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Abstract. Lossy trapdoor functions, introduced by Peikert and Waters (STOC ’08), are func-
tions that can be generated in two indistinguishable ways: either the function is injective, and
there is a trapdoor to invert it, or the function is lossy, meaning that the size of its range is
strictly smaller than the size of its domain. Kiltz, O’Neill, and Smith (CRYPTO 2010) showed
that the RSA trapdoor function is lossy under the Φ-Hiding assumption of Cachin, Micali, and
Stadler (EUROCRYPT ’99) and used this result to provide a security proof for the RSA-OAEP
encryption scheme in the standard model. More recently, Kakvi and Kiltz (EUROCRYPT 2012)
used the lossiness of RSA to show that the RSA Full Domain Hash signature scheme has a
tight security reduction from the Φ-Hiding assumption. In this work, we consider the Rabin
trapdoor function, i.e. modular squaring over Z∗N . We show that when adequately restricting its
domain (either to the set QRN of quadratic residues, or to (JN )+, the set of positive integers
1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1) the Rabin trapdoor function is lossy, the injective
mode corresponding to Blum integers N = pq with p, q ≡ 3 mod 4, and the lossy mode cor-
responding to what we call pseudo-Blum integers N = pq with p, q ≡ 1 mod 4. This lossiness
result holds under a natural extension of the Φ-Hiding assumption to the case e = 2 that we
call the 2-Φ/4-Hiding assumption. We then use this result to prove that deterministic variants of
Rabin-Williams Full Domain Hash signatures have a tight reduction from the 2-Φ/4-Hiding as-
sumption, therefore answering one of the main questions left open by Bernstein (EUROCRYPT
2008) in his work on Rabin-Williams signatures.

Keywords: Rabin trapdoor function, lossy trapdoor function, Phi-Hiding assumption, prov-
able security, Rabin-Williams signatures



1 Introduction

1.1 Background

Lossy Trapdoor Functions. Lossy Trapdoor Functions (LTF) were introduced by Peikert
and Waters [PW08] and have since then found a wide range of applications in cryptography
such as deterministic public-key encryption [BFO08], hedged public-key encryption [BBN+09],
and security against selective opening attacks [BHY09, FHKW10] to name a few. Informally,
an LTF consists of two families of functions: functions in the first family are injective (and
efficiently invertible using some trapdoor), while functions in the second family are non-
injective and hence lose information on their input. The key requirement for an LTF is that
functions sampled from the first and the second family be computationally indistinguishable.
Many constructions of LTF are known from various hardness assumptions such as DDH, LWE,
etc. [PW08].

Lossiness of RSA and Applications. Kiltz, O’Neill, and Smith showed [KOS10] that
the RSA trapdoor function f : x 7→ xe mod N , where N = pq is an RSA modulus, is lossy
under the Φ-Hiding assumption, introduced by Cachin, Micali, and Stadler [CMS99]. When
e is coprime with φ(N) (φ(·) is Euler’s totient function), f is injective on the domain Z∗N ,
while when e divides φ(N) (but e2 does not), f is e-to-1 on Z∗N . The Φ-Hiding assumption
states that given (N, e) where e < N1/4, it is hard to tell whether gcd(e, φ(N)) = 1 or
e|φ(N), which corresponds to respectively the injective and lossy modes of the RSA function.
Kiltz et al. [KOS10] then showed that lossiness of RSA implies that the RSA-OAEP encryp-
tion scheme [BR94] meets indistinguishability under chosen-plaintext attacks in the standard
model (under appropriate assumptions on the hash functions used to instantiate OAEP).
Subsequently, Kakvi and Kiltz [KK12] showed that the Full Domain Hash (FDH) signature
scheme [BR93], when used with a trapdoor function which is lossy, has a tight reduction from
the problem of distinguishing the injective from the lossy mode of the LTF (previously, only
a loose reduction from the problem of inverting the underlying injective mode of the trapdoor
function was known [Cor00, Cor02]). See the discussion in [KK12] regarding the importance
of tight security reductions for setting security parameters.

1.2 Contributions of this Work

Lossiness of the Rabin Trapdoor Function. We show that the Rabin trapdoor function,
i.e. modular squaring, is lossy (with exactly one or two bits of lossiness) when adequately
restricting its domain. Since any quadratic residue modulo an RSA modulus N = pq has
exactly four square roots, it is not immediately obvious how to render this function injective.
It is well known that when N is a so-called Blum integer, i.e. p, q ≡ 3 mod 4, any quadratic
residue has a unique square root which is also a quadratic residue, named its principal square
root. Hence, in this case, modular squaring defines a permutation over the set of quadratic
residues QRN . One potential problem with this definition of the injective mode is that the
domain of the permutation is (presumably) not efficiently recognizable (this is exactly the
Quadratic Residuosity assumption). A different way to restrict the domain of modular squar-
ing is to consider the set (JN )+ of integers 1 ≤ x ≤ (N−1)/2 with Jacobi symbol +1 (which is
efficiently recognizable). We show that when restricting its domain to either QRN or (JN )+ to
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make it injective, modular squaring becomes an LTF. The lossy mode corresponds to integers
N = pq such that p, q ≡ 1 mod 4, that we call pseudo-Blum integers. It can be shown that in
that case, modular squaring becomes 4-to-1 over QRN and 2-to-1 over (JN )+. Indistinguisha-
bility of the injective and lossy modes is then exactly the problem of distinguishing Blum from
pseudo-Blum integers, which is equivalent to tell whether 2 divides φ(N)/4 or not. This can
be seen as the extension of the traditional Φ-Hiding assumption to exponent e = 2, so that
we call this problem the 2-Φ/4-Hiding problem. Details can be found in Sections 2 and 3.

Application to Rabin-Williams Signatures. We apply our finding to the security of de-
terministic Rabin-Williams Full Domain Hash signatures. The Rabin signature scheme [Rab79]
is one of the oldest provably secure digital signature scheme. Its security relies on the diffi-
culty of computing modular square roots, which is equivalent to factoring integers. Given an
RSA modulus N = pq, the general principle of Rabin signatures is to first map the message
m ∈ {0, 1}∗ to a quadratic residue h modulo N using some hash function H, and then return
a square root s of h. Since only 1/4 of integers in Z∗N are quadratic residues, directly using
h = H(m) mod N will fail for roughly 3 out of 4 messages. This can be coped with using a
randomized padding. The simplest one, Probabilistic Full Domain Hash with `-bit salts (`-
PFDH) [Cor02], computes h = H(r,m) for random `-bit salts r, until h is a quadratic residue
(r is then included in the signature for verification). A way to avoid this probabilistic method
is to use a tweak, as proposed by Williams [Wil80]. For any RSA modulus N , one can find
four values α1, α2, α3, α4 ∈ Z∗N such that for any h ∈ Z∗N , there is a unique i ∈ [1; 4] such
that α−1

i h mod N is a quadratic residue.1 When p ≡ 3 mod 8 and q ≡ 7 mod 8, one can use
the set of values {1,−1, 2,−2}. This way, the signature becomes a so-called tweaked square
root (αi, s), where s is a square root of α−1

i H(m) mod N for the correct value i, and the
verification algorithm now checks whether αis2 = H(m) mod N . This enables to define FDH
Rabin-Williams signatures.

Since any quadratic residue modulo an RSA modulus N has four square roots, one must
also specify which (tweaked) square root of the hash to use as the signature. There are basically
two ways to proceed. The first one is simply to pick a square root at random. However, when
no randomization (or randomization with only a small number of bits) is used in the input to
the hash function, one must be careful not to output two non-trivially distinct square roots
if the same message is signed twice, since this would reveal the factorization of the modulus
N . In consequence, the signature algorithm must either be stateful and store all signatures
previously output, or generate the bits for deciding which root to use pseudo-randomly (how
exactly this is done is not always precisely discussed, and may have security implications as
explained in [LN09]).2 The second option is to define some deterministic rule telling which
square root to use as the signature. The most popular way to do so is to use for N a Blum
integer and to use the principal square root. A variant is to use what we call the absolute
principal square root, i.e. |s mod N |, where s is the principal square root represented by an
integer in [−(N −1)/2; (N −1)/2]. This turns out to also be the unique square root in (JN )+.
We will call these ways to choose a square root Principal Rabin Williams (PRW) and Absolute

1 The sufficient condition for this is that the pairs of Legendre symbols (
(
αi
p

)
,
(
αi
q

)
) take each of the four

values (1, 1), (−1, 1), (1,−1) and (−1,−1) for exactly one αi.
2 This method was called Fixed Unstructured Rabin-Williams in [Ber08], and Probabilistic Rabin Williams
(PRW) in [LN09].
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Principal Rabin-Williams (APRW) respectively.3 When no randomization in the input to the
hash function is used, the signature algorithm then becomes entirely deterministic, which is
attractive from an implementation point of view.

Bernstein [Ber08] proposed an extensive study of possible variants of Rabin-Williams
signature schemes depending on the length of the salt and the square root selection method.
In particular, for FDH signatures, he showed a tight security reduction from the factoring
assumption for the probabilistic square root selection method (Fixed Unstructured). On the
other hand, for PRW and APRW, only a loose reduction from factoring is known using
methods of Coron [Cor00, Ber08]. The question whether there exists a tight security reduction
for these schemes was left as an open problem in [Ber08]. Our main result is a tight security
reduction from the 2-Φ/4-Hiding problem for the PRW and APRW schemes, building on the
results of [KK12]. Details can be found in Section 4.

1.3 Related and Future Work

Two constructions of lossy trapdoor functions based on modular squaring were previously
proposed, however they are slightly more complicated than the basic Rabin trapdoor function.
Mol and Yilek [MY10] gave a construction whose security relies on an assumption close in
spirit (though more involved) to the 2-Φ/4-Hiding assumption. Freeman et al. [FGK+10] gave
a construction relying on the Quadratic Residuosity problem.

The cryptographic applications of the set (JN )+ when N is a Blum integer were previously
considered by Hofheinz and Kiltz [HK09] (it was denoted QR+

N in their work and named
group of signed quadratic residues). In particular, they showed that the Strong Diffie-Hellman
problem [ABR01] is hard in this group under the factoring assumption.

An interesting question is whether lossiness of the Rabin trapdoor function can be used
to argue about the security of Rabin-OAEP encryption as was done in [KOS10] for RSA.
Though from a theoretical point of view the results of [KOS10] apply to OAEP used with any
LTF, they provide some meaningful security insurance only when the amount of lossiness is
sufficiently high. This requires more careful investigation in the case of Rabin-OAEP. As a
first step in this direction, we note that if “multi-primes” pseudo-Blum integers N = p1 · · · pm,
with p1, . . . , pm ≡ 1 mod 4 are indistinguishable from 2-primes pseudo-Blum integers, lossiness
of the Rabin trapdoor function with domain (JN )+ can be amplified from 1 bit to m− 1 bits.
Similar arguments were used for RSA in [KOS10].

2 Preliminaries

2.1 General Notation

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security parameter will be
denoted k. A function f of the security parameter is said negligible if for any c > 0, f(k) ≤ 1/kc
for sufficiently large k. When S is a non-empty finite set, we write s ←$ S to mean that a
value is sampled uniformly at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .)
we denote the operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1,O2, . . . (possibly none), and letting z be the output. PPT will stand
for probabilistic polynomial-time.

3 PRW was called Deterministic Rabin Williams (DRW) in [LN09], while APRW was called |principal|
in [Ber08].
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2.2 Definitions

Given an (odd for most of what follows) integer N , the multiplicative group of integers modulo
N is denoted Z∗N . This group has order φ(N) where φ(·) is the Euler function. We denote
JN the subgroup of Z∗N of all elements x ∈ Z∗N with Jacobi symbol

(
x
N

)
= 1. This subgroup

has index 2 and order φ(N)/2 in Z∗N . Moreover it is efficiently recognizable even without the
factorization of N since the Jacobi symbol is efficiently computable given only N . We also
denote JN the coset of elements x ∈ Z∗N such that

(
x
N

)
= −1. Finally, we denote QRN the

subgroup of quadratic residues of Z∗N . This subgroup is widely believed not to be efficiently
recognizable when N is composite and its factorization is unknown: this is the Quadratic
Residuosity assumption.

We will represent elements of ZN as signed integers in [−(N − 1)/2, (N − 1)/2]. Given an
integer x, we denote |x mod N | the absolute value of x mod N . For any subset S ⊂ ZN , we
denote S+ = S ∩ [1; (N − 1)/2] and S− = S ∩ [−(N − 1)/2;−1]. Note that (JN )+, (JN )−,
(JN )+ and (JN )− form a partition of Z∗N .

We call an integer N = pq which is the product of two distinct odd primes a Blum integer
when p, q ≡ 3 mod 4 , and a pseudo-Blum integer when p, q ≡ 1 mod 4 , and we denote

Bl(k) = {(N, p, q) : N = pq, p, q are two distinct bk/2c-bit primes with p, q ≡ 3 mod 4}
B̃l(k) = {(N, p, q) : N = pq, p, q are two distinct bk/2c-bit primes with p, q ≡ 1 mod 4} .

We call a Blum integer N = pq such that moreover p ≡ 3 mod 8 and q ≡ 7 mod 8 a Williams
integer, and a pseudo-Blum integer such that p ≡ 5 mod 8 and q ≡ 1 mod 8 a pseudo-Williams
integer. We denote

Wi(k) = {(N, p, q) ∈ Bl(k) : p ≡ 3 mod 8, q ≡ 7 mod 8}

W̃i(k) = {(N, p, q) ∈ B̃l(k) : p ≡ 5 mod 8, q ≡ 1 mod 8} .

Note that:

– when N is a Blum integer, −1 ∈ JN \QRN ;
– when N is a pseudo-Blum integer, −1 ∈ QRN ;
– when N is a Williams or a pseudo-Williams integer, 2 ∈ JN .

A quadratic residue modulo an RSA modulus N = pq has four square roots, two of which
are in (Z∗N )+ and two of which are in (Z∗N )−. The two square roots in (Z∗N )+ will be called the
absolute square roots in what follows. The following lemma will be important when proving
lossiness of the Rabin trapdoor function.

Lemma 1. Let N = pq be a RSA modulus with N ≡ 1 mod 4. Let x ∈ QRN , and let s1 and
s2 be the two absolute square roots of x (the two other square roots being −s1 and −s2). Then:

– if N is a Blum integer, exactly one si is in (JN )+ and the other is in (JN )+; moreover if
si ∈ (JN )+ then either si ∈ QRN or −si ∈ QRN ;

– if N is a pseudo-Blum integer, then either s1, s2,−s1,−s2 ∈ QRN , or s1, s2,−s1,−s2 ∈
JN \QRN , or s1, s2,−s1,−s2 ∈ JN .
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Proof. Consider x ∈ QRN . Denote xp = x mod p and xq = x mod q. Let also ±rp and ±rq
denote the two square roots of respectively xp (mod p) and xq (mod q). The four square roots of
x modulo N are obtained by combining ±rp and ±rq by the Chinese Remainder Theorem, i.e.
there are to integers cp and cq such that the four square roots of x are ±(pcprq±qcqrp) mod N .
Assume that one of the two absolute square roots is s1 = (pcprq+qcqrp) mod N (the reasoning
is similar if it is −(pcprq + qcqrp) mod N). Then the other absolute square root satisfies
s2 = α(pcprq − qcqrp) mod N , with α = ±1 so that:(

s2
p

)
=
(
α

p

)(−1
p

)(
s1
p

)
and

(
s2
q

)
=
(
α

q

)(
s1
q

)
.

Consequently:

– when N is a Blum integer, s1 and s2 have opposite Jacobi symbols; moreover, assuming
s1 ∈ (JN )+ then since −1 is a non-quadratic residue, either s1 ∈ QRN or −s1 ∈ QRN ;

– when N is a pseudo-Blum integer, we see that(
s1
p

)
=
(−s1

p

)
=
(
s2
p

)
=
(−s2

p

)
and

(
s1
q

)
=
(−s1

q

)
=
(
s2
q

)
=
(−s2

q

)
,

from which the claim on the localization of the four square roots follows.

This concludes the proof. ut

Hence when N is a Blum integer, the two absolute square roots can easily be distinguished
through their Jacobi symbol. In the following, given a Blum integer N and x ∈ QRN , we will
call the unique square root of x which is in QRN the principal square root of x, and denote it
psr(x). We will also call the unique square root of x which is in (JN )+ the absolute principal
square root of x, and will denote it |psr|(x). The notation is chosen so that |psr|(x) =
|psr(x) mod N |.

Tweaked Square Roots. Let N be a Williams integer. Then for any x ∈ Z∗N there is
a unique α ∈ {1,−1, 2,−2} such that α−1x mod N is a quadratic residue.4 The four pairs
(α, si)i=1,...,4 where (si)i=1,...,4 are the four square roots of α−1x mod N are named the tweaked
square roots of x, and α is named the tweak. Hence, (α, s) with α ∈ {1,−1, 2,−2} is a tweaked
square root of x ∈ Z∗N iff αs2 = x mod N . By extension, the principal tweaked square root
of x is the unique tweaked square root (α, s) such that s ∈ QRN , and the absolute principal
tweaked square root is the unique tweaked square root (α, s) such that s ∈ (JN )+. Overloading
the notation, they will be denoted respectively psr(x) and |psr|(x).

3 The 2-Φ/4-Hiding Assumption and Lossiness of the Rabin Trapdoor
Function

3.1 Definition

We introduce the 2-Φ/4-Hiding assumption, an extension of the traditional Φ-Hiding assump-
tion to the case e = 2. The Φ-Hiding assumption, introduced by Cachin et al. in [CMS99],

4 This follows easily from the fact that the pairs of Legendre symbols (
(
α
p

)
,
(
α
q

)
) for α = 1, −1, 2, and −2

are respectively (1, 1), (−1,−1), (−1, 1) and (1,−1).
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roughly states that given an RSA modulus N = pq and a random prime 3 ≤ e < N1/4,
it is hard to distinguish whether e divides φ(N) or not (when e ≥ N1/4 and e|φ(N), N
can be factored using Coppersmith’s method for finding small roots of univariate modular
equations [Cop96, CMS99]). Kiltz et al. [KOS10] were the first to observe that the Φ-Hiding
assumption can be interpreted in terms of lossiness of the RSA trapdoor permutation.

The original definition of the Φ-Hiding assumption was formulated for primes e randomly
drawn in [3;N1/4[. Since in practice RSA is often used with a fixed, small prime e (e.g. e = 3
or e = 216 + 1), Kakvi and Kiltz [KK12] introduced the Fixed-Prime Φ-Hiding assumption,
which states, for a fixed prime e, that it is hard, given an RSA modulus N = pq, to distinguish
whether e divides φ(N) or not (the exact statement of the assumption is slightly different for
e = 3 and e > 3 in order to avoid trivial distinguishers). The 2-Φ/4-Hiding assumption is
the extension of the Fixed-Prime Φ-Hiding assumption to the case e = 2. Since for an RSA
modulus N (more generally for any number which has at least two distinct prime factors) one
always has that 4 divides φ(N), the problem will be to distinguish whether 2 divides φ(N)/4
or not. Moreover, when N ≡ 3 mod 4, one can check that 2 always divides φ(N)/4, so that
the instances will be restricted to RSA moduli such that N ≡ 1 mod 4. As a matter of fact,
distinguishing whether 2 divides φ(N)/4 or not when N ≡ 1 mod 4 turns out to be equivalent
to distinguishing Blum integers from pseudo-Blum integers. Indeed, if N is a Blum integer,
then p = 4p′ + 3 and q = 4q′ + 3, so that φ(N) = 4(2p′ + 1)(2q′ + 1) and 2 - (φ(N)/4). On
the other hand, if N is a pseudo-Blum integer, then p = 4p′ + 1 and q = 4q′ + 1, so that
φ(N) = 16p′q′ and 2|(φ(N)/4). We now precisely formalize the assumption.

Definition 1 (2-Φ/4-Hiding Assumption.). We say that the 2-Φ/4-Hiding problem is
(t, ε)-hard if for any algorithm A running in time at most t, the following advantage is less
than ε:

Adv2−Φ/4(A) def=
∣∣∣Pr[(N, p, q)←$ Bl(k) : 1← A(N)]− Pr[(N, p, q)← B̃l(k) : 1← A(N)]

∣∣∣ .
A variant of this problem is obtained by switching from Blum integers to Williams integers,

i.e. replacing Bl(k) and B̃l(k) in the above definition by respectively Wi(k) and W̃i(k). Clearly,
the hardness of this variant is polynomially related to the hardness of the original problem,
under the plausible assumption that roughly half of Blum, resp. pseudo-Blum integers are
Williams, resp. pseudo-Williams integers.

3.2 Lossiness of the Rabin Trapdoor Function

We now show that the 2-Φ/4-Hiding assumption implies that squaring is a lossy trapdoor
function over the domains QRN or (JN )+, for N ≡ 1 mod 4, with respectively two bits or
one bit of lossiness. The injective mode corresponds to N being a Blum integer, and the lossy
mode corresponds to N being a pseudo-Blum integer. We first recall the formal definition of
a lossy trapdoor function (our definitions follow closely the ones of [KK12]).

Definition 2 (Trapdoor Function.). A trapdoor function (TDF) is a tuple of polynomial-
time algorithms TDF = (InjGen, Eval, Invert) with the following properties:

– InjGen(1k): a probabilistic algorithm which on input the security parameter 1k, outputs a
public description pub (with implicitly understood domain Dpub) and a trapdoor td;
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– Eval(pub, x): a deterministic algorithm which on input pub and a point x ∈ Dpub, outputs
a point y ∈ {0, 1}∗; we denote fpub : x 7→ Eval(pub, x);

– Invert(td, y): a deterministic algorithm which on input td and a point y ∈ {0, 1}∗, outputs
a point x ∈ Dpub when y ∈ fpub(Dpub) (and ⊥ otherwise).

We require that for any k and any (pub, td) possibly output by InjGen(1k), the function
fpub : x 7→ Eval(pub, x) be injective, and y 7→ Invert(td, y) be its inverse f−1

pub. We also
require that Dpub and fpub(Dpub) be efficiently samplable.

Definition 3 (Lossy Trapdoor Function.). A lossy trapdoor function (LTF) with abso-
lute lossiness ` is a tuple of algorithms LTF = (InjGen, LossyGen, Eval, Invert) such that
(InjGen, Eval, Invert) is a TDF as per Definition 2, and moreover LossyGen is a probabilis-
tic algorithm which on input 1k, outputs a public description pub′ such that the range of the
function fpub′ : x 7→ Eval(pub′, x) over Dpub′ satisfies:

|Dpub′ |
|fpub′(Dpub′)|

≥ ` .

We say that LTF is (t, ε)-secure if for any adversary running in time at most t, the following
advantage is less than ε:∣∣∣Pr[(pub, td)← InjGen(1k) : 1← A(pub)]− Pr[pub′ ← LossyGen(1k) : 1← A(pub′)]

∣∣∣ .
We say that LTF is a regular (`, t, ε)-lossy trapdoor function if LTF is (t, ε)-secure and all
functions generated by LossyGen are `-to-1 on Dpub′.

Note that we do not require that a LTF be (strongly) one-way since this is not needed
to apply the result of [KK12]. On the other hand, one can easily check that any TDF that
satisfies Definition 3 with ` constant (as is the case for the trapdoor functions considered in
this paper) is weakly one-way [Gol01].

We define two related LTF, that we name respectively the Principal Rabin LTF PR-LTF
and the Absolute Principal Rabin LTF APR-LTF as follows:

– on input 1k, PR-LTF.InjGen and APR-LTF.InjGen both draw (N, p, q)←$ Bl(k), and output
pub = N and td = (p, q);

– on input 1k, PR-LTF.LossyGen and APR-LTF.LossyGen both draw (N, p, q) ←$ B̃l(k), and
output pub′ = N ;

– the domain is DN = QRN for PR-LTF, and DN = (JN )+ for APR-LTF; the evaluation
algorithms PR-LTF.Eval(N, x) and APR-LTF.Eval(N, x) both output fN (x) = x2 mod N ;
in both cases fN (DN ) = QRN in injective mode;

– the inversion algorithm PR-LTF.Invert((p, q), y) outputs the principal square root psr(y),
while APR-LTF.Invert((p, q), y) outputs the absolute principal square root |psr|(y) (for N
a Blum integer and y ∈ QRN ).

Theorem 1. Assuming the 2-Φ/4-Hiding problem is (t, ε)-hard, the Principal Rabin trapdoor
function is a regular (4, t, ε)-LTF, while the Absolute Principal Rabin trapdoor function is a
regular (2, t, ε)-LTF.
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Proof. Indistinguishability of the injective and lossy modes is exactly the 2-Φ/4-Hiding prob-
lem. It follows from Lemma 1 that when N is a Blum integer, any y ∈ QRN has exactly
one pre-image in QRN or (JN )+, while when N is pseudo-Blum integer, any y in the range
fN (QRN ) has exactly 4 pre-images in QRN , and any y in the range fN ((JN )+) has exactly 2
pre-images in (JN )+. ut

Remark 1. Note that one can define a group structure on (JN )+ as soon as N is a Blum
or pseudo-Blum integer as follows. Since −1 ∈ JN , one can consider the quotient group
JN/{−1, 1}. This quotient group can be identified with the set (JN )+ equipped with the
group operation ◦ defined as a ◦ b = |ab mod N |. Note that the order of this group is φ(N)/4.
It is then easy to check that squaring, seen as a mapping from (JN )+ to QRN , is a group
homomorphism. When N is a Blum integer, its image is QRN , whereas when N is a pseudo-
Blum integer, its image is a strict subgroup of QRN of index 2. Similarly, when N is a
pseudo-Blum integer, the image of QRN is a strict subgroup of QRN of index 4.

4 Application to Rabin-Williams Signatures

4.1 Definitions
We recall the formal definition and the security notion for a signature scheme.

Definition 4. A signature scheme Σ is a tuple of algorithms (Σ.KeyGen, Σ.Sig, Σ.Ver) with
the following properties:
– Σ.KeyGen(1k): a probabilistic algorithm which on input the security parameter 1k, outputs

a pair of public/secret key (pk, sk);
– Σ.Sig(sk,m): a (possibly probabilistic) algorithm which on input a secret key sk and a

message m ∈ {0, 1}∗, outputs a signature σ;
– Σ.Ver(pk,m, σ): a deterministic algorithm which on input a public key pk, a message m

and a purported signature σ, either outputs 1 (accepts) or 0 (rejects).
We require that the scheme be correct, i.e. for all k and all messages m,

Pr[(pk, sk)← KeyGen(1k), σ ← Sig(sk,m) : Ver(pk,m, σ) = 1] = 1 .

A signature scheme is said to have unique signatures if for all k, for any public key pk possibly
output by KeyGen(1k), and any messages m ∈ {0, 1}∗, there is exactly one string σ such that
Ver(pk,m, σ) accepts.

The usual security definition for a signature scheme is existential unforgeability under
chosen-message attacks (EUF-CMA security). We recall this definition in Appendix B.

FDH Signatures Based on an Arbitrary TDF. Let TDF = (InjGen, Eval, Invert) be
a TDF. The Full Domain Hash signature scheme TDF-FDH is defined as follows: the key
generation algorithm KeyGen(1k) runs InjGen(1k) to obtain (pub, td), selects a random hash
function H : {0, 1}∗ → fpub(Dpub), and sets pk = (pub,H) and sk = td. The signature
algorithm, on input td and m, computes h = H(m) and returns σ = Invert(td, h). The
verification algorithm, on input pub,m and σ, checks that Eval(pub, σ) = H(m). This scheme
can be shown EUF-CMA secure in the Random Oracle Model under the assumption that TDF
is (strongly) one-way [BR93, Cor00], but the reduction must loose a factor qs, where qs is the
number of signature queries of the adversary, assuming the TDF is certified [Cor02, KK12].
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4.2 Tight Security for Deterministic Rabin-Williams Signatures

There are two very close ways to define deterministic Rabin-Williams FDH signatures, called
principal and |principal| in the terminology of Bernstein [Ber08]. We will use the name Absolute
Principal Rabin-Williams signatures for the latter in this paper. Before defining precisely
these schemes, we stress that the exact definition of the verification algorithm is important,
especially with respect to how a forgery is defined (since a forgery is exactly a string which
is accepted by the verification algorithm). Hence, to be more precise, we will define in total
four “real” signature schemes: Principal Rabin-Williams (PRW), Absolute Principal Rabin-
Williams (APRW), as well as two slightly different variants that we call PRW∗ and APRW∗,
which differ from respectively PRW and APRW only in their verification algorithm. We will
also define a “theoretical” scheme PRW∗∗ where the verification algorithm is inefficient (this
will be necessary to establish a clean security reduction). For the five schemes, the signing
algorithm first hashes the message h = H(m); then, for the PRW, PRW∗, and PRW∗∗ schemes,
the signing algorithm returns the principal tweaked square root of h, whereas for the APRW
and APRW∗ schemes, the signing algorithm returns the absolute principal tweaked square root
of h. In all the following, we assume that if h is not coprime with N , the signing algorithm
outputs some fixed signature, e.g. (1, 1). Since this happens only with negligible probability
when H is modeled as a random oracle, this does not affect the security analysis.

We now proceed to the formal definition. First, all the schemes share exactly the same key
generation algorithm:

– (A)PRW(∗,∗∗ ).KeyGen(1k): on input the security parameter 1k, draw uniformly at random
(N, p, q) ←$ Wi(k). Select a hash function H : {0, 1}∗ → ZN . The public key is pk =
(N,H) and the secret key is sk = (p, q).

Note that the hash function will usually be selected once for each security parameter k and
common to all public keys, but this affects the security proof only up to negligible terms, see
Bernstein [Ber08].

The signing algorithm for PRW, PRW∗, and PRW∗∗ on one hand, and for APRW and
APRW∗ on the other hand, are the same, and are defined as follows:

– PRW(∗,∗∗ ).Sig(sk,m): To sign a message m, compute h = H(m), and output the princi-
pal tweaked square root σ = (α, s) = psr(h).

– APRW(∗).Sig(sk,m): To sign a message m, compute h = H(m), and output the absolute
principal tweaked square root σ = (α, s) = |psr|(h).

The verification algorithms for the five schemes are very close, and differ only with respect to
an additional check on the Jacobi symbol of the signature made for PRW∗ and APRW∗, and
on the quadratic residuosity of the signature for PRW∗∗. They are defined as follows:

– (A)PRW(∗,∗∗ ).Ver(pk,m, σ): To check a purported signature σ = (α, s) on message m,
first ensure that s ∈ S, and then check that αs2 = H(m) mod N . Accept if this holds,
and reject otherwise;

where the set S is defined as:

– S = Z∗N for PRW, S = JN for PRW∗, and S = QRN for PRW∗∗;
– S = (Z∗N )+ for APRW and S = (JN )+ for APRW∗.

10



Note that the verification algorithm is (presumably) inefficient for PRW∗∗ since it needs to
decide whether the signature is indeed the principal square root, i.e. a quadratic residue.

The following claims are straightforward:

– in PRW, each message has exactly four valid signatures: (α, s1) = |psr|(H(m)), (α,−s1),
and (α, s2), (α,−s2) with s2 ∈ (JN )+;

– in PRW∗, each message has exactly two valid signatures: (α, s) = |psr|(H(m)) and (α,−s);
– in PRW∗∗, each message has a unique valid signature: (α, s) = psr(H(m));
– in APRW, each message has exactly two valid signatures: |psr|(H(m)) and (α, s2) with
s2 ∈ (JN )+;

– in APRW∗, each message has a unique valid signature: |psr|(H(m)).

We now relate the security of PRW, PRW∗, and PRW∗∗ on one hand, and APRW and APRW∗
on the other hand.

Lemma 2. The security of PRW, PRW∗ and PRW∗∗ on one hand, and APRW and APRW∗
on the other hand, is related as depicted in Figure 1, where an arrow labeled (t, f(ε)) from
scheme A to scheme B means that if scheme A is (t, ε, qh, qs)-EUF-CMA secure in the ROM,
then scheme B is (t′, f(ε), qh, qs)-EUF-CMA secure for t′ ' t.

Proof. We prove each of the reductions in turn.

– PRW∗∗ (t,2ε)−−−→ PRW∗: Assume there is an adversary A which (t, ε, qh, qs)-breaks the PRW∗
scheme. We build from it an adversary A′ breaking the PRW∗∗ scheme. A′ receives as input
a public key N and runs A with the same public key. Denote H ′ the random oracle to
which A′ has access. A′ simulates the PRW∗ security experiment to A by simply relaying
its random oracle queries and signing queries to its own oracles. When A outputs a forgery
(α̂, ŝ) for some message m̂ where ŝ ∈ JN , A′ simply draws a random bit b, and outputs
(α̂, (−1)bŝ). The security experiment is perfectly simulated to A (since a PRW∗∗ signature
oracle and a PRW∗ signature oracle are the same), and, assuming that the forgery output
by A is valid (which happens with probability at least ε), the forgery output by A′ is
valid when (−1)bŝ is a quadratic residue, which happens with probability 1/2. Hence A′
(t, ε/2, qh, qs)-breaks PRW∗∗.

– (A)PRW∗ (t,2ε)−−−→ (A)PRW: We consider the PRW∗→ PRW reduction, the reasoning for the
APRW∗ → APRW is similar. Assume there is an adversary A which (t, ε, qh, qs)-breaks the
PRW scheme. We build from it an adversary A′ breaking the PRW∗ scheme. A′ receives as
input a public key N and runs A with the same public key. Denote H ′ the random oracle
to which A′ has access. We assume wlog that A always makes a random oracle query for
m before asking the corresponding signature or returning a forgery for m (otherwise we
let A′ emulate this random oracle query). We now describe how A′ simulates the random
oracle H and the PRW signing oracle to A. Each time A makes a query H(m), A′ draws
a random bit bm. If bm = 0, then A′ makes the queryH ′(m) to its own random oracle and
returns H(m) = H ′(m). If bm = 1, then A′ draws a random tweak α ←$ {1,−1, 2,−2}
and a random s←$ QRN (by sampling z ←$ Z∗N and letting s = z2 mod N), and returns
H(m) = αs2 mod N to A′. If A makes a subsequent PRW signing query for m, then if
bm was 0, A′ makes the same signing query to its own PRW∗ signing oracle and returns
the corresponding signature. If bm was 1, then A′ simply outputs (α, s) as the signature,

11



where α and s were randomly drawn to simulate H(m). Clearly, the simulation of the
PRW security experiment is close to perfect (up to the fact that answers to random oracle
queriesH(m) are uniform in Z∗N rather than ZN when bm = 1). Hence A outputs a forgery
(α̂, ŝ) for some message m̂ with probability at least ε. Note that this is a valid forgery for
PRW, so that ŝ may be in JN or JN . Since the view of A is independent of the bit bm̂, we
can assume that this bit is randomly drawn after the forgery is returned. Two cases arise.
In case where ŝ ∈ JN , then if bm̂ = 0, (α̂, ŝ) is also a valid forgery for PRW∗ and A′ can
simply output the same forgery. Otherwise, in case where ŝ ∈ JN , then if bm̂ = 1, denoting
s′ the value randomly drawn in QRN by A′ to simulate the random oracle queryH(m̂), we
see that ŝ and s′ are two non-trivially distinct square roots of the same quadratic residue,
so that A′ can factor N and forge a signature for a message of its choice. In both cases
A′ is successful with probability 1/2, so that the overall success probability of A′ is ε/2.
Hence A′ (t, ε/2, qh, qs)-breaks PRW∗.

This proves the lemma. ut

2-Φ/4-Hiding

PRW∗∗ PRW∗ PRW

APRW∗ APRW

(t, 7ε/3)

(t, 3ε)

(t, 2ε) (t, 2ε)

(t, 2ε)

Fig. 1. Set of reductions proved in Lemma 2. An arrow labeled (t, f(ε)) from scheme A to scheme B means
that if scheme A is (t, ε, qh, qs)-EUF-CMA secure in the ROM, then scheme B is (t′, f(ε), qh, qs)-EUF-CMA
secure for t′ ' t. The reduction from 2-Φ/4-Hiding to breaking PRW∗∗ and APRW∗ is Theorem 4.

Hence, one can see that PRW and PRW∗ on one hand, and APRW and APRW∗ on the
other hand, have the same security up to a factor 2. In other words, omitting the additional
check on the Jacobi symbol has negligible impact on security. In the following, we give a tight
reduction for PRW∗∗ and APRW∗ from the 2-Φ/4-Hiding assumption, which extends to PRW
and APRW by Lemma 2.

The Rabin-Williams LTF. The PR-LTF and APR-LTF LTFs can be straightforwardly ex-
tended to what we call the Principal Rabin-Williams LTF PRW-LTF and Absolute Principal
Rabin Williams LTF APRW-LTF as follows:

– on input 1k, PRW-LTF.InjGen and APRW-LTF.InjGen both draw a random Williams integer
(N, p, q)←$ Wi(k), and output pub = N and td = (p, q);

– on input 1k, PRW-LTF.LossyGen and APRW-LTF.LossyGen both draw a random pseudo-
Williams integer (N, p, q)←$ W̃i(k) and output pub′ = N ;

– the domain of PRW-LTF is DN = {1,−1, 2,−2} × QRN , while the domain of APRW-LTF
is DN = {1,−1, 2,−2} × (JN )+; the evaluation algorithms PRW-LTF.Eval(N, (α, x)) and
APRW-LTF.Eval(N, (α, x)) both compute the function fN (α, x) = αx2 mod N ; in both cases
fN (DN ) = Z∗N in injective mode;
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– the inversion algorithm PRW-LTF.Invert((p, q), y) computes the principal tweaked square
root psr(y), while APRW-LTF.Invert((p, q), y) computes the absolute principal tweaked
square root |psr|(y) (for N a Williams integer and y ∈ Z∗N ).

Theorem 2. Under the assumption that Williams and pseudo-Williams integers are (t, ε)-
indistinguishable, the Principal Rabin-Williams trapdoor function is a regular (4, t, ε)-LTF,
while the Absolute Principal Rabin-Williams trapdoor function is a regular (2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly indistinguishability of
Williams and pseudo-Williams integers, which follows from the 2-Φ/4-Hiding assumption and
the additional (reasonable) assumption that Williams, resp. pseudo-Williams integers are
sufficiently dense in Blum, resp. pseudo-Blum integers. Injectivity of fN for both PRW-LTF
and APRW-LTF follows directly from Lemma 1 and the discussion about tweaked square roots
in Section 2. Assume now that N is a pseudo-Williams integer, and let y ∈ fN (DN ) with
DN = {1,−1, 2,−2} × QRN . We show that y has exactly 4 pre-images in DN , which will
establish that PRW-LTF is 4-to-1 on DN . Let (α, x) ∈ DN be such that αx2 = y mod N . Then
by Lemma 1, y has at least 4 pre-images in DN , all with the same tweak α. Assume that y has
an extra pre-image (α′, x′) ∈ DN with α′ 6= α. Note that when N = pq is a pseudo-Williams
integer (i.e. p ≡ 5 mod 8 and q ≡ 1 mod 8), the pairs of Legendre symbols (

(
α
p

)
,
(
α
q

)
) for

α = 1, −1, 2, and −2 are respectively (1, 1), (1, 1), (−1, 1) and (−1, 1). Hence it must be
that α′ = −α, so that x2 = −(x′)2 mod N . Let a be any square root of −1 modulo N . Since
a2 = −1 mod N , we observe that:(

a

p

)
≡ a

p−1
2 ≡ a

8p′+4
2 ≡ (−1)2p′+1 ≡ −1 mod p(

a

q

)
≡ a

q−1
2 ≡ a

8q′
2 ≡ (−1)2q′ ≡ 1 mod q ,

so that a ∈ JN . Hence, we have that x2 = (ax′)2 mod N , with x, x′ ∈ QRN . Yet by Lemma 1,
one should have ax′ ∈ QRN as well, which is impossible since a ∈ JN . Hence y has exactly
4 pre-images in DN . The proof that APRW-LTF is 2-to-1 on DN{1,−1, 2,−2} × (JN )+ is very
similar. ut

Remark 2. In Appendix A, we give a slightly different formalization for APRW-LTF, where it is
defined as a lossy trapdoor permutation over (JN )+, and the use of tweaks is seen as a way to
deterministically hash into (JN )+. Which formalization to prefer is mainly a matter of taste.

It is then easy to see that the PRW∗∗, resp. APRW∗ signature scheme is exactly the
instantiation of the generic TDF-FDH scheme recalled in Section 4.1 with PRW-LTF, resp.
APRW-LTF. In order to conclude about the security of these schemes, we appeal to the main
result of [KK12]. This theorem was originally stated for trapdoor permutations, but it can be
straightforwardly extended to trapdoor functions such that Dpub and fpub(Dpub) are efficiently
samplable.

Theorem 3 ([KK12]). Assume LTF is a regular (`, t′, ε′)-LTF for ` ≥ 2. Then for any
(qh, qs), the TDF-FDH signature scheme instantiated with LTF is (t, ε, qh, qs)-EUF-CMA se-
cure in the ROM, where

ε =
(2`− 1
`− 1

)
ε′ and t = t′ − qhTEval ,
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where TEval is the time to run algorithm Eval of LTF.

Theorem 4. Assuming the 2-Φ/4-Hiding problem is (t′, ε′)-hard, then for any (qh, qs), the
PRW∗∗ signature scheme is (t, ε, qh, qs)-EUF-CMA secure, where ε = 7ε′/3 and t = t′ −
O(qhk3), and the APRW∗ signature scheme is (t, ε, qh, qs)-EUF-CMA secure, where ε = 3ε′
and t = t′ −O(qhk3).

Proof. This follows directly from Theorems 2 and 3. Combined with Lemma 2, this yields
tight security reductions for PRW and APRW (see Figure 1 for a clear picture). ut

Remark 3. The global security reduction from the 2-Φ/4-Hiding assumption to breaking the
signature scheme is slightly looser for PRW (factor 28/3) than for APRW (factor 6 = 18/3).
We also remark that a PRW signature oracle is (potentially) slightly more powerful than
an APRW signature oracle because it reveals some non-trivial information regarding the
quadratic residuosity of the square roots of the hash of the message (whereas this information,
which is unnecessary for verifying signatures, is “canceled” in an APRW signature oracle).
Since APRW signatures are not more costly than PRW signatures (and even slightly more
communication efficient), these two observations make a case in favor of APRW signatures.

As explained in [KK12], these results can be extended to PSS-R [BR96], allowing a smaller
overhead of the randomized signature under the 2-Φ/4-Hiding assumption.
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A A Different Formalization of the Absolute Principal Rabin-Williams
LTF

We give a slightly different view of the APRW scheme in terms of lossy trapdoor permutation
over (Jm)+. For this, we define the mapping:

f :(JN )+ 7→ (JN )+

x 7→ |x2 mod N |

This is clearly a permutation over (JN )+ when N is a Blum integer (this was already noted
in [FS00, Section 6]). The inverse mapping maps y ∈ (JN )+ to the absolute principal square
root of ±y depending on whether y ∈ QRN or not. When N is a pseudo-Blum integer, the
mapping is 2-to-1.

The APRW signature scheme can be described as FDH used with this trapdoor permuta-
tion. The tweak in the signature can be seen as a deterministic way to hash into (JN )+ when
N is a Williams integer. Namely, given a hash function H : {0, 1}∗ → ZN , one can construct
a hash function H ′ defined as:

H ′(m) =


|H(m) mod N | if H(m) ∈ JN
|
(
N+1

2

)
H(m) mod N | if H(m) ∈ JN

1 if H(m) /∈ Z∗N

Outputs of H ′ can easily be seen to be in (JN )+.
Then, an equivalent description of the APRW scheme is obtained as follows: to sign m,

one first computes h = H ′(m), and the signature is s = f−1(h) ∈ (JN )+. The verification
algorithm checks whether H ′(m) = |s2 mod N |.

B Security Definition for a Signature Scheme

The usual security definition for a signature scheme is existential unforgeability under chosen-
message attacks, which in the Random Oracle Model is defined as follows.

A signature scheme Σ is said to be (t, ε, qh, qs)-secure against existential forgery un-
der chosen message attacks (EUF-CMA secure) if for any adversary A running in time at
most t, making at most qh random oracle queries and qs signature queries, the advantage
Adveuf−cma

Σ (A) = Pr[1← Expeuf−cma
Σ,A (k)] is less then ε, where the experiment is defined as:

Experiment Expeuf−cma
Σ,A (k):

(pk, sk)← KeyGen(1k)
(m̂, σ̂)← AH,Sig(sk,·)(pk)
b← Ver(pk, m̂, σ̂)
If b = 1 and m̂ was not queried to oracle Sig(sk, ·)

return 1
Else return 0
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