
How to Construct an Ideal Cipher
from a Small Set of Public Permutations

Rodolphe Lampe1 and Yannick Seurin2

1 University of Versailles, France
2 ANSSI, Paris, France

rodolphe.lampe@gmail.com,yannick.seurin@m4x.org

April 20, 2013

Abstract. We show how to construct an ideal cipher with n-bit blocks and n-bit keys (i.e.
a set of 2n public n-bit permutations) from a small constant number of n-bit random public
permutations. The construction that we consider is the single-key iterated Even-Mansour cipher,
which encrypts a plaintext x ∈ {0, 1}n under a key k ∈ {0, 1}n by alternatively xoring the key
k and applying independent random public n-bit permutations P1, . . . , Pr (this construction is
also named a key-alternating cipher). We analyze this construction in the plain indifferentiability
framework of Maurer, Renner, and Holenstein (TCC 2004), and show that twelve rounds are
sufficient to achieve indifferentiability from an ideal cipher. We also show that four rounds are
necessary by exhibiting attacks for three rounds or less.

Keywords: block cipher, ideal cipher, iterated Even-Mansour cipher, key-alternating cipher,
indifferentiability.

Table of Contents

1 Introduction . 3
1.1 Block Ciphers . 3
1.2 The Ideal Cipher Model . 3
1.3 Indifferentiability . 5
1.4 Our Contribution . 6
1.5 Our Techniques . 7
1.6 Related Work . 8
1.7 Open Problems . 9
1.8 Organization . 10

2 Preliminaries . 10
2.1 Notation and Definitions . 10
2.2 Indifferentiability . 10
2.3 The Iterated Even-Mansour Cipher . 11

3 Attacks . 11
3.1 Attack on Independent Keys . 12
3.2 Attack on Three Rounds . 12

4 Indifferentiability for Twelve Rounds . 14
4.1 Informal Description of the Simulator . 14
4.2 Formal Description of the Simulator . 16
4.3 Intermediate Systems . 20

4.3.1 Second System . 20
4.3.2 Third System . 22

4.4 Stages of the Indifferentiability Proof . 23
4.5 Complexity of the Simulator in the Second System . 23
4.6 From the First to the Second System . 25
4.7 From the Second to the Third System . 26

4.7.1 Partial Chains . 26
4.7.2 Bad Events in the Second System . 28
4.7.3 Properties of Good Executions . 29
4.7.4 Randomness Mapping . 37

4.8 From the Third to the Fourth System . 42
A Removing the “Set Uniform” Rounds . 46

1 Introduction

1.1 Block Ciphers

Block ciphers are one of the most important classes of primitives in cryptography. They
are mainly used to provide confidentiality and authenticity to communication channels or
local data storage means, but also to construct hash functions and in other more advanced
cryptographic tasks. Syntactically, a block cipher E with message space {0, 1}n and key space
{0, 1}m is a mapping from {0, 1}m × {0, 1}n to {0, 1}n such that for each key k ∈ {0, 1}m,
E(k, ·) is an (efficiently invertible) permutation. Block cipher designs (virtually all of which
rely on the iteration of some key-dependent round function) can be roughly split into two
families (with some rare exceptions such as IDEA):

1) Feistel networks [Fei73] and their generalizations, where the round function is given by
(x, y) 7→ (y, x ⊕ F (ki, y)), where x and y are the left and right n/2 bits of the state, and
ki is the round key; prominent examples include DES, Blowfish, KASUMI, and Camellia for
“classical” Feistel networks, and CAST-256 and MARS for generalized Feistel networks;

2) substitution-permutation networks (SPNs), where one round generally consists of the com-
position of a round-key addition, a non-linear mixing layer, and a linear diffusion layer;
notable examples include AES, SAFER, CRYPTON, SERPENT, PRESENT, and LED.

At an even higher design level, SPNs can be described (by collapsing the non-linear mixing
layer and the linear diffusion layer at i-th round into a single n-bit permutation Pi) as suc-
cessive applications of round-key additions and permutations Pi. Such a structure was named
a key-alternating cipher by the designers of AES [DR01, DR02].

The traditional security notion for a block cipher is pseudorandomness, i.e. indistinguisha-
bility from a random permutation [LR86]: namely, no distinguisher with reasonable resources
and having black-box access to a permutation (and also to its inverse in a more stringent
variant of the security notion) should be able to distinguish whether it is interacting with the
block cipher E(k, ·) for a randomly chosen key k, or with a truly random permutation. In
an asymptotic and more theoretical language, a family of block ciphers indexed by a security
parameter meeting this security notion is called a pseudorandom permutation (PRP), or a
strong pseudorandom permutation (SPRP) when the distinguisher has also access to the in-
verse permutation. The classical example of a construction for which we have some provable
security results with respect to indistinguishability is the Feistel network. Starting from the
seminal Luby-Rackoff paper [LR88] which showed that the Feistel construction with three
rounds yields a PRP when its round functions are pseudorandom [GGM86], and followed
by a paper by Patarin [Pat90] showing that four rounds yield a SPRP (which was stated
in [LR88] without proof), a long series of works established refined results in the same vein,
such as [Mau92, MP03, Vau03, Pat04] to name a few.

1.2 The Ideal Cipher Model

Though there are numerous examples where the standard pseudorandomness assumption is
sufficient to prove (in a reductionist sense) the security of a cryptographic scheme (e.g. for
building a symmetric encryption scheme [BDJR97] or a MAC scheme [BKR00]), there are
also some settings where it might not be strong enough to derive a security proof. Indeed,
in some situations, the adversary has more abilities than merely querying in a black-box

3

way an encryption/decryption oracle. For example, there are some cases where the attacker
might have access to a more powerful “related-key” oracle [Bih94, BK03, AFPW11], i.e. it
can ask encryption and decryption queries for keys that are related (in some limited and
attack-dependent way) to the main key of the system.

In some contexts, the adversary might even be able to know or choose the key during the
attack. This is notably the case when considering hash functions built from a block cipher,
which is an old and well-established design strategy [LM92, PGV93]. Consider for example
the Davies-Meyer construction, which turns a n-bit block and m-bit key block cipher E into
a (m + n)-to-n-bit compression function f(k‖x) = E(k, x) ⊕ x. An attacker trying to break
the collision or pre-image resistance of this compression function is clearly in a more powerful
position than a mere black-box distinguisher. In fact, the PRP assumption is provably not
sufficient to show the security of the Davies-Meyer construction. More precisely, assuming
that PRPs exist, then there exists a PRP such that the Davies-Meyer compression function
obtained from it is insecure. For example, starting from a block cipher E (with key length
equal to its block length) which is a PRP, one can modify it to a slightly different block
cipher Ẽ such that Ẽ(k, k) = k for any key k. This does not affect the PRP property, but
this clearly makes the Davies-Meyer compression function based on Ẽ trivially vulnerable to
pre-image and collision attacks. Even more disappointingly, Simon [Sim98] showed that there
is no provably secure black-box construction of a collision resistant hash function family from
a block cipher using only the standard PRP assumption.

Ideally, the ultimate security goal for a block cipher would be that it “behaves” as a
random and independent permutation for each possible key. This naturally leads to the so-
called ideal cipher model (ICM), the origin of which can be traced back to Shannon [Sha49]. In
the ICM, a block cipher E with n-bit blocks and m-bit keys is drawn at random from the set
of (2n!)2m possible block ciphers of this form, and made available through oracle queries (for
both encryption and decryption) to all parties (including the adversary). This is very similar
in spirit to the random oracle model (ROM) [FS86, BR93] used to model a perfect hash
function. To the best of our knowledge, this model was first formally used in a security proof
by Winternitz [Win84] and later by Merkle [Mer89] to show respectively the pre-image and
collision resistance of the Davies-Meyer compression function. The ICM became increasingly
popular after Black et al. [BRS02] used it to extensively analyze the security of the PGV block
cipher-based compression functions [PGV93]. Since then, the ICM has been used to prove the
security of a variety of other block cipher-based hash functions [Hir04, Hir06, Ste07, LSS11,
Men12], of key length extension methods for block ciphers [KR96, Des00, BR06, GM09, GT12],
of symmetric encryption schemes [JJV02], and even of some public-key protocols such as
signature schemes [Gra02], ring signature schemes [RST01], public-key encryption [Jon02], and
key exchange protocols [BPR00]. Despite these numerous successful applications, one must
not lose from sight that the ICM only gives heuristic insurance just as the ROM [CGH98]. In
particular, Black [Bla06] exhibited an (arguably artificial) block cipher-based hash function
which is provably collision resistant in the ICM, but becomes insecure when the ideal cipher
is instantiated with any concrete block cipher.

With the ICM at hand, the question now becomes: is it possible to argue that a given
block cipher design is as close as possible to an ideal cipher? In the standard model, one
immediately faces the problem that, unlike for pseudorandomness, it even seems hard to come
with a satisfactory definition of what this formally means, without running into impossibility
results (similarly to [CGH98] and [Bla06]) following from the fact that a concrete block cipher

4

has a short description, whereas an ideal cipher does not. This unfortunate state of affairs has
not prevented cryptanalysts from disproving that a concrete block cipher behaves as an ideal
cipher by exhibiting some non-random behavior, i.e. some non-trivial3 relation between inputs
and outputs of the block cipher that can be found faster than for an ideal cipher, in a setting
where the key is random and given to the attacker (known-key attacks), or when the attacker
can freely choose the key(s) (chosen-key attacks). A classical example is the complementation
property of DES which, despite being often viewed as a “benign” undesirable property, implies
that DES does not behave as an ideal cipher. For AES, no such non-random properties were
known until Biryukov et al. [BKN09] showed that so-called q-multicollisions can be found
faster for AES-256 than for an ideal cipher. Known-key and chosen-key attacks were first put
forward as an important cryptanalysis goal by Knudsen ans Rijmen [KR07], and have since
then become an active area of research [MPP09, GP10, SY11].

1.3 Indifferentiability

Though we cannot hope to formalize (not to say prove) that a concrete block cipher behaves
as an ideal cipher in any reasonable sense in the standard model, it is possible to obtain
positive results in idealized models, i.e. by viewing some subcomponent of the block cipher
as perfectly random. This perfect subcomponent is made available to all parties as a public
oracle, which makes this setting formally distinct from classical indistinguishability. In order
to assess whether a cryptographic construction based on an ideal subcomponent is secure,
one has to employ the formalism of indifferentiability, introduced by Maurer et al. [MRH04].
A construction C (e.g. a block cipher), based on some ideal primitive F (e.g. a random
permutation), is said to be indifferentiable from some target ideal primitive G (e.g. an ideal
cipher) if there exists an efficient simulator S (with black-box access to the primitive G) such
that the two systems (CF ,F) and (G,SG) are indistinguishable. Informally, the goal of the
simulator is to provide answers which are consistent with what a distinguisher can obtain from
G, without deviating too much from the distribution of answers of F . An indifferentiability
result can be interpreted as a way to make sure that the high-level design of the construction
C has no structural defect. More importantly, a composition theorem [MRH04] asserts that if
CF is indifferentiable from G, then any cryptosystem proved secure when used with G remains
secure when used with CF , therefore allowing modular proofs of security in idealized models.4

Soon after its introduction, Coron et al. [CDMP05] used the indifferentiability framework
to revisit the design of a hash function from an ideal cipher: namely they showed that a number
of variants of the Merkle-Damgård domain extension method [Dam89, Mer89], used with an
ideal cipher in Davies-Meyer mode, are indifferentiable from a random oracle. The converse
direction, i.e. proving that it is possible to construct an ideal cipher from a random oracle,
turned out to be harder to achieve. A first attempt to prove that the Feistel construction with
public random round functions is indifferentiable from a random permutation (and hence from
an ideal cipher by prepending the key to each input to the random round functions) was made
by Coron et al. for six rounds [CPS08], and later by Seurin for ten rounds [Seu09], but serious
flaws were found in both proofs [Kün09, HKT11]. The situation was corrected with a proof by

3 We stress that because of the lack of a rigorous definition, the meaning of non-trivial here is somehow
subjective.

4 Care has to be taken with this composition result when the security definition for the cryptosystem puts
some limitations on the adversary, such as an upper bound on its memory [RSS11, DGHM12]

5

Holenstein et al. [HKT11] that the 14-round Feistel construction with public random round
functions is indifferentiable from a random permutation. This must be contrasted with the
classical Luby-Rackoff result stating that the 4-round Feistel construction with pseudorandom
round functions yield a SPRP.

1.4 Our Contribution

The indifferentiability result for the Feistel construction mentioned above is fundamentally
about how to obtain a random permutation from a random (function) oracle. The step to
obtain an ideal cipher (i.e. an exponential number of independent permutations) is trivially
achieved through domain separation of the underlying primitive (namely by prepending the
key to each call to the random function oracles). However, it does not tell us anything about
how the key should be concretely mixed into the state. In a departure from this approach,
we ask the following question: given a small number of objects with n-bit inputs (e.g. n-
bit permutations P1, . . . , Pr), is there a way to “combine” them together with an m-bit
key in order to obtain a construction which is close to an n-bit block and m-bit key ideal
cipher, i.e. a set of 2m independent permutations, without appealing to a trivial domain
separation argument? This naturally prompts us to turn our attention towards the second
class of designs, namely key-alternating ciphers.5 More formally, we consider the construction
of a block cipher with n-bit blocks and m-bit keys from r public n-bit permutations P1,
. . . , Pr defined as follows: derive (r + 1) n-bit round keys (k0, . . . , kr) from a master key K
through some key derivation function, and encrypt the plaintext x ∈ {0, 1}n by computing
the ciphertext y defined as:

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · ·)) .

When r = 1 and two independent n-bit keys (k0, k1) are used, so that the ciphertext is
simply y = k1 ⊕ P1(k0 ⊕ x), one obtains the so-called Even-Mansour cipher [EM97]. When
P1 is modeled as a public random permutation (that the adversary can query in a black-box
way), Even and Mansour [EM97] showed that the resulting block cipher is a SPRP, with
security ensured up to O(2n/2) distinguisher queries. The indistinguishability of the general
construction for r > 1 with independent keys (k0, . . . , kr) was later studied for two rounds
by Bogdanov et al. [BKL+12], for three rounds by Steinberger [Ste12], and for any number
r of rounds (with non-tight security bounds) by Lampe et al. [LPS12]. Unsurprisingly, the
number of adversarial queries up to which the key-alternating cipher is indistinguishable
from a random permutation increases with the number of rounds. Following [LPS12], and
to emphasize that we work in the random permutation model for P1, . . . , Pr, we will use
the naming r-round iterated Even-Mansour cipher to designate the idealized key-alternating
cipher where the permutations P1, . . . , Pr are public and perfectly random permutations
oracles.

In this paper, we consider the iterated Even-Mansour cipher from the point of view of
indifferentiability, and ask whether this construction is indifferentiable from an ideal cipher
for a sufficient number of rounds when the permutations P1, . . . , Pr are public and random. A
first simple observation is that the construction with r+1 independent n-bit keys (k0, . . . , kr)

5 One could certainly undertake the same study for Feistel-based block ciphers, but this seems more compli-
cated.

6

(resulting in a total key space {0, 1}m = {0, 1}(r+1)n) is never indifferentiable (for any r)
from an ideal cipher with n-bit blocks and (r+ 1)n-bit keys (this had already been informally
observed by [BKL+12]). In a sense, independent keys offer too much freedom to the attacker,
enabling to easily find related-key relations. There are two possible approaches to solve this
problem. The first one is to derive the round keys (k0, . . . , kr) from the master key using
some cryptographic function (modeled as a random oracle for the indifferentiability proof).
This was considered in an earlier and independent work by Andreeva et al. [ABD+13] (see
Section 1.6 below for a discussion of their result). The second possibility (not relying on
any cryptographic assumption about the key derivation function) is to “correlate” the round
keys. This is the approach we adopt: namely, we consider the iterated Even-Mansour cipher
where the n-bit round keys (k0, . . . , kr) are obtained by applying efficiently invertible n-bit
permutations (γ0, . . . γr) to the n-bit master key k (see Figure 1 on page 12). As will appear
clearly in view of its proof, the fact that the master key length is equal to the block length is
crucial for our result. To insist on this particular point, we call this construction the single-key
iterated Even-Mansour cipher. Our main result is the following one.

Theorem. The 12-round single-key iterated Even-Mansour cipher with twelve independent
random public n-bit permutations (P1, . . . , P12) and any efficiently invertible (public) n-bit
permutations (γ0, . . . , γ12) for the key schedule is indifferentiable from an ideal cipher with
n-bit blocks and n-bit keys.

In fact, the key derivation permutations γi will not play any role in the proof, so that we
will focus on the simple case where they are all equal to the identity. Additionally, we show
that at least four rounds are necessary by describing attacks (using only a constant number
of queries) for three rounds or less.

Together with the result of [ABD+13] discussed below, our main theorem validates the
design strategy underlying SPNs and more generally key-alternating ciphers as a sound way
to ensure security beyond pseudorandomness: it (theoretically) enables to achieve resistance
against related-key, known-key and chosen-key attacks (that an ideal cipher can withstand).
We stress that our result cannot be used as is to take concrete design decisions: first, our
bounds (as is often the case with indifferentiability results) are extremely loose.6 More impor-
tantly, the permutations Pi used in concrete block ciphers such as AES are often too simple to
be deemed close to random permutations (not to say independent: they are often the same).

1.5 Our Techniques

The techniques used to prove our main theorem are very similar to the ones introduced
in [CPS08, Seu09, HKT11] for the Feistel construction (while the formalism we adopt is very
close to [HKT11]). We simply give a very cursory overview of the main ideas here (assuming
all γi’s are the identity). The simulator works by detecting and completing “partial chains”
created by the queries of the distinguisher. Define the computation path for a plaintext x and
a key k as the sequence of pairs (x1, y1), . . . , (x12, y12) of corresponding input and output
values for the simulated permutations P1, . . . , P12. It must hold that the value y obtained
through this computation path matches the value E(k, x) obtained from the ideal cipher,

6 Since the proof is already quite involved, we favored simplicity rather than tightness, but the bounds can
probably be improved at some places.

7

otherwise one could straightforwardly distinguish the “simulated” world from the “real” world.
Hence, simply answering the distinguisher queries randomly will not work: the simulator
must somehow “adapt” the computation path to match the ideal cipher E. Observe now the
following important property of the single-key iterated Even-Mansour cipher: given only two
consecutive values yi and xi+1 of the computation path (i.e. the output value of permutation
Pi and the input value to permutation Pi+1), it is possible to deduce the corresponding
key k = yi ⊕ xi+1, and hence to move forward and backward along the path. Note that
this property essentially relies on the fact that the master key length is equal to the block
length of the permutations (would the master key be larger, then it could not be uniquely
determined by yi and xi+1). Note also that this is the exact analogue of the property of the
Feistel network that the input and output values to two consecutive round functions enable to
uniquely move forward and backward inside the construction. With this in mind, the strategy
of the simulator will be to detect partial chains in computation paths created by queries of
the distinguisher to two consecutive permutations, and “complete” them by moving forward
and backward inside the iterated Even-Mansour construction (randomly setting undefined
permutation values encountered along the way, and making a call to the ideal cipher to
“wrap around”) until the input x` and the output y` for one particular permutation P` are
obtained (but still undefined inside P` history). This permutation is then “adapted” by setting
P`(x`) := y` so that the corresponding input and output for the simulated Even-Mansour
cipher and for the ideal cipher match. A moment of thinking should make clear that the
simulator cannot complete each and every partial chain created in its history, since this would
create a “chain reaction” leading to an exponential running time and an exponential number
of ideal cipher queries from the simulator. Hence, one must make a careful and parsimonious
choice of “detection zones” for deciding which partial chains to complete. In addition, one
must ensure that the simulator never overwrites an entry when adapting permutation P`,
thereby rendering a previously completed chain inconsistent. How exactly this is done is very
similar to the case of the Feistel construction [Seu09, HKT11], and we refer to Section 4.1 for
a more detailed overview.

As a retrospective afterthought, we note that the Feistel and the iterated Even-Mansour
indifferentiability results are not that far apart: they both tell how to construct a “big object”
(which in both cases has some specific syntactic constraints which are relevant only from a
cryptographic perspective) taking 2n bits of input (the left and right n-bit halves of the input
in the case of the Feistel network, and the key and the plaintext in the case of the iterated
Even-Mansour cipher) from smaller objects with only n bits of input (fourteen n-bit to n-bit
functions for the Feistel network, and twelve n-bit permutations for the iterated Even-Mansour
cipher).

1.6 Related Work

In a prior and independent work [ABD+13], Andreeva et al. proved a result which is close and
complementary to ours: they showed that the iterated Even-Mansour construction with five
rounds and a key derivation function modeled as a random oracle is indifferentiable from an
ideal cipher. Though significantly reducing the number of rounds required for the proof to go
through, and lifting the restriction that the master key length be equal to the block length of
the permutations, their technique puts a strong burden on the key derivation function, which
can hardly be seen as close to a random oracle in most concrete block ciphers. In fact, most

8

key schedules, such as the one of AES, are “lightweight” and invertible, which makes our result
(where the key derivation function has no cryptographic role) more relevant to practice.

Taken together, the two results indicate, not too surprisingly, that using a cryptographi-
cally strong key schedule, though not being necessary, enables to lower the number of rounds
needed to obtain an ideal cipher (however this interpretation must be taken cautiously: it
may well be that, say, the iterated Even-Mansour cipher with four rounds is indifferentiable
from an ideal cipher, independently of the cryptographic strength of the key schedule).

Regarding the purely theoretical question of the minimal number of n-bit permutations
needed to construct an n-bit block and n-bit key ideal cipher, the result of [ABD+13] is
better since it enables to use only six independent permutations (using a independent random
permutation P0 to build a key derivation function k 7→ P0(k)⊕k which is indifferentiable from
a random function).

1.7 Open Problems

The minimal number of rounds necessary in order for the single-key iterated Even-Mansour
construction to achieve indifferentiability from an ideal cipher remains unclear. We know
by our results of Section 3 that four rounds are necessary, and it may well be that this
is also sufficient, but we think that substantially new techniques will be required to prove
it (the situation is similar to the one of the Feistel construction: we know that six rounds
are necessary in order to achieve indifferentiability from a random permutation [CPS08], but
currently the best number of rounds proved to achieve indifferentiability is fourteen [HKT11]).
In Appendix A, we make some observations about the obstacles that appear when trying to
obtain a proof (with techniques similar to the ones used here) for the 8-round single-key
iterated Even-Mansour construction.

As we already emphasized several times, our result crucially relies on the fact that the key
length is equal to the block length of the cipher. An interesting open question (practically quite
relevant to the understanding of the security of AES-256 and more generally of block ciphers
with n-bit blocks and 2n-bit keys) is whether it is possible to come with a simple construction
of a block cipher with 2n-bit keys based on a constant number of n-bit permutations which
would be indifferentiable from an ideal cipher with n-bit blocks and 2n-bit keys, without
using a cryptographically strong assumption about the key derivation function.7 We note that
cascading two 12-round iterated Even-Mansour constructions with two independent keys does
not work (in fact one can easily see that cascading two ideal ciphers with two independent n-
bit keys is not indifferentiable from an ideal cipher with 2n-bit keys). Interleaving the xoring
of two n-bit keys k1 and k2 in the iterated Even-Mansour construction (with sufficiently
many rounds) seems a more promising approach (this is for example what is done for the
block cipher LED-128 [GPPR11] which has 64-bit blocks and 128-bit keys). As an extremely
preliminary analysis, we note that in this construction, pairs of inputs and outputs (xi, yi),
(xi+1, yi+1), (xi+2, yi+2) for three consecutive permutations Pi, Pi+1, and Pi+2 are sufficient
to recover the two corresponding n-bit keys (say k1 = yi ⊕ xi+1 and k2 = yi+1 ⊕ xi+2), and
hence uniquely specify the whole computation path inside the construction. Hence, a chain
detection/completion strategy very similar to the one used in this paper might be able to
work. It would require three detection rounds at the beginning, three detection rounds in the

7 Indeed, if one allows the key derivation function to be modeled as a random oracle, the problem (for arbitrary
key length) is solved by the 5-round iterated Even-Mansour construction [ABD+13].

9

middle, and three detection rounds at the end of the cipher, plus two adaptation rounds, and
four buffer rounds surrounding the adaptation rounds, amounting to a total of fifteen rounds.

1.8 Organization

We start with some preliminaries and important definitions in Section 2. In Section 3, we
describe attacks in the indifferentiability setting against the iterated Even-Mansour cipher
with independent keys (for any number of rounds), and against the single-key iterated Even-
Mansour cipher with three rounds or less. Finally, in Section 4, we prove that the single-key
iterated Even-Mansour construction with twelve rounds is indifferentiable from an ideal cipher.

2 Preliminaries

2.1 Notation and Definitions

Given a finite non-empty set S, we write s ←$ S to mean that a value is sampled uniformly
at random from S and assigned to s. The security parameter will be denoted n and will be
identified with the block length of permutations in the Even-Mansour construction. We will
write f ∈ poly(n) to denote a polynomially bounded function and f ∈ negl(n) to denote a
negligible function. For δ ∈ {+,−}, we denote δ̄ the opposite of δ.

In the following, we will use calligraphic fonts (A,B, . . .) to denote interactive Turing ma-
chines, and typewriter fonts to denote Procedures attached to these machines. A distinguisher
is an oracle Turing Machine D which takes as input a security parameter 1n, has access to a
set of oracles O1, . . . , Om, and outputs a bit b, an experiment we denote DO1,...,Om = b. We
will always consider distinguishers that are deterministic and computationally unbounded,
and restricted only with respect to the number of oracle queries they make.

An ideal primitive is a probability distribution on some set of functions, and will be
denoted with bold fonts. In the corresponding model, a function is drawn at random from the
corresponding distribution (say F) and all parties (sayM) involved in the security experiment
are given oracle access to the corresponding function, which we simply denote MF . In the
following we will consider the following two ideal primitives:

– a random permutation Pi on {0, 1}n, which is a permutation drawn at random from the
set of all permutations on {0, 1}n, and which can be accessed in the two directions Pi(x)
and P−1

i (y); we will use the notation P = (P1, . . . ,Pr) to denote a tuple of independent
random permutations;

– an ideal cipher E with message space and key space {0, 1}n, which is drawn at random
from the set of all block ciphers of this form, and which can be accessed in encryption,
denoted E(k, x), and decryption, denoted E−1(k, y).

2.2 Indifferentiability

We recall the usual definition of indifferentiability.

Definition 1. Let q, σ : N → N and ε : N → R be three functions of the security parameter
n. A Turing machine C with oracle access to an ideal primitive F is said to be statistically
and strongly (q, σ, ε)-indifferentiable from an ideal primitive G if there exists an interactive

10

Turing machine S with oracle access to G such that for any distinguisher D making at most
q queries, S makes at most σ oracle queries, and the following holds:∣∣∣Pr

[
DG,SG = 1

]
− Pr

[
DCF ,F = 1

]∣∣∣ ≤ ε .

CF is simply said to be statistically and strongly indifferentiable from G if for any q ∈ poly(n),
the above definition is fulfilled with σ ∈ poly(n) and ε ∈ negl(n).

This definition does not refer to the running time of S and D. When only polynomial-time
algorithms are considered, indifferentiability is said to be computational. Weak indifferentia-
bility is defined as above, but the order of quantifiers for the distinguisher and the simulator
are switched (for all distinguisher, there is a simulator. . .).

In this paper, and similarly to [HKT11], we will slightly tweak the definition of strong
indifferentiability as follows: we will describe a simulator which, for any distinguisher D mak-
ing a polynomial number of queries, runs in polynomial time and makes at most σ queries
with overwhelming probability (rather than probability one) in system DG,SG . This is not a
big concern since any such simulator S can be transformed into a simulator S ′ for weak in-
differentiability (which is sufficient for the composition theorem of [MRH04] to hold) which
takes the maximal number of queries q of D as input, and aborts when its number of queries
becomes larger than σ (computed as a function of q), hence making at most σ queries with
probability one.

2.3 The Iterated Even-Mansour Cipher
Fix an integer r ≥ 1. Let P = (P1, . . . , Pr) be a tuple of permutations on {0, 1}n. The r-
round iterated Even-Mansour construction associated with P , denoted C̄Pr , is the block cipher
with message space {0, 1}n and key space ({0, 1}n)r+1 which maps a message x and a key
(k0, . . . , kr) to the ciphertext defined by:

C̄Pr ((k0, . . . , kr), x) = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · ·)) .

Let γ = (γ0, . . . , γr) be a tuple of efficiently invertible permutations on {0, 1}n. The single-
key r-round iterated Even-Mansour construction associated with P and γ, denoted CP,γr , is
the block cipher with message space {0, 1}n and key space {0, 1}n which maps a message x
and a key k to the ciphertext defined by (see Figure 1):

CP,γr (k, x) = γr(k)⊕ Pr(γr−1(k)⊕ Pr−1(· · ·P2(γ1(k)⊕ P1(γ0(k)⊕ x)) · · ·)) .

In all the following, we will focus on the case where all permutations γi are the identity, and
simply denote CPr the resulting cipher, namely:

CPr (k, x) = k ⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · ·)) .

We stress that our main result (Theorem 2) holds for arbitrary permutations γi as long as
they are efficiently invertible.

3 Attacks

In this section we present attacks against the iterated Even-Mansour cipher with independent
keys, and against the single-key iterated Even-Mansour cipher for three rounds or less. To
describe the corresponding distinguisher, we generically denote (E,P) the oracles to which it
has access, where (E,P) is either (CP

r ,P) or (E,SE).

11

x P1

γ0

k

P2

γ1

k

Pr y

γr

k

Fig. 1. The single-key iterated Even-Mansour cipher with r rounds CP,γr . We focus in this paper on the special
case γi = Id for i = 0, . . . , r.

3.1 Attack on Independent Keys

We start with a simple attack against C̄P
r , i.e. the iterated Even-Mansour cipher where the r+1

round keys (k0, . . . , kr) are independent, showing that this construction is not indifferentiable
from an ideal cipher with (r + 1)n-bit keys. This had already been observed in [BKL+12]
(more precisely, the authors observed that there are trivial related-key attacks in this case).

Fix any non-zero constant c ∈ {0, 1}n. Consider the distinguisher D(E,P) proceeding as
follows:

(1) choose an arbitrary input x and an arbitrary key k0, and define x′ := x⊕c and k′0 := k0⊕c;
(2) choose arbitrary keys k1, . . . , kr; denote k := (k0, k1, . . . , kr) and k′ := (k′0, k1, . . . , kr);
(3) query y := E(k, x) and y′ := E(k′, x′);
(4) if y = y′ output 1, otherwise output 0.

Note that this distinguisher does not make any query to P /S. Clearly, D always outputs
1 when interacting with (C̄P

r ,P). On the other hand, when interacting with (E,SE) for any
simulator S, we see that the probability that E(k, x) = E(k′, x′) is exactly 2−n. Hence the
distinguishing advantage of D is exactly 1− 2−n.

3.2 Attack on Three Rounds

Here, we show an attack on the single-key iterated Even-Mansour cipher with three rounds CP
3 ,

with P = (P1,P2,P3), and (γ0, . . . , γ3) = (Id, . . . , Id) for the key derivation. This can easily
be simplified into attacks for one and two rounds. An attack applicable to arbitrary efficiently
invertible permutations (γ0, . . . , γ3) was independently described in [ABD+13]. Our attack has
the additional advantage that is enables to find a so-called evasive relation [CGH98, MPS12]
on the inputs and outputs of the cipher. Consider the following distinguisher D(E,P) (see also
Figure 2):

(1) choose arbitrary values x3, k, k
′ ∈ {0, 1}n, with k 6= k′;

(2) compute y2 := x3 ⊕ k and y′2 := x3 ⊕ k′;
(3) query x2 := P−1

2 (y2) and x′2 := P−1
2 (y′2);

(4) compute y1 := x2 ⊕ k and y′1 := x′2 ⊕ k′;
(5) compute k′′ := y1 ⊕ x′2 and k′′′ := y′1 ⊕ x2;
(6) if k, k′, k′′, and k′′′ are not pairwise distinct, output 0;
(7) query x1 := P−1

1 (y1) and x′1 := P−1
1 (y′1);

(8) compute x := x1 ⊕ k, x′ := x′1 ⊕ k′, x′′ := x1 ⊕ k′′, and x′′′ := x′1 ⊕ k′′′;

12

P1 P2 P3

x1

x′1

y1

y′1

x2

x′2

y2

y′2

x3

x′3

y3

y′3

x

x′′

x′

x′′′

y

y′

y′′

y′′′

k k′ k′′ k′′′

Fig. 2. The attack on the single-key iterated Even-Mansour cipher with three rounds CP
3 .

(9) query y := E(k, x), y′ := E(k′, x′), y′′ := E(k′′, x′′) and y′′′ := E(k′′′, x′′′);
(10) if y ⊕ y′ ⊕ y′′ ⊕ y′′′ = 0 output 1, otherwise output 0.

This distinguisher implies the following theorem.

Theorem 1. The 3-round single-key iterated Even-Mansour cipher CP
3 using three indepen-

dent random n-bit permutations (and (γ0, . . . , γ3) = (Id, . . . , Id) for the key derivation) is not
indifferentiable from an ideal cipher with n-bit blocks and n-bit keys.

Proof. We lower bound the distinguishing advantage of D. First, we show that D outputs 1
with overwhelming probability when interacting with (CP

3 ,P). As a first step, observe that
k 6= k′ ⇒ y2 6= y′2 ⇒ x2 6= x′2. Since k′′ = k ⊕ x2 ⊕ x′2 and k′′′ = k′ ⊕ x2 ⊕ x′2, we also
have k′′ 6= k′′′, k′′ 6= k, and k′′′ 6= k′. Hence k, k′, k′′, and k′′′ are not pairwise distinct iff
x2 ⊕ x′2 = k ⊕ k′, which happens with probability 1/(2n − 1) since x2 and x′2 are uniformly
random distinct values. Hence D outputs 0 with probability at most 1/(2n − 1) at step (6).
We show now that conditioned on D not outputting 0 at step (6), it always outputs 1. For
this, note that by definition of y1, y′1, k′′, and k′′′, we have:

k ⊕ k′ ⊕ k′′ ⊕ k′′′ = (y1 ⊕ x2)⊕ (y′1 ⊕ x′2)⊕ (y1 ⊕ x′2)⊕ (y′1 ⊕ x2)
= 0 .

Consider now the computation path inside the iterated Even-Mansour cipher for each input
(k, x), (k′, x′), (k′′, x′′), and (k′′′, x′′′). Clearly, the input to P3 for both inputs (k, x) and
(k′, x′) is x3. The input to P3 for (k′′, x′′) and (k′′′, x′′′) are respectively y′2 ⊕ k′′ and y2 ⊕ k′′′.
By definition of all intermediate values set by the distinguisher, we see that

k′′ ⊕ k′′′ = k ⊕ k′ = (x3 ⊕ y2)⊕ (x3 ⊕ y′2) = y2 ⊕ y′2 ,

so that y′2 ⊕ k′′ = y2 ⊕ k′′′. Hence the input to P3 for both inputs (k′′, x′′) and (k′′′, x′′′) is
the common value x′3 := y′2 ⊕ k′′ = y2 ⊕ k′′′. Hence, the four corresponding outputs are resp.
y = y3⊕ k, y′ = y3⊕ k′, y′′ = y′3⊕ k′′, and y′′′ = y′3⊕ k′′′, where y3 = P3(x3) and y′3 = P3(x′3),
which implies y ⊕ y′ ⊕ y′′ ⊕ y′′′ = k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0.

Consider now what happens when D interacts with (E,SE) for some efficient simulator S
which makes at most σ queries when D makes at most q queries. DenoteM the combination
of D and S. Note thatM is an oracle Turing machine which makes at most q′ = q+σ queries
in total to E. Whenever D outputs 1, we see that M has successfully found four inputs

13

(k, x), (k′, x′), (k′′, x′′) and (k′′′, x′′′), where k, k′, k′′, and k′′′ are pairwise distinct, which,
together with their corresponding outputs y = E(k, x), y′ = E(k′, x′), y′′ = E(k′′, x′′), and
y′′′ = E(k′′′, x′′′) satisfy:

k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0
x⊕ x′ ⊕ x′′ ⊕ x′′′ = 0
y ⊕ y′ ⊕ y′′ ⊕ y′′′ = 0 .

Note that the first two conditions holds with probability 1 by construction of the distinguisher.
It remains to show thatM has only a negligible probability to find such values. Consider the
q′ queries of M to E sequentially, and denote Bad the event that such values can be found
among the q′ queries, and Badi the event that such values can be found among the i first
queries. We will upper bound Pr[Badi|Badi−1]. Consider the i-th query, and assume that this
is an encryption query yi := E(ki, xi) (the reasoning is similar for a decryption query). We
can assume wlog that ki is distinct from all keys appearing in previous queries, so that yi is
uniformly random. Then Badi happens only if yi takes one of at most

(i−1
3
)
≤ i3 values, hence

with probability at most i3/2n. By summing over i, we see that Bad happens with probability
at most

∑q′

i=1 i
3/2n ≤ q′4/2n+1. Since q′ is polynomial if S makes a polynomial number σ of

queries, we see that D outputs 1 with negligible probability when interacting with (E,SE).
Hence D has advantage negligibly close to 1, which concludes the proof. ut

4 Indifferentiability for Twelve Rounds

In this section we prove the main result of this paper, which is the following theorem.

Theorem 2. For any q, the 12-round single-key iterated Even-Mansour cipher CP ,γ
12 with

twelve independent random n-bit permutations P = (P1, . . . ,P12), and fixed, efficiently in-
vertible n-bit permutations γ = (γ0, . . . , γ12) for the key schedule, is strongly and statistically
(q, σ, ε)-indifferentiable from an ideal cipher E with n-bit blocks and n-bit keys, where:

σ = 27 × q4 and ε = 291 × q12

2n .

To prove this, we will describe an efficient simulator S, and show that the two systems
(CP ,γ

12 ,P) and (E,SE) are indistinguishable. For simplicity we focus on the case where all γi’s
are the identity, but the generalization is straightforward.

Notational convention. In all this section, we will use the following useful notational conven-
tion: we will interchangeably denote the input to the ideal cipher or the iterated Even-Mansour
cipher x or y0, and the output y or x13.

4.1 Informal Description of the Simulator

We start with a high-level view of the simulator (see also Figure 3). It offers an interface to
the distinguisher for querying the simulated permutations, which formally takes the form of
a public procedure Query(i, δ, z), where i ∈ {1, . . . , 12} names the permutation, δ ∈ {+,−}
tells whether this is a direct or indirect query, and z ∈ {0, 1}n is the actual value queried. The
simulator maintains an history for the simulated permutations under the form of hash tables
P1, . . . , P12. Each such table maps entries (δ, z) ∈ {+,−} × {0, 1}n to values z′ ∈ {0, 1}n.

14

We denote P+
i , resp. P−i , the (time-dependent) sets of strings z ∈ {0, 1}n such that Pi(+, z),

resp. Pi(−, z), is defined. When the simulator receives a query (i, δ, z), it looks in hash table
Pi to see whether the corresponding answer Pi(δ, z) is already defined. When this is the case,
it outputs the answer and waits for the next query. Otherwise, it draws a uniformly random
answer z′ and defines in hash table Pi(δ, z) := z′, as well as the answer to the opposite query
Pi(δ̄, z′) := z (note that this last assignment may overwrite an entry in Pi).

Additionally, before outputting the answer z′, and for some specific values of (i, δ), the
simulator triggers a chain detection mechanism followed by a chain completion mechanism to
ensure consistency of its answers with the ideal cipher E. An essential point to notice about
the iterated Even-Mansour cipher in order to understand these mechanisms is that given an
output value yi for permutation Pi and an input value xi+1 for permutation Pi+1, it is possible
to compute the corresponding key k = yi⊕xi+1, and therefore to move forward and backward
in the construction up and down to the corresponding input x and output y to the cipher.
Hence, any tuple (yi, xi+1, i) (a so-called partial chain later in the reasoning) defines a unique
computation path inside the whole construction. This is the exact analogue of the property
of the Feistel construction that the input values to two consecutive round functions uniquely
define the computation path inside the Feistel network.

There are exactly six such values of (i, δ) for which the simulator performs additional
steps: (2,+), (6,+), (6,−), (7,+), (7,−), and (11,−). The cases (2,+) and (11,−) are similar.
When receiving a query (2,+, x2) for which the answer is undefined yet, the simulator, after
having drawn a random answer y2 to this query, considers all values y1 ∈ P−1 , computes the
corresponding key k := y1⊕x2, and moves backward in the iterated Even-Mansour cipher by
computing x1 := P1(−, y1), y0 := x1 ⊕ k, x13 := E(k, y0) (hence making a query to the ideal
cipher), and y12 := x13 ⊕ k, and checks whether y12 ∈ P−12. When this is the case, it enqueues
in a queue Queue the tuple (y0, x1, 0, 4). The first three elements (y0, x1, 0) specify the partial
chain that must be completed, while the last element ` = 4 specifies which permutation will
be adapted during completion of the chain to ensure consistency with E. The behavior of
the simulator when receiving a query (11,−, y11) is symmetric: after having drawn a random
answer x11, for all x12 ∈ P+

12, it moves forward in the iterated Even-Mansour cipher to check
whether the corresponding value x1 is in P+

1 , and if so enqueues the corresponding tuple
(y0, x1, 0, 9) (note that in this case adaptation will take place at permutation P9).

The four remaining cases (i, δ) = (6,+), (6,−), (7,+), and (7,−) are similar, except that
there is no check: the simulator enqueues a tuple (y6, x7, 6, `) for each newly generated pair
(y6, x7) ∈ P−6 × P

+
7 . If this was a query with i = 6, then adaptation will take place at ` = 4,

while if this was a query with i = 7, adaptation will take place at ` = 9. Assume for a concrete
example that the simulator receives a query (6,+, x6) whose answer is undefined yet. Then it
draws a random answer y6 ←$ {0, 1}n, and enqueues (y6, x7, 6, 4) for all x7 ∈ P+

7 .
Immediately after having enqueued newly created chains (yi, xi+1, i, `), the simulator starts

completing the partial chains, by dequeuing tuples from Queue. For this, when dequeuing
(yi, xi+1, i, `), it computes the key k := yi⊕xi+1, and moves forward and backward in the iter-
ated Even-Mansour cipher, possibly defining missing permutations values Pi(+, ·) or Pi(−, ·),
and making a query to E(k, ·) to “wrap around”, until it reaches the input value x` for P`
(when moving forward) and the corresponding output y` (when moving backward). It finally
“adapts” permutation P` by setting P`(+, x`) := y` and P`(−, y`) := x` in order to ensure
consistency of the entire chain with E. It also adds chains that have been completed in a set
Completed in order to avoid completing them twice. While completing a chain and adding

15

possibly missing permutation values, the simulator uses the same chain detection mechanism
as when receiving a direct query from the distinguisher. Hence new tuples may be enqueued
while dequeuing and completing a chain, and the simulator keeps dequeuing tuples until the
queue is empty. When this is the case, it returns the answer to the original query of the
distinguisher.

As in the indifferentiability proof of the Feistel construction, there will be two crucial points
to show: first, that the recursive chain completion mechanism terminates in polynomial time
(except maybe with negligible probability); second, that the simulator can always adapt, i.e.
that it never has (or only with negligible probability) to overwrite previously defined entries
when adapting a chain, which would render previously completed chains inconsistent with
the ideal cipher E. Permutations P3, P5, P8, and P10 (i.e. the permutations surrounding the
two adaptation rounds P4 and P9) will play a key role while proving this last point: they will
ensure that no bad collisions occur at the input or output of the two permutations used for
adapting chains.

4.2 Formal Description of the Simulator

We now give a formal description of the simulator S in pseudocode. We will use the following
notations. The simulator maintains hash tables P1, . . . , P12 which are initially empty. Any
such hash table contains entries (δ, z) ∈ {+,−} × {0, 1}n associated with values z′ ∈ {0, 1}n.
We will note (δ, z) ∈ Pi to mean that entry (δ, z) is in the hash table, and denote Pi(δ, z) the
associated value. For δ ∈ {+,−} we will denote P δi the set of values z ∈ {0, 1}n such that
(δ, z) ∈ Pi. We say that Pi defines a partial permutation on {0, 1}n (at some point during the
execution) if for all x, y ∈ {0, 1}n, (+, x) ∈ Pi and Pi(+, x) = y if and only if (−, y) ∈ Pi and
Pi(−, y) = x. We warn that hash tables Pi will not necessarily define partial permutations at
any time during the simulation. Nevertheless, a large part of the indifferentiability proof will
be to show that this holds with overwhelming probability.8

Later in the proof, we will consider a slightly different simulator T (ϕ), whose differences
with S are captured by framed statements, which can be ignored for the moment.

1 Simulator S: Simulator T (ϕ):
2 Variables:
3 hash tables P1, . . . , P12, initially empty
4 queue Queue, initially empty
5 set Completed, initially empty

The simulator offers one public interface Query accessible by the distinguisher for simulat-
ing the permutations. It can be queried with a tuple (i, δ, z) where i ∈ {1, . . . , 12} names the
permutation, δ ∈ {+,−} tells whether this is a direct or indirect query, and z ∈ {0, 1}n is the
actual value queried. This procedure first calls InQuery (a procedure described later which
internally draws a random answer if needed, and fills the queue with newly created chains),
and then completes the chains in Queue.

6 public procedure Query(i, δ, z):
7 z′ := InQuery(i, δ, z)

8 Note that assignments in any table Pi will always occur in pairs, which will be considered as atomic events
since Pi does transiently not define a partial permutation between the two assignments in the pair.

16

x/y0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

y/x13

k

k

k

k

k

k

k

k

k

k

k

k

k

Detect chain

Set uniform

Adapt
permutation

Set uniform

Detect chain

Set uniform

Adapt
permutation

Set uniform

Detect chain

Ek

Fig. 3. Detection and adaptation zones used by the simulator.

17

8 while Queue 6= ∅ do
9 (yj , xj+1, j, `) := Queue.Dequeue()

10 if (yj , xj+1, j) /∈ Completed then
11 \\ complete the partial chain
12 (y`−2, x`−1) = EvalForward(yj , xj+1, j, `− 1)
13 (y`+1, x`+2) = EvalBackward(yj , xj+1, j, `+ 1)
14 Adapt(y`−2, x`−1, y`+1, x`+2, `)
15 \\ add corresponding partial chains to set Completed
16 (y0, x1) = EvalBackward(yj , xj+1, j, 0)
17 (y6, x7) = EvalForward(yj , xj+1, j, 7)
18 Completed := Completed ∪ {(y0, x1, 0), (y6, x7, 6)}
19 return z′

Procedure Adapt describes more specifically what happens around adaptations rounds
` = 4 or ` = 9. Describing this as an independent procedure will ease the discussion during
the proof.

20 private procedure Adapt(y`−2, x`−1, y`+1, x`+2, `):
21 k := y`−2 ⊕ x`−1
22 y`−1 := InQuery(`− 1,+, x`−1)
23 x` := y`−1 ⊕ k
24 k′ := y`+1 ⊕ x`+2 \\ always equal to k by construction
25 x`+1 := InQuery(`+ 1,−, y`+1)
26 y` := x`+1 ⊕ k′
27 ForceVal(x`, y`, `)

Procedure ForceVal is used to force the value of permutation P` for a given input/output
pair (x`, y`). A key point in the indifferentiability proof will be to show that entries are never
overwritten in P` when this procedure is called.

28 private procedure ForceVal(x`, y`, `):
29 P`(+, x`) := y` \\ may overwrite an entry
30 P`(−, y`) := x` \\ may overwrite an entry

Procedure InQuery internally draws a random value when the answer to a query is unde-
fined, and then calls procedure EnqueueNewChains.

31 private procedure InQuery(i, δ, z):
32 if (δ, z) /∈ Pi then
33 z′ ←$ {0, 1}n z′ := ϕi(δ, z)
34 Pi(δ, z) := z′

35 Pi(δ̄, z′) := z \\ may overwrite an entry
36 if (i, δ) ∈ {(2,+), (6,+), (6,−), (7,+), (7,−), (11,−)} then
37 EnqueueNewChains(i, δ, z)
38 return Pi(δ, z)

Procedure EnqueueNewChains enqueues newly created chains (if any) for specific values
of (i, δ).

39 private procedure EnqueueNewChains(i, δ, z):

18

40 if (i, δ) = (2,+) then
41 forall (y1, x2, y12) ∈ P−1 × {z} × P

−
12 do

42 k := y1 ⊕ x2
43 x1 := P1(−, y1)
44 y0 := x1 ⊕ k
45 x13 := y12 ⊕ k
46 if E(k, y0) = x13 then if F .Check(k, y0, x13) then
47 Queue.Enqueue(y0, x1, 0, 4)
48 else if (i, δ) = (11,−) then
49 forall (x1, y11, x12) ∈ P+

1 × {z} × P
+
12 do

50 k := y11 ⊕ x12
51 x13 := P12(+, x12)⊕ k
52 y0 := x1 ⊕ k
53 if E−1(k, x13) = y0 then if F .Check(k, y0, x13) then
54 Queue.Enqueue(y0, x1, 0, 9)
55 else if (i, δ) = (6,+) then
56 forall (y6, x7) ∈ {P6(+, z)} × P+

7 do
57 Queue.Enqueue(y6, x7, 6, 4)
58 else if (i, δ) = (6,−) then
59 forall (y6, x7) ∈ {z} × P+

7 do
60 Queue.Enqueue(y6, x7, 6, 4)
61 else if (i, δ) = (7,+) then
62 forall (y6, x7) ∈ P−6 × {z} do
63 Queue.Enqueue(y6, x7, 6, 9)
64 else if (i, δ) = (7,−) then
65 forall (y6, x7) ∈ P−6 × {P7(−, z)} do
66 Queue.Enqueue(y6, x7, 6, 9)

EvalForward(yi, xi+1, i, `) is a procedure which evaluates the Even-Mansour construction
forward for a pair (yi, xi+1) and returns the pair (y`−1, x`), where xj is the input to permu-
tation Pj for j ∈ {1, . . . 12} and x13 is the output of the Even-Mansour construction, and yj
is the output of permutation Pj for j ∈ {1, . . . 12} and y0 is the input to the Even-Mansour
construction. Similarly EvalBackward(yi, xi+1, i, `) is a procedure which evaluates the Even-
Mansour construction backward for a pair (yi, xi+1) and returns the pair (y`, x`+1).

67 private procedure EvalForward(yi, xi+1, i, `):
68 k := yi ⊕ xi+1
69 while i 6= `− 1 do
70 if i = 12 then
71 y0 := E−1(k, x13) y0 := F .Dec(k, x13)
72 x1 := y0 ⊕ k
73 i := 0
74 else
75 yi+1 := InQuery(i+ 1,+, xi+1)
76 xi+2 := yi+1 ⊕ k
77 i := i+ 1

19

78 return (y`−1, x`)

79 private procedure EvalBackward(yi, xi+1, i, `):
80 k := yi ⊕ xi+1
81 while i 6= ` do
82 if i = 0 then
83 x13 := E(k, y0) x13 := F .Enc(k, y0)
84 y12 := x13 ⊕ k
85 i := 12
86 else
87 xi := InQuery(i,−, yi)
88 yi−1 := xi ⊕ k
89 i := i− 1
90 return (y`, x`+1)

This concludes the description of the simulator S.

Remark 1. When considering the more general iterated Even-Mansour construction CP ,γ
12 us-

ing efficiently invertible permutations γi for key derivation as defined in Section 2.3, the simu-
lator can easily be modified as follows: each time the simulator computes a key as k := yi⊕xi+1,
we replace the corresponding line with k := γ−1

i (yi ⊕ xi+1). When the same key is used to
move forward or backward in the construction, the corresponding round keys can then be
derived by the simulator as kj := γj(k) for the adequate indexes j.

4.3 Intermediate Systems

Denote Σ1 the system (E,SE) and Σ4 the system (CP
12,P). We introduce two intermediate

systems Σ2 and Σ3 that we describe below. See also Figure 4 for a pictorial representation of
all systems.

4.3.1 Second System
In system Σ2(η, ϕ) = (F(η), T (ϕ)F(η)), the simulator S is replaced by a slightly different
one denoted T (ϕ) and whose differences with S are captured by framed statements in the
pseudocode of Section 4.2, and the ideal cipher E is replaced by what we call a two-sided
keyed random function F(η). We now explain the differences between the two systems. First,
the randomness in Σ2 is made explicit through tables ϕ = (ϕ1, . . . , ϕ12) used by T and η
used by F . Each table ϕi maps entries (δ, z) ∈ {+,−} × {0, 1}n to uniform and independent
values in {0, 1}n, while η maps entries (δ, k, z) ∈ {+,−} × {0, 1}n × {0, 1}n to uniform and
independent values in {0, 1}n. Whenever S sets a value Pi(δ, z) randomly at line 33, T uses
the value ϕi(δ, z) instead (note that this is just a syntactic modification which does not change
the distribution of the answers of the simulator).
F offers the usual interfaces of an ideal cipher which will be denoted F .Enc(·, ·) and

F .Dec(·, ·), taking a key k and a value z ∈ {0, 1}n as input and returning a value z′ ∈ {0, 1}n,
and an additional procedure F .Check (only queried by the simulator during the experiment).
F is defined by the pseudocode given below. It uses a hash table E which contains entries
(δ, k, z) ∈ {+,−}× {0, 1}n×{0, 1}n associated with values z′ ∈ {0, 1}n. We note (δ, k, z) ∈ E

20

D

0/1

SE

D

0/1

TF

ϕη

D

0/1

TC̃12

π

D

0/1

PC12

Σ1 Σ2 Σ3 Σ4

Fig. 4. Systems used in the indifferentiability proof.

to mean that entry (δ, k, z) is in the hash table and denote E(δ, k, z) the associated value. For
δ ∈ {+,−}, we denote Eδ the set of values (k, z) such that (δ, k, z) ∈ E.

We say that E defines a partial cipher (at some point during the execution) if for all
k, x, y ∈ {0, 1}n, (+, k, x) ∈ E and E(+, k, x) = y if and only if (−, k, y) ∈ E and E(−, k, y) =
x. We warn that E will not necessarily define a partial cipher at any time during the execution,
however we will show that this holds with overwhelming probability.9

1 Two-sided keyed random function F(η):
2 Variables:
3 Hashtable E (initially empty)
4

5 public procedure Enc(k, x):
6 if (+, k, x) /∈ E then
7 y := η(+, k, x)
8 E(+, k, x) := y
9 E(−, k, y) := x \\ may overwrite an entry

10 return E(+, k, x)
11

12 public procedure Dec(k, y):
13 if (−, k, y) /∈ E then
14 x := η(−, k, y)
15 E(−, k, y) := x
16 E(+, k, x) := y \\ may overwrite an entry

9 As for hash tables Pi, assignments in E will always occur in pair, which will be considered as atomic events
since E does transiently not define a partial cipher between the two assignments in a pair.

21

17 return E(−, k, y)
18

19 public procedure Check(k, x, y):
20 if (+, k, x) ∈ E then return E(+, k, x) = y
21 if (−, k, y) ∈ E then return E(−, k, y) = x
22 return false

Said with words, procedure F .Check enables to verify whether x is mapped through key
k onto y without querying F .Enc(k, x) or F .Dec(k, y) and modifying the hash table E. Note
that F(η) is stateful: its answers (for some fixed table η) depends on the order of the queries
it receives.

4.3.2 Third System

In system Σ3(π) = (C̃12(π), T (π)C̃12(π)), we make the following changes. We introduce tables
π = (π1, . . . , π12) which are uniformly random permutation tables, meaning that πi(+, x) = y
if and only if πi(−, y) = x. The two-sided keyed random function F is replaced by an Even-
Mansour construction C̃12(π) defined by the pseudocode given below (note that this is simply
the usual Even-Mansour construction associated with the tuple of permutations π, enhanced
with a Check procedure). Also, the simulator T now uses the same tables πi instead of uniform
tables ϕi.

1 C̃12(π):
2 Variables:
3 Hashtable E′ (initially empty)
4

5 public procedure Enc(k, x)
6 if (+, k, x) /∈ E′ then
7 y0 := x
8 for i = 1 to 12 do
9 xi := yi−1 ⊕ k

10 yi := πi(+, xi)
11 y := y12 ⊕ k
12 E′(+, k, x) := y
13 E′(−, k, y) := x
14 return E′(+, k, x)
15

16 public procedure Dec(k, y)
17 if (−, k, y) /∈ E′ then
18 x13 := y
19 for i = 12 to 1 step −1 do
20 yi := xi+1 ⊕ k
21 xi := πi(−, yi)
22 x := x1 ⊕ k
23 E′(−, k, y) := x
24 E′(+, k, x) := y
25 return E′(−, k, y)

22

26

27 public procedure Check(k, x, y)
28 if (+, k, x) ∈ E′ then return E′(+, k, x) = y
29 if (−, k, y) ∈ E′ then return E′(−, k, y) = x
30 return false

4.4 Stages of the Indifferentiability Proof

In order to prove our indifferentiability result, we fix a deterministic, computationally un-
bounded distinguisher D issuing at most q queries in total, and prove the following three
inequalities: ∣∣∣Pr

[
DΣ1 = 1

]
− Pr

[
DΣ2(η,ϕ) = 1

]∣∣∣ ≤ 222 × q12

2n (Lemma 5)∣∣∣Pr
[
DΣ2(η,ϕ) = 1

]
− Pr

[
DΣ3(π) = 1

]∣∣∣ ≤ 289 × q12

2n (Lemma 23)∣∣∣Pr
[
DΣ3(π) = 1

]
− Pr

[
DΣ4 = 1

]∣∣∣ ≤ 289 × q12

2n (Lemma 24) ,

where the probabilities are over the random coins of S and the random draw of E in Σ1,
over the random draw of (η, ϕ) in Σ2 (note that D, T , and F are all deterministic), over the
random draw of π in Σ3, and over the random draw of P in Σ4.

Additionally, we will show (Lemma 6) that the simulator S runs in polynomial time with
overwhelming probability in system Σ1. Combining these lemmas will yield Theorem 2, that
we restate here for convenience.

Theorem. For any q, the 12-round single-key iterated Even-Mansour cipher CP ,γ
12 with twelve

independent random n-bit permutations P = (P1, . . . ,P12), and fixed, efficiently invertible
n-bit permutations γ = (γ0, . . . , γ12) for the key schedule, is strongly and statistically (q, σ, ε)-
indifferentiable from an ideal cipher E with n-bit blocks and n-bit keys, where:

σ = 27 × q4 and ε = 291 × q12

2n .

Proof. This follows directly from Lemmas 5, 6, 23, and 24 which will be proven in the remain-
ing of the paper. ut

4.5 Complexity of the Simulator in the Second System

In this section, we show that the simulator T runs in polynomial time with probability 1 in
system Σ2. This will imply that S runs in polynomial time with overwhelming probability
in system Σ1 as we will show later. First, we prove that if the simulator T ever completes a
partial chain (y0, x1, 0), then the distinguisher must have made a corresponding call to F .Enc
or F .Dec.

Lemma 1. Consider an execution of DΣ2(η,ϕ) where the distinguisher makes at most q queries
in total. Then the simulator dequeues at most q times a partial chain of the form (y0, x1, 0, `)
for which (y0, x1, 0) /∈ Completed.

23

Proof. First, note that if the same chain (y0, x1, 0) is enqueued twice or more, it will be
dequeued only once since it is put into Completed once it has been completed the first time.

Let (y0, x1, 0) and (y′0, x′1, 0) be two distinct partial chains dequeued at some point in the
execution such that (y0, x1, 0) /∈ Completed and (y′0, x′1, 0) /∈ Completed when they are
dequeued. Let also Check(k, y0, x13) and Check(k′, y′0, x′13) be the respective corresponding
calls at line 46 or 53 of T which returned true and led to these chains being enqueued. Then
k = y0⊕x1 and k′ = y′0⊕x′1, so that these calls were necessarily for distinct triples of inputs.
Hence, for each chain (y0, x1, 0, `) which is dequeued at some point in the execution such
that (y0, x1, 0) /∈ Completed when it is dequeued, we can find a distinct 3-tuple (k, x, y)
for which Check(k, x, y) was true at the moment (y0, x1, 0, `) was enqueued. We can now find
a unique access to η during a call to F .Enc or F .Dec which corresponds to (k, x, y): either
y := η(+, k, x) if this was a query to F .Enc, or x := η(−, k, y) if this was a query to F .Dec.
This query to F .Enc or F .Dec was made either by the distinguisher or the simulator. We argue
that this call cannot have been made by the simulator. The simulator issues such queries only
when it completes a chain, and after this completion, it adds (y0, x1, 0) to Completed, and
so it cannot have been that (y0, x1, 0) /∈ Completed when it was dequeued. Thus, there is a
distinct query of the distinguisher associated with each dequeue call of the form (y0, x1, 0, `)
for which (y0, x1, 0) /∈ Completed, so there are at most q such dequeue calls. ut

Lemma 2. Consider an execution of DΣ2(η,ϕ) where the distinguisher makes at most q queries
in total. Then:

– the size of P+
1 , P−1 , . . . , P+

12, P
−
12, E+, and E− is at most 6q2;

– the simulator makes at most 5q2 queries to F .Enc or F .Dec, and at most 2×63×q6 queries
to F .Check.

Proof. We first show that |P+
6 |, |P

−
6 |, |P

+
7 |, and |P

−
7 | are at most 2q. Pairs of assignments

in P6 or P7 can only happen in two cases: either when the distinguisher makes a query to
T .Query(i, δ, z) with i = 6 or 7, or when the simulator completes a chain (y0, x1, 0, `). There
can be at most q calls to T .Query by the distinguisher, and according to Lemma 1, there are
at most q chains of the form (y0, x1, 0, `) which are completed, which implies the bound. This
directly implies that the simulator completes at most |P−6 | · |P

+
7 | ≤ 4q2 chains of the form

(y6, x7, 6, `).
For any i ∈ {1, . . . , 12}, the size of P+

i and P−i can only be enlarged by at most 1 in the
following cases: if the distinguisher calls T .Query(i, δ, z), if a chain of the form (y0, x1, 0, `) is
completed, or if a chain (y6, x7, 6, `) is completed. There are at most q events of the first kind,
at most q events of the second kind by Lemma 1, and at most 4q2 events of the last kind,
giving a total of 4q2 + 2q ≤ 6q2 possibilities.

The simulator queries F .Enc or F .Dec only when it completes a chain. Hence the total
number of queries to F .Enc or F .Dec made by the simulator is at most q + 4q2 ≤ 5q2.
Consequently the total number of queries to F .Enc or F .Dec made either by the distinguisher
or the simulator is at most q+ 5q2 ≤ 6q2. Since the size of E+ and E− is enlarged at most by
1 by each query, one has that |E+| and |E−| are at most 6q2. Finally, the number of queries
to F .Check made by the simulator is bounded by |P−1 | × |P

+
2 | × |P

−
12|+ |P

+
1 | × |P

−
11| × |P

+
12| ≤

2× (6q2)3. ut

24

4.6 From the First to the Second System

We show that systems Σ1 and Σ2 are indistinguishable. For this, we first recall a result
from [HKT11]. Consider the following two systems:

– an n-bit two-sided random function R, which is defined exactly as the two-sided keyed
random function F , with a key space of size one (the key is therefore omitted from the
inputs to R)

– an n-bit random permutation P̃ , enhanced with a procedure Check(x, y) which returns
true if and only if P̃ (x) = y.

Then the following result states that these two systems are indistinguishable.

Lemma 3 (Lemma 3.2 of [HKT11]). A distinguisher which issues at most q′ queries to
either a random permutation P̃ enhanced with a procedure Check as described above or a
two-sided random function R has advantage at most 6q′2

2n in distinguishing the two systems.

The following lemma is simply a “keyed” version of Lemma 3.

Lemma 4. Let Ẽ denote an ideal cipher enhanced with a procedure Check(k, x, y) which
returns true if and only if Ẽ(k, x) = y. Then a distinguisher which issues at most q′ queries to
either Ẽ or a two-sided keyed random function F has advantage at most 6q′2

2n in distinguishing
the two systems.

Proof. We only sketch how to adapt the proof of Lemma 3 given in [HKT11]. Their analysis
is based on the definition of bad events such that if these bad events do not occur, the
two systems P̃ and R behave identically. The probability of these bad events is then upper
bounded by 6q′2/2n. In order to adapt the proof to our case, one can define the same bad
events for each key ki queried by the distinguisher. The probability that one of these bad
events happens is then upper bounded by the sum over the keys queried by the distinguisher
of 6(q′i)2/2n, where q′i is the number of queries corresponding to key ki. The result then follows
from

∑
6(q′i)2/2n ≤ 6(

∑
q′i)2/2n ≤ 6q′2/2n. ut

Lemma 5. For any distinguisher D which makes at most q queries in total, we have:∣∣∣Pr
[
DΣ1 = 1

]
− Pr

[
DΣ2(η,ϕ) = 1

]∣∣∣ ≤ 222 × q12

2n .

Proof. Consider the following simple modification to the simulator T : whenever T is about
dequeuing a (q+1)-th partial chain of the form (y0, x1, 0, `) for which (y0, x1, 0) /∈ Completed,
it aborts instead. Clearly Lemmas 1 and 2 still hold for this modified simulator. Assume now
that in Σ2 we replace F(η) with an ideal cipher Ẽ enhanced with a Check procedure, and
denote Σ′1 the resulting system. Then the combination of D and T can be seen as a single
distinguisher D′ interacting either with an ideal cipher Ẽ enhanced with a Check procedure
for Σ′1, or with a two-sided keyed random function F(η) for Σ2. Moreover, by Lemma 2, this
distinguisher D′ makes at most q + 5q2 + 2× 63 × q6 ≤ 29 × q6 queries to either Ẽ or F . We
can then use Lemma 4 with q′ = 29 × q6 to get:∣∣∣Pr

[
DΣ′

1 = 1
]
− Pr

[
DΣ2(η,ϕ) = 1

]∣∣∣ ≤ 221 × q12

2n .

25

Moreover, this implies that T aborts with probability at most 221q12/2n is Σ′1 since otherwise
one would obtain a distinguisher contradicting the bound above (recall that T never aborts in
Σ2 by Lemma 1). Observe now that the only differences between Σ1 and Σ′1 are the following
ones:

– T queries ϕ whereas S draws random values by itself (but this does not change the
distribution of the answers of the system);

– T queries F .Check whereas S queries E or E−1 and performs the check by itself (but
again this does not change the distribution of the answers of the system);

– T may abort while S does not.

Hence we see that unless T aborts in Σ′1, the two systems behave identically, so that:

∣∣∣Pr
[
DΣ1 = 1

]
− Pr

[
DΣ′

1 = 1
]∣∣∣ ≤ 221 × q12

2n .

The results follows by combining the two inequalities above. ut

As a side result, we obtain that the simulator S runs in polynomial time in system Σ1
with overwhelming probability.

Lemma 6. Assume that the distinguisher D makes at most q queries in total. Then with
probability greater than 1− 221 × q12/2n over an execution of DΣ1, the simulator S makes at
most 27 × q4 queries to E or E−1 (assuming S never repeats a query).

Proof. We showed in the proof of Lemma 5 that T aborts over an execution of DΣ′
1 with

probability at most 221q12/2n. This directly implies that with probability at most 221q12/2n
over an execution of DΣ1 , S dequeues at most q times a partial chain of the form (y0, x1, 0, `)
for which (y0, x1, 0) /∈ Completed. Whenever this holds, this implies as in the proof of
Lemma 2 that the size of P+

1 , P−1 , . . . , P+
12, P

−
12, E+, and E− maintained by S is at most 6q2.

Hence, with probability at least 1− 221× q12/2n, S makes at most |P−1 | · |P
+
2 |+ |P

−
11| · |P

+
12| ≤

2× (6q2)2 ≤ 27 × q4 queries to E or E−1 over an execution of DΣ1 . ut

4.7 From the Second to the Third System

This section contains the heart of the proof, and is largely devoted to the analysis of the second
system: we first give some definitions about so-called partial chains in Σ2(η, ϕ) (Section 4.7.1),
then we define a bad event that may happen in Σ2(η, ϕ) and show that it occurs only with
negligible probability (Section 4.7.2), and then we show that for executions such that this bad
event does not happen, the simulator T never overwrites entries during a call to ForceVal
(Section 4.7.3). Finally, Section 4.7.4 contains a “randomness mapping” argument (similar to
the one of [HKT11]) enabling to precisely compare executions of DΣ2(η,ϕ) and DΣ3(π).

4.7.1 Partial Chains
A partial chain C is a tuple (yi, xi+1, i) where yi, xi+1 ∈ {0, 1}n and i ∈ {0, . . . , 12}. The
key associated with C = (yi, xi+1, i) is k = yi ⊕ xi+1. Note that partial chains (y0, x1, 0) and
(y12, x13, 12) are special: y0 (resp. x13) correspond to the direct input (resp. indirect input) to
the iterated Even-Mansour cipher.

26

Fix hash tables P1, . . . , P12, and E at some point in the execution of DΣ2(η,ϕ). For a
chain C = (yi, xi+1, i) we denote C[1] = yi, C[2] = xi+1, and C[3] = i. We define below two
functions next and prev, taking as input a partial chain C, and returning the partial chain
obtained by moving respectively one step forward or backward in the iterated Even-Mansour
cipher, or the special symbol ⊥ when this is not possible because some value is undefined in
tables Pi or E, as well as functions val+

` and val−` , taking as input a partial chain C, and
returning respectively the direct or inverse input to permutation P` corresponding to C, or the
special symbol ⊥ when it is undefined. Note that these are functions used for the reasoning,
not procedures: they do not modify the tables.

1 function next(yi, xi+1, i):
2 k := yi ⊕ xi+1
3 if i < 12 then
4 if (+, xi+1) /∈ Pi+1 then return ⊥
5 yi+1 = Pi+1(+, xi+1)
6 xi+2 := yi+1 ⊕ k
7 return (yi+1, xi+2, i+ 1)
8 else if i = 12 then
9 if (−, k, x13) /∈ E then return ⊥

10 y0 := E(−, k, x13)
11 x1 := y0 ⊕ k
12 return (y0, x1, 0)

1 function prev(yi, xi+1, i):
2 k := yi ⊕ xi+1
3 if i > 0 then
4 if (−, yi) /∈ Pi then return ⊥
5 xi := Pi(−, yi)
6 yi−1 := xi ⊕ k
7 return (yi−1, xi, i− 1)
8 else if i = 0 then
9 if (+, k, y0) /∈ E then return ⊥

10 x13 := E(+, k, y0)
11 y12 := x13 ⊕ k
12 return (y12, x13, 12)

1 function val+
` (C): \\` = 1, . . . , 13

2 while (C 6=⊥) ∧ (C[3] 6= `− 1) do
3 C := next(C)
4 if C = ⊥ then return ⊥
5 return C[2]

1 function val−` (C): \\` = 0, . . . , 12
2 while (C 6=⊥) ∧ (C[3] 6= `) do
3 C := prev(C)
4 if C = ⊥ then return ⊥
5 return C[1]

27

We will also need the following two important definitions.

Definition 2. Consider tables P1, . . . , P12, and E at some point in the execution of DΣ2(η,ϕ).
Two partial chains C and D are equivalent (denoted C ≡ D) if C = D or if D can be obtained
by applying next or prev finitely many times on C.

This relation is clearly always reflexive and transitive, but not necessarily symmetric (as we
will see later, it is symmetric as long as no entry is overwritten in any table Pi or E).

Definition 3. Consider tables P1, . . . , P12, and E at some point in the execution of DΣ2(η,ϕ).
A partial chain C = (yi, xi+1, i) is said to be table-defined if next(C) 6= ⊥ and prev(C) 6= ⊥.

The following equivalences can be immediately checked:

– A partial chain C = (yi, xi+1, i) with i ∈ {1, . . . , 11} is table-defined iff (−, yi) ∈ Pi and
(+, xi+1) ∈ Pi+1.

– A partial chain C = (y0, x1, 0) is table-defined iff (+, x1) ∈ P1 and (+, k, y0) ∈ E with
k = y0 ⊕ x1.

– A partial chain C = (y12, x13, 12) is table-defined iff (−, y12) ∈ P12 and (−, k, x13) ∈ E
with k = y12 ⊕ x13.

4.7.2 Bad Events in the Second System
In all the following, a pair of random forward assignments in table E refers to any sequence
of instructions E(+, k, x) := y, E(−, k, y) := x happening at lines 8-9 of F . A pair of ran-
dom backward assignments in table E refers to any sequence of instructions E(−, k, y) := x,
E(+, k, x) := y happening at lines 15-16 of F . Note that for a pair of random forward as-
signments, y := η(+, k, x) is freshly taken from table η at line 7, while or a pair of random
backward assignments, x := η(−, k, y) is freshly taken from table η at line 14.

Similarly, a pair of random forward assignments in table Pi refers to any sequence of
instructions Pi(+, xi) := yi, Pi(−, yi) := xi happening at lines 34-35 of T (ϕ). A pair of
random backward assignments in table Pi refers to any sequence of instructions Pi(−, yi) := xi,
Pi(+, xi) := yi happening at lines 34-35 of T (ϕ). Note that for a pair of random forward
assignments, yi := ϕi(+, xi) is freshly taken from ϕ at line 33, while for a pair of random
backward assignments, xi := ϕi(−, yi) is freshly taken from ϕ at line 33.

A pair of random assignments in table E or Pi refers indifferently to the forward or
backward case. We define the history H for a pair of random assignments in E or in some
Pi as the set of all n-bit strings appearing in the tables E and Pi just before the pair of
assignments (more precisely, for any entry E(δ, k, z) = z′, this includes k, z and z′, while for
any entry Pi(δ, zi) = z′i this includes zi and z′i) as well as n-bit strings appearing in the query
corresponding to the pair of assignments, namely the values k and x (resp. k and y) for a pair
of random forward (resp. backward) assignments in E, or xi (resp. yi) for a pair of random
forward (resp. backward) assignments in Pi.

We are now ready to define a bad event10 that may happen during an execution of DΣ2(η,ϕ),
more precisely during a pair of random assignments in E or some table Pi.
10 In a departure from [HKT11], we describe one single and simple event rather than three more complex

events.

28

Definition 4. We say that event Bad happens if for a pair of random assignments in E or in
some Pi, the value freshly taken from η or ϕi is equal to the bitwise xor of five or less values
of the history H.

The probability of Bad can be easily upper bounded.

Lemma 7. When D makes at most q queries, the probability (over the random choice of η
and ϕ) that event Bad occurs in DΣ2(η,ϕ) satisfies:

Pr [Bad] ≤ 243 × q12

2n .

Proof. By Lemma 2, we know that there are at most 6q2 pairs of assignments in each tables
E and Pi during all the execution. Each pair of assignments in E adds at most three values
in the history, while each pair of assignments in Pi adds at most two values. Consequently,
the size of the history is always at most 3 × 6q2 + 12 × 2 × 6q2 = 162 × q2. Hence, for any
pair of random assignments in E or in some Pi, event Bad happens with probability at most
(162 · q2)5/2n. Since there are at most 13 × 6q2 pairs of random assignments in E or in the
Pi’s in total, we obtain:

Pr[Bad] ≤ 13× 6× 1625 × q12

2n ≤ 243 × q12

2n ,

as claimed. ut

Definition 5. A pair (η, ϕ) is said good (with respect to some fixed distinguisher D) if event
Bad does not occur during an execution of DΣ2(η,ϕ).

Remark 2. In the more general case where efficiently invertible permutations (γ0, . . . , γ12) are
used for the key derivation, the bad event becomes more cumbersome to describe. However,
the same bound as in Lemma 7 holds as well.

4.7.3 Properties of Good Executions
Our goal in this part is to show (this will be Lemma 17) that during an execution of DΣ2(η,ϕ)

with a good pair (η, ϕ), the simulator T never overwrites values in tables Pi during a call
to ForceVal. For this we proceed with a series of intermediate lemmas. We start with two
important definitions.

Definition 6. A call to Adapt(y`−2, x`−1, y`+1, x`+2, `) is said safe if before the call, one has
x`−1 /∈ P+

`−1 and y`+1 /∈ P−`+1.

Definition 7. A call to ForceVal(x`, y`, `) is said non-overwriting if before the call, one has
x` /∈ P+

` and y` /∈ P−` .

We first state some basic properties of good pairs (η, ϕ) in Lemmas 8, 9, and 10 below.
They are very similar to Lemmas 3.17, 3.20, 3.21, and 3.22 of [HKT11], but note that our
Lemmas 9 and 10 hold assuming that all calls to ForceVal were non-overwriting up to some
point in the execution.

29

Lemma 8. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Then the following
properties hold:

(a) No entry is ever overwritten during a random pair of assignments in E or in some Pi.
(b) For any partial chain C, if next(C) = ⊥ before a pair of random assignments in E or

in some Pi, then if C is table-defined after the pair of random assignments, it holds that
next(next(C)) = ⊥.

(c) For any partial chain C, if prev(C) = ⊥ before a pair of random assignments in E or
in some Pi, then if C is table-defined after the pair of random assignments, it holds that
prev(prev(C)) = ⊥.

(d) For any partial chain C, and each δ ∈ {+,−}, there is at most one value ` ∈ {0, . . . , 13}
such that valδ`(C) may change during a pair of random assignments in E or in some Pi.
More precisely, for a pair of random assignments in E, only val+

1 (C) or val−12(C) can
change, while for a pair of random forward assignments Pi(+, xi) := yi, Pi(−, yi) := xi,
or a pair of random backward assignments Pi(−, yi) := xi, Pi(+, xi) := yi, only val+

i+1(C)
can change (in which case val+

i (C) = xi before the pair of assignments) or val−i−1(C) can
change (in which case val−i (C) = yi before the pair of random assignments). Moreover,
if valδ`(C) changes, then it necessarily changes from ⊥ to some value in {0, 1}n, and if
C is table-defined after the pair of assignments, then valδ`(C) /∈ P δ` .

(e) For any partial chain C, if C is table-defined before a pair of random assignments in some
Pi, then:
– if this is a pair of random forward assignments, val−` (C) remains constant during the

pair of assignments for any ` ∈ {0, . . . , 12};
– if this is a pair of random backward assignments, val+

` (C) remains constant during
the pair of assignments for any ` ∈ {1, . . . , 13}.

Proof. To show (a), observe that for an entry to be overwritten during a pair of random
assignments in E or in some Pi, the value freshly taken from η or ϕi must already be in the
history H, contradicting the assumption that Bad does not happen.

We now show (b). Let C = (yi, xi+1, i) be a partial chain, and assume that next(C) = ⊥
before a pair of random assignments in E or in some Pi, and that C is table-defined and
next(next(C)) 6= ⊥ after the pair of assignments. We distinguish two cases depending on i.
Assume first that i = 12, so that C = (y12, x13, 12). Since next(C) = ⊥ before the pair of
assignments and next(next(C)) 6= ⊥ after the pair of assignments, we see that it was neces-
sarily a pair of assignments in E: either a pair of random forward assignments E(+, k, y0) :=
x13, E(−, k, x13) := y0, or a pair of random backward assignments E(−, k, x13) := y0,
E(+, k, y0) := x13, with k = y12 ⊕ x13. Moreover, since C is table-defined after the pair
of assignments, we have that y12 ∈ P−12 before the pair of assignments. Hence, if this was a
pair of random forward assignments, the value freshly taken from η was x13 := η(+, k, y0),
and we see that x13 = k ⊕ y12 is the xor of two values of the history H, contradicting the
assumption that Bad does not happen. If this was a pair of random backward assignments,
then the value freshly taken from η was y0 := η(−, k, x13). Denote x1 = y0 ⊕ k, so that
next(C) = (y0, x1, 0). Since by assumption next(next(C)) 6= ⊥, x1 ∈ P+

1 even before the pair
of random assignments. Hence we see that y0 = x1 ⊕ k is the xor of two values of the history
H, contradicting the assumption that Bad does not happen.

Assume now that C = (yi, xi+1, i) with i < 12. Since next(C) = ⊥ before the pair of assign-
ments and next(next(C)) 6= ⊥ after the pair of assignments, we see that it was necessarily a

30

pair of assignments in Pi+1: either a pair of random forward assignments Pi+1(+, xi+1) := yi+1,
Pi+1(−, yi+1) := xi+1, or a pair of random backward assignments Pi+1(−, yi+1) := xi+1,
Pi+1(+, xi+1) := yi+1. Moreover, since C is table-defined after the pair of assignments, we
have that yi ∈ P−i before the pair of assignments. Denote k = yi ⊕ xi+1, and xi+2 = yi+1 ⊕ k.
Then next(C) = (yi+1, xi+2, i + 1), and since next(next(C)) 6= ⊥, we have xi+2 ∈ P+

i+2 be-
fore the pair of assignments when i < 11, or (−, k, x13) ∈ E before the pair of assignments
when i = 11. Hence if this was a pair of random forward assignments, the value freshly taken
from ϕi+1 was yi+1 := ϕi+1(+, xi+1), and we see that yi+1 = xi+2 ⊕ yi ⊕ xi+1 is the xor
of three values in the history H, contradicting the assumption that Bad does not happen.
If this was a pair of random backward assignments, the value freshly taken from ϕi+1 was
xi+1 := ϕi+1(−, yi+1), and we see that xi+1 = yi⊕ yi+1⊕xi+2 is the xor of three values in the
history H, contradicting the assumption that Bad does not happen. This concludes the proof
of (b).

The proof of (c) is similar to (b) by symmetry. The proof of (d) follows the same lines as
the proof of (b) and (c) and is omitted.

We finally show (e). We consider the case of a pair of random forward assignments
Pi(+, xi) := yi, Pi(−, yi) := xi (the case of a pair of backward assignments is similar). For any
` ∈ {0, . . . 12}, val−` (C) can change during this pair of assignment only if val−i (C) = yi. Note
that it cannot be that C = (yi, xi+1, i) for some xi+1 because of the assumption that C is
table-defined before the pair of assignments. We distinguish two cases depending on i. Assume
first that i = 12. Denote (y0, x1, 0) the chain obtained by a sufficient number of applications
of prev to C (possibly none), and k = y0 ⊕ x1. Since C is table-defined before the pair of
assignments and val−12(C) = y12 6= ⊥, it holds that (+, k, y0) ∈ E and x1 ∈ P+

1 before the
pair of assignments. Denote x13 = E(+, k, y0). The value freshly taken from ϕ during the pair
of forward assignments is y12, and we see that y12 = x13 ⊕ (y0 ⊕ x1) is the xor of three values
in the history, contradicting the assumption that Bad does not happen. Assume now that
i < 12, and denote (yi+1, xi+2, i+ 1) the chain obtained by a sufficient number of applications
of prev to C (possibly none), and k = yi+1 ⊕ xi+2. Since C is table-defined before the pair of
assignments and val−i (C) = yi 6= ⊥, it holds that yi+1 ∈ P−i+1 and xi+2 ∈ P+

i+2 when i < 11,
or (−, k, x13) ∈ E when i = 11. Denote xi+1 = Pi+1(−, yi+1). Then the value freshly taken
from ϕ is yi, and we see that yi = xi+1⊕ (yi+1⊕xi+2) is the xor of three values in the history,
again contradicting the assumption that Bad does not happen. ut

Lemma 9. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Then at any point
in the execution such that all calls to ForceVal were non-overwriting up to that point, the
following properties hold:

(a) For all partial chains C and D, next(C) = D ⇔ prev(D) = C.
(b) The relation ≡ between partial chains is an equivalence relation.
(c) If two table-defined partial chains C and D are equivalent at this point in the execution,

then there exists a sequence C1, . . . , Cr (r ≥ 1) of table-defined partial chains such that:
– (C = C1 and D = Cr) or (C = Cr and D = C1);
– Ci = next(Ci−1) and Ci−1 = prev(Ci).

Proof. Note that for a good pair (η, ϕ), as long as all calls to ForceVal are non-overwriting,
no entries are ever overwritten in table E or in any table Pi by Lemma 8 (a). Hence all tables
Pi define partial permutations (recall that this means that (+, xi) ∈ Pi and Pi(+, xi) = yi if

31

and only if (−, yi) ∈ Pi and Pi(−, yi) = xi), and E defines a partial cipher (recall that this
means that (+, k, x) ∈ E and E(+, k, x) = y if and only if (−, k, y) ∈ E and E(−, k, y) = x).
This implies statement (a).

The relation ≡ is always reflexive and transitive by definition, and it follows from (a) that
it is symmetric (and hence an equivalence relation) for a good pair (η, ϕ) as long as all calls
to ForceVal are non-overwriting.

Finally, if C ≡ D, D can be obtained by applying next and prev finitely many times on
C. Any shortest such sequence can only consist of applications of next or prev because of
(a). Assume that a shortest sequence consists only of r − 1 (r ≥ 1) applications of next (the
reasoning is similar for prev). Then denoting C1 = C, C2 = next(C1), . . . , Cr = next(Cr−1),
we see that Cr = D, and that all partial chains Ci are table-defined since next(Ci) 6= ⊥ and
prev(Ci) 6= ⊥ by (a). This shows (c). ut

Lemma 10. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Let C and D be
two table-defined chains at some point in the execution such that all calls to ForceVal were
non-overwriting up to that point. Assume that after this point, there is a pair of random
assignments in some table Pi or in E. Then C ≡ D before the pair of assignments if and only
if C ≡ D after the pair of assignments.

Proof. Assume that C ≡ D before the pair of random assignments, and let C1, . . . , Cr be
a sequence whose existence is ensured by Lemma 9 (c). Since no entries are overwritten in
E or in any Pi during the pair of random assignments by Lemma 8 (a), the same sequence
C1, . . . , Cr shows that C ≡ D after the pair of random assignments.

Assume now that C ≡ D after the pair of random assignments, and again let C1, . . . , Cr
be a sequence whose existence is ensured by Lemma 9 (c). Assume that C1 = C and Cr = D
(the reasoning is similar for the case C1 = D and Cr = C). Assume towards a contradiction
that before the pair of random assignments, r − 1 applications of next to C do not yield D.
It is not possible that this yields a partial chain D′ 6= ⊥ distinct from D since this would
imply that the pair of random assignments overwrote an entry in a table, which does not
happen for a good execution. This means that before the pair of random assignments, there
is some j such that next(Cj) = ⊥. Note that it is not possible that Cj = Cr since Cr = D is
table-defined before the pair of random assignments. Hence we see that next(next(Cj)) 6= ⊥
after the pair of random assignments, contradicting Lemma 8 (b). ut

Two table-defined non-equivalent chains C and D may collide at round `, meaning that
valδ`(C) = valδ`(D) 6= ⊥ for δ ∈ {+,−}. However, this cannot happen unexpectedly for a
good execution. This is captured by the following lemma.

Lemma 11. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Fix a point in the
execution and assume that all calls to ForceVal were non-overwriting up to that point. Assume
that immediately after this point, a pair of random assignments occurs in some table Pi. Then
for any two partial chains C and D, any ` ∈ {1, . . . , 12}, and any δ ∈ {+,−}, the following
conditions cannot be simultaneously fulfilled:

(1) before the pair of assignments, C and D are not equivalent;
(2) before the pair of assignments, valδ`(C) = ⊥ or valδ`(D) = ⊥;
(3) after the pair of assignments, C and D are table-defined;
(4) after the pair of assignments, valδ`(C) = valδ`(D) 6= ⊥.

32

Proof. Assume towards a contradiction that all conditions happen during a pair of random
assignments in table Pi for two partial chains C and D, some ` ∈ {1, . . . , 12}, and δ = + (the
case δ = − is similar). Denote xi and yi the values involved in the pair of random assignments
in Pi (we consider indifferently a forward or backward pair of assignments). Assume wlog that
val+

` (C) = ⊥ before the pair of random assignments.
First, the fact that val+

` (C) changes from ⊥ to a different value implies by Lemma 8 (d)
that i = `−1 (and hence ` ≥ 2) and val+

i (C) = xi before the pair of random assignments. We
write all indexes as functions of i in the remaining of the proof. In particular, we have that
before the pair of assignments, val+

i+1(C) = ⊥, and after the pair of assignments, val+
i+1(C) =

val+
i+1(D) 6= ⊥.
We now distinguish two cases depending on val+

i+1(D) before the pair of assignments.
First, assume that val+

i+1(D) = ⊥ before the pair of assignments. Exactly as for C, it must
be that val+

i (D) = xi before the pair of assignments. Denote (yi−1, xi, i−1) the chain obtained
by a sufficient number of application of next to C, and (y′i−1, xi, i − 1) the chain obtained
by a sufficient number of application of next to D (possibly none in both cases). Then it
must hold that yi−1 6= y′i−1. Otherwise, denoting B = (yi−1, xi, i − 1) one would have that
C ≡ B and D ≡ B before the pair of assignments. Since we assumed that all calls to ForceVal
were non-overwriting up to that point, by Lemma 9 (b) it holds that C ≡ D before the pair
of assignments, a contradiction with condition (1). Hence yi−1 6= y′i−1, so that val+

i+1(C) 6=
val+

i+1(D) after the pair of assignments, a contradiction with condition (4).
Assume now that val+

i+1(D) 6= ⊥ before the pair of assignments. Denote (yi−1, xi, i − 1)
the chain obtained by a sufficient number of application of next to C, and (y′i−1, x

′
i, i − 1)

the chain obtained by a sufficient number of application of next to D (possibly none in both
cases). The same reasoning as above shows that one cannot have x′i = xi, hence we can assume
x′i 6= xi. By condition (3) that D is table-defined after the pair of random assignments, D
must be table-defined even before the pair of random assignments we are considering, so that
y′i−1 ∈ P

−
i−1 and x′i ∈ P+

i before the pair of random assignments. This allows us to consider
the value y′i = Pi(+, x′i) and we have y′i ∈ P−i before the pair of assignments. Similarly, yi−1 ∈
P−i−1 since C is table-defined after the pair of random assignments. After the pair of random
assignments, we have val+

i+1(C) = val+
i+1(D), which means yi⊕ yi−1⊕ xi = y′i⊕ y′i−1⊕ x′i, or

equivalently yi⊕xi = y′i⊕yi−1⊕y′i−1⊕x′i, where y′i, yi−1, y′i−1, and x′i are all in the history H.
Hence, independently of whether this is a pair of forward or backward assignment, the value
freshly taken from ϕi (either yi for a pair of forward assignments or xi for a pair of backward
assignments) is the xor of five values of the history, a contradiction with the assumption that
Bad does not happen.

Having excluded all possibilities, we conclude that the four conditions cannot be simulta-
neously fulfilled. ut

We now state some properties of safe calls to Adapt.

Lemma 12. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Consider a safe call
Adapt(y`−2, x`−1, y`+1, x`+2, `), and assume that all previous calls to ForceVal were non-
overwriting. Then the following properties hold:
(a) The resulting call to ForceVal(x`, y`, `) is non-overwriting.
(b) If a chain C is table-defined before the call to Adapt and is not equivalent to the chain

which is being completed, then for any i ∈ {1, . . . , 12}, val+
i (C) and val−i (C) remain

constant during the call to ForceVal.

33

(c) If two chains C and D are table-defined before the call to Adapt, then C ≡ D after the
call to ForceVal if and only if C ≡ D before the call to ForceVal.

Proof. We first prove (a). Since x`−1 /∈ P+
`−1, a pair of random forward assignments occurs

in P`−1, and this cannot lead to x` ∈ P+
` since this would contradict Lemma 8 (b) for the

partial chain (y`−2, x`−1, ` − 2). The reasoning is similar for y`, and this shows that the call
to ForceVal is non-overwriting.

We then show (b). Consider a chain C which is table-defined before the call to Adapt.
Denote B = (y`−2, x`−1, `− 2) and A = (y`+1, x`+2, `+ 1). Note that when the call to Adapt
occurs, A ≡ B since A and B are both equivalent to the chain which is being completed. If C
is equivalent to A and B before the call to Adapt, then C is equivalent to the chain which is
being completed since ≡ is an equivalence relation by Lemma 9 (b). Assume now that C is not
equivalent to A and B. We show that for any i ∈ {1, . . . , 12}, val+

i (C) and val−i (C) remain
constant during the call to ForceVal. Assume that val+

i (C) does not remain constant during
the call to ForceVal for some i (the reasoning for val−i (C) is similar). The value of val+

i (C)
can only change during ForceVal(x`, y`, `) if val+

` (C) = x`. Consider the pair of random
forward assignments to table P`−1 just preceding the call to ForceVal. Then the following
conditions are simultaneously fulfilled:

(1) before the pair of assignments, B and C are not equivalent (by assumption);
(2) before the pair of assignments, val+

` (B) = ⊥ since x`−1 /∈ P+
`−1;

(3) after the pair of assignments, B and C are both table-defined;
(4) after the pair of assignments, val+

` (B) = val+
` (C) = x`.

But this is impossible for a good execution by Lemma 11.
Finally, we show (c). Let C and D be two chains which are table-defined before the call to

Adapt. Assume that C ≡ D before the call to ForceVal. Let C1, . . . , Cr be a sequence whose
existence is ensured by Lemma 9 (c). Since the call to ForceVal is non-overwriting by (a), the
same sequence still implies that C ≡ D after the call to ForceVal. Assume now that C ≡ D
after the call to ForceVal. Again, let C1, . . . , Cr be a sequence whose existence is ensured
by Lemma 9 (c). Assume that C1 = C and Cr = D (the reasoning is similar for the case
C1 = D and Cr = C). Assume towards a contradiction that before the call to ForceVal, r−1
applications of next to C do not yield D. It is not possible that this yields a partial chain
D′ 6= ⊥ distinct from D since the call to ForceVal is non-overwriting by (a). This means that
before the pair of random assignments, there is some j such that next(Cj) = ⊥. Note that
it is not possible that Cj = Cr since Cr = D is table-defined before the call to Adapt. We
can now distinguish two cases. Assume first that C is equivalent to A and B before the call
to Adapt. Then D is equivalent to A, B and C after the call to ForceVal, but this implies
(since D was already table-defined before the call to Adapt) that D was already equivalent to
A and B before the call to Adapt, and hence equivalent to C as well. The remaining case is if
C is not equivalent to A and B before the call to Adapt. But then the fact that next(Cj) = ⊥
before the call to ForceVal and next(Cj) 6= ⊥ after the call implies that some value val+

i (C)
changes during the call to ForceVal, which contradicts (b). ut

The following two lemmas will be helpful for the remaining of the reasoning.

Lemma 13. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Assume that at some
point, a chain C is dequeued such that C /∈ Completed and that all calls to Adapt before C

34

is dequeued were safe. Then when C was enqueued, no equivalent chain had been previously
enqueued.

Proof. Assume that this is false, and consider a chain C which is dequeued at some point
such that C /∈ Completed, all calls to Adapt before C is dequeued were safe, and at the
moment C was enqueued, some chain D equivalent to C had been previously enqueued. Then
by Lemmas 10 and 12 (c) and the assumption that all calls to Adapt are safe (and hence
all calls to ForceVal are non-overwriting by Lemma 12 (a)) before C is dequeued, C and
D remain equivalent until the moment where C is dequeued. Clearly, D has already been
dequeued when C is dequeued. Since C was already equivalent to D at that time, we see that
either C = (y0, x1, 0) or C = (y6, x7, 6), where (y0, x1) and (y6, x7) are the values returned
respectively by EvalBackward(D, 0) and EvalForward(D, 7) at lines 16 and 17 of T , so that
C was added to the set Completed upon completion of chain D. This is in contradiction
with the assumption that C /∈ Completed when C is dequeued. ut

Lemma 14. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Assume that at some
point, a chain C is dequeued, to be adapted at position `, such that C /∈ Completed. Then
if val+

`−1(C) /∈ P+
`−1 and val−`+1(C) /∈ P−`+1 when C is dequeued, the resulting call to Adapt is

safe.

Proof. Denote Adapt(y`−2, x`−1, y`+1, x`+2, `) the call resulting from the completion of C. We
want to show that this call is safe, i.e. x`−1 /∈ P+

`−1 and y`+1 /∈ P−`+1 before the call. We show
this for x`−1 (the reasoning is similar for y`+1). Assume first that val+

`−1(C) 6= ⊥ when C

is dequeued. Then clearly x`−1 = val+
`−1(C) and hence x`−1 /∈ P+

`−1 when Adapt is called.
Assume now that val+

`−1(C) = ⊥ when C is dequeued. Then by Lemma 8 (d), val+
`−1(C)

can only change from ⊥ to some value in {0, 1}n during the pair of random assignments
in P`−2 occurring while procedure EvalForward(C, ` − 1) is executed, and since C is table-
defined, val+

`−1(C) /∈ P+
`−1 immediately after this pair of random assignments. Hence, x`−1 =

val+
`−1(C) /∈ P+

`−1 when Adapt is called. ut

The following two lemmas contain the core of the reasoning.

Lemma 15. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Let C be a partial
chain which is enqueued at some point in the execution to be adapted at position `. Assume that
when C is enqueued, no equivalent chain has been previously enqueued. Then before the call to
InQuery(i, δ, z) which led to C being enqueued, one has val+

`−1(C) = ⊥ and val−`+1(C) = ⊥.

Proof. We consider only the case ` = 4, the case ` = 9 is similar by symmetry.
Consider first the case that C = (y0, x1, 0) is enqueued due to a call to InQuery(2,+, x2).

Then clearly before the pair of random assignments triggered by this call, val+
3 (C) = ⊥

since val+
2 (C) = x2 and x2 /∈ P+

2 . Assume now that val−5 (C) 6= ⊥ before the call, and
denote y7 = val−7 (C), x7 = P7(−, y7), y6 = val−6 (C), and x6 = P6(−, y6). Then necessarily
(y6, x7, 6) ≡ C has been previously enqueued due to a call to InQuery with one of the four
following tuple of arguments: (6,+, x6), (6,−, y6), (7,+, x7), or (7,−, y7). This contradicts the
assumption that no equivalent chain has been previously enqueued.

Consider now the case that C = (y6, x7, 6) is enqueued due to call to InQuery(6,+, x6).
Then before the pair of random assignments triggered by this call, it holds that val−5 (C) = ⊥

35

since otherwise entry P6(−1, y6) would be overwritten, contradicting Lemma 8 (a). Assume
now that val+

3 (C) 6= ⊥ before the call. Denote k = y6 ⊕ x7. Defining xi = val+
i (C) for

i = 11, 12, 13, 1, and 2, we have that all these values must be different from ⊥ since oth-
erwise val+

3 (C) = ⊥, and moreover all the following entries are set in the respective tables:
P11(+, x11) = y11, P12(+, x12) = y12, E(−, k, x13) = y0, P1(+, x1) = y1, and = P2(+, x2) = y2,
as well as the corresponding inverse entries P11(−, y11) = x11, . . . , P2(−, y2) = x2. Consider
the last pair of assignments to a table before all these values are defined. This cannot have
been a pair of assignments to E, P1 or P12 since otherwise val+

3 (y11, x12, 11) would change
from ⊥ to some value 6= ⊥ during the pair of assignments, contradicting Lemma 8 (d). This
cannot have been a pair of random backward assignments to P2 or a pair of random forward
assignments to P11. Indeed, in the first case, val+

3 (y0, x1, 0) would change during the pair
of assignments, while in the second case val−10(y12, x13, 12) would change during the pair of
assignments, contradicting Lemma 8 (e). The only remaining possibilities are a pair of ran-
dom forward assignments to P2 or a pair of random backward assignments to P11, so that the
simulator would have detected and enqueued (y0, x1, 0) ≡ C, a contradiction.

Finally, assume that C = (y6, x7, 6) is enqueued due to a call to InQuery(6,−, y6). Then
clearly before the pair of random assignments triggered by this call, val−5 (C) = ⊥ since
y6 /∈ P−6 . The reasoning showing that val+

3 (C) = ⊥ is similar to above. ut

Lemma 16. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Then all calls to
Adapt are safe.

Proof. Assume that this is false, and consider the first call to Adapt which is not safe. Let
C be the chain during completion of which this call to Adapt occurs. Then clearly C /∈
Completed when C is dequeued, which implies by Lemma 13 that when C was enqueued,
no equivalent chain had been previously enqueued (for this, note that all calls to Adapt
before C is dequeued were safe by assumption that we are considering the first call which
is not safe). Hence, Lemma 15 implies that before the call to InQuery which led to C being
enqueued, val+

`−1(C) = ⊥ and val−`+1(C) = ⊥. We show that when C is dequeued, one has
val+

`−1(C) /∈ P+
`−1 and val−`+1(C) /∈ P−`+1. This will imply the result by Lemma 14. Assume

on the contrary that val+
`−1(C) ∈ P+

`−1 when C is dequeued (the reasoning is similar for
val−`+1(C)). This implies in particular that val+

`−1(C) changed from ⊥ to some value 6= ⊥
after C was enqueued. Consider the last pair of assignments to a table before val+

`−1(C) 6= ⊥
holds. We show that immediately after this pair of assignments, val+

`−1(C) /∈ P+
`−1. For this,

we exclude all possibilities. First, this cannot have been a pair of random assignments to E or
some Pi by Lemma 8 (d) since C is table-defined after this pair of assignments. Second, this
cannot have been a previous call to ForceVal: indeed, C cannot be equivalent to the chain
which is being completed when this call to ForceVal occurs (since when C is enqueued, no
equivalent chain has been previously enqueued), so that by Lemma 12 (b), valδi (C) remains
constant for all i and δ.

Denote x`−1 the value of val+
`−1(C) immediately after val+

`−1(C) 6= ⊥ holds. Since x`−1 /∈
P+
`−1 immediately after val+

`−1(C) 6= ⊥ holds, and x`−1 ∈ P+
`−1 when C is dequeued, this

necessarily means that this value was added in P`−1 during completion of another chain D.
This chain D was enqueued before C was enqueued, and dequeued before C was dequeued,
and while D was completed, a pair of random assignments added (+, x`−1) to P`−1. Note that
this cannot have been a pair of random backward assignments, since otherwise val+

` (C) would

36

change during the pair of assignments, contradicting Lemma 8 (e). Hence this was a pair of
random forward assignments, and at the time this pair of assignments occurs, val+

`−1(C) =
val+

`−1(D) = x`−1. Consider the last pair of assignments to a table before val+
`−1(C) =

val+
`−1(D) 6= ⊥ holds. We exclude each possibility in turn.
First, this cannot have been a pair of random assignments to table E since this does not

modify the value of valδ3(·) nor valδ9(·) for a good execution by Lemma 8 (d).
Second, this cannot have been a pair of random assignments in some table Pi. Indeed, the

following conditions would be fulfilled:

(1) Before the pair of assignments, C and D are not equivalent. Indeed, when C is enqueued,
no equivalent chain has been previously enqueued, and D cannot become equivalent to C
later by Lemmas 10 and 12 (c).

(2) Before the pair of assignments, either val+
`−1(C) = ⊥ or val+

`−1(D) = ⊥. Indeed, if
val+

`−1(C) 6= ⊥, val+
`−1(D) 6= ⊥, and val+

`−1(C) 6= val+
`−1(D), then a pair of random as-

signments in some table Pi cannot change these values and make them collide by Lemma 8
(a).

(3) Both C and D are table-defined after this pair of assignments. Indeed, this pair of random
assignments must be the one or posterior to the one which leads to C being enqueued,
and D is already enqueued at this time, hence table-defined.

(4) After the pair of assignments, val+
`−1(C) = val+

`−1(D) 6= ⊥.

Yet Lemma 11 exactly forbids that these conditions be simultaneously fulfilled for a good pair
(η, ϕ).

Finally, this cannot have been because of a previous call to ForceVal by the same rea-
soning as before: C cannot be equivalent to the chain which is being completed when this
call to ForceVal occurs (since when C is enqueued, no equivalent chain has been previously
enqueued), so that by Lemma 12 (b) valδi (C) remains constant for all i and δ. The same
reasoning shows that valδi (D) cannot change during a previous call to ForceVal.

We have excluded all possibilities, which shows that val+
`−1(C) /∈ P+

`−1 when C is dequeued.
This concludes the proof. ut

We are now ready to state the ultimate goal of this section, which is the following crucial
lemma.

Lemma 17. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Then all calls to
ForceVal are non-overwriting.

Proof. This is an immediate consequence of Lemmas 12 (a) and 16. ut

4.7.4 Randomness Mapping
This section contains the final argument for proving the indistinguishability of the two systems
Σ2(η, ϕ) and Σ3(π).

For any distinguisher D, we define the distinguisher D which runs D and then emulates
a call to EvalForward(x, x ⊕ k, 0, 13) (resp. EvalBackward(k ⊕ y, y, 12, 0)) for all queries
F .Enc(k, x) (resp. F .Dec(k, y)) made by D, and outputs whatever D outputs. We say that
D is the distinguisher which completes all chains corresponding to D. Note that D makes at

37

most 13q queries if D makes at most q queries, and that D has exactly the same advantage
as D in distinguishing Σ2 from Σ3.

Recall that the definition of a good pair (η, ϕ) holds with respect to some fixed distin-
guisher. In all the following, when we mention a good pair (η, ϕ), this always means with
respect to D.

We first state two simple lemmas regarding an execution of DΣ2(η,ϕ) with a good pair
(η, ϕ).

Lemma 18. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Assume that during
the execution F .Enc(k, x), resp. F .Dec(k, y) is queried. Then, at the end of the execution, it
holds that E(+, k, x) = val+

13(x, x⊕ k, 0), resp. E(−, k, y) = val−0 (y ⊕ k, y, 12).

Proof. We consider the case of a query to F .Enc(k, x) (the case of a query to Dec is handled
similarly). Assume first that the query was made by the simulator. Then this was while
completing a chain, and clearly the equality holds right after completion of the chain. Since
no entry is ever overwritten in tables E or Pi for a good pair (η, ϕ), the equality also holds
at the end of the execution.

Assume now that the query was made by the distinguisher D. Since it completes all chains,
at some point in the execution it must emulate a call to EvalForward(x, x⊕ k, 0, 13). In par-
ticular it must query the corresponding values (6,+, x6) and (7,+, x7) at some point. Denote
y6 and y7 the corresponding answers. Then at the end of the execution we necessarily have
that P6(+, x6), P6(−, y6), P7(+, x7), and P7(−, y7) are all defined in the respective hash ta-
bles. Thus, the partial chain (y6, x7, 6) was necessarily enqueued at some point, and dequeued
later, and hence completed at some point. As previously, the equality holds right after the
completion, and also at the end of the execution. ut

Lemma 19. Consider an execution of DΣ2(η,ϕ) with a good pair (η, ϕ). Then the number of
calls to ForceVal made by the simulator is equal to the number of queries to η made by F .

Proof. Since no entry is overwritten in table E, the number of queries to η is exactly half the
number of entries in E at the end of the execution. We describe a bijective mapping between
calls to ForceVal and pairs of entries in E. Namely, to each call to ForceVal we associate
the unique entry in E (and its corresponding inverse entry) that was read during during the
call to EvalForward or EvalBackward just preceding the call to ForceVal. This mapping
in one-to-one: indeed if for two distinct calls to ForceVal the same pair of entries is read,
necessarily the second call to ForceVal overwrites an entry, contradicting Lemma 17.

This mapping is also onto: for each pair of entries in E we can identify a corresponding
call to ForceVal. If the pair of entries was added due to a query to Enc/Dec made by the
simulator, then we consider the call to ForceVal immediately following this query. If the
pair of entries was added due to a query to Enc/Dec made by D, then the distinguisher will
eventually emulate EvalForward or EvalBackward for the corresponding query, querying (or
getting as answer) values y6 and x7. At the end of the emulation, consider the first chain
which was enqueued during the execution and which was equivalent to (y6, x7, 6) when it was
enqueued. Then the pair of entries in E was read just before the call to Adapt made while
completing this chain. ut

In all the following, a sequence of partial permutation tables π′ = (π′1, . . . , π′12) is a sequence
of functions π′i : {+,−} × {0, 1}n → {0, 1}n ∪ {∗} such that π′i(+, x) = y 6= ∗ if and only if

38

π′i(−, y) = x 6= ∗. A sequence of permutation tables π = (π1, . . . , π12) is a sequence of functions
πi : {+,−} × {0, 1}n → {0, 1}n such that πi(+, x) = y if and only if πi(−, y) = x. We say
that a sequence of permutation tables π matches a sequence of partial permutation tables π′,
denoted π ∼= π′, if π and π′ agree on all entries such that π′i(δ, z) 6= ∗.

Definition 8 (Randomness mapping). We define the mapping Λ from pairs (η, ϕ) to
partial tables π′ = (π′1, . . . , π′12), where π′i : {+,−} × {0, 1}n → {0, 1}n ∪ {∗}, as follows.
Run the experiment DΣ2(η,ϕ); if z′ = ϕi(δ, z) is ever read during the experiment, then define
π′i(δ, z) := z′ and π′i(δ̄, z′) := z; otherwise, if a call to ForceVal(x`, y`, `) occurs, then define
π′`(+, x`) := y` and π′`(−, y`) := x` for the first such call. Finally, fill the remaining entries
with the special symbol ∗.

Lemma 20. If (η, ϕ) is good (with respect to D), then Λ(η, ϕ) is a sequence of partial per-
mutation tables.

Proof. Note that for a good pair (η, ϕ), Λ(η, ϕ) is equal by definition to tables (P1, . . . , P12)
completed with symbols ∗ for entries which are left undefined at the end of the execution of
DΣ2(η,ϕ). Hence the result immediately follows from the fact that for a good pair (η, ϕ), no
entry is ever overwritten in tables Pi (Lemmas 8 (a) and 17). ut

In the following, we say that a sequence of partial permutation tables π′ is good if there
exists a good pair (η, ϕ) such that Λ(η, ϕ) = π′. For a good π′, we let |π′i| denote half the
number of entries different from ∗ in table π′i, and we let |π′| = |π′1|+ . . .+ |π′12|.

Lemma 21. Assume that D makes at most q queries. Let π′ be a good sequence of partial
permutation tables (with respect to D), and let (η′, ϕ′) be a good pair such that Λ(η′, ϕ′) = π′.
Then the following properties hold:

(a) The following conditions on a pair (η, ϕ) are equivalent:
(i) (η, ϕ) is good and Λ(η, ϕ) = π′;
(ii) for any sequence of permutation tables π such that π ∼= π′, the transcript of the

sequence of queries and answers to (F(η), ϕ) in DΣ2(η,ϕ) is the same as the transcript
of queries and answers to (C̃12(π), π) in DΣ3(π);

(iii) the transcript of the sequence of queries and answers to (η, ϕ) in DΣ2(η,ϕ) is the same
as the transcript of the sequence of queries and answers to (η′, ϕ′) in DΣ2(η′,ϕ′).

(b) For any good pair (η, ϕ) such that Λ(η, ϕ) = π′ and any sequence of permutation tables π
such that π ∼= π′, the outputs of DΣ2(η,ϕ) and DΣ3(π) are equal.

(c) |π′| is at most 12× 6× (13q)2.

Proof. We start by showing (a). Assume that (i) holds, i.e. consider a good pair (η, ϕ) such
that Λ(η, ϕ) = π′. We show that (ii) holds. For this, we fix some π ∼= π′, and we proceed
by induction on the sequence of queries of D ∪ T to (F(η), ϕ) or (C̃12(π), π). Assume that
the sequence of queries and answers is the same in both systems up to some point in the
execution, and consider the next query (which is the same in both systems since D and T are
both deterministic). Consider first the case of a query to ϕi(δ, z)/πi(δ, z). Then the answer is
the same in both systems by definition of the mapping Λ. Consider now the case of a query to
F .Enc(k, x)/C̃12.Enc(k, x) (the case of a query to Dec is handled similarly). By Lemma 18, the

39

answer to this query in the execution of DΣ2(η,ϕ) is exactly what is obtained when evaluating
the Even-Mansour construction forward at the end of the execution. Each answer to calls
Pi(+, xi) in this evaluation was set either by a call to ϕi(+, xi), or a call ϕi(−, yi) which
returned xi, or during a call to ForceVal. In all cases the value of πi(+, xi) must agree by
definition of the randomness mapping and by the fact that no entry is overwritten for a
good (η, ϕ). Hence, the answer to the query to C̃12.Enc(k, x) is the same in DΣ3(π). Finally, it
remains to consider queries to Check. For these queries, it is clear that the answer is the same
in both systems since it is determined by previous queries and answers to Enc and Dec.

We then show that (ii) implies (iii). Assume that property (ii) holds for (η, ϕ). By as-
sumption, (η′, ϕ′) is good and Λ(η′, ϕ′) = π′, so that property (ii) holds for (η′, ϕ′) by what
was just proved above. The result then easily follows since the answer to any query to ϕ/ϕ′
must agree with π′, while the answer to any query to η/η′ must agree with the answer returned
by C̃12(π′).

Finally, we show that (iii) implies (i). Since (η′, ϕ′) is good by assumption, assuming that
the sequences of queries and answers to (η, ϕ) and to (η′, ϕ′) are the same implies that (η, ϕ)
is good as well. Moreover, this also implies that Λ(η, ϕ) = Λ(η′, ϕ′) = π′.

We then show (b). Let (η, ϕ) be a good pair such that Λ(η, ϕ) = π′ and π such that π ∼= π′.
Because of (a), we know that the sequence of queries and answers of D ∪ T is the same in
DΣ2(η,ϕ) and DΣ3(π). This clearly implies that the sequence of queries and answers of D alone
is the same in both systems, and hence also its output.

Finally, it remains to show (c). Since the total number of queries of D is at most 13q, it
follows from Lemma 2 that the size of P+

i and P−i at the end of the execution of DΣ2(η′,ϕ′)

is at most 6 × (13q)2. Since entries which are different from ∗ in π′ = Λ(η′, ϕ′) are exactly
entries which are defined in tables Pi at the end of the execution of DΣ2(η′,ϕ′), the results
follows (recall that |π′i| is by definition half the number of entries different from ∗ in π′i). ut

Lemma 22. Let π′ be a good sequence of partial permutation tables. Then:(
1− |π

′|2

2n

)
Pr
[
π ∼= π′

]
≤ Pr

[
(η, ϕ) is good ∧ Λ(η, ϕ) = π′

]
≤ Pr

[
π ∼= π′

]
,

where the probabilities are over a uniformly random sequence of permutation tables π and a
uniformly random pair (η, ϕ).

Proof. Fix a good sequence of partial permutation tables π′. We first show that:

Pr
[
(η, ϕ) is good ∧ Λ(η, ϕ) = π′

]
= 2−n|π′| .

Fix some good pair (η′, ϕ′) such that Λ(η′, ϕ′) = π′. By Lemma 21 (a), a pair (η, ϕ) is good
and Λ(η, ϕ) = π′ if and only if the transcript of the sequence of queries and answers to (η, ϕ)
in DΣ2(η,ϕ) is the same as the transcript of the sequence of queries and answers to (η′, ϕ′)
in DΣ2(η′,ϕ′). Each answer is identical in both systems with probability 2−n over the random
choice of (η, ϕ). Note moreover that |π′| is exactly the sum of the number of queries to ϕ′ plus
the number of calls to ForceVal in the execution of DΣ2(η′,ϕ′), and by Lemma 19 the number
of calls to ForceVal is equal to the number of queries to η′. The claim follows.

40

Clearly, we also have:

Pr
[
π ∼= π′

]
=

12∏
i=1

1
2n(2n − 1) . . . (2n − |π′i|+ 1) .

The upper bound then follows easily, while the lower bound comes from:

12∏
i=1

2n(2n − 1) . . . (2n − |π′i|+ 1) = 2n|π′|
12∏
i=1

(
1− 1

2n
)
· · ·
(

1− |π
′
i| − 1
2n

)

≥ 2n|π′|
(

1− |π
′
1|2 + . . .+ |π′12|2

2n

)

≥ 2n|π′|
(

1− |π
′|2

2n

)
.

This concludes the proof. ut

Lemma 23. For any distinguisher D which makes at most q queries in total, we have:

∣∣∣Pr
[
DΣ2(η,ϕ) = 1

]
− Pr

[
DΣ3(π) = 1

]∣∣∣ ≤ 289 × q12

2n .

Proof. Consider the distinguisher D associated with D, and recall that its advantage is the
same as the one of D. For conciseness, we define:

ε =
∣∣∣Pr

[
DΣ2(η,ϕ) = 1

]
− Pr

[
DΣ3(π) = 1

]∣∣∣
ε′ = Pr

[
π is good ∧ DΣ3(π) = 1

]
− Pr

[
(η, ϕ) is good ∧ DΣ2(η,ϕ) = 1

]
.

First, we note that:

ε ≤ |ε′|+ Pr [(η, ϕ) is not good] + Pr [π is not good] .

Since D makes at most 13q queries, we have by Lemma 7 that:

Pr [(η, ϕ) is not good] ≤ 243 × (13q)12

2n .

Denote Θ the set of good partial permutation tables π′. Then:

Pr [π is not good] = 1−
∑
π′∈Θ

Pr
[
π ∼= π′

]
≤ 1−

∑
π′∈Θ

Pr
[
(η, ϕ) is good ∧ Λ(η, ϕ) = π′

]
(Lemma 22)

= Pr [(η, ϕ) is not good] ≤ 243 × (13q)12

2n .

By Lemma 21 (b), for any good π′, the output of DΣ2(η,ϕ) is the same for any (η, ϕ) such
that Λ(η, ϕ) = π′ Hence we can consider the set Θ1 defined as the set of good π′ such that

41

DΣ2(η,ϕ) outputs 1 for any good pre-image of π′. Again by Lemma 21 (b), for any π′ ∈ Θ1 and
any π such that π ∼= π′, DΣ3(π) outputs 1, so that:

ε′ =
∑
π′∈Θ1

Pr
[
π ∼= π′

]
− Pr

[
(η, ϕ) is good ∧ Λ(η, ϕ) = π′

]
.

Note that by Lemma 22, ε′ ≥ 0, so that:

|ε′| = ε′ ≤
∑
π′∈Θ1

|π′|2

2n Pr
[
π ∼= π′

]
(Lemma 22)

≤ (12× 6× (13q)2)2

2n (Lemma 21 (c)) .

Combining all previous inequalities, we finally obtain that:

ε ≤ (12× 6× (13q)2)2

2n + 2× 243 × (13q)12

2n ≤ 289 × q12

2n ,

which concludes the proof. ut

4.8 From the Third to the Fourth System

Finally, we upper bound the distance between systems Σ3(π) and Σ4.

Lemma 24. For any distinguisher D which makes at most q queries in total, we have:

∣∣∣Pr
[
DΣ3(π) = 1

]
− Pr

[
DΣ4 = 1

]∣∣∣ ≤ 289 × q12

2n .

Proof. First, note that because of Lemma 23, the distinguisher must eventually output an
answer when interacting withΣ3(π) with probability at least 1−289×q12/2n. Suppose now that
in system Σ3(π), T (π) eventually answers a query Query(i, δ, z) asked by the distinguisher.
Then necessarily the answer is πi(δ, z). Indeed, T sets this value either by accessing directly
πi(δ, z), in which case the claim is clear, or during a call to ForceVal. In the later case,
the answer is obtained by evaluating the Even-Mansour construction forward or backward,
wrapping up with a call to C̃12(π).Enc or C̃12(π).Dec. Since C̃12 uses tables πi as well, the answer
to query Query(i, δ, z) must be πi(δ, z) as well. Consequently, for any π such that DΣ3(π)

eventually outputs an answer, DΣ4 returns the same answer when the random permutations
Pi in Σ4 take their randomness in tables πi. This implies the result. ut

References

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Steinberger.
On the Indifferentiability of Key-Alternating Ciphers. IACR Cryptology ePrint Archive Report
2013/061, 2013. Available at http://eprint.iacr.org/2013/061.

[AFPW11] Martin R. Albrecht, Pooya Farshim, Kenneth G. Paterson, and Gaven J. Watson. On Cipher-
Dependent Related-Key Attacks in the Ideal-Cipher Model. In Antoine Joux, editor, Fast Soft-
ware Encryption - FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 128–145.
Springer, 2011.

42

http://eprint.iacr.org/2013/061

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete Security Treatment of
Symmetric Encryption. In Symposium on Foundations of Computer Science - FOCS ’97, pages
394–403. IEEE Computer Society, 1997.

[Bih94] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology,
7(4):229–246, 1994.

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In Eli Biham, editor, Advances in Cryptology - EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 491–506. Springer,
2003.

[BKL+12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert, John P. Stein-
berger, and Elmar Tischhauser. Key-Alternating Ciphers in a Provable Setting: Encryption
Using a Small Number of Public Permutations - (Extended Abstract). In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 45–62. Springer, 2012.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and Related-Key Attack
on the Full AES-256. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009. Springer,
2009. To appear.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of the Cipher Block Chaining
Message Authentication Code. Journal of Computer and System Sciences, 61(3):362–399, 2000.

[Bla06] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash
Function. In Matthew J.B. Robshaw, editor, Fast Software Encryption - FSE ’06, volume 4047
of Lecture Notes in Computer Science, pages 328–340. Springer, 2006.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993.

[BR06] Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and
the EMD Transform. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology - ASI-
ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314. Springer,
2006.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In Moti Yung, editor, Advances in Cryptology
- CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 320–335. Springer,
2002.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård
Revisited: How to Construct a Hash Function. In Victor Shoup, editor, Advances in Cryptology
- CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 430–448. Springer,
2005.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited
(Preliminary Version). In Symposium on Theory of Computing - STOC ’98, pages 209–218.
ACM, 1998. Full version available at http://arxiv.org/abs/cs.CR/0010019.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The Random Oracle Model and
the Ideal Cipher Model Are Equivalent. In David Wagner, editor, Advances in Cryptology -
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 1–20. Springer, 2008.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, 1989.

[Des00] Anand Desai. The Security of All-or-Nothing Encryption: Protecting against Exhaustive Key
Search. In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 359–375. Springer, 2000.

[DGHM12] Grégory Demay, Peter Gazi, Martin Hirt, and Ueli Maurer. Resource-Restricted Indiffer-
entiability. IACR Cryptology ePrint Archive Report 2012/613, 2012. Available at http:
//eprint.iacr.org/2012/613.

[DR01] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram Honary, editor,
Cryptography and Coding 2001, volume 2260 of Lecture Notes in Computer Science, pages 222–
238. Springer, 2001.

43

http://arxiv.org/abs/cs.CR/0010019
http://eprint.iacr.org/2012/613
http://eprint.iacr.org/2012/613

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002.

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single Pseudorandom
Permutation. Journal of Cryptology, 10(3):151–162, 1997.

[Fei73] Horst Feistel. Cryptography and computer privacy. Scientific American, 228(5):15–23, 1973.
[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and

Signature Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GM09] Peter Gazi and Ueli M. Maurer. Cascade Encryption Revisited. In Mitsuru Matsui, editor,
Advances in Cryptology - ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 37–51. Springer, 2009.

[GP10] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption - FSE 2010,
volume 6147 of Lecture Notes in Computer Science, pages 365–383. Springer, 2010.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block
Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2011.

[Gra02] Louis Granboulan. Short Signatures in the Random Oracle Model. In Yuliang Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 364–378. Springer, 2002.

[GT12] Peter Gazi and Stefano Tessaro. Efficient and Optimally Secure Key-Length Extension for Block
Ciphers via Randomized Cascading. In David Pointcheval and Thomas Johansson, editors, Ad-
vances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 63–80. Springer, 2012.

[Hir04] Shoichi Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box Model.
In Choonsik Park and Seongtaek Chee, editors, Information Security and Cryptology - ICISC
2004, volume 3506 of Lecture Notes in Computer Science, pages 330–342. Springer, 2004.

[Hir06] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In
Matthew J.B. Robshaw, editor, Fast Software Encryption - FSE 2006, volume 4047 of Lecture
Notes in Computer Science, pages 210–225. Springer, 2006.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The Equivalence of the Random Oracle
Model and the Ideal Cipher Model, Revisited. In Lance Fortnow and Salil P. Vadhan, editors,
Symposium on Theory of Computing - STOC 2011, pages 89–98. ACM, 2011. Full version
available at http://arxiv.org/abs/1011.1264.

[JJV02] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the Security of Randomized CBC-
MAC Beyond the Birthday Paradox Limit: A New Construction. In Joan Daemen and Vincent
Rijmen, editors, Fast Software Encryption - FSE 2002, volume 2365 of Lecture Notes in Computer
Science, pages 237–251. Springer, 2002.

[Jon02] Jakob Jonsson. An OAEP Variant With a Tight Security Proof. IACR Cryptology ePrint
Archive Report 2002/034, 2002. Available at http://eprint.iacr.org/2002/034.

[KR96] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search. In
Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 252–267. Springer, 1996.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block Ciphers. In
Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture
Notes in Computer Science, pages 315–324. Springer, 2007.

[Kün09] Robin Künzler. Are the random oracle and the ideal cipher models equivalent? Master’s thesis,
ETH Zurich, Switzerland, 2009.

[LM92] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In Rainer A. Rueppel,
editor, Advances in Cryptology - EUROCRYPT ’92, volume 658 of Lecture Notes in Computer
Science, pages 55–70. Springer, 1992.

[LPS12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically Tight Security
Analysis of the Iterated Even-Mansour Cipher. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,
pages 278–295. Springer, 2012.

44

http://arxiv.org/abs/1011.1264
http://eprint.iacr.org/2002/034

[LR86] Michael Luby and Charles Rackoff. Pseudo-random Permutation Generators and Cryptographic
Composition. In Symposium on Theory of Computing - STOC ’86, pages 356–363. ACM, 1986.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[LSS11] Jooyoung Lee, Martijn Stam, and John P. Steinberger. The Collision Security of Tandem-DM in
the Ideal Cipher Model. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 561–577. Springer, 2011.

[Mau92] Ueli M. Maurer. A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom Per-
mutation Generator. In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92,
volume 658 of Lecture Notes in Computer Science, pages 239–255. Springer, 1992.

[Men12] Bart Mennink. Optimal Collision Security in Double Block Length Hashing with Single Length
Key. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages 526–543. Springer, 2012.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer, 1989.

[MP03] Ueli M. Maurer and Krzysztof Pietrzak. The Security of Many-Round Luby-Rackoff Pseudo-
Random Permutations. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 544–561. Springer, 2003.

[MPP09] Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers for Ciphers and
Known Key Attack against Rijndael with Large Blocks. In Bart Preneel, editor, Progress in
Cryptology - AFRICACRYPT 2009, volume 5580 of Lecture Notes in Computer Science, pages
60–76. Springer, 2009.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the Public Indifferentiability and
Correlation Intractability of the 6-Round Feistel Construction. In Ronald Cramer, editor, Theory
of Cryptography Conference - TCC 2012, volume 7194 of Lecture Notes in Computer Science,
pages 285–302. Springer, 2012. Full version available at http://eprint.iacr.org/2011/496.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Re-
sults on Reductions, and Applications to the Random Oracle Methodology. In Moni Naor, editor,
Theory of Cryptography Conference- TCC 2004, volume 2951 of Lecture Notes in Computer Sci-
ence, pages 21–39. Springer, 2004.

[Pat90] Jacques Patarin. Pseudorandom Permutations Based on the DES Scheme. In Gérard D. Co-
hen and Pascale Charpin, editors, EUROCODE ’90, volume 514 of Lecture Notes in Computer
Science, pages 193–204. Springer, 1990.

[Pat04] Jacques Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 106–122. Springer, 2004.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on Block Ciphers:
A Synthetic Approach. In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93,
volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer, 1993.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composition: Limi-
tations of the Indifferentiability Framework. In Kenneth G. Paterson, editor, Advances in Cryp-
tology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 487–506.
Springer, 2011.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 552–565. Springer, 2001.

[Seu09] Yannick Seurin. Primitives et protocoles cryptographiques à sécurité prouvée. PhD thesis, Uni-
versité de Versailles Saint-Quentin-en-Yvelines, France, 2009.

[Seu11] Yannick Seurin. A Note on the Indifferentiability of the 10-Round Feistel Construction, March
2011. Unpublished note available from the author.

[Sha49] Claude Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal,
28(4):656–715, 1949.

[Sim98] Daniel R. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based
on General Assumptions? In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98,
volume 1403 of Lecture Notes in Computer Science, pages 334–345. Springer, 1998.

45

http://eprint.iacr.org/2011/496

[Ste07] John P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In Moni
Naor, editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lecture Notes in
Computer Science, pages 34–51. Springer, 2007.

[Ste12] John Steinberger. Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance.
IACR Cryptology ePrint Archive Report 2012/481, 2012. Available at http://eprint.iacr.
org/2012/481.

[SY11] Yu Sasaki and Kan Yasuda. Known-Key Distinguishers on 11-Round Feistel and Collision At-
tacks on Its Hashing Modes. In Antoine Joux, editor, Fast Software Encryption - FSE 2011,
volume 6733 of Lecture Notes in Computer Science, pages 397–415. Springer, 2011.

[Vau03] Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. Journal of Cryptology,
16(4):249–286, 2003.

[Win84] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In IEEE Symposium
on Security and Privacy, pages 88–90, 1984.

A Removing the “Set Uniform” Rounds

In this section, we point out the obstacles that appear when removing the four “Set Uniform”
rounds surrounding the two adaptation rounds. Namely, consider the 8-round single-key Even-
Mansour construction depicted on Figure 5, and a simulator that works exactly as the one of
Section 4.2 (we do not formally define this simulator, which can be derived from the one of
Section 4.2 by adequately renumbering permutations).

For this new simulator, we can show the analogue of Lemma 15: namely, just before the
call to InQuery(i, δ, z) which led to some chain C being enqueued to be adapted at position
` = 3 or ` = 6, one has val+

` (C) = ⊥ and val−` (C) = ⊥. The difficulty for proving that when
C is dequeued, val+

` (C) /∈ P+
` and val−` (C) /∈ P−` is that it seems quite hard to show that

valδ`(C) cannot collision with valδ`(D) for another chain D which has been enqueued before
C. The reason for this is that valδ`(C) does not necessarily remain constant during calls to
ForceVal occurring after C has been enqueued (i.e. the analogue of Lemma 12 (b) does not
hold). We give an simple example of this kind of behavior.

Consider a distinguisher making the following sequence of queries:

1. choose arbitrary values x3, k, k
′ ∈ {0, 1}n with k 6= k′;

2. evaluate the chain corresponding to x3 and k forward with the following queries:

y3 := P3(x3)
x4 := y3 ⊕ k
y4 := P4(x4)
x5 := y4 ⊕ k
y5 := P5(x5)

3. evaluate the chain corresponding to x3 and k′ backward with the following queries:

y′2 := x3 ⊕ k′ x′9 := E(k′, y′0)
x′2 := P−1

2 (y2) y′8 := x′9 ⊕ k′

y′1 := x′2 ⊕ k′ x′8 := P−1
8 (y′8)

x′1 := P−1
1 (y′1) y′7 := x′8 ⊕ k′

y′0 := x′1 ⊕ k′ x′7 := P−1
7 (y′7)

46

http://eprint.iacr.org/2012/481
http://eprint.iacr.org/2012/481

We now analyze the internal behavior of the simulator when receiving this sequence of
queries (P3(x3), . . . , P−1

7 (y′7)). It simply draws the first three answers y3, y4 and y5 uniformly at
random. Moreover, after query P5(x5), it detects and enqueues the partial chain (y4, x5, 4, 6),
and dequeues it immediately, internally setting permutation values that are irrelevant to the
analysis. Then, it defines answers x′2, . . . , x′7 to subsequent queries uniformly at random. After
the last query P−1

7 (y′7), it detects and enqueues (y′0, x′1, 0, 6), and dequeues it immediately.
When completing this chain, the simulator internally defines x′4 := y3⊕k′, draws y′4 ←$ {0, 1}n,
sets P4(x4) := y′4, and enqueues the partial chain (y′4, x5, 4, 3). It then resumes completion
of chain (y′0, x′1, 0, 6) by defining x′5 := y′4 ⊕ k′, draws y′5 ←$ {0, 1}n, sets P5(x′5) := y′5, and
enqueues (y4, x

′
5, 4, 6) (as well as (y′4, x′5, 4, 6), but this chain is equivalent to the chain being

completed and does not play any role in the analysis). It then finishes to complete (y′0, x′1, 0, 6),
and continues dequeuing partial chains. Denote D = (y′4, x5, 4) and C = (y4, x

′
5, 4). At this

point, we note that val−3 (D) = val−3 (C) 6= ⊥. Indeed, val−3 (D) = x′4⊕y′4⊕x5 and val−3 (C) =
x4 ⊕ y4 ⊕ x′5, and this two values are equal since by construction:

x4 ⊕ y4 ⊕ x5 = x4 ⊕ k = y3 = x′4 ⊕ k′ = x′4 ⊕ y′4 ⊕ x′5 .

In the following, we denote y′3 this common value val−3 (D) = val−3 (C) The next chain to
be dequeued is D, to be adapted at ` = 3. The simulator evaluates the chain forward until
x′3 := val+

3 (D) is defined, and then makes a call to ForceVal(x′3, y′3, 3) to adapt the chain.
This call to ForceVal has the following properties:

– before the call to ForceVal(x′3, y′3, 3), C is table-defined (and enqueued) and not equivalent
to D;

– before the call to ForceVal(x′3, y′3, 3), val−2 (C) = ⊥ since y′3 /∈ P−3 ;
– after the call to ForceVal(x′3, y′3, 3), val−2 (C) 6= ⊥.

Hence we see that the analogue of Lemma 12 (b) does not hold.
We stress that we do not know whether the simulator adapted for eight rounds can be at-

tacked, we just pointed out which difficulties arise when trying to straightforwardly transpose
the proof. The situation for the Feistel construction is quite different. Indeed, in that case,
when removing the four buffer rounds in order to adapt the simulator of [HKT11] for fourteen
rounds to ten rounds, there is actually an attack [Seu11]. For the iterated Even-Mansour ci-
pher, it remains an open problem to either modify the distinguisher described above to obtain
a real attack (e.g. by having the simulator overwrite a value at some point), showing that
this simulator cannot be used to prove indifferentiability for eight rounds, or to find a more
complex proof circumventing this difficulty.

47

x/y0

P1

P2

P3

P4

P5

P6

P7

P8

y/x9

k

k

k

k

k

k

k

k

k

Detect chain

Detect chain

Detect chain

Adapt
permutation

Adapt
permutation

Ek

Fig. 5. Detection and adaptation zones used by the simulator for 8 rounds.

48

	How to Construct an Ideal Cipher from a Small Set of Public Permutations
	Introduction
	Block Ciphers
	The Ideal Cipher Model
	Indifferentiability
	Our Contribution
	Our Techniques
	Related Work
	Open Problems
	Organization

	Preliminaries
	Notation and Definitions
	Indifferentiability
	The Iterated Even-Mansour Cipher

	Attacks
	Attack on Independent Keys
	Attack on Three Rounds

	Indifferentiability for Twelve Rounds
	Informal Description of the Simulator
	Formal Description of the Simulator
	Intermediate Systems
	Second System
	Third System

	Stages of the Indifferentiability Proof
	Complexity of the Simulator in the Second System
	From the First to the Second System
	From the Second to the Third System
	Partial Chains
	Bad Events in the Second System
	Properties of Good Executions
	Randomness Mapping

	From the Third to the Fourth System

	Removing the ``Set Uniform'' Rounds

