
Speeding up QUAD

Albrecht Petzoldt

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany
apetzoldt@cdc.informatik.tu-darmstadt.de

Abstract. QUAD is a provable secure stream cipher based on multivariate polynomials
which was proposed in 2006 by Berbain, Gilbert and Patarin [1]. In this paper we show how
to speed up QUAD over GF(256) by a factor of up to 5.8. We get this by using structured
systems of polynomials, in particular partially circulant polynomials and polynomials gen-
erated by a linear recurring sequence (LRS), instead of random ones. By using this strategy,
we can also reduce the system parameter of QUAD by about 99 %. We furthermore present
experiments, which seem to show that using structured polynomials of this special choice
does not influence the security of QUAD.

Keywords: Multivariate Cryptography, QUAD Stream Cipher, Partially Circulant Polynomials,
Linear Recurring Sequences

1 Introduction

Stream ciphers are an important cryptographic primitive from the area of symmetric cryptography.
The key idea of this construction is to generate a keystream of the same length as the message
to be encrypted. The ciphertext is then obtained by bitwise XORing of message and keystream.
In the last years, many new stream ciphers have been proposed, like HC-256 [8] and Salsa20 [2].
Another approach for generating the keystream is to use a block cipher like AES in the OFB
mode.
A third direction is the design of provable secure stream ciphers based on hard mathematical
problems. As examples for those schemes we mention here the stream cipher based on the Blum
Blum Shub PRNG [4] and the code based stream cipher SYND [5].
Another example for such a scheme is the multivariate stream cipher QUAD, which was proposed in
2006 by Berbain, Gilbert and Patarin [1]. The security of QUAD can be reduced to the MQ Problem
of solving systems of multivariate quadratic polynomials over a finite field F. This problem is proven
to be NP hard, even for the case of quadratic polynomials over the field GF(2). Furthermore, in
contrast to number theoretic problems like integer factorization and discrete logarithms, it is
believed to resist quantum computer attacks [3]. The main disadvantage of QUAD is the low
speed of the keystream generation process which is about 1,000 times slower than that of non
provable secure stream ciphers.
In this paper we show how the keystream generation of QUAD can be sped up by using systems of
structured polynomials. In particular, we use polynomial systems whose coefficients are repeated
by a cyclic shift and systems generated by linear recurring sequences (LRS) instead of random
ones. By doing so, we can achieve a speed up of the key stream generation process by a factor
of up to 5.8. We show by computer experiments that the security of QUAD is not weakened by
this approach. The speed up of the keystream generation process is shown both by a theoretical
analysis and by a C implementation of the schemes.
The remainder of this paper is organized as follows. In Section 2 we give a short introduction into
multivariate cryptography and define what we mean by a ”partially circulant” and by an ”LRS”
system of polynomials. Section 3 describes the QUAD stream cipher, whereas Section 4 deals with
the evaluation of polynomial systems and shows how this step can be improved by using structured
systems of polynomials. Finally, Section 5 presents the results of our computer experiments and
Section 6 concludes this paper.

2 Albrecht Petzoldt

2 Multivariate Polynomials

Let P be a system of m quadratic polynomials in n variables over a finite field F. P can be written
in the form

p
(1)
11 · x2

1 + p
(1)
12 · x1x2 + . . .+ p(1)

nn · x2
n + p

(1)
1 · x1 + . . .+ p(1)

n · xn + p
(1)
0

p
(2)
11 · x2

1 + p
(2)
12 · x1x2 + . . .+ p(2)

nn · x2
n + p

(2)
1 · x1 + . . .+ p(2)

n · xn + p
(2)
0

...
p
(m)
11 · x2

1 + p
(m)
12 · x1x2 + . . .+ p(m)

nn · x2
n + p

(m)
1 · x1 + . . .+ p(m)

n · xn + p
(m)
0 . (1)

The security of multivariate schemes is based on the

MQ-Problem: Given a system P of m multivariate polynomials p(1), . . . , p(m), find a vector
x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ-problem is proven to be NP hard even for the case of quadratic polynomials over the
field GF(2).

Definition 1. For a multivariate quadratic polynomial p(x1, . . . , xn) as shown in equation (1) we
define the coefficient vector with respect to the graded lexicographic ordering of monomials by

Φ(p) = (p11, p12, . . . , pnn, p1, . . . , pn, p0) ∈ FD (2)

with D = (n+1)·(n+2)
2 .

Definition 2. For a system P = (p(1), . . . , p(m)) of multivariate quadratic polynomials the Macauley
matrix MP is defined by MP = (Φ(p(1)), . . . Φ(p(m)))T , i.e.

MP =

p
(1)
11 p

(1)
12 . . . p

(1)
nn p

(1)
1 . . . p

(1)
n p

(1)
0

p
(2)
11 p

(2)
12 . . . p

(2)
nn p

(2)
1 . . . p

(2)
n p

(2)
0

...
...

p
(m)
11 p

(m)
12 . . . p

(m)
nn p

(m)
1 . . . p

(m)
n p

(m)
0

 . (3)

Definition 3. We call a system of polynomials partially circulant, if for each i ∈ {2, . . . ,m} the
i-th row of the matrix MP is given as the cyclic right shift of the (i− 1)-th row.

To generate a partially circulant system of polynomials, we randomly choose a vector b =
(b1, . . . , bD) ∈ FD and define the i-th row of the Macauley matrix MP by

MP [i] = Ri−1(b) (i = 1, . . . ,m), (4)

where Ri(b) denotes the cyclic right shift of the vector b by i positions. Therefore, the matrix
MP of a partially circulant system of polynomials P looks like

MP =

b1 b2 b3 . . . bD−1 bD
bD b1 b2 . . . bD−2 bD−1

bD−1 bD b1 . . . bD−3 bD−2

...
...

bD−m+2 bD−m+3 bD−m+4 . . . bD−m bD−m+1

 . (5)

Definition 4. Let L be a positive integer and γ1, . . . , γL be given elements of a finite field F. A
linear recurring sequence (LRS) of length L is a sequence {s1, s2, . . . } of F-elements satisfying the
relation

sj = γ1 · sj−1 + γ2 · sj−2 + · · ·+ γL · sj−L =
L∑

i=1

γi · sj−i ∀j > L. (6)

The values s1, . . . , sL are called the initial values of the LRS.

Speeding up QUAD 3

Definition 5. The connection polynomial of an LRS is defined as

C(x) = γLX
L + γL−1X

L−1 + · · ·+ γ1 ·X + 1 =
L∑

i=1

γiX
i + 1.

A linear recurring sequence S of length L is uniquely determined by its initial state s1, s2, . . . , sL

and the connection polynomial C(x). Therefore we write S = LRS(s1, . . . , sL, C(x)).

Definition 6. We call a multivariate quadratic polynomial p generated by an LRS S of length L,
if its coefficient vector Φ(p) (see Definition 1) consists of the first D elements of S.

Definition 7. We call a system of polynomials an LRS-system of length L, if each of its compo-
nents is a polynomial generated by an LRS of length L.

Throughout this paper we look at LRS-systems of length 1. So whenever we speak of an LRS-
system of polynomials, we refer to an LRS-system of length 1. To generate such a system, we
choose a vector γ ∈ Fm and define the i-th row of the Macauley matrix MP by

MP [i] = (1, γi, γ
2
i , . . . , γ

D−2
i , γD−1

i) (i = 1, . . . ,m). (7)

Therefore, the Macauley matrix of an LRS-system P looks like

MP =

1 γ1 γ2

1 . . . γD−2
1 γD−1

1

1 γ2 γ2
2 . . . γD−2

2 γD−1
2

...
...

1 γm γ2
m . . . γD−2

m γD−1
m

 . (8)

To ensure that the single polynomials of the system are linearly independent, the elements of the
vector γ must be pairwise distinct.

Table 1 shows, that Gröbner Basis algorithms can not distinguish between random, partially
circulant and LRS-systems of polynomials and behave very similar for all three types. For our
experiments we used MAGMA version 2.13-10 and solved determined systems over GF(256) using
the MAGMA command Variety.

n = 9 n = 10 n = 11 n = 12 n = 13 n = 14

random system
time (s) 5.5 40.9 300.2 2,391 19,054 169,317
degree 11 12 13 14 15 16

matrix size 2034× 2188 4146× 4529 8904× 9400 18662× 19834 38493× 40158 79738× 83640

part. circulant system
time (s) 5.4 40.6 300.0 2,390 19,046 168,846
degree 11 12 13 14 15 16

matrix size 2034× 2188 4146× 4529 8904× 9400 18662× 19834 38493× 40158 79738× 83640

LRS system
time (s) 5.4 40.4 299.9 2,386 18,964 169,152
degree 11 12 13 14 15 16

matrix size 2034× 2188 4146× 4529 8904× 9400 18662× 19834 38493× 40158 79738× 83640

Table 1. Experiments with determined systems

4 Albrecht Petzoldt

3 The QUAD stream cipher

QUAD is a provable secure multivariate stream cipher which was introduced in 2006 by Berbain,
Gilbert and Patarin [1]. The security of QUAD is based on the MQ-Problem of solving nonlinear
polynomial systems over a finite field.

Like all stream ciphers QUAD encrypts a message by producing a keystream ks which has the
same length as the message. The ciphertext c of the message m is then created by simply bitwise
XORing of message and keystream, i.e.

ci = mi ⊕ ksi ∀i = 0, . . . ,Len(m)− 1.

A ciphertext c is decrypted in the same way, namely

mi = ci ⊕ ksi ∀i = 0, . . . ,Len(c)− 1.

The keystream of QUAD is generated as follows. Let F be a finite field. One chooses 4 multivariate
quadratic systems P, Q, S0 and S1 : Fn → Fn 1. These four systems are viewed as system
parameters and are fixed for a large number of users. Before encrypting a message, a user chooses
a key k ∈ Fn and an initial vector IV ∈ {0, 1}80. The keystream of QUAD is then generated by
following Algorithms 1 and 2. Figure 1 shows a graphical description of the keystream generation
process. In Algorithm 2 we set L = dLen(m)

lg(q)·n e, where q is the cardinality of the underlying field.

k

IV

-

-
Preprocessing

-
x0 x1 x2 . . .

- - -P P P

? ? ?

Q Q Q

y0 y1 y2 . . .︸ ︷︷ ︸
keystream

Fig. 1. keystream generation

In the rest of this paper, we look at the QUAD scheme defined over the field with 256 elements.
Therefore we have

L = dLen(m)
8 · n

e.

4 Evaluation of Polynomials

The most expensive part during the keystream generation of QUAD is the evaluation of polyno-
mial systems. We look at two different ways to perform this step and show how we can improve
its efficiency significantly by using structured systems of polynomials.

1 While, for the functioning of QUAD the three systems, S0,S1 and P are required to be determined, we
do not need this property for the map Q. In particular, the system Q could be overdetermined (m > n),
which makes the key generation process more efficient. But, since overdetermined systems are easier to
solve, we choose for reasons of security m = n.

Speeding up QUAD 5

Algorithm 1 Preprocessing
Input: key k ∈ Fn, IV ∈ {0, 1}80
Output: initial state IS ∈ Fn

1: IS ← k
2: for i = 0 to 79 do
3: if IV[i]=1 then
4: IS ← S1(IS)
5: else
6: IS ← S0(IS)
7: end if
8: end for
9: for i = 0 to 79 do

10: IS ← P(IS)
11: end for
12: return IS

Algorithm 2 keystream generation
Input: initial state IS ∈ Fn

Output: keystream ks ∈ Fm·L

1: ks ← []
2: for i = 0 to L− 1 do
3: ks← ks‖Q(IS)
4: IS ← P(IS)
5: end for
6: return ks

6 Albrecht Petzoldt

In the first way (later referred to as the standard approach) a polynomial system P is stored in
the form of its Macauley matrix (see Definition 2).
When evaluating the system P at a point x = (x1, . . . , xn), we first compute an (n+1)·(n+2)

2 vector
mon containing the values of all monomials of degree ≤ 2, i.e.

mon = (x2
1, x1x2, . . . , x

2
n, x1, . . . , xn, 1). (9)

Then we have

P(x) =

MP [1] ·monT

MP [2] ·monT

...
MP [m] ·monT

 , (10)

where MP [i] denotes the i-th row of the Macauley matrix MP .

To evaluate an m× n system P by this approach, one needs

– n·(n+1)
2 field multiplications to compute the vector mon of equation (9) and

– m ·
(

n·(n+1)
2 + n

)
field multiplications to compute the scalar products of equation (10).

Therefore, for the whole evaluation process one needs
n

2
· ((m+ 1) · (n+ 1) + 2 ·m) (11)

field multiplications.
When evaluating the system P according to the alternative approach, we store the coefficients of
P in m upper triangular (n+ 1)× (n+ 1) matrices MP (1), . . . ,MP (m):

MP (1) =

p
(1)
11 p

(1)
12 . . . p

(1)
1n p

(1)
1

0 p
(1)
22 . . . p

(1)
2n p

(1)
2

0
.

...
... 0 p

(1)
nn p

(1)
n

0 0 p
(1)
0

, . . . , MP (m) =

p
(m)
11 p

(m)
12 . . . p

(m)
1n p

(m)
1

0 p
(m)
22 . . . p

(m)
2n p

(m)
2

0
.

...
... 0 p

(m)
nn p

(m)
n

0 0 p
(m)
0

. (12)

Furthermore we define for a vector x = (x1, . . . , xn) the extended vector x̂ = (x1, . . . , xn, 1).
With this notation, we get

P(x) =

x̂ ·MP (1) · x̂T

x̂ ·MP (2) · x̂T

...
x̂ ·MP (m) · x̂T

 . (13)

To evaluate a single polynomial by this approach, one needs

– (n+1)·(n+2)
2 − 1 field multiplications to compute the matrix vector product temp = x̂ ·MP (k)

and
– n+ 1 field multiplications to compute the scalar product temp · x̂.

Therefore, to evaluate the whole system P by the alternative approach, we need

m ·
(

(n+ 1) · (n+ 4)
2

− 1
)

(14)

field multiplications.

As Table 2 shows, evaluating a random polynomial with the standard approach is more effi-
cient than doing it with the alternative approach. But, when we look at structured systems of
polynomials, we can evaluate equation (13) much faster. In the next two subsections we show how
to do this for partially circulant and LRS systems of polynomials.

Speeding up QUAD 7

4.1 Partially circulant polynomials

For a partially circulant system of polynomials the matrices MP (i) look as shown in Figure 2. We
have

MP
(i)
j,k = MP

(i−1)
j,k−1 ∀i = 2, . . . ,m, k = 2, . . . , n, j = 1, . . . , k − 1. (15)

Therefore we get

(x1, . . . , xk−1)·

MP

(i)
1,k

MP
(i)
2,k

...
MP

(i)
k−1,k

 = (x1, . . . , xk−1)·

MP

(i−1)
1,k−1

MP
(i−1)
2,k−1
...

MP
(i−1)
k−1,k−1

 ∀i = 2, . . . ,m, k = 2, . . . , n. (16)

The boxes in Figure 2 illustrate this relation. The black boxes show the vector (MP
(i−1)
1,k−1, . . . ,MP

(i−1)
k−1,k−1)T

on the right hand side of the equation, whereas the blue boxes show the vector (MP
(i)
1,k, . . . ,MP

(i)
k−1,k)T

on the left hand side. Note that the blue boxes in the matrix MP (i) correspond exactly to the
black ones in the matrix MP (i−1) (i = 2, . . . ,m).
Algorithm 3 uses this fact to evaluate the system P in a more efficient way.

Algorithm 3 Evaluation of cyclic polynomials
Input: internal state IS ∈ Fn, partially circulant system P : Fn → Fm

Output: result res = P(IS)
1: x̂← (IS1, . . . , ISn, 1)
2: for i = 1 to n+ 1 do
3: tempi ←

∑i
j=1MP

(1)
ji · x̂j

4: end for
5: res1 ←

∑n+1
j=1 tempj · x̂j

6: for l = 2 to m do
7: for i = n+ 1 to 2 by −1 do
8: tempi ← tempi−1 +MP

(l)
ii · x̂i

9: end for
10: temp1 ←MP

(l)
11 · x̂1

11: resl ←
∑n+1

j=1 tempj · x̂j

12: end for
13: return res

Algorithm 3 works as follows:
The first polynomial is evaluated just as a random polynomial with the alternative approach. In
the loop (line 2 to 4) we compute the vector temp = x̂ ·MP (1). In line 5 the algorithm then
computes the product temp · x̂T . In the big loop (line 6 to 12) we evaluate the remaining poly-
nomials p(2), . . . , p(m). Again we start by computing the matrix vector product temp = x̂ ·MP (l)

(line 7 to 10). During this step we can reuse the values of tempi (i = 1, . . . , n) computed for
the previous polynomial. In fact, we can compute the product x̂ ·MP (l) (l = 2, . . . ,m) by using
only n multiplications (instead of (n+1)·(n+2)

2). In line 11 we finally compute the product temp · x̂T .

To evaluate the whole system Algorithm 3 needs only

(n+ 1) · (n+ 4)
2

+ (m− 1) · (2 · n+ 1) (17)

field multiplications. For a QUAD system with m = n = 26 Algorithm 3 reduces the number of
field multiplications by a factor of 5.9 (compared to the evaluation of a random polynomial with
the standard approach).

8 Albrecht Petzoldt

MP (1) =

b1 b2 b3 . . . bn−1 bn bn+1

0 bn+2 bn+3 . . . b2n−1 b2n b2n+1

0 0 b2n+2 . . . b3n−2 b3n−1 b3n

...
. . .

. . .
...

...
0 . . . 0 bD−5 bD−4 bD−3

0 . . . 0 bD−2 bD−1

0 0 bD

MP (2) =

bD b1 b2 . . . bn−2 bn−1 bn
0 bn+1 bn+2 . . . b2n−2 b2n−1 b2n

0 0 b2n+1 . . . b3n−3 b3n−2 b3n−1

...
. . .

. . .
...

...
0 . . . 0 bD−6 bD−5 bD−4

0 . . . 0 bD−3 bD−2

0 0 bD−1

...

MP (n−1) =

bD−n+3 bD−n+4 bD−n+5 . . . b1 b2 b3
0 b4 b5 . . . bn+1 bn+2 bn+3

0 0 bn+4 . . . b2n−2 b2n−1 b2n

...
. . .

. . .
...

...
0 . . . 0 bD−n−3 bD−n−2 bD−n−1

0 . . . 0 bD−n bD−n+1

0 0 bD−n+2

MP (n) =

bD−n+2 bD−n+3 bD−n+4 . . . bD b1 b2
0 b3 b4 . . . bn bn+1 bn+2

0 0 bn+3 . . . b2n−3 b2n−2 b2n−1

...
. . .

. . .
...

...
0 . . . 0 bD−n−4 bD−n−3 bD−n−2

0 . . . 0 bD−n−1 bD−n

0 0 bD−n+1

Fig. 2. Matrices MP (i) for cyclicQUAD

Speeding up QUAD 9

4.2 LRS-system

MP (i) =

1 γi γ2
i γn−2

i γn−1
i γn

i

0 γn+1
i γn+2

i γ2n−2
i · γ2n−1

i γ2n
i

0 0 γ2n+1
i γ3n−3

i γ3n−2
i γ3n−1

i

...
. . .

...
...

...
...

...
...

...
...

. . . γD−6
i γD−5

i γD−4
i

0 0 γD−3
i γD−2

i

0 0 γD−1
i

(i = 1, . . . , n)

Fig. 3. Matrices MP (i) for LRSQUAD

For an LRS-system of length 1 the matrices MP (i) look as shown in Figure 3. We have

MP
(i)
j,k = γi ·MP

(i)
j,k−1 ∀ i = 1, . . . ,m, k = 2, . . . , n, j = 1, . . . , k − 1. (18)

Therefore we get

(x1, . . . , xk−1) ·

MP

(i)
1,k

MP
(i)
2,k

...
MP

(i)
k−1,k

 = γi · (x1, . . . , xk−1) ·

MP

(i)
1,k−1

MP
(i)
2,k−1
...

MP
(i)
k−1,k−1

 ∀i = 1, . . . ,m, k = 2, . . . , n.

(19)
The boxes in Figure 3 illustrate this relation: The black boxes show the vector (MP

(i)
1,k−1, . . . ,MP

(i)
k−1,k−1)T

on the right hand side of the equation, whereas the blue boxes represent the vector (MP
(i)
1,k, . . . ,MP

(i)
k−1,k)T

on the left hand side. Note that any blue box can be obtained by multiplying the corresponding
black box by γi.
Algorithm 4 uses this fact to evaluate a LRS-system much faster than a random system.

Algorithm 4 Evaluation of LRS polynomials
Input: internal state IS ∈ Fn, LRS system P : Fn → Fm

Output: result res = P(IS)
1: x̂← (IS1, . . . , ISn, 1)
2: for l = 1 to m do
3: temp1 ← x̂1

4: for i = 2 to n+ 1 do
5: tempi ← γi · tempi−1 +MP

(1)
ii · x̂i

6: end for
7: resl ←

∑n+1
j=1 tempj · x̂j

8: end for
9: return res

10 Albrecht Petzoldt

Algorithm 4 works as follows: Each of the m polynomials of the system P is evaluated individually.
From line 3 to 6 we compute the product x̂ ·MP (i) and store the result in the vector temp. During
the computation of tempi (i = 2, . . . ,m) we can reuse the value of tempi−1, which enables us
to compute the vector temp using only 2 · n field multiplications. Finally, in line 7, Algorithm 4
computes the result of the evaluation by computing the scalar product temp · x̂. For this step we
need n+ 1 field multiplications.

Therefore, we can evaluate the whole system using only

3 ·m · n+m (20)

field multiplications. For a QUAD system with m = n = 26 over GF(256) Algorithm 4 reduces
the number of field multiplications by a factor of 6.0 (compared to the evaluation of a random
polynomial with the standard approach). In contrast to Algorithm 3, Algorithm 4 is easily paral-
lellizable.

5 Results

We checked our theoretical results by a straightforward C implementation of the QUAD stream
cipher. The results are shown in Table 2 and 3.

message size 1MB 10MB
r. f. 1 r. f. 1

random system time (ms) 6,263 - 62,294 -
standard approach cycles (109) 15.8 - 157 -

random system time (ms) 8,738 - 86,783 -
alternative approach cycles (109) 21.1 - 210 -

part. circ. system time (ms) 1,121 5.5 11,145 5.5
cycles (109) 2.86 5.5 28.2 5.5

LRS-system time (ms) 1,092 5.8 10,734 5.8
cycles (109) 2.74 5.8 27.23 5.8

1 reduction factor to random systems with the standard approach

Table 2. Running time of QUAD

Data Throughput (kB/s) CPU cycles/byte speed up factor

random system
157.3 15,777 -

standard approach

random system
111.3 21,860 -

alternative approach

part. circ. system 853.6 2,820 5.5

LRS-system 872.7 2,730 5.8

Table 3. Data Throughput of QUAD

As can be seen from the table above, evaluating random polynomials following the standard ap-
proach is more efficient than doing it with the alternative approach. By using partially circulant
systems of polynomials we can achieve a speed up factor of 5.5, when using LRS polynomials the
speed up factor is 5.8.

Speeding up QUAD 11

6 Conclusion

In this paper we have shown a way how to speed up the QUAD stream cipher by a factor of up
to 5.8 by using structured systems of polynomials instead of random ones. Furthermore, we have
given evidence that Gröbner Basis algorithms like MAGMA’s F4 can not use the structure of our
polynomials to speed up the computation. Therefore, using structured polynomials for QUAD
instead of random ones might be an alternative worth considering.

References

[1] C. Berbain, H. Gilbert and J. Patarin: QUAD: A Practical Stream Cipher with Provable Security.
EUROCRYPT 2006, LNCS vol. 4004, pp. 109-128. Springer 2006.

[2] D.J. Bernstein: The Salsa20 family of stream ciphers. The eSTREAM Finalists, LNCS vol. 4986,
pp. 84-97. Springer, 2008.

[3] D.J. Bernstein, J. Buchmann and E. Dahmen (eds.): Post-Quantum Cryptography. Springer 2009.
[4] L. Blum, M. Blum, and M. Shub: A Simple Unpredictable Pseudo-Random Number Generator.

SIAM Journal on Computing 15, pp. 364–383, 1986.
[5] P. Gaborit, C. Laudaroux and N. Sendrier. SYND : a very fast code-based cipher stream with a

security reduction. ISIT’07, pp. 186 - 190, 2007.
[6] A. Petzoldt, S. Bulygin and J. Buchmann: Fast Verification for Improved Versions of the UOV

and Rainbow Signature Schemes. PQCrypto 2013, to appear.
[7] A. Petzoldt and S. Bulygin: Linear Recurring Sequences for the UOV Key Generation Revisited.

ICISC 2012, LNCS vol. 7378, pp. 441 - 456. Springer, 2013.
[8] H. Wu: A New Stream Cipher HC-256. FSE 2004, LNCS vol. 3017, pp. 226–244. Springer 2004.

