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Abstract. Lossy trapdoor functions, introduced by Peikert and Waters (STOC ’08), are func-
tions that can be generated in two indistinguishable ways: either the function is injective, and
there is a trapdoor to invert it, or the function is lossy, meaning that the size of its range is
strictly smaller than the size of its domain. Kakvi and Kiltz (EUROCRYPT 2012) proved that
the Full Domain Hash signature scheme based on a lossy trapdoor function has a tight security
reduction from the lossiness of the trapdoor function. Since Kiltz, O’Neill, and Smith (CRYPTO
2010) showed that the RSA trapdoor function is lossy under the Φ-Hiding assumption of Cachin,
Micali, and Stadler (EUROCRYPT ’99), this implies that the RSA Full Domain Hash signa-
ture scheme has a tight security reduction from the Φ-Hiding assumption (for public exponents
e < N1/4). In this work, we consider the Rabin trapdoor function, i.e. modular squaring over
Z∗N . We show that when adequately restricting its domain (either to the set QRN of quadratic
residues, or to (JN )+, the set of positive integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1)
the Rabin trapdoor function is lossy, the injective mode corresponding to Blum integers N = pq
with p, q ≡ 3 mod 4, and the lossy mode corresponding to what we call pseudo-Blum integers
N = pq with p, q ≡ 1 mod 4. This lossiness result holds under a natural extension of the Φ-
Hiding assumption to the case e = 2 that we call the 2-Φ/4-Hiding assumption. We then use
this result to prove that deterministic variants of Rabin-Williams Full Domain Hash signatures
have a tight reduction from the 2-Φ/4-Hiding assumption. We also show that these schemes
are unlikely to have a tight reduction from the factorization problem by extending a previous
“meta-reduction” result by Coron (EUROCRYPT 2002), later corrected by Kakvi and Kiltz
(EUROCRYPT 2012). These two results therefore answer one of the main questions left open
by Bernstein (EUROCRYPT 2008) in his work on Rabin-Williams signatures.
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1 Introduction

1.1 Background

Lossy Trapdoor Functions. Lossy Trapdoor Functions (LTF) were introduced by Peikert
and Waters [PW08] and have since then found a wide range of applications in cryptography
such as deterministic public-key encryption [BFO08], hedged public-key encryption [BBN+09],
and security against selective opening attacks [BHY09, FHKW10] to name a few. Informally,
an LTF consists of two families of functions: functions in the first family are injective (and
efficiently invertible using some trapdoor), while functions in the second family are non-
injective and hence lose information on their input. The key requirement for an LTF is that
functions sampled from the first and the second family be computationally indistinguishable.
Many constructions of LTF are known from various hardness assumptions such as DDH, LWE,
etc. [PW08]. In particular, Kiltz, O’Neill, and Smith showed [KOS10] that the RSA trapdoor
function f : x 7→ xe mod N , where N = pq is an RSA modulus, is lossy under the Φ-Hiding
assumption, introduced by Cachin, Micali, and Stadler [CMS99]. When e is coprime with
φ(N) (φ(·) is Euler’s totient function), f is injective on the domain Z∗N , while when e divides
φ(N) (but e2 does not), f is e-to-1 on Z∗N . The Φ-Hiding assumption states that given (N, e)
where e < N1/4, it is hard to tell whether gcd(e, φ(N)) = 1 or e|φ(N), which corresponds to
respectively the injective and lossy modes of the RSA function.

Full Domain Hash Signatures. Full Domain Hash (FDH) signatures [BR93] are a class of
signature schemes which can be based on any trapdoor function f : the signature of a message
m is computed as σ = f−1(H(m)), where H is some hash function (the secret signature key
is the trapdoor enabling to invert f). For a long time, the only known security result for FDH
signatures, due to Coron [Cor00] (improving on a previous result [BR93]), had been a non-tight
reduction from the problem of inverting the trapdoor function, losing a factor qs (the maximal
number of signature queries made by the forger). Recently, Kakvi and Kiltz [KK12] showed
that the FDH signature scheme, when based on a trapdoor function which is lossy, has a tight
reduction from the problem of distinguishing the injective from the lossy mode of the LTF. In
particular, this applies to RSA-FDH signatures with public exponents e < N1/4, which hence
have a tight security reduction from the Φ-Hiding problem.1 Moreover, in the same paper,
Kakvi and Kiltz corrected a previous “meta-reduction” result due to Coron [Cor02a] stating
that the security reduction of [Cor00] losing a factor qs is essentially optimal. More precisely,
they showed that when the trapdoor function is certified (meaning that there is an efficient
algorithm distinguishing injective from non-injective members of the function family), any
security reduction from inverting the trapdoor function to breaking FDH signatures must
lose a factor qs (unless inverting the trapdoor function is easy). This applies in particular
to RSA-FDH signatures with public exponents e > N1/4 since RSA is certified for these
parameters [KKM12].

1.2 Contributions of this Work

Lossiness of the Rabin Trapdoor Function. We show that the Rabin trapdoor function,
i.e. modular squaring, is lossy (with exactly one or two bits of lossiness) when adequately

1 Tight security reductions are important for adequately setting security parameters, see the discussion of this
point in [KK12].
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restricting its domain. Since any quadratic residue modulo an RSA modulus N = pq has
exactly four square roots, it is not immediately obvious how to render this function injective.
It is well known that when N is a so-called Blum integer, i.e. p, q ≡ 3 mod 4, any quadratic
residue has a unique square root which is also a quadratic residue, named its principal square
root. Hence, in this case, modular squaring defines a permutation over the set of quadratic
residues QRN . One potential problem with this definition of the injective mode is that the
domain of the permutation is (presumably) not efficiently recognizable (this is exactly the
Quadratic Residuosity assumption). A different way to restrict the domain of modular squar-
ing is to consider the set (JN )+ of integers 1 ≤ x ≤ (N−1)/2 with Jacobi symbol +1 (which is
efficiently recognizable). We show that when restricting its domain to either QRN or (JN )+ to
make it injective, modular squaring becomes an LTF. The lossy mode corresponds to integers
N = pq such that p, q ≡ 1 mod 4, that we call pseudo-Blum integers. It can be shown that in
that case, modular squaring becomes 4-to-1 over QRN and 2-to-1 over (JN )+. Indistinguisha-
bility of the injective and lossy modes is then exactly the problem of distinguishing Blum from
pseudo-Blum integers, which is equivalent to tell whether 2 divides φ(N)/4 or not. This can
be seen as the extension of the traditional Φ-Hiding assumption to exponent e = 2, so that
we call this problem the 2-Φ/4-Hiding problem. Details can be found in Sections 2 and 3.

Application to Rabin-Williams Signatures. We apply our finding to the security of de-
terministic Rabin-Williams Full Domain Hash signatures. The Rabin signature scheme [Rab79]
is one of the oldest provably secure digital signature scheme. Its security relies on the diffi-
culty of computing modular square roots, which is equivalent to factoring integers. Given an
RSA modulus N = pq, the general principle of Rabin signatures is to first map the message
m ∈ {0, 1}∗ to a quadratic residue h modulo N using some hash function H, and then return
a square root s of h. Since only 1/4 of integers in Z∗N are quadratic residues, directly using
h = H(m) mod N will fail for roughly 3 out of 4 messages. This can be coped with using a
randomized padding. The simplest one, Probabilistic Full Domain Hash with `-bit salts (`-
PFDH) [Cor02a], computes h = H(r,m) for random `-bit salts r, until h is a quadratic residue
(r is then included in the signature for verification). A way to avoid this probabilistic method
is to use a tweak, as proposed by Williams [Wil80].2 For any RSA modulus N , one can find
four values α1, α2, α3, α4 ∈ Z∗N such that for any h ∈ Z∗N , there is a unique i ∈ [1; 4] such that
α−1
i h mod N is a quadratic residue.3 When p ≡ 3 mod 8 and q ≡ 7 mod 8, one can use the

set of values {1,−1, 2,−2}. This way, the signature becomes a so-called tweaked square root
(α, s), where s is a square root of α−1H(m) mod N for the correct value α ∈ {1,−1, 2,−2},
and the verification algorithm now checks whether αs2 = H(m) mod N . This enables to define
FDH Rabin-Williams signatures.

Since any quadratic residue modulo an RSA modulus N has four square roots, one must
also specify which (tweaked) square root of the hash to use as the signature. There are basically
two ways to proceed. The first one is simply to pick a square root at random. However, when
no randomization (or randomization with only a small number of bits) is used in the input
to the hash function, one must be careful not to output two non-trivially distinct square

2 Williams’ paper [Wil80] was primarily concerned with public key encryption. The idea of using a tweak for
deterministic signing is implicit in the ISO/IEC 9796 standard published in 1991, and was later made more
explicit in a paper by Kurosawa and Ogata [KO99].

3 The sufficient condition for this is that the pairs of Legendre symbols (
(
αi
p

)
,
(
αi
q

)
) take each of the four

values (1, 1), (−1, 1), (1,−1) and (−1,−1) for exactly one αi.
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roots if the same message is signed twice, since this would reveal the factorization of the
modulus N . In consequence, the signature algorithm must either be stateful and store all
signatures previously output (which is cumbersome), or generate the bits for deciding which
root to use pseudo-randomly.4 However, in constrained environments, implementors might be
reluctant to pay the additional cost of a pseudorandom function (moreover, how exactly this
derandomization is done is not always precisely discussed, and may have security implications
as explained in [LN09]).

The second option is to define some deterministic rule telling which square root to use
as the signature. The most popular way to do so is to use for N a Blum integer and to
use the principal square root. A variant is to use what we call the absolute principal square
root, i.e. |s mod N |, where s is the principal square root represented by an integer in [−(N −
1)/2; (N −1)/2]. This turns out to also be the unique square root in (JN )+. We will call these
ways to choose a square root Principal Rabin-Williams (PRW) and Absolute Principal Rabin-
Williams (APRW) respectively.5 When no randomization in the input to the hash function is
used, the signature algorithm then becomes entirely deterministic (without having to appeal
to an auxiliary pseudorandom function), which is attractive from an implementation point of
view.

Bernstein [Ber08] proposed an extensive study of possible variants of Rabin-Williams
signature schemes depending on the length of the salt and the square root selection method.
In particular, for FDH signatures, he showed a tight security reduction from the factoring
assumption for the probabilistic square root selection method (Fixed Unstructured). On the
other hand, for PRW and APRW, only a loose reduction from factoring is known using
methods of Coron [Cor00, Ber08]. Our main result is a tight security reduction from the 2-
Φ/4-Hiding problem for the PRW and APRW schemes, building on the results of [KK12].
Details can be found in Section 4.

Extending the Coron-Kakvi-Kiltz Meta-reduction Result. Recall that Coron’s meta-
reduction result [Cor02a] as corrected by Kakvi and Kiltz [KK12] states that when the trap-
door function is certified, any security reduction from inverting the trapdoor function to
breaking FDH signatures must lose a factor qs. Since this only applies for certified trapdoor
functions, this leaves open the question of whether there might exist a tight reduction from
inverting the trapdoor function to breaking FDH signatures when the trapdoor function is
not certified. In particular, the question whether there exists a tight security reduction from
factoring (or equivalently, computing modular square roots) for the PRW and APRW schemes
was left as an open problem in [Ber08]. However, we observe that the meta-reduction result
still holds (namely, any security reduction from inverting the trapdoor function to breaking
FDH signatures must lose a factor qs) when the underlying trapdoor function is gap one-way,
meaning that inverting the injective mode of the function is hard even with the help of an
oracle distinguishing injective from non-injective modes of the trapdoor function. This implies
in particular that if factoring with the help of an oracle solving the 2-Φ/4-Hiding problem is
hard, the PRW and APRW signature schemes cannot have a tight security reduction from

4 This method was called Fixed Unstructured Rabin-Williams in [Ber08], and Probabilistic Rabin-Williams
(PRW) in [LN09]. See Table 1 in Appendix A.

5 PRW was called Fixed Principal in [Ber08] and Deterministic Rabin-Williams (DRW) in [LN09], while
APRW was called Fixed |Principal| in [Ber08]. See Table 1 in Appendix A.
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the factorization problem. This essentially answers the open question of [Ber08] regarding the
security reductions for these schemes. Details can be found in Section 5.

1.3 Related and Future Work

Two constructions of lossy trapdoor functions based on modular squaring were previously
proposed, however they are slightly more complicated than the basic Rabin trapdoor function.
Mol and Yilek [MY10] gave a construction whose security relies on an assumption close in
spirit (though more involved) to the 2-Φ/4-Hiding assumption. Freeman et al. [FGK+10] gave
a construction relying on the Quadratic Residuosity problem.

The cryptographic applications of the set (JN )+ when N is a Blum integer were previously
considered by Goldwasser et al. [GMR88], Fischlin and Schnorr [FS00], and Hofheinz and
Kiltz [HK09] (in this last paper, it was denoted QR+

N and named group of signed quadratic
residues). In particular, it was showed in [HK09] that under the factoring assumption, the
Strong Diffie-Hellman problem [ABR01] is hard in this group.

The Coron-Kakvi-Kiltz meta-reduction result [Cor02a, KK12] was extended by Hofheinz
et al. [HJK12] to the case where the signature scheme is re-randomizable (rather than with
unique signatures).

Kiltz et al. [KOS10] showed that lossiness of RSA implies that the RSA-OAEP encryp-
tion scheme [BR94] meets indistinguishability under chosen-plaintext attacks in the standard
model (under appropriate assumptions on the hash functions used to instantiate OAEP). An
interesting question is whether lossiness of the Rabin trapdoor function can be used to argue
about the security of Rabin-OAEP encryption as was done in [KOS10] for RSA. Though from
a theoretical point of view the results of [KOS10] apply to OAEP used with any LTF, they
provide some meaningful security insurance only when the amount of lossiness is sufficiently
high. This requires more careful investigation in the case of Rabin-OAEP. As a first step
in this direction, we note that if “multi-primes” pseudo-Blum integers N = p1 · · · pm, with
p1, . . . , pm ≡ 1 mod 4 are indistinguishable from 2-primes pseudo-Blum integers, lossiness of
the Rabin trapdoor function with domain (JN )+ can be amplified from 1 bit to m − 1 bits.
Similar arguments were used for RSA in [KOS10].

2 Preliminaries

2.1 General Notation

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security parameter will be
denoted k. A function f of the security parameter is said negligible if for any c > 0, f(k) ≤ 1/kc
for sufficiently large k. When S is a non-empty finite set, we write s ←$ S to mean that a
value is sampled uniformly at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .)
we denote the operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1,O2, . . . (possibly none), and letting z be the output.

2.2 Basic Definitions

Given an (odd for most of what follows) integer N , the multiplicative group of integers modulo
N is denoted Z∗N . This group has order φ(N) where φ(·) is the Euler function. We denote
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JN the subgroup of Z∗N of all elements x ∈ Z∗N with Jacobi symbol
(
x
N

)
= 1. This subgroup

has index 2 and order φ(N)/2 in Z∗N . Moreover it is efficiently recognizable even without the
factorization of N since the Jacobi symbol is efficiently computable given only N . We also
denote JN the coset of elements x ∈ Z∗N such that

(
x
N

)
= −1. Finally, we denote QRN the

subgroup of quadratic residues of Z∗N . This subgroup is widely believed not to be efficiently
recognizable when N is composite and its factorization is unknown: this is the Quadratic
Residuosity assumption.

We will represent elements of ZN as signed integers in [−(N − 1)/2, (N − 1)/2]. Given an
integer x, we denote |x mod N | the absolute value of x mod N . For any subset S ⊂ ZN , we
denote S+ = S ∩ [1; (N − 1)/2] and S− = S ∩ [−(N − 1)/2;−1]. Note that (JN )+, (JN )−,
(JN )+ and (JN )− form a partition of Z∗N .

We call an integer N = pq which is the product of two distinct odd primes a Blum integer
when p, q ≡ 3 mod 4 , and a pseudo-Blum integer when p, q ≡ 1 mod 4 , and we denote

Bl(k) = {(N, p, q) : N = pq, p, q are two distinct bk/2c-bit primes with p, q ≡ 3 mod 4}
B̃l(k) = {(N, p, q) : N = pq, p, q are two distinct bk/2c-bit primes with p, q ≡ 1 mod 4} .

We call a Blum integer N = pq such that moreover p ≡ 3 mod 8 and q ≡ 7 mod 8 a Williams
integer, and a pseudo-Blum integer such that p ≡ 5 mod 8 and q ≡ 1 mod 8 a pseudo-Williams
integer. We denote

Wi(k) = {(N, p, q) ∈ Bl(k) : p ≡ 3 mod 8, q ≡ 7 mod 8}

W̃i(k) = {(N, p, q) ∈ B̃l(k) : p ≡ 5 mod 8, q ≡ 1 mod 8} .

Note that:

– when N is a Blum integer, −1 ∈ JN \QRN ;
– when N is a pseudo-Blum integer, −1 ∈ QRN ;
– when N is a Williams or a pseudo-Williams integer, 2 ∈ JN .

A quadratic residue modulo an RSA modulus N = pq has four square roots, two of which
are in (Z∗N )+ and two of which are in (Z∗N )−. The two square roots in (Z∗N )+ will be called the
absolute square roots in what follows. The following lemma will be important when proving
lossiness of the Rabin trapdoor function.

Lemma 1. Let N = pq be a RSA modulus with N ≡ 1 mod 4. Let x ∈ QRN , and let s1 and
s2 be the two absolute square roots of x (the two other square roots being −s1 and −s2). Then:

– if N is a Blum integer, exactly one si is in (JN )+ and the other is in (JN )+; moreover if
si ∈ (JN )+ then either si ∈ QRN or −si ∈ QRN ;

– if N is a pseudo-Blum integer, then either s1, s2,−s1,−s2 ∈ QRN , or s1, s2,−s1,−s2 ∈
JN \QRN , or s1, s2,−s1,−s2 ∈ JN .

Proof. Consider x ∈ QRN . Denote xp = x mod p and xq = x mod q. Let also ±rp and ±rq
denote the two square roots of respectively xp (mod p) and xq (mod q). The four square roots of
x modulo N are obtained by combining ±rp and ±rq by the Chinese Remainder Theorem, i.e.
there are to integers cp and cq such that the four square roots of x are ±(pcprq±qcqrp) mod N .
Assume that one of the two absolute square roots is s1 = (pcprq+qcqrp) mod N (the reasoning
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is similar if it is −(pcprq + qcqrp) mod N). Then the other absolute square root satisfies
s2 = α(pcprq − qcqrp) mod N , with α = ±1 so that:(

s2
p

)
=
(
α

p

)(−1
p

)(
s1
p

)
and

(
s2
q

)
=
(
α

q

)(
s1
q

)
.

Consequently:

– when N is a Blum integer, s1 and s2 have opposite Jacobi symbols; moreover, assuming
s1 ∈ (JN )+ then since −1 is a non-quadratic residue, either s1 ∈ QRN or −s1 ∈ QRN ;

– when N is a pseudo-Blum integer, we see that(
s1
p

)
=
(−s1

p

)
=
(
s2
p

)
=
(−s2

p

)
and

(
s1
q

)
=
(−s1

q

)
=
(
s2
q

)
=
(−s2

q

)
,

from which the claim on the localization of the four square roots follows.

This concludes the proof. ut

Hence when N is a Blum integer, the two absolute square roots can easily be distinguished
through their Jacobi symbol. In the following, given a Blum integer N and x ∈ QRN , we will
call the unique square root of x which is in QRN the principal square root of x, and denote it
psr(x). We will also call the unique square root of x which is in (JN )+ the absolute principal
square root of x, and will denote it |psr|(x). The notation is chosen so that |psr|(x) =
|psr(x) mod N |.

Tweaked Square Roots. Let N be a Williams integer. Then for any x ∈ Z∗N there is
a unique α ∈ {1,−1, 2,−2} such that α−1x mod N is a quadratic residue.6 The four pairs
(α, si)i=1,...,4 where (si)i=1,...,4 are the four square roots of α−1x mod N are named the tweaked
square roots of x, and α is named the tweak. Hence, (α, s) with α ∈ {1,−1, 2,−2} is a tweaked
square root of x ∈ Z∗N iff αs2 = x mod N . By extension, the principal tweaked square root
of x is the unique tweaked square root (α, s) such that s ∈ QRN , and the absolute principal
tweaked square root is the unique tweaked square root (α, s) such that s ∈ (JN )+. Overloading
the notation, they will be denoted respectively psr(x) and |psr|(x).

2.3 Trapdoor Functions

We recall some formal definitions associated with trapdoor functions (we follow closely the
ones of [KK12]). We also introduce the concept of gap one-way trapdoor function, which is
informally a trapdoor function which is hard to invert even when given access to an oracle
which tells whether a member of the family is injective or lossy.

Definition 1 (Trapdoor Function). A trapdoor function (TDF) is a tuple of polynomial-
time algorithms TDF = (InjGen, Eval, Invert) with the following properties:

– InjGen(1k): a probabilistic algorithm which on input the security parameter 1k, outputs a
public description pub (with implicitly understood domain Dpub) and a trapdoor td;

6 This follows easily from the fact that the pairs of Legendre symbols (
(
α
p

)
,
(
α
q

)
) for α = 1, −1, 2, and −2

are respectively (1, 1), (−1,−1), (−1, 1) and (1,−1).
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– Eval(pub, x): a deterministic algorithm which on input pub and a point x ∈ Dpub, outputs
a point y ∈ {0, 1}∗; we denote fpub : x 7→ Eval(pub, x);

– Invert(td, y): a deterministic algorithm which on input td and a point y ∈ {0, 1}∗, outputs
a point x ∈ Dpub when y ∈ fpub(Dpub) (and ⊥ otherwise).

We require that for any k and any (pub, td) possibly output by InjGen(1k), the function
fpub : x 7→ Eval(pub, x) be injective, and y 7→ Invert(td, y) be its inverse f−1

pub. We also
require that Dpub and fpub(Dpub) be efficiently samplable.

Definition 2 (One-Way TDF). A trapdoor function TDF = (InjGen, Eval, Invert) is said
to be (t, ε)-one-way if for any adversary A running in time at most t, one has:

Pr
[
pub← InjGen(1k), x←$ Dpub, x

′ ← A(pub, Eval(pub, x)) : x′ = x
]
≤ ε .

Definition 3 (Certified TDF). A trapdoor function TDF = (InjGen, Eval, Invert) is said
to be certified if there exists a deterministic polynomial-time algorithm Certify which, on
input an arbitrary string pub (not necessarily generated by InjGen) returns 1 iff the function
x 7→ Eval(pub, x) is injective over Dpub.

Definition 4 (Lossy TDF). A lossy trapdoor function (LTF) with absolute lossiness ` is a
tuple of algorithms LTF = (InjGen, LossyGen, Eval, Invert) such that (InjGen, Eval, Invert)
is a TDF as per Definition 1, and moreover LossyGen is a probabilistic algorithm which on
input 1k, outputs a public description pub′ such that the range of the function fpub′ : x 7→
Eval(pub′, x) over Dpub′ satisfies:

|Dpub′ |
|fpub′(Dpub′)|

≥ ` .

We say that LTF is (t, ε)-secure if for any adversary A running in time at most t, the following
advantage is less than ε:∣∣∣Pr[(pub, td)← InjGen(1k) : 1← A(pub)]− Pr[pub′ ← LossyGen(1k) : 1← A(pub′)]

∣∣∣ .
We say that LTF is a regular (`, t, ε)-lossy trapdoor function if LTF is (t, ε)-secure and all
functions generated by LossyGen are `-to-1 on Dpub′.

Remark 1. One can easily show that if TDF is a regular (`, t, ε)-lossy TDF, then it is (t′, ε′)-one
way with t′ ' t and ε′ ≤ ε+1/`. Note in particular that asymptotically, if ` = O(1) is constant
(as is the case for the trapdoor functions considered in this paper), this only implies that TDF
is weakly one-way [Gol01].

Definition 5 (Gap One-Way TDF). A trapdoor function TDF = (InjGen, Eval, Invert)
is said (t, ε, n)-gap one-way if for any adversary A running in time at most t and making at
most n queries to a Certify(·) oracle which on input a string pub, returns 1 iff the function
x 7→ Eval(pub, x) is injective over Dpub, one has:

Pr
[
pub← InjGen(1k), x←$ Dpub, x

′ ← ACertify(·)(pub, Eval(pub, x)) : x′ = x
]
≤ ε .

Informally, for a lossy TDF, being gap one-way means that inverting the injective mode
of the function cannot be black-box reduced to the lossiness of the TDF. Note that for a
certified TDF, being gap one-way is equivalent to being one-way since the Certify oracle can
be efficiently implemented.
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2.4 Signature Schemes

We recall the formal definition and the security notion for a signature scheme.

Definition 6. A signature scheme Σ is a tuple of algorithms (Σ.KeyGen, Σ.Sig, Σ.Ver) with
the following properties:

– Σ.KeyGen(1k): a probabilistic algorithm which on input the security parameter 1k, outputs
a pair of public/secret key (pk, sk);

– Σ.Sig(sk,m): a (possibly probabilistic) algorithm which on input a secret key sk and a
message m ∈ {0, 1}∗, outputs a signature σ;

– Σ.Ver(pk,m, σ): a deterministic algorithm which on input a public key pk, a message m,
and a purported signature σ, either outputs 1 (accepts) or 0 (rejects).

We require that the scheme be correct, i.e. for all k and all messages m,

Pr[(pk, sk)← KeyGen(1k), σ ← Sig(sk,m) : Ver(pk,m, σ) = 1] = 1 .

A signature scheme is said to have unique signatures if for all k, for any public key pk possibly
output by KeyGen(1k), and any message m ∈ {0, 1}∗, there is exactly one string σ such that
Ver(pk,m, σ) accepts.

The usual security definition for a signature scheme is existential unforgeability under
chosen-message attacks (EUF-CMA security). We recall this definition in Appendix B.

FDH Signatures Based on an Arbitrary TDF. Let TDF = (InjGen, Eval, Invert) be a
trapdoor function. The Full Domain Hash signature scheme TDF-FDH is defined as follows:
the key generation algorithm KeyGen(1k) runs InjGen(1k) to obtain (pub, td), selects a random
hash function H : {0, 1}∗ → fpub(Dpub), and sets pk = (pub,H) and sk = td. The signature
algorithm, on input td and m, computes h = H(m) and returns σ = Invert(td, h). The
verification algorithm, on input pub,m and σ, checks that Eval(pub, σ) = H(m). This scheme
can be shown EUF-CMA secure in the Random Oracle Model under the assumption that TDF is
(strongly) one-way [BR93, Cor00], but the reduction loses a factor qs, where qs is the maximal
number of signature queries of the adversary, and this loss cannot be avoided assuming that
TDF is certified [Cor02a, KK12].

3 The 2-Φ/4-Hiding Assumption and Lossiness of the Rabin Trapdoor
Function

3.1 Definition

We introduce the 2-Φ/4-Hiding assumption, an extension of the traditional Φ-Hiding assump-
tion to the case e = 2. The Φ-Hiding assumption, introduced by Cachin et al. in [CMS99],
roughly states that given an RSA modulus N = pq and a random prime 3 ≤ e < N1/4,
it is hard to distinguish whether e divides φ(N) or not (when e ≥ N1/4 and e|φ(N), N
can be factored using Coppersmith’s method for finding small roots of univariate modular
equations [Cop96, CMS99]). Kiltz et al. [KOS10] were the first to observe that the Φ-Hiding
assumption can be interpreted in terms of lossiness of the RSA trapdoor permutation.
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The original definition of the Φ-Hiding assumption was formulated for primes e randomly
drawn in [3;N1/4[. Since in practice RSA is often used with a fixed, small prime e (e.g. e = 3
or e = 216 + 1), Kakvi and Kiltz [KK12] introduced the Fixed-Prime Φ-Hiding assumption,
which states, for a fixed prime e, that it is hard, given an RSA modulus N = pq, to distinguish
whether e divides φ(N) or not (the exact statement of the assumption is slightly different for
e = 3 and e > 3 in order to avoid trivial distinguishers). The 2-Φ/4-Hiding assumption is
the extension of the Fixed-Prime Φ-Hiding assumption to the case e = 2. Since for an RSA
modulus N (more generally for any number which has at least two distinct prime factors) one
always has that 4 divides φ(N), the problem will be to distinguish whether 2 divides φ(N)/4
or not. Moreover, when N ≡ 3 mod 4, one can check that 2 always divides φ(N)/4, so that
the instances will be restricted to RSA moduli such that N ≡ 1 mod 4. As a matter of fact,
distinguishing whether 2 divides φ(N)/4 or not when N ≡ 1 mod 4 turns out to be equivalent
to distinguishing Blum integers from pseudo-Blum integers. Indeed, if N is a Blum integer,
then p = 4p′ + 3 and q = 4q′ + 3, so that φ(N) = 4(2p′ + 1)(2q′ + 1) and 2 - (φ(N)/4). On
the other hand, if N is a pseudo-Blum integer, then p = 4p′ + 1 and q = 4q′ + 1, so that
φ(N) = 16p′q′ and 2|(φ(N)/4). We now precisely formalize the assumption.

Definition 7 (2-Φ/4-Hiding Assumption). The 2-Φ/4-Hiding problem is said to be (t, ε)-
hard if for any algorithm A running in time at most t, the following advantage is less than
ε:

Adv2−Φ/4(A) def=
∣∣∣Pr[(N, p, q)←$ Bl(k) : 1← A(N)]− Pr[(N, p, q)← B̃l(k) : 1← A(N)]

∣∣∣ .
A variant of this problem is obtained by switching from Blum integers to Williams integers,

i.e. replacing Bl(k) and B̃l(k) in the above definition by respectively Wi(k) and W̃i(k). Clearly,
the hardness of this variant is polynomially related to the hardness of the original problem,
under the plausible assumption that roughly half of Blum, resp. pseudo-Blum integers are
Williams, resp. pseudo-Williams integers.

3.2 Lossiness of the Rabin and Rabin-Williams Trapdoor Functions

We now show that the 2-Φ/4-Hiding assumption implies that squaring is a lossy trapdoor
function over the domains QRN or (JN )+, for N ≡ 1 mod 4, with respectively two bits or
one bit of lossiness. The injective mode corresponds to N being a Blum integer, and the lossy
mode corresponds to N being a pseudo-Blum integer.

The Rabin LTFs. We first define two related LTFs, that we name respectively the Principal
Rabin LTF PR-LTF and the Absolute Principal Rabin LTF APR-LTF as follows:

– on input 1k, PR-LTF.InjGen and APR-LTF.InjGen both draw (N, p, q)←$ Bl(k), and output
pub = N and td = (p, q);

– on input 1k, PR-LTF.LossyGen and APR-LTF.LossyGen both draw (N, p, q) ←$ B̃l(k), and
output pub′ = N ;

– the domain is DN = QRN for PR-LTF, and DN = (JN )+ for APR-LTF; the evaluation
algorithms PR-LTF.Eval(N, x) and APR-LTF.Eval(N, x) both output fN (x) = x2 mod N ;
in both cases fN (DN ) = QRN in injective mode;
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– the inversion algorithm PR-LTF.Invert((p, q), y) outputs the principal square root psr(y),
while APR-LTF.Invert((p, q), y) outputs the absolute principal square root |psr|(y) (for N
a Blum integer and y ∈ QRN ).

Theorem 1. Assuming the 2-Φ/4-Hiding problem is (t, ε)-hard, the Principal Rabin trapdoor
function PR-LTF is a regular (4, t, ε)-LTF, while the Absolute Principal Rabin trapdoor function
APR-LTF is a regular (2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly the 2-Φ/4-Hiding prob-
lem. It follows from Lemma 1 that when N is a Blum integer, any y ∈ QRN has exactly
one pre-image in QRN or (JN )+, while when N is pseudo-Blum integer, any y in the range
fN (QRN ) has exactly 4 pre-images in QRN , and any y in the range fN ((JN )+) has exactly 2
pre-images in (JN )+. ut

Remark 2. Note that one can define a group structure on (JN )+ as soon as N is a Blum
or pseudo-Blum integer as follows. Since −1 ∈ JN , one can consider the quotient group
JN/{−1, 1}. This quotient group can be identified with the set (JN )+ equipped with the
group operation ◦ defined as a ◦ b = |ab mod N |. Note that the order of this group is φ(N)/4.
It is then easy to check that squaring, seen as a mapping from (JN )+ to QRN , is a group
homomorphism. When N is a Blum integer, its image is QRN , whereas when N is a pseudo-
Blum integer, its image is a strict subgroup of QRN of index 2. Similarly, when N is a
pseudo-Blum integer, the image of QRN is a strict subgroup of QRN of index 4.

The Rabin-Williams LTFs. The PR-LTF and APR-LTF LTFs can be straightforwardly ex-
tended to what we call the Principal Rabin-Williams LTF PRW-LTF and Absolute Principal
Rabin-Williams LTF APRW-LTF as follows:

– on input 1k, PRW-LTF.InjGen and APRW-LTF.InjGen both draw a random Williams integer
(N, p, q)←$ Wi(k), and output pub = N and td = (p, q);

– on input 1k, PRW-LTF.LossyGen and APRW-LTF.LossyGen both draw a random pseudo-
Williams integer (N, p, q)←$ W̃i(k) and output pub′ = N ;

– the domain of PRW-LTF is DN = {1,−1, 2,−2} × QRN , while the domain of APRW-LTF
is DN = {1,−1, 2,−2} × (JN )+; the evaluation algorithms PRW-LTF.Eval(N, (α, x)) and
APRW-LTF.Eval(N, (α, x)) both compute the function fN (α, x) = αx2 mod N ; in both cases
fN (DN ) = Z∗N in injective mode;

– the inversion algorithm PRW-LTF.Invert((p, q), y) computes the principal tweaked square
root psr(y), while APRW-LTF.Invert((p, q), y) computes the absolute principal tweaked
square root |psr|(y) (for N a Williams integer and y ∈ Z∗N ).

Theorem 2. Under the assumption that Williams and pseudo-Williams integers are (t, ε)-
indistinguishable, the Principal Rabin-Williams trapdoor function PRW-LTF is a regular (4, t, ε)-
LTF, while the Absolute Principal Rabin-Williams trapdoor function APRW-LTF is a regular
(2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly indistinguishability of
Williams and pseudo-Williams integers, which follows from the 2-Φ/4-Hiding assumption and
the additional (reasonable) assumption that roughly half of Blum, resp. pseudo-Blum inte-
gers, are Williams, resp. pseudo-Williams integers. Injectivity of fN for both PRW-LTF and
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APRW-LTF follows directly from Lemma 1 and the discussion about tweaked square roots
in Section 2. Assume now that N is a pseudo-Williams integer, and let y ∈ fN (DN ) with
DN = {1,−1, 2,−2} × QRN . We show that y has exactly 4 pre-images in DN , which will
establish that PRW-LTF is 4-to-1 on DN . Let (α, x) ∈ DN be such that αx2 = y mod N . Then
by Lemma 1, y has at least 4 pre-images in DN , all with the same tweak α. Assume that y has
an extra pre-image (α′, x′) ∈ DN with α′ 6= α. Note that when N = pq is a pseudo-Williams
integer (i.e. p ≡ 5 mod 8 and q ≡ 1 mod 8), the pairs of Legendre symbols (

(
α
p

)
,
(
α
q

)
) for

α = 1, −1, 2, and −2 are respectively (1, 1), (1, 1), (−1, 1) and (−1, 1). Hence it must be
that α′ = −α, so that x2 = −(x′)2 mod N . Let a be any square root of −1 modulo N . Since
a2 = −1 mod N , we observe (denoting p = 8p′ + 5 and q = 8q′ + 1) that:(

a

p

)
≡ a

p−1
2 ≡ a

8p′+4
2 ≡ (−1)2p′+1 ≡ −1 mod p(

a

q

)
≡ a

q−1
2 ≡ a

8q′
2 ≡ (−1)2q′ ≡ 1 mod q ,

so that a ∈ JN . Hence, we have that x2 = (ax′)2 mod N , with x, x′ ∈ QRN . Yet by Lemma 1,
one should have ax′ ∈ QRN as well, which is impossible since a ∈ JN . Hence y has exactly 4
pre-images in DN .

The proof that APRW-LTF is 2-to-1 on DN = {1,−1, 2,−2}× (JN )+ is very similar. Assume
that N is a pseudo-Williams integer, and let y ∈ fN (DN ) with DN = {1,−1, 2,−2} × (JN )+.
Let (α, x) ∈ DN be such that αx2 = y mod N . Then by Lemma 1, y has at least 2 pre-images
in DN , both with the same tweak α. Assume that y has an extra pre-image (α′, x′) ∈ DN . Since
by Lemma 1, the two additional square roots of α−1y mod N are in (JN )−, one must have
α′ 6= α. By the same considerations as above, there exists a ∈ JN such that x2 = (ax′)2 mod N ,
with x, x′ ∈ (JN )+. Yet by Lemma 1, one should have ax′ ∈ JN as well, which is impossible
since a ∈ JN . Hence y has exactly 2 pre-images in DN . ut

4 Application to Rabin-Williams Signatures

There are two very close ways to define deterministic Rabin-Williams FDH signatures, called
principal and |principal| in the terminology of Bernstein [Ber08]. We will use the name Absolute
Principal Rabin-Williams signatures for the latter in this paper. Before defining precisely
these schemes, we stress that the exact definition of the verification algorithm is important,
especially with respect to how a forgery is defined (since a forgery is exactly a string which
is accepted by the verification algorithm). Hence, to be more precise, we will define in total
four “real” signature schemes: Principal Rabin-Williams (PRW), Absolute Principal Rabin-
Williams (APRW), as well as two slightly different variants that we call PRW∗ and APRW∗,
which differ from respectively PRW and APRW only in their verification algorithm. We will
also define a “theoretical” scheme PRW∗∗ where the verification algorithm is inefficient (this
will be necessary to establish a clean security reduction). For the five schemes, the signing
algorithm first hashes the message h = H(m); then, for the PRW, PRW∗, and PRW∗∗ schemes,
the signing algorithm returns the principal tweaked square root of h, whereas for the APRW
and APRW∗ schemes, the signing algorithm returns the absolute principal tweaked square root
of h. In all the following, we assume that if h is not coprime with N , the signing algorithm
outputs some fixed signature, e.g. (1, 1). Since this happens only with negligible probability
when H is modeled as a random oracle, this does not affect the security analysis.
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We now proceed to the formal definition. First, all the schemes share exactly the same key
generation algorithm:

– (A)PRW(∗,∗∗ ).KeyGen(1k): on input the security parameter 1k, draw uniformly at random
(N, p, q) ←$ Wi(k). Select a hash function H : {0, 1}∗ → ZN . The public key is pk =
(N,H) and the secret key is sk = (p, q).

Note that the hash function will usually be selected once for each security parameter k and
common to all public keys, but this affects the security proof only up to negligible terms, see
Bernstein [Ber08].

The signing algorithm for PRW, PRW∗, and PRW∗∗ on one hand, and for APRW and
APRW∗ on the other hand, are the same, and are defined as follows:

– PRW(∗,∗∗ ).Sig(sk,m): To sign a message m, compute h = H(m), and output the princi-
pal tweaked square root σ = (α, s) = psr(h).

– APRW(∗).Sig(sk,m): To sign a message m, compute h = H(m), and output the absolute
principal tweaked square root σ = (α, s) = |psr|(h).

The verification algorithms for the five schemes are very close, and differ only with respect to
an additional check on the Jacobi symbol of the signature made for PRW∗ and APRW∗, and
on the quadratic residuosity of the signature for PRW∗∗. They are defined as follows:

– (A)PRW(∗,∗∗ ).Ver(pk,m, σ): To check a purported signature σ = (α, s) on message m,
first ensure that s ∈ S, and then check that αs2 = H(m) mod N . Accept if this holds,
and reject otherwise;

where the set S is defined as:

– S = Z∗N for PRW, S = JN for PRW∗, and S = QRN for PRW∗∗;
– S = (Z∗N )+ for APRW and S = (JN )+ for APRW∗.

Note that the verification algorithm is (presumably) inefficient for PRW∗∗ since it needs to
decide whether the signature is indeed the principal square root, i.e. a quadratic residue.

The following claims are straightforward:

– in PRW, each message has exactly four valid signatures: (α, s1) = |psr|(H(m)), (α,−s1),
and (α, s2), (α,−s2) with s2 ∈ (JN )+;

– in PRW∗, each message has exactly two valid signatures: (α, s) = |psr|(H(m)) and (α,−s);
– in PRW∗∗, each message has a unique valid signature: (α, s) = psr(H(m));
– in APRW, each message has exactly two valid signatures: |psr|(H(m)) and (α, s2) with
s2 ∈ (JN )+;

– in APRW∗, each message has a unique valid signature: |psr|(H(m)).

We now relate the security of PRW, PRW∗, and PRW∗∗ on one hand, and APRW and APRW∗
on the other hand.

Lemma 2. The security of PRW, PRW∗ and PRW∗∗ on one hand, and APRW and APRW∗
on the other hand, is related as depicted in Figure 1, where an arrow labeled (t, f(ε)) from
scheme A to scheme B means that if scheme A is (t, ε, qh, qs)-EUF-CMA secure in the ROM,
then scheme B is (t′, f(ε), qh, qs)-EUF-CMA secure for t′ ' t.
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Proof. We prove each of the reductions in turn.

– PRW∗∗ (t,2ε)−−−→ PRW∗: Assume there is an adversary A which (t, ε, qh, qs)-breaks the PRW∗
scheme. We build from it an adversary A′ breaking the PRW∗∗ scheme. A′ receives as input
a public key N and runs A with the same public key. Denote H ′ the random oracle to
which A′ has access. A′ simulates the PRW∗ security experiment to A by simply relaying
its random oracle queries and signing queries to its own oracles. When A outputs a forgery
(α̂, ŝ) for some message m̂ where ŝ ∈ JN , A′ simply draws a random bit b, and outputs
(α̂, (−1)bŝ). The security experiment is perfectly simulated to A (since a PRW∗∗ signature
oracle and a PRW∗ signature oracle are the same), and, assuming that the forgery output
by A is valid (which happens with probability at least ε), the forgery output by A′ is
valid when (−1)bŝ is a quadratic residue, which happens with probability 1/2. Hence A′
(t, ε/2, qh, qs)-breaks PRW∗∗.

– (A)PRW∗ (t,2ε)−−−→ (A)PRW: We consider the PRW∗→ PRW reduction, the reasoning for the
APRW∗ → APRW reduction is similar. Assume there is an adversary A which (t, ε, qh, qs)-
breaks the PRW scheme. We build from it an adversary A′ breaking the PRW∗ scheme.
A′ receives as input a public key N and runs A with the same public key. Denote H ′ the
random oracle to which A′ has access. We assume wlog that A always makes a random
oracle query for m before asking the corresponding signature or returning a forgery for
m (otherwise we let A′ emulate this random oracle query). We now describe how A′
simulates the random oracle H and the PRW signing oracle to A. Each time A makes a
query H(m), A′ draws a random bit bm. If bm = 0, then A′ makes the query H ′(m) to
its own random oracle and returns H(m) = H ′(m). If bm = 1, then A′ draws a random
tweak α ←$ {1,−1, 2,−2} and a random s ←$ QRN (by sampling z ←$ Z∗N and letting
s = z2 mod N), and returns H(m) = αs2 mod N to A′. If A makes a subsequent PRW
signing query for m, then if bm was 0, A′ makes the same signing query to its own PRW∗
signing oracle and returns the corresponding signature. If bm was 1, then A′ simply outputs
(α, s) as the signature, where α and s were randomly drawn to simulate H(m). Clearly,
the simulation of the PRW security experiment is close to perfect (up to the fact that
answers to random oracle queriesH(m) are uniform in Z∗N rather than ZN when bm = 1).
Hence A outputs a forgery (α̂, ŝ) for some message m̂ with probability at least ε. Note
that this is a valid forgery for PRW, so that ŝ may be in JN or JN . Since the view of A is
independent of the bit bm̂, we can assume that this bit is randomly drawn after the forgery
is returned. Two cases arise. In case where ŝ ∈ JN , then if bm̂ = 0, (α̂, ŝ) is also a valid
forgery for PRW∗ and A′ can simply output the same forgery. Otherwise, in case where
ŝ ∈ JN , then if bm̂ = 1, denoting s′ the value randomly drawn in QRN by A′ to simulate
the random oracle query H(m̂), we see that ŝ and s′ are two non-trivially distinct square
roots of the same quadratic residue, so that A′ can factor N and forge a signature for
a message of its choice. In both cases A′ is successful with probability 1/2, so that the
overall success probability of A′ is ε/2. Hence A′ (t, ε/2, qh, qs)-breaks PRW∗.

This proves the lemma. ut

Hence, one can see that PRW and PRW∗ on one hand, and APRW and APRW∗ on the
other hand, have the same security up to a factor 2. In other words, omitting the additional
check on the Jacobi symbol has negligible impact on security. Since computing a Jacobi symbol
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2-Φ/4-Hiding

PRW∗∗ PRW∗ PRW

APRW∗ APRW

(t, 7ε/3)

(t, 3ε)

(t, 2ε) (t, 2ε)

(t, 2ε)

Fig. 1. Set of reductions proved in Lemma 2. An arrow labeled (t, f(ε)) from scheme A to scheme B means
that if scheme A is (t, ε, qh, qs)-EUF-CMA secure in the ROM, then scheme B is (t′, f(ε), qh, qs)-EUF-CMA
secure for t′ ' t. The reduction from 2-Φ/4-Hiding to breaking PRW∗∗ and APRW∗ is Theorem 4.

might be costly (in particular, it is more expensive than modular squaring), we see that PRW
and APRW are superior in terms of security/efficiency trade-off.

In the following, we give a tight reduction for PRW∗∗ and APRW∗ from the 2-Φ/4-Hiding
assumption, which extends to PRW and APRW by Lemma 2. It is easy to see that the PRW∗∗,
resp. APRW∗ signature scheme is exactly the instantiation of the generic TDF-FDH scheme
recalled in Section 2.4 with PRW-LTF, resp. APRW-LTF. In order to conclude about the security
of these schemes, we appeal to the main result of [KK12]. This theorem was originally stated
for trapdoor permutations, but it can be straightforwardly extended to trapdoor functions
such that Dpub and fpub(Dpub) are efficiently samplable.

Theorem 3 ([KK12]). Assume LTF is a regular (`, t′, ε′)-LTF for ` ≥ 2. Then for any
(qh, qs), the TDF-FDH signature scheme instantiated with LTF is (t, ε, qh, qs)-EUF-CMA se-
cure in the ROM, where

ε =
(2`− 1
`− 1

)
ε′ and t = t′ − qhTEval ,

where TEval is the time to run algorithm Eval of LTF.

Theorem 4. Assuming the 2-Φ/4-Hiding problem is (t′, ε′)-hard, then for any (qh, qs), the
PRW∗∗ signature scheme is (t, ε, qh, qs)-EUF-CMA secure, where ε = 7ε′/3 and t = t′ −
O(qhk3), and the APRW∗ signature scheme is (t, ε, qh, qs)-EUF-CMA secure, where ε = 3ε′
and t = t′ −O(qhk3).

Proof. This follows directly from Theorems 2 and 3 (noting thatQRN and (JN )+ are efficiently
samplable). Combined with Lemma 2, this yields tight security reductions for PRW and
APRW (see Figure 1 for a clear picture). ut

Remark 3. The global security reduction from the 2-Φ/4-Hiding assumption to breaking the
signature scheme is slightly looser for PRW (factor 28/3) than for APRW (factor 6 = 18/3).
We also remark that a PRW signature oracle is (potentially) slightly more powerful than
an APRW signature oracle because it reveals some non-trivial information regarding the
quadratic residuosity of the square roots of the hash of the message (whereas this information,
which is unnecessary for verifying signatures, is “canceled” in an APRW signature oracle).
Since APRW signatures are not more costly than PRW signatures (and even slightly more
communication efficient), these two observations make a case in favor of APRW signatures.
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Remark 4. In Appendix C, we define a close variant of the APRW∗ scheme, where the tweak
is re-computed by the verifier rather than transmitted with the signature. Since this involves
a Jacobi Symbol computation on the verification side, this is not very attractive from an
implementation point of view, but this allows a slightly different formalization based on a lossy
trapdoor permutation over (JN )+, the use of tweaks being seen as a way to deterministically
hash into (JN )+ (this formalization was already put forward in [Ber08]).

As explained in [KK12], these results can be extended to PSS-R [BR96], allowing a smaller
overhead of the randomized signature under the 2-Φ/4-Hiding assumption. It seems also likely
(though we have not checked the details) that the same techniques can be used to prove a
tight security reduction from the 2-Φ/4-Hiding assumption for Rabin-Williams Partial Domain
Hash signatures [Cor02b, Gen04].

5 Extending the Coron-Kakvi-Kiltz Meta-reduction Result

In this section, we complete the picture of the security of FDH signatures by extending
Coron’s meta-reduction result [Cor00] as corrected by Kakvi and Kiltz [KK12]. In a nutshell,
this result says that if a trapdoor function TDF is certified, then any reduction from inverting
the trapdoor function to breaking the EUF-CMA security of the TDF-FDH signature scheme
must lose a factor qs (the maximal number of signature queries made by the forger) in its
time-to-success ratio. The theorem below extends this to trapdoor functions which are not
necessarily certified, assuming that TDF is gap one-way. The proof is straightforwardly adapted
from the one of [Cor00, KK12]: when simulating the forger, the meta-reduction checks as a
preliminary step that the public key received from the reduction contains a parameter pub
which defines an injective function. When TDF is certified, this can be done efficiently by the
meta-reduction itself. In the variant below, the meta-reduction uses a Certify oracle for this
step, hence breaking the gap one-wayness (rather than classical one-wayness) of the trapdoor
function.

Theorem 5. Let TDF be a trapdoor function. Let tR, εR, n, εF , qh, qs be functions of the secu-
rity parameter with qh > qs. Assume there exists a reduction R which (tR, εR, n, εF , qh, qs)-
reduces breaking the one-wayness of TDF to breaking EUF-CMA security of the TDF-FDH
signature scheme. Then there exists a meta-reduction M which (tM , εM , n)-breaks the gap
one-wayness of TDF, where:

tM ≤ (n+ 1)tR

εM ≥ εR − εF ·
n · exp(−1)

qs

(
1− qs

qh

)−1
.

Proof. A precise definition of a (black-box) reduction and a sketch of the proof are provided
in Appendix D. ut

Remark 5. Theorem 7 of [KK12] directly follows from this result, since when TDF is certified,
the oracle Certify can be efficiently implemented, and TDF is gap one-way iff it is one-way.

Remark 6. Theorem 5 above can be straightforwardly extended to any non-interactive com-
putational problem which is hard relative to a Certify oracle (instead of the one-wayness of
the underlying trapdoor function).
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Consequences for RSA and Rabin-Williams FDH Signatures. We know by Theorem 8
of [KK12] that RSA-FDH with public exponents e < N1/4 has a tight security reduction from
the Φ-Hiding assumption. By Theorem 7 of [KK12] we also know that RSA-FDH with public
exponents e > N1/4 cannot have a tight security reduction from the problem of inverting
RSA —nor any non-interactive hard problem— since RSA is certified for this class of ex-
ponents [KKM12]. Theorem 5 above implies that it is unlikely as well that RSA-FDH with
e < N1/4 can have a tight security reduction from inverting RSA: unless inverting RSA with
the help of an oracle solving the Φ-Hiding problem is easy, any reduction from inverting RSA
to breaking the EUF-CMA security of RSA-FDH with e < N1/4 must lose a factor qs.

This extends to Rabin-Williams FDH signatures as follows: unless computing modular
square roots (or equivalently factoring) with the help of an oracle solving the 2-Φ/4-Hiding
problem is easy, any reduction from factoring to breaking the EUF-CMA security of the PRW
and APRW schemes must lose a factor qs.
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A Rabin-Williams Signature Schemes Terminology

Table 1. Terminology used in [Ber08], [LN09], and this paper depending on the square root selection method
used to produce the signature.

square root s selection method [Ber08] [LN09] this paper
random and stateful/pseudorandom Fixed Unstructured Probabilistic (PRW) -

s ∈ QRN Fixed Principal Deterministic (DRW) Principal (PRW)
s ∈ (JN )+ Fixed |Principal| - Absolute Principal (APRW)

B Security Definition for a Signature Scheme

The usual security definition for a signature scheme is existential unforgeability under chosen-
message attacks, which in the Random Oracle Model is defined as follows.

A signature scheme Σ is said to be (t, ε, qh, qs)-secure against existential forgery un-
der chosen message attacks (EUF-CMA secure) if for any adversary A running in time at
most t, making at most qh random oracle queries and qs signature queries, the advantage
Adveuf−cma

Σ (A) = Pr[1← Expeuf−cma
Σ,A (k)] is less then ε, where the experiment is defined as:

Experiment Expeuf−cma
Σ,A (k):

(pk, sk)← KeyGen(1k)
(m̂, σ̂)← AH,Sig(sk,·)(pk)
b← Ver(pk, m̂, σ̂)
If b = 1 and m̂ was not queried to oracle Sig(sk, ·)

return 1
Else return 0

C A Variant of the APRW∗ Scheme

We describe a close variant of the APRW∗ scheme in terms of lossy trapdoor permutation
over (Jm)+. For this, we define the mapping:

f :(JN )+ 7→ (JN )+

x 7→ |x2 mod N |

This is clearly a permutation over (JN )+ when N is a Blum integer (this was already noted
in [FS00, Section 6]). The inverse mapping maps y ∈ (JN )+ to the absolute principal square
root of ±y depending on whether y ∈ QRN or not. When N is a pseudo-Blum integer, the
mapping is 2-to-1.
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In order to define a FDH scheme based on this trapdoor permutation, we need to (deter-
ministically) hash into (JN )+. This can be done by “tweaking” a hash function with range
ZN as follows. Given a hash function H : {0, 1}∗ → ZN , one can construct a hash function
H ′ defined as:

H ′(m) =


|H(m) mod N | if H(m) ∈ JN
|
(
N+1

2

)
H(m) mod N | if H(m) ∈ JN

1 if H(m) /∈ Z∗N
Outputs of H ′ can easily be seen to be in (JN )+.

Then, the FDH signature scheme based on the trapdoor permutation described above
works as follows: to sign m, one first computes h = H ′(m), and the signature is s = f−1(h) ∈
(JN )+. The verification algorithm checks whetherH ′(m) = |s2 mod N |. Note that the verifier
needs to compute the Jacobi symbol of H(m) with respect to N , which significantly slows
verification.

D Proof of Theorem 5

We first give a precise definition of a (black-box) reduction.

Definition 8. Let TDF be a trapdoor function. An algorithm R is said to (tR, εR, n, εF , qh, qs)-
reduce breaking the one-wayness of TDF to breaking EUF-CMA security of the TDF-FDH
signature scheme if on input (pub, Eval(pub, x)) where pub← InjGen(1k) and x←$ Dpub, and
after running sequentially at most n times any forger which (tF , εF , qh, qs)-breaks EUF-CMA
security of the TDF-FDH signature scheme, R outputs x with probability at least εR, within
an additional running time tR (the forger is considered as a black-box oracle and its running
time is not taken into account). Moreover, when the forger is probabilistic, the reduction has
some limited control over the random tape of the forger, namely it might either run the forger
with fresh random tapes, or replay the forger with a previous random tape.7 The probability εR
is taken over the random draw of pub and x, the random tape of R and the random tape(s)
of the forger.

Proof (of Theorem 5). As usual with meta-reduction results, we first describe an (inefficient)
forger F∗ which (tF , εF , qh, qs)-breaks the EUF-CMA security of the TDF-FDH signature
scheme, and then show how the meta-reduction can efficiently simulate this forger to any
reduction. This forger F∗ proceeds as follows:
1. On input pk = pub, F∗ first checks whether x 7→ Eval(pub, x) is injective over Dpub (note

that this is always possible in finite time, although maybe not efficiently), and returns ⊥
if this is not the case.

2. F∗ makes random oracle queries for qh arbitrary distinct messages m1, . . . ,mqh (say, mi

is the binary encoding of i), receiving respective answers y1, . . . , yqh .
3. F∗ draws β ←$ [1; qh], a tuple α = (α1, . . . , αqs) ←$ ([1; qh] \ {β})qs , and a biased coin
τ with probability εF of yielding 1. More precisely, β, α, and τ are computed as the
outputs of random functions taking (pub, y1, . . . , yqh) as input. Note that the random tape
of this forger, which consists of all the random coins necessary to specify these random
functions, has exponential size (yet the meta-reduction will only need a polynomially
bounded amount of randomness to simulate F∗).

7 For technical reasons, the reduction is not allowed to, say, modify a few bits of a previous random tape.
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4. F∗ queries the signing oracle on the messagesmα1 , . . . ,mαqs , and checks that all signatures
are correct (aborting if this is not the case).

5. If τ = 0 then F∗ returns ⊥, otherwise it returns a forgery σ̂ for m̂ = mβ (again,
this is always possible in finite time by exhaustively searching for σ ∈ Dpub such that
Eval(pub, σ) = H(mβ)).

Note that an execution of the forger is completely specified by a random tape, an input
pub, and a sequence of random oracle answers (y1, . . . , yqh). Indeed, since the FDH scheme
has unique signatures, the interaction of the forger with the signing oracle is completely
deterministic after the last random oracle answer has been received (for a fixed random tape).

Clearly, this forger (tF , εF , qh, qs)-breaks the EUF-CMA security of the TDF-FDH scheme
for some irrelevant time bound tF . We now describe how the meta-reduction M can (effi-
ciently) simulate the forger F∗ to the reduction R.M, on input a pair (pub, y), runs R with
the same input (pub, y) and a uniform random tape. We assume wlog that any two interactions
of the simulated forger with the reduction are distinct, which means that they must differ in
either the random tape (i.e. the random tapes are uniform and independent in the two exe-
cutions), or the input pub′ to the forger, or the sequence (y1, . . . , yqh) of answers provided by
R to the random oracle queries of the forger. With this in mind, we describe the simulation.
When R invokes the forger for the i-th time on input pub′i,M tries to simulate F∗ as follows:

1. M first (perfectly) simulates step 1 thanks to its Certify oracle.
2. M then makes the random oracle queries as would F∗, receiving answers (yi,1, . . . , yi,qh).
3. M draws βi ←$ [1; qh], a tuple αi = (αi,1, . . . , αi,qs)←$ ([1; qh]\{βi})qs , and a biased coin
τi with probability εF of yielding 1.

At this point, M first tries to obtain a valid forgery for mβi as follows. It draws a ran-
dom integer `i ←$ [1; qs], defines α′i = (αi,1, . . . , αi,`i−1, βi), and makes the signature queries
for messages mαi,1 , . . . ,mαi,`i−1 ,mβi . Let σ̂i denote the signature received for mβi . M then
rewinds the reduction to the point just after the random oracle queries and resumes the
simulation of F∗ as specified in steps 4 and 5. If the following three conditions are satisfied:

i) τi = 1,
ii) all signature queries for messagesmαi,1 , . . . ,mαi,qs are correctly answered by the reduction,
iii) the signature σ̂i is invalid for message mβi ,

thenM aborts since it cannot simulate F∗ correctly. Otherwise,M is always able to simulate
F∗. In particular, if conditions i) and ii) are satisfied and moreover σ̂i is the correct signature
for mβi , then M returns this signature as forgery. This is valid since the signature oracle is
never queried on mβi in the “main” execution of the forger. We stress that, by the above
observation that all executions of the forger must be distinct, the values βi, αi, and τi drawn
at step 3 are independent for each simulation of the forger. It remains to upper bound the
probability that M fails to simulate the forger correctly in any of the executions, i.e. that
conditions i), ii), iii) are satisfied simultaneously. It can be shown (cf. [Cor00, KK12]) that
this probability is less than:

εF ·
n · exp(−1)

qs

(
1− qs

qh

)−1
,

from which the lower bound on εM follows.
The time bound follows from the fact thatM rewinds R at most n times. ut
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We conclude with a word of interpretation about Theorem 5. Assuming that TDF is
asymptotically gap one-way, any polynomial time algorithm breaks the gap one-wayness of
TDF with only negligible probability. Assume there exists a polynomial time reduction which
(tR, εR, n, εF , qh, qs)-reduces breaking the one-wayness of TDF to breaking the EUF-CMA secu-
rity of the TDF-FDH signature scheme, with tR, n, qh, qs ∈ poly(k). Then by the assumption
that TDF is gap one-way one must have that the success probability εM of the meta-reduction
must be negligible, hence by Theorem 5:

εR ≤ negl(k) + εF ·
n · exp(−1)

qs

(
1− qs

qh

)−1

≤ negl(k) + εF ·
n

qs

≤ (1 + δ)εF ·
n

qs
,

where for the second inequality we made the additional assumption that qh ≥ 2qs, and the
third inequality holds for any constant δ > 0 and k sufficiently large (assuming εF non-
negligible and n, qs ∈ poly(k)).

Since the total running time of the reduction is tR + ntF ≥ ntF , we see that the time-to-
success ratio ρR of the reduction satisfies

ρR ≥
ntF

(1 + δ)εFn/qs
= qs

1 + δ
· ρF ,

where ρF is the time-to-success ratio of the forger. In other words, the reduction loses a factor
qs in its time-to-succes ratio compared with the forger.
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