
How to Factor N1 and N2 When p1 = p2 mod 2t

Kaoru Kurosawa and Takuma Ueda

Ibaraki University, Japan

Abstract. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli.
Suppose that p1 = p2 mod 2t for some t, and q1 and q2 are α bit primes.
Then May and Ritzenhofen showed that N1 and N2 can be factored in
quadratic time if

t ≥ 2α+ 3.

In this paper, we improve this lower bound on t. Namely we prove that
N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 1.

Further our simulation result shows that our bound is tight.

Key words: factoring, Gaussian reduction algorithm, lattice

1 Introduction

Factoring N = pq is a fundamental problem in modern cryptography,
where p and q are large primes. Since RSA was invented, some factor-
ing algorithms which run in subexponential time have been developed,
namely the quadratic sieve [9], the elliptic curve [3] and number field
sieve [4]. However, no polynomial time algorithm is known.

On the other hand, the so called oracle complexity of the factorization
problem were studied by Rivest and Shamir [10], Maurer [5] and Copper-
smith [1]. In particular, Coppersmith [1] showed that one can factor N if
a half of the most significant bits of p are given.

Recently, May and Ritzenhofen [6] considered another approach. Sup-
pose that we are given N1 = p1q1 and N2 = p2q2. If

p1 = p2,

then it is easy to factor N1, N2 by using Euclidean algorithm. May and
Ritzenhofen showed that it is easy to factor N1, N2 even if

p1 = p2 mod 2t

for sufficiently large t. More precisely suppose that q1 and q2 are α bit
primes. Then they showed that N1 and N2 can be factored in quadratic
time if

t ≥ 2α+ 3.

In this paper, we improve the above lower bound on t. We prove that
N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 1.

Further our simulation result shows that our bound is tight.

Also our proof is conceptually simpler than that of May and Ritzen-
hofen [6]. In particular, we do not use the Minkowski bound whereas it is
required in their proof.

2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete additive subgroup of Zn.. An alternative
equivalent definition of an integer lattice can be given via a basis. Let
d, n be integers such that 0 < d ≤ n. Let b1, · · · ,bd ∈ Zn be linearly
independent vectors. Then the set of all integer linear combinations of
the bi spans an integer lattice L, i.e.

L =

{
d∑
i=1

aibi | ai ∈ Z
}
.

We call B =

b1
...
bd

 a basis of the lattice, the value d denotes the dimen-

sion or rank of the basis. The lattice is said to have full rank if d = n.
The determinant det(L) of a lattice is the volume of the parallelepiped
spanned by the basis vectors. The determinant det(L) is invariant under
unimodular basis transformations of B. In case of a full rank lattice det(L)
is equal to the absolute value of the Gramian determinant of the basis B.
Let us denote by ||v|| the Euclidean `2-norm of a vector v. Hadamardfs
inequality [7] relates the length of the basis vectors to the determinant.

Proposition 1. Let B =

b1
...
bd

 ∈ Zn×n be an arbitrary non-singular

matrix. Then

det(B) ≤
n∏
i=1

||bi||.

The successive minima λi of the lattice L are defined as the minimal
radius of a ball containing i linearly independent lattice vectors of L.

Proposition 2. (Minkowski [8]). Let L ⊆ Zn×n be an integer lattice.
Then L contains a non-zero vector v with

||v|| = λ1 ≤
√
n det(L)1/n

2.2 Gaussian Reduction Algorithm

In a two-dimensional lattice L, basis vectors v1,v2 with lengths ||v1|| = λ1
and||v2|| = λ2 are efficiently computable by using Gaussian reduction al-
gorithm. Let bxe denote the nearest integer to x. Then Gaussian reduction
algorithm is described as follows.

(Gaussian reductin algorithm)
Input: Basis b1,b2 ∈ Z2 for a lattice L.
Output: Basis (v1,v2) for L such that ||v1|| = λ1 and ||v2|| = λ2.

1. Let v1 := b1 and v2 := b2.

2. Compute µ := (v1,v2)/||v1||2,
v2 := v2 − bµe · v1.

3. while ||v2|| < ||v1|| do:

4. Swap v1 and v2.

5. Compute µ := (v1,v2)/||v1||2,
v2 := v2 − bµe · v1.

6. end while

7. return (v1,v2).

Proposition 3. The above algorithm outputs a basis (v1,v2) for L such
that ||v1|| = λ1 and ||v2|| = λ2. Further they can be determined in time
O(log2(max{||v1||, ||v2||}).

Information on Gaussian reduction algorithm and its running time
can be found in [7, 2].

3 Previous Implicit Factoring of Two RSA Moduli

Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli. Suppose that

p1 = p2(= p) mod 2t (1)

for some t, and q1 and q2 are α bit primes. This means that p1, p2 coincide
on the t least significant bits. I.e.,

p1 = p+ 2tp̃1 and p2 = p+ 2tp̃2

for some common p that is unknown to us. Then May and Ritzenhofen [6]
showed that N1 and N2 can be factored in quadratic time if t ≥ 2α + 3.
In this section, we present their idea.

From eq.(1), we have

N1 = pq1 mod 2t

N2 = pq2 mod 2t

Since q1, q2 are odd, we can solve both equations for p. This leaves us
with

N1/q1 = N2/q2 mod 2t

which we write in form of the linear equation

(N2/N1)q1 − q2 = 0 mod 2t (2)

The set of solutions

L = {(x1, x2) ∈ Z2 | (N2/N1)x1 − x2 = 0 mod 2t}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional
integer lattice. L is spanned by the row vectors of the basis matrix

BL =

(
1, N2/N1 mod 2t

0, 2t

)
(3)

The integer span of BL, denoted by span(BL), is equal to L. To see
why, let

b1 = (1, N2/N1)

b2 = (0, 2t)

Then they are solutions of

(N2/N1)x1 − x2 = 0 mod 2t

Thus, every integer linear combination of b1 and b2 is a solution which
implies that span(BL) ⊆ L.

Conversely, let (x1, x2) ∈ L, i.e.

(N2/N1)x1 − x2 = k · 2t

for some k ∈ Z. Then

(x1,−k)BL = (x1, x2) ∈ span(BL)

and thus L ⊆ span(BL).
Notice that by Eq. (2), we have

q = (q1, q2) ∈ L. (4)

If we were able to find this vector in L, then we could factor N1, N2 easily.
We know that the length of the shortest vector is upper bounded by the
Minkowski bound √

2 · det(L)1/2 =
√

2 · 2t/2.

Since we assume that q1, q2 are α-bit primes, we have q1, q2 ≤ 2α. If α
is sufficiently small, then ||q|| is smaller than the Minkowski bound and,
therefore, we can expect that q is among the shortest vectors in L. This
happens if

||q|| ≤
√

2 · 2α ≤
√

2 · 2t/2

So if t ≥ 2α, we expect that q is a short vector in L. We can find a
shortest vector in L using Gaussian reduction algorithm on the lattice
basis B in time

O(log2(2t)) = O(log2(min{N1, N2})).

By elaborating the above argument, May and Ritzenhofen [6] proved
the following.

Proposition 4. Let N1 = p1q1 and N2 = p2q2 be two different RSA
moduli such that p1 = p2 mod 2t for some t, and q1 and q2 are α bit
primes. If

t ≥ 2α+ 3, (5)

then N1, N2 can be factored in time O(log2(min{N1, N2})).

4 Improvement

In this section, we improve the lower bound on t given by Proposition 4.

Lemma 1. If q1 and q2 are α-bits long, then

||q|| < 2α+0.5

(Proof) Since q1 and q2 are α-bits long, we have

qi ≤ 2α − 1

for i = 1, 2. Therefore

||q|| ≤
√

2(2α − 1) <
√

2 · 2α = 2α+0.5

Q.E.D.

Theorem 1. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli
such that p1 = p2 mod 2t for some t, and q1 and q2 are α bit primes. If

t ≥ 2α+ 1, (6)

then N1, N2 can be factored in time O(log2(min{N1, N2})).

(Proof) If q1 = q2, the we can factor N1, N2 by using Euclidean algorithm
easily. Therefore we assume that q1 6= q2.

Apply Gaussian reduction algorithm to BL. Then we obtain

B0 =

(
v1

v2

)

such that
||v1|| = λ1 and ||v2|| = λ2.

We will show that q = v1 or q = −v1, where q = (q1, q2).

From Hadamard’s inequality, we have

||v2||2 ≥ ||v1||||v2|| ≥ det(B0) = det(BL) = 2t.

(det(B0) = det(BL) because B0 and BL span the same lattice L.) The
last equality comes from eq.(3). Therefore we obtain that

||v2|| ≥ 2t/2.

Now suppose that

t ≥ 2α+ 1

Then

t/2 ≥ α+ 0.5.

Therefore

||v2|| ≥ 2t/2 ≥ 2α+0.5 > ||q||

from Lemma 1. This means that

(q1, q2) = q = c · v1

for some c 6= 0 from the definition of λi and from eq.(4). Further since
gcd(q1, q2) = 1, we have c = 1 or −1. Therefore q = v1 or q = −v1.

Finally from Proposition 3, Gaussian reduction algorithm runs in time

O(log2(2t)) = O(log2(min{N1, N2})).

Q.E.D.

Compare eq.(6) and eq.(5), and notice that we have improved the
previous lower bound on t.

Also our proof is conceptually simpler than that of May and Ritzen-
hofen [6]. In particular, we do not use the Minkowski bound whereas it is
required in their proof.

5 Simulation

We verified Theorem 1 by computer simulation. We considered the case
such that q1 and q2 are α = 250 bits long. Theorem 1 states that if

t ≥ 2α+ 1 = 501,

then we can factor N1 and N2 by using Gaussian reduction algorithm.
The simulation results are shown in Table 5.

From this table, we can see that we can indeed factor N1 and N2 if
t ≥ 501. We can also see that we fail to factor N1 and N2 if t ≤ 500. This
shows that our bound is tight.

Table 1. Computer Simulation

number of shared bits t success rate

503 100%

502 100%

501 100%

500 40%

499 0%

498 0%

References

1. Coppersmith, D.: Finding a small root of a bivariate integer equation, factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178?189. Springer, Heidelberg (1996)

2. Steven D. Galbraith: Mathematics of Public Key Cryptography. Cambridge Uni-
versity Press (2012)

3. Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Ann. Math. 126, 649?
673 (1987)

4. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Springer, Heidelberg (1993)

5. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 429?436. Springer, Heidelberg (1993)

6. Alexander May, Maike Ritzenhofen: Implicit Factoring: On Polynomial Time Fac-
toring Given Only an Implicit Hint. Public Key Cryptography 2009: 1-14

7. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Cambridge University
Press, Cambridge (2000)

8. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag (1896)
9. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N.,

Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169?182. Springer,
Heidelberg (1985)

10. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31?34. Springer, Heidelberg
(1986)

