
Attacks on JH Hash Function

Yiyuan Luo and Xuejia Lai

luoyiyuan@gmail.com

Abstract. JH hash function is one of the five finalists in NIST SHA-3
competition. JH-s is based on a 2n bit permutation and the final output
is truncated to s bits, where n is 512 and s can be 224,256,384 and 512.
Lee and Hong proved that JH-s is optimal collision resistance without
length padding to the last block.

In this paper we present significant collision and preimage attacks on
JH-s without length padding to the last block. For collision and preimage
attack, the adversary needs 2s/4+1 and 2s/2+1 queries to the underlying
permutation respectively. Thus for JH-224, the attacker only needs 257

compression function queries to mount a collision attack. Our attack
exploits structure flaws in the design of JH. The attack is easily applied
to JH’s variant MJH.

1 Introduction

Cryptographic hash function is one of the most important primitives in cryp-
tography [8]. A hash function maps from message of arbitrary length to a fixed
length. A hash function usually consists of iteration of a compression function.
One first designs a fixed domain compression function and then extends the
domain to an arbitrary domain by iterating that function.

Since some popular hash functions such as MD5 [9] and SHA-1 [4] have
been attacked [11,10], NIST has launched a competition for a new hash function
standard SHA-3. JH is one of the five finalists in the SHA-3 competition [12].
As the sponge construction [1], JH’s compression function uses a single large
fixed 2n-bit permutation, then the chopMD [3] domain extension is applied to
the compression function. The hash value is the last s bits of the output of the
last block compression function. In the design of JH, n is 512 and s can be
224,256,384 and 512. After JH, Lee and Stam proposed a variant MJH based on
a an (n, n) blockcipher [7]. The hash value of MJH is 2n bits. In the compression
function of JH, the message block is added to both the input and output of the
permutation to get the chain value, while in Sponge compression function, the
message block is only added to the input of the permutation.

Previous security results for JH and MJH. In the provable security litera-
ture, the underlying primitives are assume to be ideal, thus the fixed permutation
is assumed to be an ideal permutation. The first provable security result for mode
of JH is its indifferentiability[2]. Bhattacharyya et al. proved that JH-s is indif-
ferentiable from a random oracle up to O(2n/3) queries to the ideal permutation
when s ≤ n.



In [6], Lee and Hong proved that JH-s without length padding to the last
block is collision resistance up to O(2s/2) queries and claimed that JH-s is opti-
mal collision resistance in the ideal permutation model when s ≤ n.

In [7], the designers proved that MJH without length padding to the last
block is collision resistance up to O(2

2n
3 −log n) queries.

In [5], Hong and Kwon make a collision attack with time complexity 2124

on MJH for n = 128 and the preimage attack with time complexity 23n/2+2.

Our contribution. In this paper we present significant collision and preimage
attacks on JH-s without length padding to the last block. Note that the colli-
sion resistant proof for JH-s is in this mode. For collision and preimage attack,
the adversary needs 2s/4+1 and 2s/2+1 queries to the underlying permutation
respectively. Thus for JH-224, the attacker only needs 257 compression function
queries to mount a collision attack. Our attack exploits structure flaws in the
design of JH. We show that JH is weaker than Sponge construction since the
message block is both added to the input and the output of the permutation.

The attack is easily extended to JH’s variant MJH. For the 2n-bit MJH,
the adversary needs 3 × 2n/2 queries to the blockcipher to find a collision and
3× 2n−1 queries to the blockcipher to find a (2nd) preimage.

2 Preliminaries

General Notation. For two bitsrings x and y, x ‖ y denotes the concatenation
of x and y. A blockcipher E with n-bit block and n-bit keysize is called an (n, n)
blockcipher.

Information Theoretic Model. In the information theoretic model, the ad-
versary is computationally unbounded but is given up to q queries to the un-
derlying ideal primitive. The advantage of the adversary is related to the query
times q. Almost every security proof in the hash function literature uses this
model.

3 The JH hash function

Let F be a 2n bit permutation, the compression function of JH depicted in Fig. 1
is defined as:

f(hi−1, gi−1,mi) = F (hi−1 ⊕mi ‖ gi−1)⊕ (0n ‖ mi)

where hi−1, gi−1,mi ∈ {0, 1}n.
JH uses the chopMD mode of operation. The initial value is fixed as (IV0, IV1)

and the message M is first padded into l message blocks, then the usual Merkle-
Damg̊ard iteration is applied to F to compute the last chain value (hl, gl). The
final output is is the last s bits of gl.



F

1ih -

1ig -

im

ih

ig

Fig. 1. The compression function of JH.

4 Attacks on the high level structure of JH

In this section we first give attacks on the high level structure of JH. The attack
can be easily applied to the normal JH function. Let L be a linear transform on
2n. The high level compression function of JH can be denoted as

hi = F (hi−1 ⊕mi)⊕ L(mi)

where hi−1, hi,mi ∈ {0, 1}2n. Let chops be the last s bits of a 2n-bit value and
h0 be a fixed initial value IV . The 2-block high level of JH can be depicted in
Fig.2.

F0h
1h

1m
2m

2h
x y u v

L

F

L

schops

Fig. 2. The 2-block high level structure of JH.

4.1 Collision Attack

We assume F be an ideal permutation and the adversary never makes repeat
queries. That is to say, the adversary never makes queries that she already knows
the result. In the attack we use two blocks of message (m1,m2) and fix the initial
value as h0 = IV where IV is a 2n-bit constant. As shown in Fig.2, we let (x, y)
be the input-output queried pairs in the first block query and (u, v) be the



input-output queried pairs in the second block query. Thus we have

m1 = h0 ⊕ x

h1 = L(m1)⊕ y

m2 = h1 ⊕ u

h2 = L(m2)⊕ v.

The attack is described as follows:

1. Set m1 to be a constant.
2. Choose r random distinct values of x and make queries to F , we thus get

r distinct random pairs of (x, y). Since h1 = y ⊕ L(m1), we get r distinct
random values of h1.

3. Choose r random distinct values of u and make queries to F , we thus get r
distinct random pairs of (u, v).

4. For each pair of (u, v), we can compute m2 = h1 ⊕ u and h2 = v ⊕ L(m2).
Since there are r distinct values of h1, we can get r random values of m2

and h2.
5. There are total r pairs of (u, v), thus we can get r2 random values of h2.
6. If the final hash value is truncated to s bits where s ≤ 2n. Let r be 2s/4,

thus we can get r2 = 2s/2 random values of h2 and chops. According to the
birthday paradox, there exists two pairs of (h1,m2) colliding at chops(h2)
with probability 0.39.

7. The adversary needs 2× 2s/4 = 2s/4+1 queries to the permutation F to find
a collision with probability 0.39.

4.2 Preimage and Second Preimage Attack

For preimage and second preimage attack, we need to find a preimage for a s-bit
value. It is easy to see that if we let r = 2s/2, at last we can get r2 = 2s random
values of chops, since chops is s bits, with high probability we can find a (second)
perimage.

Thus the adversary needs 2 × 2s/2 = 2s/2+1 queries to the permutation F
to find a preimage with high probability.

5 Attacks on 2-block JH

The 2-block JH-s hash function is shown in Fig.3. Let (h0, g0) be a fixed initial
value (IV0, IV1). From the figure, we have

(h1, g1) = F (h0 ⊕m1 ‖ g0)⊕ (0n ‖ m1)
(h2, g2) = F (h1 ⊕m2 ‖ g1)⊕ (0n ‖ m2).

As in the figure, the output of a query (x, g0) to the first block F is denoted as
(h1, y), and the output of a query (u, g1) to the second block F is denoted as
(h2, v). The final output of JH-s is the last s bits of g2 and denoted as chops.

The collision and (2nd) preimage attack is described as follows:



F F

0h

0g

1h

1g

1m
2m

2h

2g

x

y

u

v schops

Fig. 3. The 2-block structure of JH-s. All wires carry n-bit values.

– Collision attack:
1. h0 ‖ g0 is fixed to the initial value. Set m1 to be a constant.
2. Choose r random distinct values of x and make queries x ‖ g0 to F , we

thus get r distinct random values of h1 ‖ y. Since g1 = y ⊕m1, we get r
distinct random values (hi

1 ‖ gi
1), 1 ≤ i ≤ r.

3. Choose r random distinct values ui, 1 ≤ i ≤ r, make queries (ui ‖ gi
1), 1 ≤

i ≤ r to F , we thus get r distinct random values hi
2 ‖ vi), 1 ≤ i ≤ r.

4. For each pair of (ui ‖ gi
1, h

i
2 ‖ vi), 1 ≤ i ≤ r, we can compute m2 = h1⊕ui

and g2 = vi ⊕m2. Since there are r random values of h1, we can get r
random values of m2 and g2.

5. There are total r pairs of (ui ‖ gi
1, h

i
2 ‖ vi), thus we can get r2 random

values of g2.
6. If the final hash value is truncated to s bits where s ≤ n. Let r be 2s/4,

thus we can get r2 = 2s/2 random values of h2 and chops. According
to the birthday paradox, there exists two pairs colliding at chops with
probability 0.39.

7. The adversary needs 2× 2s/4 = 2s/4+1 queries to the permutation F to
find a collision with probability 0.39.

– Preimage attack: For preimage and second preimage attack, we need to find
a preimage for a s-bit value. It is easy to see that if we let r = 2s/2, we
can get r2 = 2s random values of chops, since chops(h2) is only s bits, with
probability close to 1 we can find a (second) perimage.
Thus the adversary needs 2× 2s/2 = 2s/2+1 queries to the permutation F to
find a (2nd) preimage with probability close to 1.

6 Attacks on JH’s variant MJH

MJH hash function is proposed by Lee and Stam [Lee2011]. It is a variant of
JH hash function. It uses two calls to a (n, n)-bit blockcipher E to implement
the underlying primitive F , while F needn’t to be a permutation. Let σ be an
involution on {0, 1}n with no fixed point, and let θ 6= 0, 1 be a constant in F2n ,



the primitive F is defined as

F [σ, θ] : {0, 1}2n −→ {0, 1}2n

(xL ‖ xR) −→ (yL ‖ yR)
yL = ExR

(xL)⊕ xL

yR = θ · (ExR
(σ(xL))⊕ σ(xL))⊕ xL.

By applying the JH transform, the compression function of MJH is the same as
in Fig. 1. Then MJH uses Merkle-Damg̊ard mode without length padding to the
last block to calculate the final 2n-bit hash value.

E

Eσ θi

Lx

Rx

Ly

Ry

Fig. 4. The F primitive in MJH, where (yL, yR) = F (xL, xR). All wires carry
n-bit values. E is an (n, n) blockcipher. σ is an involution and θ is a constant in
F2n \ F2.

Due to the involution property, the adversary can get a pair of (xL ‖ xR, yL ‖
yR) when she makes a query ExR

(xL) to the upper blockcipher and a query
ExR

(σ(xL)) to the lower blockcipher. That is to say, for each query xL ‖ xR to
the primitive F , the adversary can get two pairs of (xL ‖ xR, yL ‖ yR) by making
two blockcipher queries.

Since MJH outputs 2n bits as the hash value, thus the collision attack and
(2nd) preimage attack is a little different from the attack on JH. The attack is
similar as in Fig. 3 and described as follows.

– Collision attack:
1. h0 ‖ g0 is fixed to the initial value. Set m1 to be a constant.
2. Choose r = 2n/2−1 random distinct values of x and make queries x ‖ g0

to F , we thus get 2n/2 random values of h1 ‖ y by 2n/2 queries to the
blockcipher. Since g1 = y⊕m1, we get 2n/2 random values (hi

1 ‖ gi
1), 1 ≤

i ≤ r.



3. Choose 2n/2 random distinct values ui, 1 ≤ i ≤ 2n/2, make queries (ui ‖
gi
1), 1 ≤ i ≤ 2n/2 to F , we thus get 2n/2+1 random values hi

2 ‖ vi, 1 ≤
i ≤ 2n/2+1 by 2n/2+1 blockcipher queries. Due to birthday paradox, with

probability 1 − e−
(2n/2+1)2

2×2n ≈ 0.86 we can obtain a pair (ui ‖ gi
1, u

j ‖
gj
1), 1 ≤ i < j ≤ 2n/2+1 colliding at h2.

4. For the value ui ‖ gi
1, we can compute m2 = h1 ⊕ ui and g2 = vi ⊕m2.

Since there are 2n/2 random values of h1, we can get 2n/2 random values
of m2 and g2. For the value uj ‖ gj

1, we can also get 2n/2 random values
of m2 and g2. Thus with probability 1 − e−

1
2 ≈ 0.39 a match will be

found for these two sets.
5. The adversary needs 3×2n/2 queries to the blockcipher to find a collision

with probability 0.86× 0.39 ≈ 0.34.
– Preimage attack: For preimage and second preimage attack, we need to find

a preimage for a 2n-bit value. It is easy to see that if we let r = 2n/2−1, after
find a hitting at h2, we can get 2n random values of g2. Since g2 is only n
bits, with probability close to 1 we can find a (second) perimage.
Thus the adversary needs 3×2n−1 queries to the blockcipher to find a (2nd)
preimage with probability close to 1.

7 Conclusion

In this paper we have presented collision and preimage attacks on JH-s. For
collision and preimage attack, the adversary needs 2s/4+1 and 2s/2+1 queries to
the underlying permutation respectively. Though our attack fails if the length
is padded to the last message block or it uses the first s bits of the output as
the hash value, the attack exploits structure flaws in the design of JH. JH it is
weaker than Sponge since the message block is both added to the input and the
output of the permutation. The attack is easily extended to JH’s variant MJH.
Through our analysis, the security of JH-s is at most n bits when s ≤ 2n. It
shows that previous security proofs of JH and MJH are flawed.

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the indifferentiability of
the sponge construction. In Advances in Cryptology - EUROCRYPT’08, volume
LNCS 4965, pages 181–197, Istanbul, Turkey, 2008. Springer-Verlag.

2. Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security analysis of
the mode of JH hash function. In FSE 2010, volume LNCS 6147, pages 168–191.
Springer-Verlag, 2010.

3. J. S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damg̊ad revisited: How
to construct a hash function. In Advances in Cryptology - CRYPTO’05, volume
LNCS 3621, pages 430–448. Springer-Verlag, 2005.

4. FIPS. FIPS 180-1 Secure Hash Standard. Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C, 1995.



5. Deukjo Hong and Kwon. Cryptanalysis of some double-block-length hash modes
of block ciphers with n-bit block and n-bit key. http://eprint.iacr.org/2013/174,
2013.

6. Jooyoung Lee and Deukjo Hong. Collision resistance of the JH hash function.
IEEE Transaction on Information Theory, 58(3):1992–1995, 2012.

7. Jooyoung Lee and Martijn Stam. MJH: A faster alternative to MDC-2. In CT-RSA
2011, volume LNCS 6558, pages 213–236. Springer-Verlag, 2011.

8. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

9. R. L. Rivest. The MD5 message digest algorithm. In Request for Comments (RFC)
1321. Internet Activities Board, Internet Privacy Task Force, 1992.

10. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRPTO’05, volume
LNCS 3621, pages 17–36, Santa Barbara, CA, USA, 2005. Springer-Verlag.

11. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT’05, volume LNCS
3494, pages 19–35, Aarhus, Denmark, 2005. Springer-Verlag.

12. Hongjun Wu. The hash function JH. http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-
round3.pdf, 2011.


	Attacks on JH Hash Function
	Yiyuan Luo and Xuejia Lai 

