),SKu,PP) = M.

• If u ∈ R, then Decrypt(Encrypt(R,M,PP),SKu,PP) =⊥ with all but negligible probability.

The security property of PKTR consists of indistinguishability and traceability. The indistinguishability
of PKTR is the same as the indistinguishability of PKRE. The traceability of PKTR is defined as the tracing
game between a challenger and an adversary. In this game, the adversary is given a public key and obtains
private keys of users. Finally, the adversary outputs a revoked set RD and a pirate decoder D. If the
challenger fails to find a traitor by using the tracing algorithm, then the adversary wins. The following is the
formal definition of traceability.

Definition 6.2 (Traceability). The traceability property of PKTR is defined in terms of the following tracing
game between a challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,N) to generate a master key MK and a public key PK. It keeps MK to itself
and gives PK to A.

2. Query: A may adaptively request private keys for users u1, . . . ,uq. In response, C gives the corre-
sponding private keys SKu1 , . . . ,SKuq to A by running GenKey(ui,MK,PP). Let E be the total set of
users whose private keys were obtained by A.

3. Output: Finally, A outputs a revoked set RD of users and a pirate decoder D which is a probabilistic
algorithm that takes as input a ciphertext CT and outputs some message M.

20



4. Trace: C obtains a traitor set T ⊆N by running TraceD(RD,ε,PK).

A wins the game if the following two conditions hold: (i) Pr[D(Encrypt(RD,M,PK)) = M] ≥ ε for a ran-
domly chosen M and (ii) the set T is either empty or is not a subset of E \RD. The advantage of A is
defined as the probability that A wins this game. A PKTR scheme is traceable if for all PPT adversary A,
the advantage of A in the above game is negligible in the security parameter λ .

6.2 Construction

Naor et al. [20] showed that broadcast encryption of SC framework can support the traitor tracing function-
ality. Our PKRE scheme also can support the tracing functionality since it also uses the SC framework. We
describe the tracing algorithm of our PKTR scheme by using the tracing algorithm of Naor et al. [20, 21].
The basic idea of the tracing algorithm in the SC framework is that the exists a subset tracing procedure that
can find a subset that contains a traitor. By using the subset tracing procedure, we can iteratively split the
subset that contains a traitor into two disjoint subsets by using the bifurcation property of the SC framework,
and then we can eventually find a subset that contains one traitor.

For the tracing algorithm in the SC framework, an efficient subset tracing procedure is required. The
subset tracing procedure takes a partition P = {Si1 , . . . ,Si,m} and a pirate decoder as inputs and outputs one
of two outputs: (1) a symbol ⊥ that indicates the pirate decoder cannot decrypt a ciphertext for the partition
P or (2) a subset Si′ ∈ P that contains a traitor. Naor et al. [20] showed that there exists an efficient subset
tracing procedure in the SC framework. Note that their subset tracing procedure applies to not only the CS
scheme and the SD scheme of Naor et al. [20], but also the LSD scheme of Halevy and Shamir [18].

The Setup, GenKey, Encrypt, and Decrypt algorithm of our PKTR scheme is the same as those of our
PKRE scheme. The Trace algorithm of our PKTR scheme is described as follows:

PKTR.TraceD(R,ε,PK): This algorithm takes as input a revoked set R, a value ε , and the public key PK.

1. First, it initializes a traitor set T to the empty one.

2. It iteratively performs the following steps:

(a) It obtains a current partition P by running SD.Cover(T ,R∪T ).
(b) To find one traitor, it iteratively performs the following steps:

i. It obtains a subset Si′, j′ ∈ P by running the procedure SubsetTracing with the partition
P = {Si1, j1 , . . . ,Sim, jm}. If the procedure outputs ⊥, then it stops the iteration and goto
the step 3.

ii. If Si′, j′ contains more than two users, then it splits Si′, j′ into two roughly equal subsets
Si′1, j

′
1

and Si′2, j
′
2

by using the bifurcation property of the SD scheme. Next, it removes
Si′, j′ from P and adds Si′1, j

′
1
,Si′2, j

′
2

to P.
iii. If Si′, j′ contains only one user u, then stops the iteration and goto the step (c).

(c) It adds u to T .

3. Finally, it outputs the set T .

6.3 Security

Theorem 6.3. The above PKTR scheme is traceable if the above PKTR scheme is indistinguishable under
a chosen plaintext attack.
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Proof Sketch. Suppose that the pirate decoder D can decrypt a ciphertext for the revoked set RD and a
random message M with more than ε probability. To prove the traceability, we should show that the set T
outputted by the tracing algorithm is not empty and T ⊆ E \RD.

First, we show that the set T is not empty. By the Lemma 6.4, there exists an efficient subset tracing
procedure that finds a subset that contains a traitor with a high probability if the underlying encryption
scheme and the key assignment method of the scheme are secure. Here D is stateless, that is, there is a reset
button that can turn D into an original one, and D only takes a ciphertext that is given by the challenger.
Thus if our SRE scheme satisfies the IND-CPA security, then the underlying encryption scheme (ciphertexts
of SRE) and the key assignment method (private keys of SRE) are also secure against D. Therefore, the set
T is not empty.

Next, we show that T ⊆ E \RD. We can easily show that T ⊆N \RD since the subset tracing produce
outputs a subset in the partition P such that P =N \RD. We also can show that if our PKTR scheme satisfies
the IND-CPA security, then T ⊆ E since the adversary can easily break the IND-CPA security of our PKTR
scheme by using D if T 6⊆ E. This completes our proof.

Lemma 6.4 ( [21]). If the underlying encryption scheme is secure and the key assignment method of the
underlying encryption scheme is also secure, then there exists an efficient subset tracing procedure with
success probability of 1− ε logm that requires at most O(m2 log 1

ε
log3 m) ciphertext queries to the pirate

decoder.

6.4 Discussions

LSD Scheme. Our PKTR scheme can use the LSD scheme instead of the SD scheme. The tracing algorithm
of our PKTR that uses the LSD scheme is the same as that of our PKTR scheme that uses the SD scheme
except the (b)-ii step that splits a subset into disjoint subsets. That is, the (b)-ii step in the tracing algorithm
additionally splits each subsets Si1, j1 ,Si2,i2 that are already split by the bifurcation property of the SD scheme
if the subset does not satisfy the subset condition of the LSD scheme. Therefore, the subset outputted by the
subset tracing procedure is split to at most four subsets in the LSD scheme. Note that Halevy and Shamir
showed that a subset in the SD scheme can be split at most two subsets to satisfy the conditions of the LSD
scheme [18].

7 Conclusion

In this paper, we revisited the methodology of the SC framework to construct PKTR schemes, and introduced
a new type of PKE named single revocation encryption (SRE). Inspired by the IBRE scheme of Lewko et
al. [19], we proposed an efficient SRE scheme with the constant size of ciphertexts, private keys, and public
keys, and proved its security in the random oracle model under q-type assumption. The SRE scheme may
have independent interests. One notable advantage of our SRE scheme is that the PKTR scheme using our
SRE scheme maintains the same efficiency parameter as the SD scheme (or the LSD scheme).

There are many interesting problems. The first one is to construct an efficient SRE scheme with short
public key without random oracles. We showed that the random oracles in our SRE scheme can be removed.
However, this approach has the problem of large public key size. The second one is to construct a PKTR
scheme with shorter private key size. One possible approach is to use the Stratified SD (SSD) scheme of
Goodrich et al. [17], but it is not yet known whether the SSD scheme can be applicable in the public-key
setting.
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