
Towards Adoption of DNSSEC:
Availability and Security Challenges

Amir Herzberg and Haya Shulman
Computer Science Department

Bar Ilan University
Email: {amir.herzberg,haya.shulman}@gmail.com

Abstract—DNSSEC deployment is long overdue; however, it
seems to be finally taking off. Recent cache poisoning attacks
motivate protecting DNS, with strong cryptography, rather than
with challenge-response ‘defenses’.

Our goal is to motivate and help correct DNSSEC deployment.
We discuss the state of DNSSEC deployment, obstacles to
adoption and potential ways to increase adoption. We then
present a comprehensive overview of challenges and potential
pitfalls of DNSSEC, well known and less known, including:

• Vulnerable configurations: we present several DNSSEC con-
figurations, which are natural and, based on the limited
deployment so far, expected to be popular, yet are vulnerable
to attack. This includes NSEC3 opt-out records and inter-
domain referrals (in NS, MX and CNAME records).

• Incremental Deployment: we discuss potential for increased
vulnerability due to popular practices of incremental deploy-
ment, and recommend secure practice.

• Super-sized Response Challenges: DNSSEC responses in-
clude cryptographic keys and hence are relatively long; we
explain how this extra-long responses cause interoperability
challenges, and can be abused for DoS and even DNS
poisoning. We discuss potential solutions.

Keywords: DNSSEC, DNS security, DNS cache poisoning.

I. INTRODUCTION

The correctness and availability of information in the Do-
main Name System (DNS) are crucial for the correct and
secure operation of the Internet. However, there is a long
history of attacks on the DNS, most notably DNS cache
poisoning, [1], [2], [3], [4], where an attacker provides fake
mappings in responses to DNS requests. Since DNS uses
caching for performance, fake mappings can be cached and
used for long time and to attack many systems.

DNS cache poisoning is a significant threat to Internet secu-
rity: it may allow weak off-path attackers to redirect commu-
nication to incorrect, adversarial, servers, thereby enabling the
off-path attacker to intercept and modify content. DNS cache
poisoning allows to circumvent many defense mechanisms
such as Same Origin Policy (SOP), domain blacklists and
domain-policies (e.g., SPF), exposing to a range of attacks,
such as phishing, credentials-theft, and more.

The importance of correct functionality of DNS, in tandem
with a long history of attacks, yielded significant efforts to
improve DNS security. Defenses against DNS poisoning, can
be categorised into two classes: challenge-response defenses,
where resolvers add random challenges to requests and vali-
date them in responses, [5], and cryptographic defenses, most
notably DNSSEC, [6], [7], [8].

Cryptographic defenses ensure security even against a MitM
attacker, who is able to eavesdrop and modify traffic; however,
they require adoption by both end-points to the DNS transac-
tion and significant deployment and maintenance efforts. In
contract, challenge-response mechanisms are relatively easy
to deploy and maintain, e.g., they require support only by the
resolver, but are not secure against MitM attacker. Currently,
most DNS resolvers rely on challenge-responses defenses for
their security.

However, recently practical attacks were shown, [1], [2], [4],
allowing even an off-path attacker to circumvent the challenge-
responses mechanisms, exposing DNS to efficient cache poi-
soning attacks. We hope and believe, that the publication of
these attacks, will catalyze the adoption of DNSSEC.

In this paper, we try to further encourage deployment
of DNSSEC, by discussing the design, motivations, status
and challenges. Furthermore, we identify potential pitfalls
which may result in deployment challenges, or, worse, in
vulnerabilities, and discuss countermeasures.

A. Challenge-Response Defenses

Challenge-response mechanisms attempt to provide security
against off-path adversaries, by using some ‘unpredictable
challenge’ values. The DNS resolver should select the chal-
lenge values (at random) and send them within the requests.
Then, the resolver should validate that the corresponding
responses, from the intended name server, echo those values.
Two challenge-response mechanisms are adopted by most
resolvers: the DNS transaction identifier (TXID), and the
source port field (added in ‘patches’ following the Kaminsky
attack [1]). Additional mechanisms were proposed and adopted
by some resolvers, e.g., random challenges embedded within
the query (random prefix and case randomization); see, e.g.,
[5], [9].

All challenge-response defenses are ineffective against a
man-in-the-middle (MitM) attacker: a MitM attacker can
simply copy the values from the requests to (spoofed) re-
sponses. However, (until recently) the folklore belief was that
challenge-response defenses were effective against off-path
attackers: an off-path attacker does not receive the request,
and hence has to guess the challenge values in its attempt
to construct a (spoofed) response. By using sufficient entropy
in the challenges, guessing the challenge fields become im-
practical. In particular, both the TXID and the source port

are 16-bit fields; hence, the TXID alone provides insufficient
entropy (exploited in [1]), but as observed there, if both are
truly random, the challenge has 32 bits of entropy, which may
often suffice to render Kaminsky’s attack impractical.

However, in [2], [4], we presented different techniques that
allow off-path attackers to circumvent different challenge-
response defenses, and predict the challenge values, rendering
DNS resolvers exposed to efficient cache poisoning attacks.
While it is possible to prevent these recent attacks, surely they
provide additional motivation to adopt DNSSEC.

B. DNSSEC: Cryptographic Defense

DNSSEC [8], [7], [6] provides security against MitM adver-
saries by relying on cryptographic authentication (signature) of
records in responses. Its main disadvantage, compared to most
challenge-response defenses, is that it requires adoption both
by the DNS zones and resolvers. Indeed, although DNSSEC
was proposed in 1997 and throughly evaluated as well as
validated analytically [10], it is still not widely supported and
deployed.

For example, we found that only about 2% of the most
popular1 domains are signed. Furthermore, the measurements
in [12] found that about 68% of the resolvers request DNSSEC
records, but only about 1% of them actually validate the
responses. Apparently, the vast majority of resolvers that signal
support of DNSSEC, are in fact non-validating, i.e., do not
reject responses which are not properly signed, e.g., using
the permissive validation mode in Unbound 1.4.19. Ironically,
as we recently showed [4] (and summarize briefly in Section
V-B), this large percentage of resolvers that request DNSSEC
records but do not validate them, may often become vulnerable
to off-path attacks.

This limited deployment of DNSSEC is disappointing, con-
sidering its importance and extensive support by the Internet
and security communities. Much of the existing efforts, e.g.,
the Internet Society Deploy360 program [13], focus on edu-
cating consumers, domain-owners, infrastructure and software
providers, to increase support for DNSSEC. In this paper,
we focus on the complementing technical aspects, including
challenges, vulnerabilities, and recommended practices.

It seems that significant additional effort is required to
make DNSSEC fully functional, in most domain names and
resolvers; and that more care must be taken to ensure correct
deployment.

Contributions

The main contribution of this work is in encouraging adop-
tion of DNSSEC, while at the same time, raising awareness
to subtleties and potential vulnerabilities, to make sure that
deployements are indeed secure. We investigate the following
issues related to DNSSEC: deployment and interoperability
issues, vulnerable DNSSEC configurations, and attacks on
oversized DNS responses.

1We computed the statistics for the top 300,000 most popular domains as
listed by Alexa [11].

a) Deployment and Interoperability: We review the cur-
rent deployment status of DNSSEC and obstacles to deploy-
ment, most notably the interoperability problems of DNSSEC-
enabled responses with intermediate Internet devices. We
discuss the common practice of incremental deployment, and
show that it may cause increased vulnerability to poisoning.

b) Vulnerable DNSSEC Configurations: we present sev-
eral DNSSEC configurations, which are natural and, based on
the limited deployment so far, expected to be popular, yet are
vulnerable to attack. This includes NSEC3 opt-out records and
inter-domain referrals (in NS, MX and CNAME records).

c) Attacks on Oversized DNS Responses: DNSSEC re-
sponses include cryptographic keys and hence are relatively
long; we explain how this extra-long responses cause inter-
operability challenges, and can be abused for DoS and even
DNS poisoning. We discuss potential solutions.

Organisation

We provide a background on DNS and DNSSEC in Sec-
tion II, and discuss deployment status and interoperability
problems in Section III. We review vulnerable DNSSEC
configurations in Section IV, and exploits of large, DNSSEC-
enabled, DNS responses in Section V. We then conclude this
review of DNSSEC in Section VI.

II. BACKGROUND

In this section we provide an overview of DNS, and its
extension mechanisms: EDNS and DNSSEC.

A. Domain Name System

The domain name system (DNS), [14], [15], is a distributed
data base of Internet mappings (also called resource records
(RRs)), from domain names to different values. For example,
A type RRs map a domain name to its IPv4 address.

Domains are organized hierarchically; for every domain
name α and each label or domain name x, the domain name
x.α is considered a subdomain of α, i.e., part of the α domain
name space. Namely, the right-most label conveys the top-level
domain.

Domains and their mappings are also administered hierar-
chically; the mappings of each domain foo.bar are provided
by a name server, managed by the owner of the domain. The
name server of a domain foo.bar is identified via a DNS
mapping of type NS, from the domain name to the domain
name of the name server, which could be subdomain, e.g,.
ns1.foo.bar, or not, e.g., ns.goo.net. Mappings of a domain
name, e.g., x.foo.bar, are trusted only if received from a name
server of that domain or of a parent domain, e.g., the name
server of foo.bar or of bar.

Clients use resolvers in order to find RRs for a domain.
The resolvers query the name servers to locate the requested
RRs. Upon query, a name server perform respond with the
corresponding RR, or a non-existing domain response in case
no matching RR exists. Resolvers cache the DNS responses;
the caching time is specified in the TTL field of a response.
Subsequent requests for the same RRs are provided from the

com zone
parent of b.com

A?a.b.com

5.6.7.5

Recursive DNS
Resolver
10.0.0.1

Recursive DNS
Resolver
10.0.0.1

Root DNS
4.4.4.4

Root DNS
4.4.4.4

A?a.b.com A?a.b.com

com IN NS ns.com
ns.com IN A 1.2.3.4

A?a.b.com

b.com IN NS ns.b.com
ns.b.com IN A 5.6.7.8

A?a.b.com
a.b.com IN A 5.6.7.5a.b.com IN A 5.6.7.5

Access to web site

Client
10.0.0.3
Client

10.0.0.3
Client

10.0.0.2

Client
10.0.0.2

Stub DNS
resolver

Stub DNS
resolverBrowserBrowser

A?a.b.com
a.b.com IN A 5.6.7.5

b.com zone
child of com

Authoritative
com DNS

1.2.3.4

Authoritative
com DNS

1.2.3.4

Authoritative
b.com DNS

5.6.7.8

Authoritative
b.com DNS

5.6.7.8

a.b.com
Web server

5.6.7.5

a.b.com
Web server

5.6.7.5

Fig. 1. Sample resolution process initiated by a stub resolver for an IP address of a web site. Recursive resolver performs the lookup and caches the resource
records from the DNS response. Subsequent requests from clients for the same RRs are satisfied from the cache.

cache.A sample lookup process, initiated with a DNS request
from a stub resolver, is depicted in Figure 1.

B. Extensions to DNS (EDNS)

The original DNS specifications fix the maximal size of a
DNS packet, when sent over UDP, to 512 bytes (RFC 1035).
Longer responses were unusual and truncated, by returning a
partial response and signaling truncation (TC bit set). Upon
receiving truncated response, resolvers should resend the re-
quest over TCP.

However, using TCP for DNS requests imposes significant
overhead, requires state in the name server, and adds latency
to responses. Support of longer responses, e.g., for DNSSEC,
without such overhead, is possible using the Extension Mech-
anisms for DNS (EDNS) [16].

EDNS is an optional, but widely deployed, mechanism, that
allows clients to advertise certain capabilities to DNS servers.
One of those capabilities is a larger reassembly buffer. For
example, a DNS resolver can advertise that it can reassemble
a 2000 bytes DNS response, which is significantly larger than
the legacy limit of 512 bytes. This provides support for larger
DNS responses, as required to transmit (over UDP) long,
DNSSEC-enabled responses, containing keys and signatures.

C. DNS Security (DNSSEC)

When no protection is employed, DNS requests and re-
sponses can be inspected and altered by a MitM attacker. For
example, a malicious wireless client can tap the communi-
cation of other clients and can respond to their DNS requests
with maliciously crafted DNS responses, containing a spoofed
IP address, e.g., redirecting the clients to a phishing site.

Domain Name System Security Extensions (DNSSEC) stan-
dard [6], [7], [8] was designed to address the cache poisoning
vulnerability in DNS, by providing data integrity and origin
authenticity via cryptographic digital signatures over DNS
resource records. The digital signatures enable the recipient,
e.g., resolver, that supports DNSSEC validation, to check that
the data in a DNS response is the same as the data published
within the target zone.

DNSSEC defines new resource records (RRs) to store
signatures and keys used to authenticate the DNS responses.

For example, a type RRSIG record contains a signature
authenticating an RR-set, i.e., all mappings of a specific type
for a certain domain name. By signing only RR-sets, and not
specific responses, DNSSEC allows signatures to be computed
off-line, and not upon request; this is important, both for
performance (since signing is computationally intensive) and
security (since the signing key can be stored in a more secure
location than the name server).

To allow clients to authenticate DNS data, each zone
generates a signing and verification key pair, (sk, vk). The
signing key sk is used to sign the zone data, and should be
secret and kept offline. Upon queries for records in a domain,
the name server returns the requested RRs, along with the
corresponding signatures (in a RRSIG RRs). To prevent replay
attacks, each signature has a fixed expiration date. The clients,
i.e., resolvers, should also obtain the zone’s public verification
key vk, stored in a DNSKEY RR, which is then used by the
clients to authenticate the origin and integrity of the DNS data.

Resolvers are configured with a set of verification keys for
specific zones, called trust anchors; in particular, all resolvers
have the verification key (trust anchor) for the root zone.
The resolver obtains other verification keys, which are not
trust anchors, by requesting a DNSKEY resource record from
the domain. To validate these verification keys obtained from
DNSKEY, the resolver obtains a corresponding a DS RR from
the parent zone, which contains a hash of the public key of
the child; the resolver accepts the DNSKEY of the child as
authentic if the hashed value in DNSKEY is the same as the
value in the DS record at the parent, and that DS record is
properly signed (in a corresponding RRSIG record). Since the
DS record at the parent is signed with the DNSKEY of the
parent, authenticity is guaranteed.

This process constructs a chain of trust which allows the
resolver to authenticate the public verification key of the target
zone. Specifically, the clients authenticate the public verifica-
tion key of the zone by constructing a chain of trust starting
at the root zone, or another trust anchor, and terminating at
the target zone.

As an example, consider the (simplified presentation of)
chain of trust constructed in Figure 2. The resolver has a
public verification key vkROOT of the root, and it needs to

obtain the A RR (an IP address) for host www.a.com, which
is in a a.com zone. The resolver queries the root, and obtains
the DS and NS RRs (and corresponding IP address in A RR)
for com zone; this data tells the resolver that it should query
the name server authoritative for com zone. DNSKEY of the
root (vkROOT) is used to verify the signature SskROOT

(vkCOM) on
the DS RR of the child, i.e., com zone. Subsequently, com
zone sends the resolver the DS RR of the child zone, i.e.,
a.com. The DNSKEY vkCOM of the parent zone com is used
to verify the signature SskCOM

(vkA.COM) on the DS RR of the
child a.com. The chain of trust terminates with a DNSKEY RR
whose corresponding private key skA.COM signs the requested
DNS data.

COM
Zone fi le

Resolver ROOT
Zone fi le

DNSKEY (vk
ROOT

)

DS (vk
ROOT

)

RRSIG (S
skROOT

(vk
ROOT

))

DNSKEY (vk
ROOT

)

A?www.a.COM

DS (vk
COM

)

RRSIG (S
skROOT

(vk
COM

))

DNSKEY (vk
COM

)

RRSIG (S
skCOM

(vk
COM

))

DS (vk
a.COM

)

RRSIG (S
skCOM

(vk
a.COM

))

a.COM
Zone fi le

DNSKEY (vk
a.COM

)

RRSIG (S
ska.COM

(vk
a.COM

))

www.a.COM IN A 4.3.2.1

RRSIG (S
ska.COM

(www.a.COM))

(1)

(2)

(3)

(4)

(5)

(1.1)

(1.2)

(1.3)

(1.4)

(2.1)

(2.2)

(2.3)

(2.4)

ns.com IN A 1.2.3.4

com IN NS ns.com(6)

(7)

(3), (5), (6), (7)

A?www.a.COM

ns.a.com IN A 4.3.2.1

a.com IN NS ns.a.com(1.5)

(1.6)

(1.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), (1.8)

A?www.a.COM

(2.1) , (2.2), (2.3), (2.4)

ns.com IN A 1.2.3.4(1.7)

RRSIG (S
skCOM

(ns.COM))(1.8)

Fig. 2. A (simplified) sample process of constructing a chain of
trust from the root zone to the public verification key vkA.COM of
the target zone a.com; the name servers are depicted with their
corresponding zone files, that (for simplicity) contain only the RRs
relevant to DNSSEC. For ease of presentation in this illustration, the
RRs maintained by the name servers are enumerated, and we specify
the exchanged RRs by indicating the corresponding numbers above
the arrows.

Authenticated Denial of Existence: When a DNS request
specifies a non-existing record, the name server responds with
a non-existing domain (NX-Domain) response. To authenticate
such responses, DNSSEC does not send a signature over
the non-existing domain name, since this required real-time
signing, contradicting DNSSEC’s strategy of only signing off-
line for better security and performance (see above).

Instead of signing each non-existing response, DNSSEC
includes alternative authentication mechanisms to allow a
name server to prove non-existence of a resource: the NSEC
and NSEC3 record types.

NSEC, [7], allows to (cryptographically) prove that a re-
source record set does not exist, by spanning a gap between
two domain names in a zone. NSEC specifies what type of
records exist at a name where it resides and points to the
next domain name (in canonical order) in the zone. One
obvious drawback of NSEC is that it allows discovery of all
subdomains, since each NSEC record points at the next domain
name.

To fix the subdomain exposure risk, an alternative was
proposed: NSEC3, [17] is a chain of hashed names that

should prevent enumerability. Subsequently, in 2009 Bernstein
showed that NSEC3 can also allow discovery of subdomain
names.

NSEC3 supports supports opt-out option, where only secure
delegations have NSEC3 record (i.e., delegations to subdo-
mains that are signed). Opt-out NSEC3 allows better perfor-
mance for large domains with many unsigned subdomains,
and hence is widely used and often recommended [18]. Opt-
out allows shorter NSEC3 chains with fewer signatures and
smaller signed zone files.

III. DEPLOYMENT AND INTEROPERABILITY

In this section we review the status of DNSSEC deployment
and validation at resolvers and name servers, discuss deploy-
ment challenges and solutions.

A. Interoperability Problems

Intermediate devices, on the path between the resolver and
the name server, may prevent DNSSEC service, by blocking
EDNS queries/responses, blocking long and/or fragmented re-
sponses, or removing DNSSEC records from DNS responses;
see [19], [20], [21]. These interoperability problems are due
to differences between DNSSEC enabled DNS responses and
‘legacy’ DNS responses, mainly, support for EDNS, special
RR types, and long responses. For instance, consider Figure 3,
which shows the sizes of the responses of sub-domains of
gov, one of the top level domains with highest adoption of
DNSSEC (by sub-domains). The responses from more than a
half of the domains in gov are of size larger than 1500 bytes,
when queried for an ANY RR, and a significant fraction also
have A RR responses of length over 1500 bytes. The vast
majority of these long responses are due to the use of DNSSEC
by gov and (many of) its sub-domains.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
o
m

a
in

s
 (

%
)

Response Size (bytes)

Legend
any, no dnssec
nxd
dnskey
any

Fig. 3. Length of responses for ANY and A RR queries of GOV domains.
Domains taken from [22]

Why are DNSSEC responses so much longer, and what are
the other differences? When sending a DNS request the client
adds an EDNS OPT pseudo RR to the query, and sets the DO
bit, indicating support of DNSSEC; the client also indicates
the maximal response size in the advertised EDNS buffer size.
The response from DNSSEC-compliant name server, receiving
such request for DNSSEC-enabled domain, responds with a lo

Security enabled name server, receiving such a request, add to
the response DNSSEC RRs for signatures, keys, etc..

A DNS response containing DNSSEC RRs often exceeds
the 512B maximal DNS size specified in RFC1035 [23].
Some firewalls drop such ‘non-conforming’ DNS packets.
Furthermore, such responses may exceed the maximal trans-
mission unit (MTU) on the path, and may thus get dropped or
fragmented. Fragments are blocked by some firewalls, mainly
for security reasons. In addition, some DNS proxies may not
support EDNS and/or not support (and drop) the DNSSEC
record types [21]. As a result of all this, DNS responses may
not reach the client.

To avoid interoperability problems due to long responses,
domains may use shorter public keys and signatures; this is
also recommended, e.g., by NIST [24]. Indeed, the use of 1024
bit RSA keys seem common, and one motivation is probably to
reduce response size. Unfortunately, 1024 bit RSA is already
considered not secure enough, e.g., by NIST [25]. Notice that
sufficient security with short keys is possible with appropri-
ate cryptosystems, e.g., elliptic curve DSA, standardized for
DNSSEC [26]; however, this algorithm is implemented only
by a negligible number of domains (0.002%) [27].

In an experimental study of interoperability issues by
Nominet [19], only 4 out of 24 tested units (broadband
router/firewalls) could support DNS responses larger than 512
byte. Establishing a TCP connection would solve the problem
of the size of DNS responses; however, the client will never
attempt to connect via TCP if it does not receive a (truncated)
response from a DNS server, e.g., say if it were blocked due to
fragmentation. Furthermore, [19] found that support for TCP
in router/firewall DNS proxies (which they tested) is almost
non-existent, i.e., just one unit out of 24 could proxy TCP.

Even when the length of the responses is acceptable, there
may be problems due to the DNSSEC resource records, e.g.,
the EDNS OPT pseudo ‘extension RR’ [28] used to carry
the signaling information, or the signatures carried in RRSIG
RRs. According to [19], 6 out of 22 devices did not handle
correctly DNS queries containing the EDNS RR. The result
was that either plain DNS RRs are returned (without DNSSEC
records) without indication of error, or the query times-out.

Due to concerns about interoperability issues, many re-
solvers that support DNSSEC, allow unvalidated responses,
thereby allowing downgrade attack [8], where an attacker
sends fake responses that appear similar to responses passing
through non-interoperable devices. For instance, consider an
attacker that poisons the NS and glue A RRs, and provides a
forged delegation NS RR to redirect the clients to a host of
attacker’s choosing; recall that the NS and A RRs are defined
to be the child zone’s authoritative data and they are kept
unsigned in the parent zone. Since the attacker does not have
the secret signing key of the child, it cannot forge signatures
on the DNS data, but it does not need to, when the resolver
will revert to plain DNS without DNSSEC protection.

B. DNSSEC Deployment

Most DNS resolvers do not support DNSSEC validation,
and many domains are not signed with DNSSEC. The fact that
there is currently little support of DNSSEC further reduces a
motivation for early adopters, since protection of DNSSEC
only ‘kicks in’ when all the entities, involved in a resolution
of some domain, support DNSSEC.

1) DNSSEC Validation at Resolvers: A significant fraction
of the resolvers currently signal DNSSEC support; however,
less than 1% actually enforce DNSSEC validation [27], [12],
[29]. Obviously, for such resolvers, DNSSEC does not pro-
vide added security. This approach apparently assumes that
permissive use of DNSSEC can provide evidence on whether
the network can deploy DNSSEC fully without problems or
not, while not harming their security; however, in fact, such
resolvers are open to poisoning, and may even facilitate the
attack of [4].

2) DNSSEC Deployment at Zones: To make DNSSEC
validation effective in resolvers the domains have to adopt
DNSSEC. However, most do not. DNSSEC adoption by top
level domains is not bad; the root and the largest domains
such as com, net and org support DNSSEC, and we found that
currently 30% of the TLDs use DNSSEC, apparently mostly
the larger.

DNSSEC adoption is significantly worse for (important)
second-level domains. We found that currently only 2% of
the top 300,000 domains (according to Alexa [30]) support
DNSSEC. Even worse results were found by NIST [31],
who checked DNSSEC adoption in 1070 large industrial US
domains; out of them, they found only 14 (1.4%) have adopted
DNSSEC. Worse: as we show in Table I, only three out of
these 14 domains are really secure; see details in Section IV-A.

Islands of security play an important role in the lack of
deployment of DNSSEC. An island of security is a signed
zone that does not have a DS RR at its parent, e.g., since
the parent is not signed. Thus the resolver cannot construct
an authentication chain leading down from the trust anchor to
the target DNSSEC-enabled zone; as a result, resolvers cannot
authenticate the DNSKEY RR of the child zone.

Currently, there are many islands of security; according to
[32], islands of security constitute 76.6% of the total number
of DNSSEC enabled zones on the Internet.

To facilitate distribution of trust anchors of islands of
security, Trusted Anchor Repositories (TARs) were proposed,
e.g., [33]. The TAR maintains the public verification keys
of islands of security. However, the TARs are not widely
supported since the zones are required to add their public keys
to TARs and resolvers should be configured to query the TAR
to obtain the key when needed.

IV. VULNERABLE DNSSEC CONFIGURATIONS

In this section we review two issues which introduce vulner-
abilities in the protection offered by DNSSEC: one is related
to inter-domain dependency of DNS and the other is related
to non-deniability of existence of DNSSEC.

A. Pitfalls of Inter-domain Dependencies

Inter-domain dependencies are common in DNS, and occur
when a domain contains resource records in other domains.
The dependencies stem from different motivations and goals,
and are expressed, most notably, via NS, MX and CNAME
records. As we next explain, such inter-domain dependen-
cies may limit the effectiveness of the protection offered by
DNSSEC against cache poisoning, especially during incremen-
tal deployment, when the DNSSEC is only partially supported
by domains on the Internet. We conducted a study (Table I)
of DNSSEC configuration by Industry unique US companies
that adopted DNSSEC, according to survey of 1070 domains
by NIST [31]; we found that the DNSSEC configuration, that
most of them support, allows DNS cache poisoning attacks
of addresses of web servers (A), mail servers (MX) or name
servers (NS). We next discuss the vulnerabilities pertaining to
dependencies via different records, and which exploits they
allow.

1) Dependency via NS records: To find the name server
of a subdomain, e.g., foo.bar, the resolver makes a query to
ns.bar, the name server of the parent domain (bar), which
responds with a referral: the name server ns1.foo.bar of the
name server(s) of foo.bar. It is possible, that a name server
of foo.bar will be in a different domain, e.g., fie.baz. Even
if both foo.bar and its parent domain bar use DNSSEC, the
referral sent by ns.bar is not signed, since in DNSSEC, a
name server only provides signatures for its own domain.

Bernstein observed that this implies, that a MitM attacker
can spoof such referral responses [34]. However, [10] observed
that this cannot allow DNS poisoning, since that validating
resolvers should not follow delegation responses without a
signed DS record (when a domain is signed) from the parent
zone. The intuition is that if the name server is in the target
zone then the resolver expects to receive signed NS and A
records from the name server of the child zone. If it does not,
it should not trust the NS and A received in the referral from
the parent zone.

However, this argument is not relevant when the name
server (of a DNSSEC protected domain), is in a domain NOT
protected by DNSSEC. This is the case, for example, for six
(!) of the 14 DNSSEC-adopting domains in Table I. In such
cases, a MitM attacker - and in some cases, often due to the
use of (non-validated) DNSSEC - may be able to send wrong
mappings for the name server (and then, trivially, for specific
domains too).

Furthermore, [35] noted that this mechanism also has secu-
rity implications. For example, when domain foo.bar specifies
a name server in another domain, say ns.foe.baz, then the
mappings of foo.bar can be controlled (and altered!) not
only by the administrators of bar and foo.bar, but also by
the administrators of baz, foe.baz and ns.foe.baz; we say
that domain foo.bar trusts domain foe.baz. Furthermore,
supposed domain foe.baz has name servers in another domain,
say ns1.fee, i.e., foe.baz trusts domain fee. Then, domain
foo.bar also depend on (i.e., trusts) domain fee; [35] call this

the DNS transitive trust property, and showed that it can be
extensive - a typical name depends on 46 servers on average
- and has security implications: compromise of a single name
server on the resolution chain can lead to domain hijacks.

Not signing the NS or A records in referral responses does
not allow spoofing responses from the authentic name servers
(that serve signed records). However, spoofing the name server
records results in a denial-of-service via DNS cache poisoning:
the resolver caches the spoofed records. As a result, even
when a zone appears to be properly signed, and a resolver
can establish a chain of trust to that zone, it may still be
vulnerable.

For example, consider the name servers used by paypal.com,
which are not in the same domain as paypal; see Figure 4.
The parent zones serve NSEC3 for those domains, indicating
that they are not signed2. Therefore, although the resolver can
establish a chain-of-trust to paypal.com it is still susceptible
to DNS cache poisoning attacks due to the transitive trust
property of DNS.

Fig. 4. Impact of transitive trust on the effectiveness of DNSSEC: paypal.com
supports DNSSEC, however, its name servers are in domains outside of
paypal.com. The parent zones of the name servers serve NSEC3 records,
which indicates that they do not support DNSSEC; the illustration is a screen
capture of dig.

Fig. 5. Impact of transitive trust on the effectiveness of DNSSEC:
paypal.com supports DNSSEC, however, the web site www.paypal.com is
mapped (via a CNAME chain) to a web site hosted in an unsigned domain
e6166.b.akamaiedge.net; the illustration is based on a collection of response
packets from wireshark.

2) Dependency via CNAME to Unsigned Domain: Another
type of dependency is mapping a resource record, via a
CNAME (alias), to name in a different domain; CNAME is
typically used to map services, e.g., ftp or web servers, to
different names. This is useful for, e.g., web hosting, content
delivery networks (CDNs).

Consider again paypal.com. This zone is signed and serves
properly signed keys enabling the resolvers to validate the
DNS records. However, in order to reach the machine hosting
www.paypal.com the client has to traverse a lengthy CNAME
chain; see Figure 5 that presents a collection of records taken
from responses captured by wireshark. The first CNAME
delegation is signed, while the subsequent four others, are not.

2Note that these zones (in Figure 4) use a DLV to allow resolvers to
retrieve their signatures, however, this requires explicit configuration and is
not supported by most resolvers.

As a result, although the domain www.paypal.com is signed,
the actual IP address 23.44.242.234 of the web server hosting
the web page of paypal is not signed. This enables MitM
attackers to replace the mapping to a different IP address,
which would be accepted and cache by validating resolvers.

As a result, clients accessing the web site www.paypal.com,
would be redirected to attacker’s controlled host, without any
failure from DNSSEC validation; see Table I for a list of
domains, among the domains that deployed DNSSEC [31],
that are vulnerable to this type of attack.

3) Dependency via MX to Unsigned Domain: A depen-
dency on an unsigned domain can be via an MX record,
whereby a mail server is mapped to a different name. This
allows cache poisoning the mail server. Notice that the impli-
cations of mail server hijacking are severe, and can be used for
a range of attacks, including for credentials theft by exploiting
password recovery via email as proposed by Kaminsky [1].

B. Pitfalls of Non-Deniability of Existence
Bernstein, [36], pointed out that NSEC is exposed to zone

enumeration via zone walking the NSEC chain. To fix the zone
walking an alternative was proposed: NSEC3, [17], whihc is
a chain of hashed names that should prevent enumerability.
Subsequently, Bernstein, [34], showed that NSEC3 also leaks
private data allowing zone walking.

Recently, Bau and Mitchell [10] presented attacks allowing
subdomain injection for domains supporting NSEC3 with opt-
out. Opt-out DNSSEC requires only secure delegations to
have NSEC3 record (i.e., delegations to subdomains that are
signed).

V. ATTACKS ON OVERSIZED DNSSEC RESPONSES

As discussed in Section III and illustrated in Figure 3, the
use of DNSSEC results in long DNS responses, mainly due
to the inclusion of (multiple) long records containing crypto-
graphic keys and/or signatures. In the following subsections,
we discuss two potential abuses of such ‘oversized’, long re-
sponses: their abuse for Denial-of-Service (DoS) amplification
attacks, and their abuse to manipulate responses, in particular,
for poisoning.

The problems of oversized DNSSEC responses are mainly
due to the fact that DNS responses are normally sent over
UDP. Some servers, most notably those serving large top-level
domains com and net, send long responses over TCP rather
than over UDP. Since TCP connection begins with a three-way
handshake, attackers cannot complete the connection using
spoofed source IP address (recent TCP injection attacks, such
as [37], are inapplicable). Notice, however, that the use of
TCP increases overhead on both network and server, for all
responses - which can be significant. Furthermore, if not
properly prevented, the use of TCP may even allow SYN-
clogging attack against the server, see, e.g., [38].

In subsection V-C we argue that part of the problem is due
to the design of DNSSEC, which results in potential unnec-
essary transmission of unrequired keys and signatures, esp. if
domains decide to support multiple keys and algorithms (as is
highly desirable), and sketch potential (long-term) solutions.

A. Reflection Amplification Attacks

When a domain supports DNSSEC, it returns, in addition
to traditional DNS records, also DNSSEC records, for crypto-
graphic keys and signatures. As a result, the size of DNSSEC-
enabled DNS responses significantly exceeds the size of tradi-
tional DNS responses; see Figure 3. Such responses are often
abused by attackers to launch amplification DoS attacks to
clog victim networks and hosts, see, e.g., [39].

In a DNS amplification DoS attack, the attacker sends to
one or more DNS servers many requests, with spoofed (fake)
source IP address. Name servers respond to such requests by
sending (much longer) responses to the IP address that orig-
inated the DNS request. The amplification factor is the ratio
between the number of response bytes sent by the amplifying
(benign) DNS server, to the number of request bytes sent by
hosts controlled by the attacker, in the corresponding requests.
With DNSSEC, the ratio can be as high as a hundred. Indeed,
while DNSSEC deployment is still very limited, it has already
been abused in the largest DoS attacks in the recent years,
with reported bandwidths of 100 Gbps (2010), 60 Gbps (2011,
2012) [40] and 300 Gbps [41].

Sometimes, the victim of the DNS amplification attack is
the amplifying DNS server itself, which wastes computation
and network resources on sending the (amplified) response
packets; however, more often, the victim is a network or host,
which receives the responses. The DNS servers use various
mechanisms, to prevent their abuse as vectors in amplification
attacks, in particular, to avoid wasting their own resources
due to such attacks. In fact, the concern about amplification
attacks, may be one of the considerations against adoption of
DNSSEC by name servers. Other defenses for name servers
against their abuse as amplifiers include:

• Imposing a maximal quota of queries from the same
source IP address. This defense may help against attacks
against a remote host or network, using the same (or
related) IP addresses, but not against attacks on the
amplifying server itself, where the source IP address is
not important. Furthermore, this defense fails if there
are many spoofed IP addresses, connected via the same
victim network, as in the Coremelt attack [42]. Finally,
DNS request quotas are prone to false-positives, i.e.,
identification of a benign sending resolver as an attacker.

• Challenge-response mechanisms, mostly based on redi-
rection of the request to another domain name, where the
new domain name includes a random challenge (‘nonce’)
used to ensure that the request did not contain a spoofed
IP address. However, existing designs, e.g., [43], [44], do
not support DNSSEC validation.

• As mentioned above, some servers, most notably those
serving the large top-level domains com and net, defend
against this threat by sending long responses over TCP
rather than over UDP.

The above defenses are relevant only when many requests
are sent to the same DNS server, e.g., against attacks of that
server. They are irrelevant, when the goal of the attacker is

Domain Name Server Mail Server Web Server Vulnerability
datamtn.com X X X secure

sprint.net X X X secure
debian.org X X X secure

comcast.net X X CNAME to unsigned domain web site hijacking
comcast.com X X CNAME to unsigned domain web site hijacking
infoblox.com X X CNAME to unsigned domain web site hijacking
paypal.com island-of-security X CNAME to unsigned domain name server hijacking
nelnet.net NS in unsigned domain X CNAME to unsigned domain name server hijacking
ripe.net NS in unsigned domain X X name server hijacking

fedoraproject.org X MX in unsigned domain X mail server hijacking
iana.org NS in unsigned domain X X name server hijacking
icann.org NS in unsigned domain X X name server hijacking
ietf.org NS in unsigned domain X X name server hijacking
isc.org NS in unsigned domain X X name server hijacking

TABLE I
VULNERABLE DNSSEC CONFIGURATIONS AMONG US COMPANIES WHOSE DOMAINS ARE REPORTED, IN [31], AS SECURE DUE TO ADOPTION OF DNSSEC.

to clog some victim network with the response packets, and
the attacker distributes the requests between many different
servers. As awareness to DNSSEC increases and its adoption
speeds up, such amplification reflection attacks may become
feasible, by sending requests to name servers of many different
domains.

However, even currently, this attack is applicable, by send-
ing requests to open DNS resolvers; latest measurements found
over 25 millions to be exploitable for amplification attacks
[45], [46]. Indeed, DNS amplification using open resolvers
facilitated most of the large DoS attacks in recent years
[40], [41]. Considering that most of these open resolvers
are not well maintained, it seems futile to hope that they
will implement anti-amplification defenses; and considering
their vast numbers, blacklisting and filtering traffic from them
by routers, may not be feasible. However, deployment of
DNSSEC is not really necessary for this attack, since attackers
could use other long DNS responses, as well as establish their
own DNS domains with long responses.

B. Off-path attacks on fragmented responses

DNSSEC responses are often long enough, that they can
exceed the MTU of networks in the path from the name
server to the resolver, and hence, get fragmented by the
name server or by a router along the path. The fragments are
forwarded, as regular IP packets, to the destination (resolver),
where fragments are kept in the defragmentation cache until
all fragments of a packet are received, and the packet is
reconstructed.

Ironically, as we recently showed [4], an attacker can send
spoofed fragments, tricking the defragmentation mechanism
into reassembling them together with the fragments sent by the
legitimate source (name server). Conceptually, this technique
is simple: the spoofed fragments just need to have the same
source and destination IP addresses and the same 16-bit IP-ID
(IP packet identifier), as the ‘real’ fragments. The challenge is
to find the IP-ID, and to send spoofed fragments. In [4], we
show that this requires only off-path capabilities, i.e., attacker
does not need eavesdropping (or MitM) capabilities.

By sending random spoofed fragments, the attacker can
easily cause corruption of the original packets; this can be used
directly as a DoS attack, disrupting resolver to name server
communication, or to cause the resolver to select other name
servers, possibly more convenient to the attacker, as in [2].

Furthermore, due to the currently-common case of permis-
sive validation, the off-path attacker will even be able to
perform cache poisoning. In the case of permissive DNSSEC
validation, DNS poisoning only requires a valid DNS response,
with the correct port, DNS-identifier and query; luckily for
the attacker, all these are contained in the first fragment. The
attacker can send a spoofed second fragment, combining it
with the legitimate first fragment, to successfully perform DNS
poisoning; see [4] for details.

C. Unnecessary records in DNSSEC responses

DNSSEC responses are long, since they contain keys and
signatures. Currently, 99.9% of the DNSSEC keys are of the
RSA signature algorithm, using 1024 or 2048 bit keys and
signatures [27]. This is unfortunate; it may have been better to
use algorithms allowing shorter signatures and keys, reducing
the length of DNSSEC responses and the associated abuses.
In particular, it is estimated that comparable security can be
achieved with much shorter keys and signatures, e.g., only 256
bit long, using elliptic curves cryptography; appropriate algo-
rithms are standardised for DNSSEC, e.g., RFC 6605, [47].

However, currently merely 23 elliptic curve DNSSEC keys
are in use (0.002%) [27]. This does not sufficiently motivate
resolvers to support elliptic curves; hence, realistically, do-
mains cannot use only elliptic curve signatures, since that is
likely to be incompatible with most resolvers. Of course, do-
mains could use both elliptic curve and RSA signatures. How-
ever, unfortunately, DNSSEC does not contain a ‘ciphersuite
negotiation’ mechanism as in most other IETF cryptographic
standards, e.g., TLS [48]. Hence, when a domain uses multiple
algorithms (or keys), it will send all keys and all signatures to
the client - increasing, rather then decreasing, the overhead.

The same problem may arise, when domains consider using
longer RSA keys or a more secure algorithm, for improved
security, or to change keys periodically. Domain are likely to

continue to use the old keys and algorithms as well for a long
time or forever, due to the concern of interoperability with
resolvers. All this implies obstacles to deployment of more ap-
propriate cryptography, resulting in long DNSSEC responses
and weak security. E.g., according to the experimental study
carried out by SecSpider project, RSA1024-SHA-1 is the most
supported option [27], although, 1024 byte RSA keys may not
be sufficiently secure.

We recommend that the DNSSEC community consider
developing appropriate, efficient mechanisms for cipher-suite
negotiation, allowing domains to use multiple keys and al-
gorithms while sending only these needed by the resolver.
This may extend a related proposal, for signaling DNSSEC
algorithm support [49].

VI. CONCLUSIONS

The DNS is a critical infrastructure component of the Inter-
net, yet, the currently many DNS resolvers are vulnerable, in
particular, to cache poisoning attacks. The DNSSEC standards
[6], [7], [8], defined and evolved over more than a decade,
extend DNS with cryptographic signatures, to provide security
against Man-in-the-Middle attackers. DNSSEC deployment
has progressed very slowly over the years, but gained some
momentum recently with the signing of root and top level
domains.

In this paper, we discussed several security and deployment
problems with the current DNSSEC design. Several of these
stem from the same problem essentially: DNSSEC requires
transmission of non-standard DNS packets, in particular, sig-
nificantly longer than standard DNS packets (limited to 512
bytes). The others are related to inter-domain dependencies
and DNSSEC configurations. We outline the problems along
with future directions to alleviate them.

REFERENCES

[1] D. Kaminsky, “It’s the End of the Cache As We
Know It,” in Black Hat conference, August 2008, http:
//www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf.

[2] A. Herzberg and H. Shulman, “Security of patched DNS,” in
Computer Security - ESORICS 2012 - 17th European Symposium
on Research in Computer Security, Pisa,conf/esorics/HerzbergS12
Italy, September 10-12, 2012. Proceedings, ser. Lecture Notes in
Computer Science, S. Foresti, M. Yung, and F. Martinelli, Eds.,
vol. 7459. Springer, 2012, pp. 271–288. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33167-1

[3] ——, “Antidotes for DNS Poisoning by Off-Path Adversaries,” in ARES.
IEEE Computer Society, 2012, pp. 262–267.

[4] ——, “Fragmentation Considered Poisonous, or: One-Domain-to-Rule-
Them-All.ORG, technical report 13-03,” http://u.cs.biu.ac.il/∼herzbea/
security/13-03-frag.pdf, March 2013.

[5] A. Hubert and R. van Mook, “Measures for Making DNS More
Resilient against Forged Answers,” RFC 5452 (Proposed Standard),
Internet Engineering Task Force, Jan. 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5452.txt

[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” RFC 4033 (Proposed
Standard), Internet Engineering Task Force, Mar. 2005, updated by RFCs
6014, 6840. [Online]. Available: http://www.ietf.org/rfc/rfc4033.txt

[7] ——, “Resource Records for the DNS Security Extensions,” RFC
4034 (Proposed Standard), Internet Engineering Task Force, Mar.
2005, updated by RFCs 4470, 6014, 6840, 6944. [Online]. Available:
http://www.ietf.org/rfc/rfc4034.txt

[8] ——, “Protocol Modifications for the DNS Security Extensions,”
RFC 4035 (Proposed Standard), Internet Engineering Task Force,
Mar. 2005, updated by RFCs 4470, 6014, 6840. [Online]. Available:
http://www.ietf.org/rfc/rfc4035.txt

[9] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee, “Increased
DNS forgery resistance through 0x20-bit encoding: security via
leet queries,” in ACM Conference on Computer and Communications
Security, P. Ning, P. F. Syverson, and S. Jha, Eds. ACM, 2008, pp. 211–
222. [Online]. Available: http://doi.acm.org/10.1145/1455770.1455798

[10] J. Bau and J. C. Mitchell, “A security evaluation of DNSSEC
with NSEC3,” in Network and Distributed Systems Security (NDSS)
Symposium. The Internet Society, 2010. [Online]. Available: http:
//www.isoc.org/isoc/conferences/ndss/10/

[11] Alexa Web Information Company, “Top Sites,” http://www.alexa.com/
topsites, 2012.

[12] O. Gudmundsson and S. D. Crocker, “Observing DNSSEC Validation
in the Wild,” in SATIN, March 2011.

[13] D. York, “Challenges and opportunities in deploying dnssec,” in Secur-
ing and Trusting Internet Names (SATIN), March 2012.

[14] C. Partridge and G. Trewitt, “HEMS variable definitions,” RFC 1024,
Internet Engineering Task Force, Oct. 1987. [Online]. Available:
http://www.ietf.org/rfc/rfc1024.txt

[15] J. Postel, “TCP and IP bake off,” RFC 1025, Internet Engineering Task
Force, Sep. 1987. [Online]. Available: http://www.ietf.org/rfc/rfc1025.txt

[16] P. Vixie, “Extension Mechanisms for DNS (EDNS0),” RFC 2671
(Proposed Standard), Internet Engineering Task Force, Aug. 1999,
obsoleted by RFC 6891. [Online]. Available: http://www.ietf.org/rfc/
rfc2671.txt

[17] B. Laurie, G. Sisson, R. Arends, and D. Blacka, “DNS Security
(DNSSEC) Hashed Authenticated Denial of Existence,” RFC 5155
(Proposed Standard), Internet Engineering Task Force, Mar. 2008,
updated by RFCs 6840, 6944. [Online]. Available: http://www.ietf.org/
rfc/rfc5155.txt

[18] M. Larson, “DNSSEC Overview NANOG 51 Tutorial,” NANOG 51
Tutorial.

[19] R. Bellis and L. Phifer, “DNSSEC Impact on Broadband Routers
and Firewalls,” Unpublished technical report, available at http://dnssec-
deployment.com, September 2008.

[20] E. Osterweil, M. Ryan, D. Massey, and L. Zhang, “Quantifying the
Operational Status of the DNSSEC Deployment,” in Proceedings of the
8th ACM SIGCOMM conference on Internet measurement. ACM, 2008,
pp. 231–242.

[21] N. Weaver, C. Kreibich, B. Nechaev, and V. Paxson, “Implications of
netalyzrs dns measurements,” in Proceedings of the First Workshop
on Securing and Trusting Internet Names (SATIN), Teddington, United
Kingdom, 2011.

[22] Federal Executive Branch Internet Domains, “Listing
of Federal Agency Internet Domains,” http://explore.
data.gov/Federal-Government-Finances-and-Employment/
Federal-Executive-Branch-Internet-Domains/k9h8-e98h, February
2012.

[23] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035 (INTERNET STANDARD), Internet Engineering Task
Force, Nov. 1987, updated by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425,
3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604. [Online]. Available:
http://www.ietf.org/rfc/rfc1035.txt

[24] E. Barker, W. Burr, A. Jones, T. Polk, S. Rose, Q. Dang, and M. Smid,
“Recommendations for key management, part 3: Application-specific
key management guidance, section 8: Dnssec,” NIST, Tech. Rep. NIST
Special Publication 800-57, Revision 3, December 2009.

[25] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommenda-
tions for key management, part 1: General, table 4,” NIST, Tech. Rep.
NIST Special Publication 800-57, March 2007.

[26] P. Hoffman and W. Wijngaards, “Elliptic Curve Digital Signature
Algorithm (DSA) for DNSSEC,” RFC 6605 (Proposed Standard),
Internet Engineering Task Force, Apr. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6605.txt

[27] E. Osterweil, “SecSpider deployment stats,”
http://secspider.cs.ucla.edu/stats.html, accessed May 2013.

[28] D. Conrad, “Indicating Resolver Support of DNSSEC,” RFC
3225 (Proposed Standard), Internet Engineering Task Force, Dec.
2001, updated by RFCs 4033, 4034, 4035. [Online]. Available:
http://www.ietf.org/rfc/rfc3225.txt

[29] S. Castro, M. Zhang, W. John, D. Wessels, and K. Claffy, “Understand-
ing and preparing for dns evolution,” Traffic Monitoring and Analysis,
pp. 1–16, 2010.

[30] Alexa, “The web information company,” http://www.alexa.com/.
[31] National Institute of Standards and A. N. T. D. Technology, “Estimating

Industry IPv6 and DNSSEC External Service Deployment Status,”
http://fedv6-deployment.antd.nist.gov/cgi-bin/generate-com.

[32] H. Yang, E. Osterweil, D. Massey, S. Lu, and L. Zhang, “Deploying
Cryptography in Internet-Scale Systems: A Case Study on DNSSEC,”
Dependable and Secure Computing, IEEE Transactions on, no. 99, pp.
1–1.

[33] S. Weiler, “DNSSEC Lookaside Validation (DLV),” RFC 5074
(Informational), Internet Engineering Task Force, Nov. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5074.txt

[34] D. J. Bernstein, “Breaking DNSSEC,” 3rd USENIX Workshop on
Offensive Technologies, August 2009.

[35] V. Ramasubramanian and E. Sirer, “Perils of transitive trust in the
domain name system,” in Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement. USENIX Association, 2005, pp.
35–35.

[36] D. J. Bernstein, “DNS Forgery,” Internet publication at
http://cr.yp.to/djbdns/forgery.html, November 2002.

[37] Y. Gilad and A. Herzberg, “When Tolerance Becomes Weakness: The
Case of Injection-Friendly Browsers,” in Proceedings of the Interna-
tional World Wide Web Conference, May 2013.

[38] J. Lemon, “Resisting SYN Flood DoS Attacks with a SYN
Cache,” in BSDCon, S. J. Leffler, Ed. USENIX, 2002, pp.
89–97. [Online]. Available: http://www.usenix.org/publications/library/
proceedings/bsdcon02/lemon.html

[39] R. Vaughn and G. Evron, “Dns amplification attacks,” Go online to
http://www. isotf. org/news/DNS-Amplification-Attacks. pdf, 2006.

[40] Arbor Networks. Worldwide infrastructure security reports series (2005-
2011). http://www.arbornetworks.com/report.

[41] M. Prince, “The DDoS That Almost Broke the InternetThe DDoS That
Almost Broke the Internet,” April 2013.

[42] A. Studer and A. Perrig, “The Coremelt Attack,” in ESORICS, ser.
Lecture Notes in Computer Science, M. Backes and P. Ning, Eds., vol.
5789. Springer, 2009, pp. 37–52.

[43] F. Guo, J. Chen, and T. cker Chiueh, “Spoof detection for preventing
dos attacks against dns servers,” in ICDCS. IEEE Computer Society,
2006, p. 37.

[44] R. Tzakikario, D. Touitou, G. Pazi et al., “Dns anti-spoofing using udp,”
Nov. 2009, uS Patent 7,620,733.

[45] “Open DNS resolver project,” last retrieved May 2013. [Online].
Available: http://openresolverproject.org/

[46] D. Dagon, N. Provos, C. P. Lee, and W. Lee, “Corrupted DNS
resolution paths: The rise of a malicious resolution authority,” in NDSS.
The Internet Society, 2008. [Online]. Available: http://www.isoc.org/
isoc/conferences/ndss/08/papers/02 corrupted dns resolution.pdf

[47] P. Hoffman, “Elliptic curve digital signature algorithm (dsa) for dnssec,”
2012.

[48] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246
(Proposed Standard), Internet Engineering Task Force, Jan. 1999,
obsoleted by RFC 4346, updated by RFCs 3546, 5746, 6176. [Online].
Available: http://www.ietf.org/rfc/rfc2246.txt

[49] S. Crocker and S. Rose, “Signaling cryptographic algorithm
understanding in dnssec,” May 2013. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-dnsext-dnssec-algo-signal-10

