How to Factor N_1 and N_2 When $p_1 = p_2 \mod 2^t$

Kaoru Kurosawa and Takuma Ueda

Ibaraki University, Japan

Abstract. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli. Suppose that $p_1 = p_2 \mod 2^t$ for some t, and q_1 and q_2 are α bit primes. Then May and Ritzenhofen showed that N_1 and N_2 can be factored in quadratic time if

 $t \ge 2\alpha + 3.$

In this paper, we improve this lower bound on t. Namely we prove that N_1 and N_2 can be factored in quadratic time if

 $t \ge 2\alpha + 1.$

Further our simulation result shows that our bound is tight.

Key words: factoring, Gaussian reduction algorithm, lattice

1 Introduction

Factoring N = pq is a fundamental problem in modern cryptography, where p and q are large primes. Since RSA was invented, some factoring algorithms which run in subexponential time have been developed, namely the quadratic sieve [9], the elliptic curve [3] and number field sieve [4]. However, no polynomial time algorithm is known.

On the other hand, the so called oracle complexity of the factorization problem were studied by Rivest and Shamir [10], Maurer [5] and Coppersmith [1]. In particular, Coppersmith [1] showed that one can factor N if a half of the most significant bits of p are given.

Recently, May and Ritzenhofen [6] considered another approach. Suppose that we are given $N_1 = p_1q_1$ and $N_2 = p_2q_2$. If

$$p_1 = p_2,$$

then it is easy to factor N_1, N_2 by using Euclidean algorithm. May and Ritzenhofen showed that it is easy to factor N_1, N_2 even if

$$p_1 = p_2 \bmod 2^t$$

for sufficiently large t. More precisely suppose that q_1 and q_2 are α bit primes. Then they showed that N_1 and N_2 can be factored in quadratic time if

$$t \ge 2\alpha + 3.$$

In this paper, we improve the above lower bound on t. We prove that N_1 and N_2 can be factored in quadratic time if

$$t \ge 2\alpha + 1.$$

Further our simulation result shows that our bound is tight.

Also our proof is conceptually simpler than that of May and Ritzenhofen [6]. In particular, we do not use the Minkowski bound whereas it is required in their proof.

2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete additive subgroup of Z^n . An alternative equivalent definition of an integer lattice can be given via a basis. Let d, n be integers such that $0 < d \leq n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_d \in Z^n$ be linearly independent vectors. Then the set of all integer linear combinations of the \mathbf{b}_i spans an integer lattice L, i.e.

$$L = \left\{ \sum_{i=1}^{d} a_i \mathbf{b}_i \mid a_i \in Z \right\}.$$

We call $B = \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_d \end{pmatrix}$ a basis of the lattice, the value *d* denotes the dimen-

sion or rank of the basis. The lattice is said to have full rank if d = n. The determinant det(L) of a lattice is the volume of the parallelepiped spanned by the basis vectors. The determinant det(L) is invariant under unimodular basis transformations of B. In case of a full rank lattice det(L)is equal to the absolute value of the Gramian determinant of the basis B. Let us denote by $||\mathbf{v}||$ the Euclidean ℓ_2 -norm of a vector \mathbf{v} . Hadamardfs inequality [7] relates the length of the basis vectors to the determinant. **Proposition 1.** Let $B = \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_d \end{pmatrix} \in Z^{n \times n}$ be an arbitrary non-singular

matrix. Then

$$\det(B) \le \prod_{i=1}^n ||\mathbf{b}_i||.$$

The successive minima λ_i of the lattice L are defined as the minimal radius of a ball containing i linearly independent lattice vectors of L.

Proposition 2. (Minkowski [8]). Let $L \subseteq Z^{n \times n}$ be an integer lattice. Then L contains a non-zero vector \mathbf{v} with

$$||\mathbf{v}|| = \lambda_1 \le \sqrt{n} \det(L)^{1/n}$$

2.2 Gaussian Reduction Algorithm

In a two-dimensional lattice L, basis vectors $\mathbf{v}_1, \mathbf{v}_2$ with lengths $||\mathbf{v}_1|| = \lambda_1$ and $||\mathbf{v}_2|| = \lambda_2$ are efficiently computable by using Gaussian reduction algorithm. Let $\lfloor x \rfloor$ denote the nearest integer to x. Then Gaussian reduction algorithm is described as follows.

(Gaussian reductin algorithm) Input: Basis $\mathbf{b}_1, \mathbf{b}_2 \in Z^2$ for a lattice L. Output: Basis $(\mathbf{v}_1, \mathbf{v}_2)$ for L such that $||\mathbf{v}_1|| = \lambda_1$ and $||\mathbf{v}_2|| = \lambda_2$.

1. Let $\mathbf{v}_{1} := \mathbf{b}_{1}$ and $\mathbf{v}_{2} := \mathbf{b}_{2}$. 2. Compute $\mu := (\mathbf{v}_{1}, \mathbf{v}_{2})/||\mathbf{v}_{1}||^{2}$, $\mathbf{v}_{2} := \mathbf{v}_{2} - \lfloor \mu \rceil \cdot \mathbf{v}_{1}$. 3. while $||\mathbf{v}_{2}|| < ||\mathbf{v}_{1}||$ do: 4. Swap \mathbf{v}_{1} and \mathbf{v}_{2} . 5. Compute $\mu := (\mathbf{v}_{1}, \mathbf{v}_{2})/||\mathbf{v}_{1}||^{2}$, $\mathbf{v}_{2} := \mathbf{v}_{2} - \lfloor \mu \rceil \cdot \mathbf{v}_{1}$. 6. end while

7. return (v_1, v_2) .

Proposition 3. The above algorithm outputs a basis $(\mathbf{v}_1, \mathbf{v}_2)$ for L such that $||\mathbf{v}_1|| = \lambda_1$ and $||\mathbf{v}_2|| = \lambda_2$. Further they can be determined in time $O(\log^2(\max\{||\mathbf{v}_1||, ||\mathbf{v}_2||\}))$.

Information on Gaussian reduction algorithm and its running time can be found in [7, 2].

3 Previous Implicit Factoring of Two RSA Moduli

Let $N_1 = p_1 q_1$ and $N_2 = p_2 q_2$ be two different RSA moduli. Suppose that

$$p_1 = p_2(=p) \mod 2^t$$
 (1)

for some t, and q_1 and q_2 are α bit primes. This means that p_1, p_2 coincide on the t least significant bits. I.e.,

$$p_1 = p + 2^t \tilde{p}_1$$
 and $p_2 = p + 2^t \tilde{p}_2$

for some common p that is unknown to us. Then May and Ritzenhofen [6] showed that N_1 and N_2 can be factored in quadratic time if $t \ge 2\alpha + 3$. In this section, we present their idea.

From eq.(1), we have

$$N_1 = pq_1 \mod 2^t$$
$$N_2 = pq_2 \mod 2^t$$

Since q_1, q_2 are odd, we can solve both equations for p. This leaves us with

$$N_1/q_1 = N_2/q_2 \mod 2^t$$

which we write in form of the linear equation

$$(N_2/N_1)q_1 - q_2 = 0 \mod 2^t \tag{2}$$

The set of solutions

$$L = \{ (x_1, x_2) \in Z^2 \mid (N_2/N_1)x_1 - x_2 = 0 \mod 2^t \}$$

forms an additive, discrete subgroup of Z^2 . Thus, L is a 2-dimensional integer lattice. L is spanned by the row vectors of the basis matrix

$$B_L = \begin{pmatrix} 1, N_2/N_1 \mod 2^t \\ 0, 2^t \end{pmatrix}$$
(3)

The integer span of B_L , denoted by $span(B_L)$, is equal to L. To see why, let

$$\mathbf{b}_1 = (1, N_2/N1)$$

 $\mathbf{b}_2 = (0, 2^t)$

Then they are solutions of

$$(N_2/N_1)x_1 - x_2 = 0 \mod 2^t$$

Thus, every integer linear combination of \mathbf{b}_1 and \mathbf{b}_2 is a solution which implies that $span(B_L) \subseteq L$.

Conversely, let $(x_1, x_2) \in L$, i.e.

$$(N_2/N_1)x_1 - x_2 = k \cdot 2^t$$

for some $k \in \mathbb{Z}$. Then

$$(x_1, -k)B_L = (x_1, x_2) \in span(B_L)$$

and thus $L \subseteq span(B_L)$.

Notice that by Eq. (2), we have

$$\mathbf{q} = (q_1, q_2) \in L. \tag{4}$$

If we were able to find this vector in L, then we could factor N_1, N_2 easily. We know that the length of the shortest vector is upper bounded by the Minkowski bound

$$\sqrt{2} \cdot \det(L)^{1/2} = \sqrt{2} \cdot 2^{t/2}.$$

Since we assume that q_1, q_2 are α -bit primes, we have $q_1, q_2 \leq 2^{\alpha}$. If α is sufficiently small, then $||\mathbf{q}||$ is smaller than the Minkowski bound and, therefore, we can expect that q is among the shortest vectors in L. This happens if

$$||\mathbf{q}|| \le \sqrt{2} \cdot 2^{\alpha} \le \sqrt{2} \cdot 2^{t/2}$$

So if $t \ge 2\alpha$, we expect that **q** is a short vector in *L*. We can find a shortest vector in *L* using Gaussian reduction algorithm on the lattice basis *B* in time

$$O(\log^2(2^t)) = O(\log^2(\min\{N_1, N_2\})).$$

By elaborating the above argument, May and Ritzenhofen [6] proved the following.

Proposition 4. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli such that $p_1 = p_2 \mod 2^t$ for some t, and q_1 and q_2 are α bit primes. If

$$t \ge 2\alpha + 3,\tag{5}$$

then N_1, N_2 can be factored in time $O(\log^2(\min\{N_1, N_2\}))$.

4 Improvement

In this section, we improve the lower bound on t given by Proposition 4.

Lemma 1. If q_1 and q_2 are α -bits long, then

$$||\mathbf{q}|| < 2^{\alpha + 0.5}$$

(Proof) Since q_1 and q_2 are α -bits long, we have

$$q_i \le 2^\alpha - 1$$

for i = 1, 2. Therefore

$$||\mathbf{q}|| \le \sqrt{2}(2^{\alpha} - 1) < \sqrt{2} \cdot 2^{\alpha} = 2^{\alpha + 0.5}$$
 Q.E.D.

Theorem 1. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli such that $p_1 = p_2 \mod 2^t$ for some t, and q_1 and q_2 are α bit primes. If

$$t \ge 2\alpha + 1,\tag{6}$$

then N_1, N_2 can be factored in time $O(\log^2(\min\{N_1, N_2\}))$.

(Proof) If $q_1 = q_2$, the we can factor N_1, N_2 by using Euclidean algorithm easily. Therefore we assume that $q_1 \neq q_2$.

Apply Gaussian reduction algorithm to B_L . Then we obtain

$$B_0 = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$$

such that

$$||\mathbf{v}_1|| = \lambda_1 \text{ and } ||\mathbf{v}_2|| = \lambda_2.$$

We will show that $\mathbf{q} = \mathbf{v}_1$ or $\mathbf{q} = -\mathbf{v}_1$, where $\mathbf{q} = (q_1, q_2)$.

From Hadamard's inequality, we have

$$||\mathbf{v}_2||^2 \ge ||\mathbf{v}_1||||\mathbf{v}_2|| \ge \det(B_0) = \det(B_L) = 2^t.$$

 $(\det(B_0) = \det(B_L)$ because B_0 and B_L span the same lattice L.) The last equality comes from eq.(3). Therefore we obtain that

$$||\mathbf{v}_2|| \ge 2^{t/2}.$$

Now suppose that

$$t \ge 2\alpha + 1$$

Then

$$t/2 \ge \alpha + 0.5.$$

Therefore

$$||\mathbf{v}_2|| \ge 2^{t/2} \ge 2^{\alpha+0.5} > ||\mathbf{q}||$$

from Lemma 1. This means that

$$(q_1, q_2) = \mathbf{q} = c \cdot \mathbf{v}_1$$

for some $c \neq 0$ from the definition of λ_i and from eq.(4). Further since $gcd(q_1, q_2) = 1$, we have c = 1 or -1. Therefore $\mathbf{q} = \mathbf{v}_1$ or $\mathbf{q} = -\mathbf{v}_1$.

Finally from Proposition 3, Gaussian reduction algorithm runs in time

$$O(\log^2(2^t)) = O(\log^2(\min\{N_1, N_2\})).$$

Q.E.D.

Compare eq.(6) and eq.(5), and notice that we have improved the previous lower bound on t.

Also our proof is conceptually simpler than that of May and Ritzenhofen [6]. In particular, we do not use the Minkowski bound whereas it is required in their proof.

5 Simulation

We verified Theorem 1 by computer simulation. We considered the case such that q_1 and q_2 are $\alpha = 250$ bits long. Theorem 1 states that if

$$t \ge 2\alpha + 1 = 501,$$

then we can factor N_1 and N_2 by using Gaussian reduction algorithm. The simulation results are shown in Table 5.

From this table, we can see that we can indeed factor N_1 and N_2 if $t \ge 501$. We can also see that we fail to factor N_1 and N_2 if $t \le 500$. This shows that our bound is tight.

 Table 1. Computer Simulation

number of shared bits t	success rate
503	100%
502	100%
501	100%
500	40%
499	0%
498	0%

References

- Coppersmith, D.: Finding a small root of a bivariate integer equation, factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178?189. Springer, Heidelberg (1996)
- 2. Steven D. Galbraith: Mathematics of Public Key Cryptography. Cambridge University Press (2012)
- Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Ann. Math. 126, 649? 673 (1987)
- 4. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Springer, Heidelberg (1993)
- Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 429?436. Springer, Heidelberg (1993)
- Alexander May, Maike Ritzenhofen: Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint. Public Key Cryptography 2009: 1-14
- 7. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Cambridge University Press, Cambridge (2000)
- 8. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag (1896)
- Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169?182. Springer, Heidelberg (1985)
- Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31?34. Springer, Heidelberg (1986)