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Abstract. We give an introduction to Fully Homomorphic Encryption for mathematicians. Fully

Homomorphic Encryption allows untrusted parties to take encrypted data Enc(m1), . . . ,Enc(mt)
and any efficiently computable function f , and compute an encryption of f(m1, . . . ,mt), without

knowing or learning the decryption key or the raw data m1, . . . ,mt. The problem of how to do this

was recently solved by Craig Gentry, using ideas from algebraic number theory and the geometry
of numbers. In this paper we discuss some of the history and background, give examples of Fully

Homomorphic Encryption schemes, and discuss the hard mathematical problems on which the
cryptographic security is based.

1. Introduction

Fully Homomorphic Encryption (FHE) has been referred to as a “holy grail” of cryptography.
Craig Gentry’s recent solution to the problem, while not efficient enough to be practical, was con-
sidered to be a major breakthrough. Since then, much progress has been made in the direction of
finding efficient Fully Homomorphic Encryption schemes.

In this paper we will give a brief introduction to FHE for mathematicians. We will give some of
the history and major ideas, we will present some examples of FHE schemes, and we will mention a
variety of security assumptions on which FHE schemes have been based. The intended audience is
mathematicians at the graduate level or beyond (especially number theorists) who do not necessarily
have any background in cryptography. The paper is mostly a survey, though §4.3 gives a number
theory proof that does not seem to be in the cryptography literature.

In encryption schemes, Bob encrypts a plaintext message to obtain a ciphertext. Alice decrypts
the ciphertext to recover the plaintext. In Fully Homomorphic Encryption, parties that do not know
the plaintext data can perform computations on it by performing computations on the corresponding
ciphertexts.

A major application of FHE is to cloud computing. Alice can store her data in “the cloud”,
for example, on remote servers that she accesses via the Internet. The cloud has more storage
capabilities and computing power than does Alice, so when Alice needs computations to be done on
her data, she would like those computations to be done by the cloud. However, Alice doesn’t trust
the cloud. Her data might be sensitive (for example, Alice might be a hospital and the data might
be patients’ medical records), and Alice would like the cloud to know as little as possible about her
data, and about the results of the computations. So Alice sends encrypted data to the cloud, which
can perform arithmetic operations on it without learning anything about the original raw data, by
performing operations on the encrypted data.

This material is based on research sponsored by DARPA under agreement numbers FA8750-11-1-0248 and FA8750-

13-2-0054. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author

and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

The work was also supported by the National Science Foundation under grant CNS-0831004.
Thanks go to Hendrik Lenstra for helpful conversations about Fully Homomorphic Encryption, and to Lily Khadjavi,
Zvika Brakerski, Chris Peikert, and Steven Galbraith for very helpful comments on earlier versions of the paper.

1



2 ALICE SILVERBERG

Fully Homomorphic Encryption can be used to query a search engine, without revealing what is
being searched for (here, the search engine is doing the computations on encryptions of information
that it doesn’t know).

More precisely, FHE has the following property (in its simplest form). Say that ciphertexts ci
decrypt to plaintexts mi, i.e., Decrypt(ci) = mi, where the mi’s and ci’s are elements of some ring
(with two operations, addition and multiplication). In FHE one has

Decrypt(c1 + c2) = m1 +m2, Decrypt(c1 · c2) = m1 ·m2.

In other words, decryption is doubly homomorphic, i.e., homomorphic with respect to the two
operations addition and multiplication.

Being fully homomorphic means that whenever f is a function composed of (finitely many) addi-
tions and multiplications in the ring, then

Decrypt(f(c1, . . . , ct)) = f(m1, . . . ,mt).

If the cloud (or an adversary) can efficiently compute f(c1, . . . , ct) from ciphertexts c1, . . . , ct, without
learning any information about the corresponding plaintexts m1, . . . ,mt, then the system is efficient
and secure.

Another requirement for FHE is that the ciphertext sizes remain bounded, independent of the
function f ; this is known as the “compact ciphertexts” requirement.

(Depending on the FHE system, the messages and ciphertexts could in fact lie in different rings,
and multiplication might be accomplished using a tensoring operation, as in [Br].)

Fully Homomorphic Encryption schemes can be either public key (where the encryptor knows the
decryptor’s public key but not her private key) or symmetric key (where the encryptor and decryptor
share a key that is used for both encryption and decryption).

In Section 2 we briefly give some history and background. In Sections 3, 4, and 5 we give some
(somewhat) homomorphic encryption schemes, to illustrate a variety of techniques and security
assumptions.

See [V2] for an excellent recent survey article. See also [H] for a good explanation of FHE for a
general audience.

As usual, Z, Q, R, and C denote the integers, rational numbers, real numbers, and complex
numbers, respectively, and Fq denotes the finite field with q elements.

2. Some history and background

2.1. Early history. In 1978, shortly after the invention of the RSA cryptosystem, Rivest, Adleman,
and Dertouzos [RAD] came up with the idea of fully homomorphic encryption, which they called
“privacy homomorphisms”. Their paper states, “although there are some truly inherent limitations
on what can be accomplished, we shall see that it appears likely that there exist encryption functions
which permit encrypted data to be operated on without preliminary decryption of the operands, for
many sets of interesting operations. These special encryption functions we call ‘privacy homomor-
phisms’; they form an interesting subset of arbitrary encryption schemes”. Despite the optimism
of Rivest, Adleman, and Dertouzos, fully homomorphic encryption remained out of reach for many
years.

A number of cryptosystems are homomorphic with respect to one operation. For example, RSA
and ElGamal encryption are homomorphic with respect to multiplication.

We recall that in (basic1) RSA, Alice’s public key is (N, e) and private key is d, where N is a
product of two large primes and where de ≡ 1 mod ϕ(N). If m ∈ Z/NZ is the plaintext, then
the ciphertext is c = me mod N . To decrypt, Alice computes cd mod N = m. If Bob encrypts

1Note that “basic” RSA and ElGamal are not considered secure for most real world applications, and must be
modified to be made secure.
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messages m1 and m2 using Alice’s public key (N, e), then the product of the resulting ciphertexts is
the ciphertext of the product of the plaintexts m1 and m2, i.e., (me

1 mod N)(me
2 mod N) = (m1m2)e

mod N . Thus, Decrypt(c1 · c2) = Decrypt(c1) ·Decrypt(c2), where ci = me
i mod N is the ciphertext

corresponding to the plaintext mi.
For ElGamal, suppose the private key is x ∈ {1, . . . , n − 1} and the public key is h = gx ∈ G,

where G is a cyclic group of order n generated by g. If m1,m2 ∈ G are plaintext messages, then the
corresponding ciphertexts are of the form ci = (ai, bi) = (gri ,mih

ri) ∈ G×G for i = 1 and 2, where
the ri are chosen by the encryptor(s) at random in {1, . . . , n− 1}. Then

Decrypt(c1 · c2) = Decrypt(a1a2, b1b2) = ((a1a2)x)−1b1b2

= (ax1)−1b1 · (ax2)−1b2 = Decrypt(c1) ·Decrypt(c2).

There have been other encryption schemes with homomorphic properties. For example, the
Goldwasser-Micali cryptosystem [GM] and its generalization the Paillier cryptosystem [Pa] are ho-
momorphic with respect to addition of plaintexts in the sense that

Decrypt(c1 · c2) = m1 +m2,

but are not homomorphic with respect to multiplication of plaintexts.
In [BonGN], Boneh, Goh, and Nissim gave a partially homomorphic encryption scheme that can

do one multiplication and any number of additions.

2.2. Gentry’s FHE scheme and beyond. Craig Gentry solved the problem of how to do Fully
Homomorphic Encryption in his Stanford PhD thesis [G1, G2, G3]. For the first time, there was
now a scheme that could (inefficiently) do an arbitrary number of additions and multiplications.

Gentry’s solution used ideal lattices, i.e., ideals in algebraic number fields. Given that one requires
a homomorphic property with respect to two operations, it is natural that rings come into play. In
[G1] and [G2], the rings Gentry used were of the form

R := Z[x]/〈xN + 1〉 and Rd := (Z/dZ)[x]/〈xN + 1〉

where N = 2n (see §4 below). It was later realized that one can use the rings Z and Z/dZ to
construct schemes parallel to those that use the rings R and Rd (see §3 below). Brakerski’s scheme
in [Br] uses a tensor product operation on the ciphertexts rather than standard ring multiplication.

There have been a number of improvements, implementations, and new schemes. See for example
[SmV, DGHV, G4, SS, GH1, LaNV, GH2, BV2, BV1, CorMNT, LMSV, BrGV, GHS1, GHS2,
CorNT]. The NTRU encryption scheme [HofPS], which was developed in the late 1990’s, turned out
to be “somewhat homomorphic”, and has been turned into an FHE scheme [LTV]. For some recent
(at the time this article went to press) FHE schemes that are much more efficient than the original
ones, see [Br, BosLLN].

2.3. Security. The primary known attacks on FHE schemes are variants of the LLL lattice basis
reduction algorithm [LLL]. The security of almost all currently known schemes is based on the
presumed difficulty of some lattice problem, such as finding an approximately shortest (non-zero)
vector in a high dimensional lattice.

A number of FHE schemes use ideal lattices rather than arbitrary lattices. These are very special
lattices, and it might turn out to be the case that lattice attacks are easier for ideal lattices than
for generic lattices. This is an open question. At the moment, special attacks that work better for
ideal lattices than for general lattices are not yet known.

Some of the recent FHE systems that are garnering a lot of interest are secure subject to the
Ring-LWE (Learning With Errors) or decisional Ring-LWE Problem being difficult (see §5 below).

Using ideas from [Br], it is shown in [BosLLN] that the security of fully homomorphic variants of
NTRU-based schemes can be based on the presumed difficulty of the Ring-LWE Problem.
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2.4. Somewhat Homomorphic Encryption (SHE). Somewhat Homomorphic Encryption (SHE)
schemes are encryption schemes that have some homomorphic properties but are not fully homomor-
phic. With Somewhat Homomorphic Encryption one can generally do a limited number of additions
and multiplications, but each time one does an operation, it contributes “noise” to the ciphertext
(see §3 for an example). Eventually the noise is so great that it is not possible to decrypt. Also,
in SHE schemes the ciphertexts could get larger (message expansion), i.e., the compact ciphertexts
requirement might be violated. In Gentry’s initial work he started with an SHE scheme and then
“bootstrapped” it to obtain an FHE scheme.

2.5. Bootstrapping. Gentry’s original FHE papers and thesis introduced the idea of bootstrap-
ping. One “bootstraps” to go from a (bootstrapable) somewhat homomorphic encryption scheme to
a fully homomorphic encryption scheme.

To make an SHE scheme fully homomorphic, one can include as part of the public key an encryp-
tion of the private key. When a ciphertext gets too large or too noisy, the encryptor can then use
the somewhat homomorphic encryption scheme to evaluate the decryption function applied to the
ciphertext, using the encrypted private key. This re-encryption process produces a new encryption
of the original plaintext, that is more compact and less noisy. For this to work, it is necessary for
the somewhat homomorphic scheme to be “circular secure” (i.e., it must be able to securely encrypt
its own private key) and capable of evaluating the function f = Decrypt and “a little more” (enough
to allow homomorphic encryptions with respect to addition and multiplication; see the “augmented
decryption circuits” in Definition 4 of [G1] or [DGHV]).

Gentry also uses what he calls “squashing” of the decryption circuit in order to simplify de-
cryption enough so that it is among the functions that the somewhat homomorphic scheme can
homomorphically evaluate correctly. Squashing converts an SHE scheme into a bootstrappable SHE
scheme. In [BV2], Brakerski and Vaikuntanathan use “dimension-modulus reduction” to simplify
the decryption circuit and avoid squashing. Another way to remove squashing is given in [GH2].

In [BrGV], Brakerski, Gentry, and Vaikuntanathan use “modulus switching” to reduce noise and
lessen the need for bootstrapping. Modulus switching replaces a ciphertext mod p1 with a ciphertext
modulo a smaller modulus p2 that decrypts to the same plaintext.

See [G3] for a nice analogy (“Alice’s jewelry store”, with jewelry fabricated in nested secure
gloveboxes) that gives the idea of FHE and bootstrapping. See the survey article [V1] for a good
description of modulus switching and other concepts from FHE.

2.6. Malleability. We remark that FHE schemes are always “malleable”. In cryptography, mal-
leability means that a ciphertext can be perturbed to create a new ciphertext that decrypts to a
perturbation (in a known way) of the original plaintext. In a non-malleable encryption scheme,
perturbing a ciphertext a little will generally produce an invalid ciphertext, i.e., one that does not
decrypt to a valid plaintext. Malleability is often an undesirable property in cryptography. For
example, if an auction uses encrypted bids, and (an adversary) Mallory sees the encryption of Bob’s
bid, one wants it to be the case that Mallory cannot construct a new ciphertext that decrypts to a
bid that is a dollar more than Bob’s bid, i.e., one wants non-malleable encrypted bids.

There has been some work on obtaining partial or “targeted” non-malleability along with some
limited homomorphic ability; see for example [PR, BonSW, E]. There are interesting open questions
in this area.

3. Somewhat Homomorphic Encryption over the integers

We begin with a warm-up example from the introduction to [DGHV]. This example of a somewhat
homomorphic encryption scheme comes in two flavors, symmetric key and public key. To keep it
short, we will be very imprecise about parameter choices and other details.
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We first give the symmetric key version. The shared key is an odd positive integer k. The message
is a bit m ∈ {0, 1}. The encryptor chooses random integers q and r in a certain range, and so that
|2r| < k/2, and computes the ciphertext

c = m+ kq + 2r.

To decrypt, the decryptor computes (c mod k) mod 2 = m where a mod w means that one takes
the representative of a mod w in the range (−w/2, w/2].

If ci = mi + kqi + 2ri for i = 1, 2, then

c1 + c2 = (m1 +m2) + k(q1 + q2) + 2(r1 + r2),

c1 · c2 = m1 ·m2 + k(m1q2 +m2q1 + kq1q2 + 2q1r2 + 2r1q2) + 2(m1r2 + r1m2 + 4r1r2).

Thus the noise grows, and after one does too many multiplications or additions, the decryption
function no longer outputs the correct plaintext. The ciphertexts also blow up in size. This Some-
what Homomorphic Encryption scheme is not fully homomorphic, but in [DGHV] van Dijk et al.
use Gentry’s bootstrapping techniques to turn it into a Fully Homomorphic Encryption scheme.

A public key version, as in §3.1 of [DGHV], is as follows. The secret key is again an odd positive
integer k. The public key now consists of the integers xi = kqi + 2ri for i = 0, 1, . . . , t, where the
qi and ri are as before, so each xi can be viewed as an encryption of 0 under the symmetric key
scheme. The xi are taken so that x0 is the largest, x0 is odd, and x0 mod k is even, where again x
mod k is in the interval (−k/2, k/2].

To encrypt a message bit m ∈ {0, 1}, the encryptor chooses a random subset S of {1, . . . , t} and
a random integer r in a certain range. The ciphertext is

c = m+ 2
∑
i∈S

xi + 2r mod x0.

The decryptor computes (c mod k) mod 2 = m.
The security is based on the difficulty of the Approximate Common Divisor Problem, which is

the problem of finding k, given a collection of integers of the form {kqi + ri}ti=0 with ri “small”.
Approximate Common Divisor Problems were introduced in [How] and have been studied in [CN,
CoH].

4. The Gentry, Smart-Vercauteren, and Gentry-Halevi SHE schemes

As an illustration of a lattice based system, we give a version of the Somewhat Homomorphic
Encryption schemes that were introduced by Gentry in [G1, G2] and improved on by Smart and
Vercauteren in [SmV] and by Gentry and Halevi in [GH1] (see also [LMSV]). In these schemes, the
public key corresponds to a “bad” (skewed) basis for a lattice, while the private key is a “good”
(more orthogonal) basis for the same lattice. The (N -dimensional) lattices are ideals in the ring
of integers of the cyclotomic field of 2N -th roots of unity. The plaintext is encoded as a (suitable)
point in the ambient space RN . Encryption translates that point into the fundamental parallelepiped
associated to the bad (public) basis. Decryption translates the ciphertext point into the fundamental
parallelepiped associated to the good (private) basis. (See Figure 1 and the description near the
end of §4.1.) The security relies partly on the fact that it is generally difficult to find a good, nearly
orthogonal basis for a given lattice.

4.1. The scheme. We next give some of the details of a version of the scheme. Let

F (x) = xN + 1 ∈ Z[x]

with N = 2n. Let θ be a root of F (x); then θ is a primitive 2N -th root of unity. Let

K = Q[x]/〈F (x)〉 ∼= Q(θ),
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Figure 1. Encryption and Decryption

a CM-field of degree N over Q. Let

v(x) =

N−1∑
i=0

vix
i ∈ Z[x]

be a degree N − 1 polynomial whose coefficients vi are random t-bit integers for a suitably chosen
t, and

V :=


v0 v1 · · · vN−1

−vN−1 v0 · · · vN−2
· · ·

−v1 −v2 · · · v0

 ∈ MN (Z).

The rows of V are the coefficients of xiv(x) mod F (x) for i = 0, . . . , N − 1. Let L denote the lattice
in ZN generated by the rows of V , let γ = v(θ) ∈ K, let NK/Q : K → Q denote the norm map, and
let

d := NK/Q(γ) = det(V ) = det(L) = resultant(F, v).

Replace the random polynomial v(x) if necessary, until you have found one for which d is odd and
square-free. (In [SmV], they start with v(x) ≡ 1 mod 2Z[x] to ensure that d is odd, and they replace
v(x), if necessary, until they find one for which d is prime. In [GH1] they show that it is not necessary
for d to be prime; it suffices to have d odd and square-free.)

Whenever A is a matrix whose rows {a1, . . . ,aN} form a Z-basis for a lattice L ⊂ RN , define

P(A) := {
N∑
i=1

αiai : αi ∈ [−0.5, 0.5)},

a (half-open) parallelepiped. This is the “fundamental parallelepiped” associated to A. Every
element of RN/L has a unique representative in P(A).

All reductions mod d will be taken in the range [−d/2, d/2). Let r ∈ [−d/2, d/2) denote the
unique common root of F (x) and v(x) mod d. Let ri = ri (mod d) and let

B :=


d 0 0 · · · 0
−r1 1 0 · · · 0

· · ·
−rN−1 0 0 · · · 1

 ∈ MN (Z).
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Since d is odd and square-free, it follows that B is the Hermite Normal Form of the matrix V .
The public key now consists of d and r (or equivalently the matrix B), and the secret key is

v(x) (or the matrix V ). To encrypt a bit m ∈ {0, 1}, choose a random noise polynomial u(x) =∑N−1
i=0 uix

i with each coefficient ui ∈ {0,±1} taking values 1 and −1 with equal probability. Let
a(x) = m+ 2u(x) and let

a := (2u0 +m, 2u1, . . . , 2uN−1)

be the vector of coefficients of a(x). Let d·c denote rounding to the nearest integer.
Let the ciphertext be

c := a− (daB−1cB) = (m+ 2u(r) mod d, 0, . . . , 0),

which is the translation of a to the parallelepiped P(B) (where translation means that one subtracts
lattice vectors until one lands in the fundamental parallelepiped).

To decrypt a ciphertext c, let

a1 := c− (dcV −1cV ) = (a0, . . . , aN−1),

which is the translation of c to the parallelepiped P(V ), and compute m = a0 (mod 2). As shown
on p. 145 of [GH1], decryption works (i.e., a1 = a) as long as the absolute value of every entry in
aV −1 is less than 1

2 .
In Figure 1, the small dots are the lattice. The light gray point represents the plaintext, the

(inside of the) light gray diamond represents the fundamental parallelepiped P(V ), the (inside of
the) dark parallelogram represents the fundamental parallelepiped P(B), and the large dark point,
which is the ciphertext, is the translation to P(B) of the light gray point.

The rows of the matrix B are a “bad”, i.e., skewed basis for the lattice L, while the rows of V
are a “good” (secret) basis for L. If the rows of V are sufficiently orthogonal, and if the plaintext
point is chosen in a suitable way, then decryption yields the original plaintext point.

The scheme is homomorphic because its multiplication and addition are just multiplication and
addition in the ring of integers of the cyclotomic field K.

4.2. Security. The security of the above scheme is based on the simultaneous difficulty of the
following problems. (Note that more recent FHE schemes do not rely on SPIP, PCP, or SSSP, so
interest in these problems might be more theoretical or mathematical than practical.)

The Small Principal Ideal Problem (SPIP) is the problem, given a principal ideal in either
Hermite Normal Form (i.e., the matrix B) or two element representation (i.e., 〈d, θ− r〉), of finding
a “small” generator (e.g., v(θ)) for it. If the SPIP is sufficiently hard, that would thwart a key
recovery attack, wherein an adversary who knows the public key (B or (d, r)) tries to find the secret
key (v(x)).

Security against an attack where the adversary tries to find the plaintext, given a ciphertext, is
closely related to the difficulty of the Closest Vector Problem (CVP) for ideal lattices. This is
the problem of finding a closest lattice point to a given point in the ambient space.

Another type of security is “semantic security”. The requirement for semantic security is that an
adversary, who is presented with a ciphertext that is either an encryption of 0 or an encryption of
1, cannot distinguish which it is with probability greater than 1

2 + ε of getting the correct answer.
The semantic security of the scheme is related to a new problem, that Smart and Vercauteren
call the Polynomial Coset Problem (PCP). The Polynomial Coset Problem is the problem of
distinguishing between a random element of Z/dZ and an element of the form f(r) mod d, where
f(x) ∈ Z[x] is random (and unknown) with small coefficients and r is the common root of F (x)
and v(x) mod d. The paper [SmV] states that the Polynomial Coset Problem is akin to Gentry’s
Ideal Coset Problem from [G1]. These problems can be viewed as versions of the Bounded Distance
Decoding problem from coding theory.
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Gentry, Smart-Vercauteren and Gentry-Halevi “bootstrap” their somewhat homomorphic encryp-
tion schemes into fully homomorphic encryption schemes using a re-encryption algorithm. Making
this cryptographically secure requires an additional security assumption, namely the difficulty of
a decisional version of the Sparse Subset-Sum Problem (SSSP), i.e., it should be difficult to
distinguish between random subsets of Z/dZ and those that have sparse subsets that sum to 0. Here,
bootstrapping augments the public key with a “hint” about the secret key, namely, with a large set
of vectors that has a very sparse subset that sums to the secret key.

4.3. Why F and v have exactly one common root mod d. Since it is not in the FHE literature,
we give a proof that F (x) and v(x) have a unique common root mod d. This shows the use of some
algebraic number theory in FHE. The next result allows for a more general polynomial F (x). As
usual, OK denotes the ring of integers in the number field K.

Lemma 1. Suppose F (x), v(x) ∈ Z[x]. Suppose that F (x) is monic and irreducible, and θ ∈ Q̄
is a root of F . Let K = Q[x]/〈F (x)〉 ∼= Q(θ) and suppose K/Q is a Galois extension. Let γ =
v(θ) and suppose that NK/Q(γ) is square-free and relatively prime to the discriminant of K. Then
F (x) mod 〈γ〉 and v(x) mod 〈γ〉 have exactly one common root in OK/〈γ〉, namely θ mod 〈γ〉.

Proof. Since v(θ) = γ and F (θ) = 0 both map to 0 under the projection map OK → OK/〈γ〉, it
follows that θ is a common root of F (x) mod 〈γ〉 and v(x) mod 〈γ〉. Since K/Q is Galois, F (x) splits
completely in K[x], so the reductions mod 〈γ〉 of the roots of F (x) are the roots of F (x) mod 〈γ〉.
Thus any other common root is the reduction mod 〈γ〉 of a root of F (x), so it is σ(θ) for some
non-identity σ ∈ Gal(K/Q). But v(σ(θ)) = σ(v(θ)) = σ(γ), which cannot be 0 mod 〈γ〉, since
gcd(σ(γ), γ) = 1, as follows.

Factor γOK =
∏

i pi with prime ideals pi of OK . Since NK/Q(γ) is square-free and relatively
prime to the discriminant of K, it follows that:

(a) each pi has degree one (i.e., its norm is a prime in Z),
(b) the different pi’s have distinct residue characteristics, and
(c) σ(pi) 6= pj for all i and j.

To obtain (c), note that if σ(pi) = pi, then σ would be in the decomposition group for pi, whose
order is the degree of pi, which is 1 by (a). Part (c) now follows from (b). Since σ(γ)OK =

∏
i σ(pi),

it now follows that gcd(σ(γ), γ) = 1. �

5. LWE and Ring-LWE

A promising recent development is to create Fully Homomorphic Encryption schemes whose se-
curity is based on the difficulty of the LWE Problem (introduced in [R]) or the Ring-LWE Problem
(introduced in [LyPR]). These FHE schemes are more efficient than earlier schemes, with short
ciphertexts.

LWE stands for Learning With Errors. A version of the LWE Problem is as follows. If F is a field
and v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Fn, let 〈v, w〉 denote the usual inner product

∑n
j=1 vjwj .

Take p prime, of size polynomial in a parameter n. For uniformly random ai ∈ Fn
p , and “noise”

ei ∈ Z chosen via a probability distribution (usually Gaussian) that outputs ei with |ei| much smaller
than p, given polynomially (in n) many pairs (ai, bi = 〈ai, s〉 + ei mod p), find s ∈ Fn

p . Here, the
ei’s are the errors, and the problem is to learn the secret s, even in the presence of errors. If there
are no errors, i.e., all ei = 0, then one can easily recover s using linear algebra, given enough pairs
(ai, bi). When p = 2 the Learning With Errors Problem is known as the Learning Parity with Noise
Problem.

In the decisional version one needs to distinguish such ordered pairs (ai, bi) from uniformly random
pairs (ai, ui) ∈ Fn

p × Fp. By [R, Pe], this problem is at least as hard as (variants of) the problem of
finding short vectors in lattices.
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Next, following [BV2], we give a simplification of a symmetric key somewhat homomorphic en-
cryption scheme whose security is based on the decisional version of LWE. The secret key is a
random s ∈ Fn

p . To encrypt a plaintext bit m ∈ {0, 1}, choose a random a ∈ Fn
p and a “noise”

e. Compute b := 〈a, s〉 + 2e + m ∈ Fp. The ciphertext is (a, b) ∈ Fn
p × Fp. To decrypt, compute

b − 〈a, s〉 ≡ 2e + m (mod p) and reduce mod p to get 2e + m (since |e| � p). Now reduce mod 2
to obtain m (note that the “masking” terms 〈a, s〉 and 2e do not interfere with each other since p
is odd). The scheme is homomorphic with respect to addition, until too much noise accumulates,
and it is shown in [GHV] that a variant of the scheme can do one homomorphic multiplication but
with a large ciphertext expansion. In [BV2] it is shown how to turn this into a fully homomorphic
encryption scheme (without the need for squashing).

In Ring-LWE, R is a ring. The Ring-LWE Problem is to find s, given polynomially many (ai, bi) ∈
R ×R with bi = ais+ ei where the ai’s are uniformly random in R, s is random in R, and the ei’s
are “small” in R.

In the decisional version of Ring-LWE, one needs to distinguish such ordered pairs (ai, bi) from
uniformly random (ai, ui) ∈ R×R.

Next, taken from [BV1], is a simplified symmetric key somewhat homomorphic encryption scheme
whose security is based on the decisional version of Ring-LWE. Fix an odd prime p and let Rp

denote the ring Fp[x]/〈xN + 1〉 where N = 2n. The secret key is a random s ∈ Rp. To encrypt
m ∈ F2[x]/〈xN + 1〉, lift m to a polynomial in Z[x] of degree < N with coefficients in {0, 1} and
(reduce mod p and mod xN + 1 to) view it as an element m̂ of Rp. Then choose a random a ∈ Rp

and a “noise” e, and compute b := as+2e+m̂ ∈ Rp. The ciphertext is (a, b) ∈ Rp×Rp. To decrypt,
compute b − as (mod 2) = m. Security follows from decisional Ring-LWE for Rp, since under the
assumption that decisional Ring-LWE is a hard problem, and using the fact that p is odd, pairs
(a, as + 2e) are indistinguishable from pairs (a, u) where u is uniformly random in Rp. Again, this
can be turned into a fully homomorphic encryption scheme (see [BV1]).

Fully homomorphic encryption schemes based on Ring-LWE are more efficient than those based on
standard LWE. However, Ring-LWE uses lattices coming from ideals in algebraic number fields. As
mentioned earlier, it is not known whether cryptosystems based on ideal lattices are more vulnerable
to attack than those based on general lattices.
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