How to Factor N_{1} and N_{2} When $p_{1}=p_{2} \bmod 2^{t}$

Kaoru Kurosawa and Takuma Ueda
Ibaraki University, Japan

Abstract

Let $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$ be two different RSA moduli. Suppose that $p_{1}=p_{2} \bmod 2^{t}$ for some t, and q_{1} and q_{2} are α bit primes. Then May and Ritzenhofen showed that N_{1} and N_{2} can be factored in quadratic time if $$
t \geq 2 \alpha+3
$$

In this paper, we improve this lower bound on t. Namely we prove that N_{1} and N_{2} can be factored in quadratic time if

$$
t \geq 2 \alpha+1
$$

Further our simulation result shows that our bound is tight.

Key words: factoring, Gaussian reduction algorithm, lattice

1 Introduction

Factoring $N=p q$ is a fundamental problem in modern cryptography, where p and q are large primes. Since RSA was invented, some factoring algorithms which run in subexponential time have been developed, namely the quadratic sieve [9], the elliptic curve [3] and number field sieve [4]. However, no polynomial time algorithm is known.

On the other hand, the so called oracle complexity of the factorization problem were studied by Rivest and Shamir [10], Maurer [5] and Coppersmith [1]. In particular, Coppersmith [1] showed that one can factor N if a half of the most significant bits of p are given.

Recently, May and Ritzenhofen [6] considered another approach. Suppose that we are given $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$. If

$$
p_{1}=p_{2},
$$

then it is easy to factor N_{1}, N_{2} by using Euclidean algorithm. May and Ritzenhofen showed that it is easy to factor N_{1}, N_{2} even if

$$
p_{1}=p_{2} \bmod 2^{t}
$$

for sufficiently large t. More precisely suppose that q_{1} and q_{2} are α bit primes. Then they showed that N_{1} and N_{2} can be factored in quadratic time if

$$
t \geq 2 \alpha+3
$$

In this paper, we improve the above lower bound on t. We prove that N_{1} and N_{2} can be factored in quadratic time if

$$
t \geq 2 \alpha+1
$$

Further our simulation result shows that our bound is tight.
Also our proof is conceptually simpler than that of May and Ritzenhofen [6]. In particular, we do not use the Minkowski bound whereas it is required in their proof.

2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete additive subgroup of Z^{n}.. An alternative equivalent definition of an integer lattice can be given via a basis. Let d, n be integers such that $0<d \leq n$. Let $\mathbf{b}_{1}, \cdots, \mathbf{b}_{d} \in Z^{n}$ be linearly independent vectors. Then the set of all integer linear combinations of the \mathbf{b}_{i} spans an integer lattice L, i.e.

$$
L=\left\{\sum_{i=1}^{d} a_{i} \mathbf{b}_{i} \mid a_{i} \in Z\right\}
$$

We call $B=\left(\begin{array}{c}\mathbf{b}_{1} \\ \vdots \\ \mathbf{b}_{d}\end{array}\right)$ a basis of the lattice, the value d denotes the dimension or rank of the basis. The lattice is said to have full rank if $d=n$. The determinant $\operatorname{det}(L)$ of a lattice is the volume of the parallelepiped spanned by the basis vectors. The determinant $\operatorname{det}(L)$ is invariant under unimodular basis transformations of B. In case of a full rank lattice $\operatorname{det}(L)$ is equal to the absolute value of the Gramian determinant of the basis B. Let us denote by $\|\mathbf{v}\|$ the Euclidean ℓ_{2}-norm of a vector \mathbf{v}. Hadamardfs inequality [7] relates the length of the basis vectors to the determinant.

Proposition 1. Let $B=\left(\begin{array}{c}\mathbf{b}_{1} \\ \vdots \\ \mathbf{b}_{d}\end{array}\right) \in Z^{n \times n}$ be an arbitrary non-singular matrix. Then

$$
\operatorname{det}(B) \leq \prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\| .
$$

The successive minima λ_{i} of the lattice L are defined as the minimal radius of a ball containing i linearly independent lattice vectors of L.

Proposition 2. (Minkowski [8]). Let $L \subseteq Z^{n \times n}$ be an integer lattice. Then L contains a non-zero vector \mathbf{v} with

$$
\|\mathbf{v}\|=\lambda_{1} \leq \sqrt{n} \operatorname{det}(L)^{1 / n}
$$

2.2 Gaussian Reduction Algorithm

In a two-dimensional lattice L, basis vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ with lengths $\left\|\mathbf{v}_{1}\right\|=\lambda_{1}$ and $\left\|\mathbf{v}_{2}\right\|=\lambda_{2}$ are efficiently computable by using Gaussian reduction algorithm. Let $\lfloor x\rceil$ denote the nearest integer to x. Then Gaussian reduction algorithm is described as follows.
(Gaussian reductin algorithm)
Input: Basis $\mathbf{b}_{1}, \mathbf{b}_{2} \in Z^{2}$ for a lattice L.
Output: Basis $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ for L such that $\left\|\mathbf{v}_{1}\right\|=\lambda_{1}$ and $\left\|\mathbf{v}_{2}\right\|=\lambda_{2}$.

1. Let $\mathbf{v}_{1}:=\mathbf{b}_{1}$ and $\mathbf{v}_{2}:=\mathbf{b}_{2}$.
2. Compute $\mu:=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) /\left\|\mathbf{v}_{1}\right\|^{2}$,

$$
\mathbf{v}_{2}:=\mathbf{v}_{2}-\lfloor\mu\rceil \cdot \mathbf{v}_{1}
$$

3. while $\left\|\mathbf{v}_{2}\right\|<\left\|\mathbf{v}_{1}\right\|$ do:
4. $\quad \operatorname{Swap} \mathbf{v}_{1}$ and \mathbf{v}_{2}.
5. Compute $\mu:=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) /\left\|\mathbf{v}_{1}\right\|^{2}$,

$$
\mathbf{v}_{2}:=\mathbf{v}_{2}-\lfloor\mu\rceil \cdot \mathbf{v}_{1}
$$

6. end while
7. return $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Proposition 3. The above algorithm outputs a basis $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ for L such that $\left\|\mathbf{v}_{1}\right\|=\lambda_{1}$ and $\left\|\mathbf{v}_{2}\right\|=\lambda_{2}$. Further they can be determined in time $O\left(\log ^{2}\left(\max \left\{\left\|\mathbf{v}_{1}\right\|,\left\|\mathbf{v}_{2}\right\|\right\}\right)\right.$.

Information on Gaussian reduction algorithm and its running time can be found in $[7,2]$.

3 Previous Implicit Factoring of Two RSA Moduli

Let $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$ be two different RSA moduli. Suppose that

$$
\begin{equation*}
p_{1}=p_{2}(=p) \bmod 2^{t} \tag{1}
\end{equation*}
$$

for some t, and q_{1} and q_{2} are α bit primes. This means that p_{1}, p_{2} coincide on the t least significant bits. I.e.,

$$
p_{1}=p+2^{t} \tilde{p}_{1} \text { and } p_{2}=p+2^{t} \tilde{p}_{2}
$$

for some common p that is unknown to us. Then May and Ritzenhofen [6] showed that N_{1} and N_{2} can be factored in quadratic time if $t \geq 2 \alpha+3$. In this section, we present their idea.

From eq.(1), we have

$$
\begin{aligned}
& N_{1}=p q_{1} \bmod 2^{t} \\
& N_{2}=p q_{2} \bmod 2^{t}
\end{aligned}
$$

Since q_{1}, q_{2} are odd, we can solve both equations for p. This leaves us with

$$
N_{1} / q_{1}=N_{2} / q_{2} \bmod 2^{t}
$$

which we write in form of the linear equation

$$
\begin{equation*}
\left(N_{2} / N_{1}\right) q_{1}-q_{2}=0 \bmod 2^{t} \tag{2}
\end{equation*}
$$

The set of solutions

$$
L=\left\{\left(x_{1}, x_{2}\right) \in Z^{2} \mid\left(N_{2} / N_{1}\right) x_{1}-x_{2}=0 \bmod 2^{t}\right\}
$$

forms an additive, discrete subgroup of Z^{2}. Thus, L is a 2-dimensional integer lattice. L is spanned by the row vectors of the basis matrix

$$
B_{L}=\left(\begin{array}{cc}
1, N_{2} / N_{1} \bmod 2^{t} \tag{3}\\
0, & 2^{t}
\end{array}\right)
$$

The integer span of B_{L}, denoted by $\operatorname{span}\left(B_{L}\right)$, is equal to L. To see why, let

$$
\begin{aligned}
& \mathbf{b}_{1}=\left(1, N_{2} / N 1\right) \\
& \mathbf{b}_{2}=\left(0,2^{t}\right)
\end{aligned}
$$

Then they are solutions of

$$
\left(N_{2} / N_{1}\right) x_{1}-x_{2}=0 \bmod 2^{t}
$$

Thus, every integer linear combination of \mathbf{b}_{1} and \mathbf{b}_{2} is a solution which implies that $\operatorname{span}\left(B_{L}\right) \subseteq L$.

Conversely, let $\left(x_{1}, x_{2}\right) \in L$, i.e.

$$
\left(N_{2} / N_{1}\right) x_{1}-x_{2}=k \cdot 2^{t}
$$

for some $k \in Z$. Then

$$
\left(x_{1},-k\right) B_{L}=\left(x_{1}, x_{2}\right) \in \operatorname{span}\left(B_{L}\right)
$$

and thus $L \subseteq \operatorname{span}\left(B_{L}\right)$.
Notice that by Eq. (2), we have

$$
\begin{equation*}
\mathbf{q}=\left(q_{1}, q_{2}\right) \in L \tag{4}
\end{equation*}
$$

If we were able to find this vector in L, then we could factor N_{1}, N_{2} easily. We know that the length of the shortest vector is upper bounded by the Minkowski bound

$$
\sqrt{2} \cdot \operatorname{det}(L)^{1 / 2}=\sqrt{2} \cdot 2^{t / 2}
$$

Since we assume that q_{1}, q_{2} are α-bit primes, we have $q_{1}, q_{2} \leq 2^{\alpha}$. If α is sufficiently small, then $\|\mathbf{q}\|$ is smaller than the Minkowski bound and, therefore, we can expect that q is among the shortest vectors in L. This happens if

$$
\|\mathbf{q}\| \leq \sqrt{2} \cdot 2^{\alpha} \leq \sqrt{2} \cdot 2^{t / 2}
$$

So if $t \geq 2 \alpha$, we expect that \mathbf{q} is a short vector in L. We can find a shortest vector in L using Gaussian reduction algorithm on the lattice basis B in time

$$
O\left(\log ^{2}\left(2^{t}\right)\right)=O\left(\log ^{2}\left(\min \left\{N_{1}, N_{2}\right\}\right)\right) .
$$

By elaborating the above argument, May and Ritzenhofen [6] proved the following.

Proposition 4. Let $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$ be two different RSA moduli such that $p_{1}=p_{2} \bmod 2^{t}$ for some t, and q_{1} and q_{2} are α bit primes. If

$$
\begin{equation*}
t \geq 2 \alpha+3 \tag{5}
\end{equation*}
$$

then N_{1}, N_{2} can be factored in time $O\left(\log ^{2}\left(\min \left\{N_{1}, N_{2}\right\}\right)\right)$.

4 Improvement

In this section, we improve the lower bound on t given by Proposition 4.
Lemma 1. If q_{1} and q_{2} are α-bits long, then

$$
\|\mathbf{q}\|<2^{\alpha+0.5}
$$

(Proof) Since q_{1} and q_{2} are α-bits long, we have

$$
q_{i} \leq 2^{\alpha}-1
$$

for $i=1,2$. Therefore

$$
\|\mathbf{q}\| \leq \sqrt{2}\left(2^{\alpha}-1\right)<\sqrt{2} \cdot 2^{\alpha}=2^{\alpha+0.5}
$$

Q.E.D.

Theorem 1. Let $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$ be two different RSA moduli such that $p_{1}=p_{2} \bmod 2^{t}$ for some t, and q_{1} and q_{2} are α bit primes. If

$$
\begin{equation*}
t \geq 2 \alpha+1, \tag{6}
\end{equation*}
$$

then N_{1}, N_{2} can be factored in time $O\left(\log ^{2}\left(\min \left\{N_{1}, N_{2}\right\}\right)\right)$.
(Proof) If $q_{1}=q_{2}$, the we can factor N_{1}, N_{2} by using Euclidean algorithm easily. Therefore we assume that $q_{1} \neq q_{2}$.

Apply Gaussian reduction algorithm to B_{L}. Then we obtain

$$
B_{0}=\binom{\mathbf{v}_{1}}{\mathbf{v}_{2}}
$$

such that

$$
\left\|\mathbf{v}_{1}\right\|=\lambda_{1} \text { and }\left\|\mathbf{v}_{2}\right\|=\lambda_{2}
$$

We will show that $\mathbf{q}=\mathbf{v}_{1}$ or $\mathbf{q}=-\mathbf{v}_{1}$, where $\mathbf{q}=\left(q_{1}, q_{2}\right)$.
From Hadamard's inequality, we have

$$
\left\|\mathbf{v}_{2}\right\|^{2} \geq\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2}\right\| \geq \operatorname{det}\left(B_{0}\right)=\operatorname{det}\left(B_{L}\right)=2^{t}
$$

($\operatorname{det}\left(B_{0}\right)=\operatorname{det}\left(B_{L}\right)$ because B_{0} and B_{L} span the same lattice L.) The last equality comes from eq.(3). Therefore we obtain that

$$
\left\|\mathbf{v}_{2}\right\| \geq 2^{t / 2}
$$

Now suppose that

$$
t \geq 2 \alpha+1
$$

Then

$$
t / 2 \geq \alpha+0.5
$$

Therefore

$$
\left\|\mathbf{v}_{2}\right\| \geq 2^{t / 2} \geq 2^{\alpha+0.5}>\|\mathbf{q}\|
$$

from Lemma 1. This means that

$$
\left(q_{1}, q_{2}\right)=\mathbf{q}=c \cdot \mathbf{v}_{1}
$$

for some $c \neq 0$ from the definition of λ_{i} and from eq.(4). Further since $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1$, we have $c=1$ or -1 . Therefore $\mathbf{q}=\mathbf{v}_{1}$ or $\mathbf{q}=-\mathbf{v}_{1}$.

Finally from Proposition 3, Gaussian reduction algorithm runs in time

$$
O\left(\log ^{2}\left(2^{t}\right)\right)=O\left(\log ^{2}\left(\min \left\{N_{1}, N_{2}\right\}\right)\right)
$$

Q.E.D.

Compare eq.(6) and eq.(5), and notice that we have improved the previous lower bound on t.

Also our proof is conceptually simpler than that of May and Ritzenhofen [6]. In particular, we do not use the Minkowski bound whereas it is required in their proof.

5 Simulation

We verified Theorem 1 by computer simulation. We considered the case such that q_{1} and q_{2} are $\alpha=250$ bits long. Theorem 1 states that if

$$
t \geq 2 \alpha+1=501
$$

then we can factor N_{1} and N_{2} by using Gaussian reduction algorithm. The simulation results are shown in Table 5.

From this table, we can see that we can indeed factor N_{1} and N_{2} if $t \geq 501$. We can also see that we fail to factor N_{1} and N_{2} if $t \leq 500$. This shows that our bound is tight.

Table 1. Computer Simulation

number of shared bits t	success rate
503	100%
502	100%
501	100%
500	40%
499	0%
498	0%

References

1. Coppersmith, D.: Finding a small root of a bivariate integer equation, factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178?189. Springer, Heidelberg (1996)
2. Steven D. Galbraith: Mathematics of Public Key Cryptography. Cambridge University Press (2012)
3. Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Ann. Math. 126, 649? 673 (1987)
4. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Springer, Heidelberg (1993)
5. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 429?436. Springer, Heidelberg (1993)
6. Alexander May, Maike Ritzenhofen: Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint. Public Key Cryptography 2009: 1-14
7. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Cambridge University Press, Cambridge (2000)
8. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag (1896)
9. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169?182. Springer, Heidelberg (1985)
10. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31?34. Springer, Heidelberg (1986)
