
Dynamic Cube Attack on Grain-v1

Majid Rahimi, Mostafa Barmshory

2013

Abstract

This article aims to present dynamic cube attack on Grain-v1. Dy-
namic cube attack finds the secret key by using distinguishers gained from
structures weakness. The main idea of dynamic cube attack lies in sim-
plifying the output function. After making it easier, dynamic cube attack
will be able to exploit distinguishing attack for recovering the secret key.
In this paper, we investigate Grain-v1 to which key recovery attack has
never been applied because its feedback function is so sophisticated. we
apply dynamic cube attack on it by utilizing both intelligent choices of
Initial Value variables and appropriate simplifications. Our attack is done
in feasible time complexity, and it recovers all bits of the key while the
number of initialization rounds in Grain-v1 is decreased to 100. Moreover,
it is the first key recovery attack on reduced version of Grain-v1. This
attack is faster than exhaustive search by a factor 232.

Keywords: stream cipher, Grain-v1, dynamic cube attack, key recov-
ery attack.

1 Introduction

Grain-v1[1] is a hardware stream cipher resisting against all previous
cryptanalytic attack because not only does it have suitable tap positions
and update functions, but also the number of its initialization rounds pro-
vides it with high non-linear degree. It causes this algorithm to make its
way to final phase of eSTREAM project.

Distinguishing attack is one of the most effective attacks implemented
on stream ciphers. It is closely associated with key recovery attack since
if it finds a serious weakness, it may lead to key recovery attack. This
attack is applied by different methods in which chosen IV attack is one
of the most successful ones[2]. Not any cryptanalyst is now capable of
directly analyzing the ANF (algebraic normal form) representation of any
cryptosystem because of its high complexity, whereas chosen IV gives
cryptanalysts the chance to analyze it indirectly via choosing some bits of
IV as variable and considering remaining bits of IV in addition to all bits
of key as constant. The structure of cube tester, cube attack and dynamic
cube attack is based on chosen IV, and each one applies chosen IV with
a particular purpose. This paper concentrates dynamic cube attack on
Grain-v1 and elaborates on how to use it in key recovery attack.

1



The aim of cube tester is to distinguish an ANF of cipher from a ran-
dom function where every monomial is present by 0.05 probability, i.e. a
random function in terms of public and secret variables is algebraically
dense. Hence, cube tester targets the number of monomials in an ANF of
cryptosystem, where cube tester has just access to black box representa-
tion. For this purpose, four main steps are involved. Firstly, a subset of
IV is chosen named cube variables. Secondly, all conditions of this subset
are loaded as input of the black box. Thirdly, all outputs are summed.
Finally, cube tester exploits the resultant sums to evaluate whether the
number of monomials is either sparse or dense. If it is sparse, it will be
more likely distinguishable via testing two characteristics, being balanced
and including low degree monomials.

Cube attack[3] is identical to cube tester, and it is applied to any
cryptographic scheme having public and secret variables, whose goal is
to distinguish monomials in which every single bit of the key presents.
In other words, it detects linear monomials based on the key in the ANF
representation. After finding such monomials, cube attack will be capable
of easily using them for key recovery attack because such monomials lead
to linear equations based on the key that can be solved by Gaussian elim-
ination method. Since cube attack was published, it has been the most
successful attack on Trivium[3]. However, cube attack is just practical
in a small number of cryptosystem because linear monomials exist in a
high-degree ANF representation with low probability. This issue causes
attacker to follow a method making cube attack more general. Much of
cryptanalytic attacks exploit structure of the cipher whereas cube attack
recovers the key, and cube tester distinguishes an ANF of cipher just
through a large number of queries[3]. It is plainly visible that if cryptana-
lysts find a way to exploit structure of cipher in either cube tester or cube
attack, they will be more successful. One of the best ways is simplifying
the ANF representation of cipher by using the structure of cipher, and
then applying either cube tester or cube attack.

While the key and IV of cryptosystem are not completely combined,
existence of high-degree monomials, playing a key role in cipher resistant
against cube tester, will heavily depend on few non-linear operations.
In this way, cryptanalyst can simplify the ANF representation of cipher
through setting to zero the state bits existing in such non-linear opera-
tion. In dynamic cube attack[4], attacker tries to both find and set to
zero these state bits via utilizing the dedicated public bits named dy-
namic variables. The best, previous attack[5] applied to reduced variant
of Grain-128[6], where a number of initial rounds are reduced from 256 to
213, can just recover 2 key bits. Whereas, dynamic cube attack is applied
to two reduced variants of Grain-128[4] in which it obtains the full 128-bit
key faster than exhaustive search, i.e. dynamic cube attack breaks these
two variants. First and second attack are applied to 207 and 250 from
256 respectively that second attack is faster than exhaustive search by
a factor of roughly 228[4]. More importantly, when 10 bits of the key
are considered as constant, dynamic cube attack can be applied to the
original version of Grain-128 recovering the full 118-bit key faster than
exhaustive search by a factor of roughly 215[4]. In these attacks, crypt-
analysts focus on nullifying a particular non-linear operation existing in

2



output function of Grain-128 since this term is the most non-linear term
which high-degree monomials in the ANF representation arises from. For
nullifying this term, they set certain public variables, existing in the feed-
back function of NFSR, as dynamic variables. This nullification enables
cryptanalysts to use cube tester in order to recover the key of Grain-128[4].

This paper presents dynamic cube attack on Grain-v1. Unlike Grain-
128, high-degree monomials in the ANF representation of Grain-v1 stem
from most of, instead of one, non-linear operations in update function
of the NFSR. It seems that Grain-v1 will resist against dynamic cube
attack because nullifying all these non-linear operations is very complex
and not faster than exhaustive search. However, this article aims to write
whole these non-linear operations by using the recursive description of
the ciphers update function and analyze state bits that are involved in
them to make the attack applicable. It leads to a significant point if only
seven state bits are set to zero, high-degree monomials in the ANF rep-
resentation will be omitted. Although seven state bits must be set to
zero, cryptanalysts are faced with a sophisticated problem in neutraliz-
ing more than one state bit. According to dynamic cube attack, when
desiring to set one state bit to zero, attackers divide the IV bits into
three categories dynamic variables, cube variables and constant assigned
variables[4], hence it is more likely that a special IV bits is chosen as dy-
namic variable in neutralizing one of the state bit and as cube variable
in neutralizing other one at the same time. Such conflicts cause dynamic
cube attack to fail since during the attack every IV bit can belong to one
category. We address this problem via intelligent choices of the IV bits
without any conflict, and then we are capable of recovering the key of
Grain-v1 when its initialization rounds are decreased to 100. It should be
noted that the process of choosing IV is a complex, manual one.

2 Dynamic cube attack

The idea of attack is simplifying the ANF representation of the cipher in
order to intensify either the bias of cube tester or the non-random features
of the ANF representation. To elaborate this idea, it is considered that
cryptanalysts are able to write the ANF representation P as follows into
which it is divided the three polynomials P1, P2 and P3:

P = P1P2 + P3 (1)

P1 is both certain and simple polynomial, P2 is uncertain, dense poly-
nomial and P3 is partly simple polynomial. Being dense, P2 is more likely
behaves randomly and resists against cube testers, thus P is likewise im-
mune from cube testers. Understandably, if cryptanalysts can set P1 to
zero, they derive P = P3. P is now non-random polynomial and can be
distinguished from random one by cube tester since P3 is partly simple
polynomial.

In both cube attack and cube tester, the public variables are classi-
fied into two categories. First those variables cryptanalyst sums the out-
put of the cipher over them named cube variables, second those ones are
not summed over and are considered as constant (most of the time zero)

3



named constant assigned variables. In dynamic cube attack, the number
of public variables that do not belong to cube variables is not considered
as constant, named dynamic variables, since cryptanalyst sets P1 to zero
by assigning a function to each one of them. These functions are made
up of a few, usually one, cube public variables and some expression of
private variables. The next section clarifies how assigning such functions
to dynamic variables causes P1 to be omitted.

3 Outline of dynamic cube attack on Grain-
v1

In contrast to Grain-128, the update function of the NFSR is denser which
is composed of non-linear operations of wide range of degrees from two to
six (instead of two and three). It leads to presence of more high-degree
monomials in the ANF representation, thus cryptanalysts are forced to
simplify it more in order to enable themselves to apply cube tester to
Grain-v1. Most likely, simplifying entire these non-linear operations is
infeasible since this process is very time consuming and has a higher com-
plexity than exhaustive search. For getting through this trouble, we seek
an optimum technique by which we are able to simplify the ANF repre-
sentation with the least nullification in the update function of the NFSR.
Hence, we write all non-linear operations in terms of their recursive de-
scriptions, then we precisely investigate them to find such simplification.
It can be observed that setting only seven state bits to zero will incred-
ibly simplify the ANF representation. However, it seems that nullifying
these state bits will be still very complex due to two significant issues:
classification of the IV variables and high complexity of the attack.

In the case of the former, in dynamic cube attack, attacker sets a state
bit to zero through assigning a special amount to much of IV variables
existing in recursive description, where recursive description are equal to
zero while attacker replaces these amounts in recursive description. Thus,
the category of each IV is completely associated with the structure of
recursive description. Regarding different kind of amounts, this process
classifies the IV variables to three groups[4] dynamic variables, cube vari-
ables and constant assigned variables. Since recursive description of every
state bit is independent, nullifying more than one state (seven state bits)
may lead to conflict in assigning IV variables. In other words, it is more
likely that a special IV bits is chosen as dynamic variable in neutralizing
one of the state bit and as cube variable in neutralizing other one at the
same time. Such conflicts cause attacker to be unsuccessful in setting all
state bits to zero as during the attack every IV bit can be assigned to one
category. This paper tackles this problem via intelligent choices of the IV
bits without any conflict.

In relation to the latter, in dynamic cube attack, complexity relies on
the number of guesses and cube variables[4]. The key idea behind our
attack is existence of trade-off between the number of guesses and cube
variables, i.e. growth in guesses triggers reduction in cube variables and
vice versa. Since, escalating the state bits which must be nullified cause

4



the number of guesses to increase , and the ANF representation to simplify
more accordingly . It directly impacts on reducing cube variables[4], thus
this trade-off prevents from overgrowth of complexity while we desire to
set seven state bits to zero. More significantly, dynamic cube attack is
capable of retrieving the key bits via those guesses which are equivalent to
linear expression in terms of key[4]. Hence, when the number of guesses
(or the number of state bits have to be nullified) grows, the chance of
recovering more key bits will grow. This issue will increasingly enhance
the complexity of attack.

Our attack is a feasible full key recovery attack on a new variant of
Grain-v1 using 100 initialization rounds rather than 160, and this attack
exploits output bits of 100-110. It includes two phases, preprocessing and
online, that each one has two steps.

4 Description of Grain-v1

This section provides a brief explanation on Grain-v1, precise description
has been cited in [1]. The cipher is made up of three main building blocks,
an LFSR, an NFSR and an output function. Its state comprises a 80-bit
LFSR and a 80-bit NFSR named si, si + 1,. . . , si + 79 and bi, bi + 1,. . . ,
bi + 79 respectively. The update functions of the LFSR and NFSR are
respectively defined as follows:

si+80 = si + si+13 + si+23 + si+38 + si+51 + si+62. (2)

bi+80 =si + bi + bi+9 + bi+14 + bi+21 + bi+28 + bi+33 + bi+37 + bi+45+

bi+52 + bi+60 + bi+62 + bi+9bi+15 + bi+33bi+37 + bi+60bi+63+

bi+21bi+28bi+33 + bi+45bi+52bi+60 + bi+15bi+21bi+60bi+63+

bi+33bi+37bi+52bi+60 + bi+9bi+28bi+45bi+63+

bi+9bi+15bi+21bi+28bi+33 + bi+37bi+45bi+52bi+60bi+63+

bi+21bi+28bi+33bi+37bi+45bi+52.

(3)

The output function is shown as below in which the variables x0, x1,
x2, x3 and x4 are equivalent to the tap positions si + 3, si + 25, si + 46,
si + 64 and bi + 63 respectively.

zi =
∑
k∈A

bi+k + h(si+3, si+25, si+46, si+64, bi+63)

A = 1, 2, 4, 10, 31, 43, 56.

(4)

Grain-v1 generates output from a 80-bit key and a 64-bit IV loaded in
initialization process, where the bits of key and IV are put in NFSR and
LFSR respectively, and then the value of 1 is placed in the remaining 16
bits of LFSR. It is consecutively clocked 160 times without any output in
order to integrate the key and IV.

5



5 Description of dynamic cube attack on
Grain-v1

5.1 Preprocessing phase

In preprocessing phase, we select the state bits to set them to zero, then
we elaborate how to do so by assigning special amount to IV variables.
Preprocessing phase performs once for every round with different secret
keys. When the secret key is altered, the online phase must be iterated.

Step 1 This phase is a sophisticated, manual process because attackers
must exactly analyze the ANF representation where they can not fully
automate this analysis. We would desire to decompose the ANF repre-
sentation of Grain-v1 into three polynomials as we mentioned above while
applying dynamic cube attack to this cipher. Similar to Grain-128, the
ANF representation of Grain-v1 is so complex to be decomposed in such
way. Thus, this paper exploits the recursive description of the Grain-v1’s
update functions to find the best decomposition.

As for Grain-v1, there are more non-linear operations in the update
function of NFSR (from degree two to degree six) that they have effect
on high degree monomials appearance in the ANF representation in com-
parison to Grain-128. In this situation, simplification of the higher degree
operations does not cause the ANF representation to become vulnerable
to cube tester, e.g. simplifying either bi+21bi+28bi+33bi+37bi+45bi+52 or
bi+37bi+45bi+52bi+60bi+63. The solution lies in focusing on writing the re-
cursive description for entire state bits taking part in non-linear terms of
NFSR’s update function. These state bits are as follows:

{bi+9, bi+15, bi+21, bi+28, bi+33, bi+37, bi+45, bi+52, bi+60, bi+63}
In this approach, we aim to simplify (not nullify ) these state bits

because setting to zero just one state bit in upper rounds is impractical.
According to the structure of Grain-v1, we are able to write every state
bit by applying the recursive description as bellow:

bi+j0⩽j⩽79
= bi−80+j+21bi−80+j+28bi−80+j+33bi−80+j+37bi−80+j+45

bi−80+j+52 + bi−80+j+9bi−80+j+15bi−80+j+21bi−80+j+28

bi−80+j+33 + bi−80+j+37bi−80+j+45bi−80+j+52bi−80+j+60

· · ·+ bi−80+j+63 + bi−80+j+21 + si−80+j (5)

We write these state bits by using equation 5, and then we inspect them
in order to find the state bits by which we can increasingly simplify state
bits of NFSR’s update function. Those state bits which were calculated
at the earlier stage of initialization step can be simplified much easier.
Hence, we just specify how to simplify one of the simple ones (e.g. bi+21).
Regarding other state bits, the main conclusions are presented, and precise
explanation for these state bits is proposed in appendix A. Regarding
equation 6 and 7, making up monomials which maximally include six state
bits, both bi+9 and bi+15 are simple and are not required to be simplified.

bi+9 = bi−50bi−43bi−38bi−34bi−26bi−19 + bi−62bi−4356bi−50bi−43

bi−38 + · · · (6)

6



bi+15 = bi−44bi−37bi−32bi−28bi−20bi−13 + bi−56bi−50bi−44bi−37

bi−32 + bi−28bi−20bi−13bi−5bi−2 + · · ·
(7)

As for equation 8, if bi−7 is nullified, the significant terms of degree
five and six are nullified and bi+21 makes up monomials which maximally
include 14 state bits rather than 15. Since the ANF of the earlier bi−7 is
much simpler to assess and participate in other state bits (bi+28, bi+45 and
bi+52) simultaneously, bi−7 is the best choice for nullification. This way
is true for nullifying other state bits. According to appendix A, bi+28 is
identical to bi+21, i.e. if we set bi−7 to zero, the significant terms (highest
non-linear degree terms) are set to zero accrodingly.

bi+21 = bi−38bi−31bi−26bi−22bi−14bi−7 + bi−50bi−44bi−38bi−31

bi−26 + bi−22bi−14bi−7(bi−58bi−51bi−46bi−42bi−34bi−27 +

bi−70bi−64bi−58bi−51bi−46 + bi−42bi−34bi−27bi−19bi−16)

(bi−55bi−48bi−43bi−39bi−31bi−24 + bi−67bi−61bi−55bi−48

bi−43bi−39bi−31bi−24bi−16bi−13) + · · · (8)

In relation to other state bits, nullifying bi−10 and bi+13 cause bi+33

to be significantly nullified and to make up monomials which maximally
consist of nine state bits instead of twenty. Nullifying bi−10 and bi+17

leads to the best simplification of bi+37, causing it to make up monomials
which maximally include two state bits rather than 29. Nullifying bi−7

and bi+17 leads to the significant terms of bi+45, causing it to make up
monomials which maximally include 31 state bits instead of 48. Similar to
bi+45, bi+52 is significantly simplified by setting bi−7 and bi+17 to zero,
causing it to make up monomials which maximally include forty state
bits rather than 72. Nullifying bi−11, bi−5 and bi+17 leads to the best
simplification of bi+60, causing it to make up monomials which maximally
include fifty state bits instead of 126. Nullifying bi−8 and bi+20 causes the
significant terms of bi+63 to be nullified, and bi+63 to make up monomials
which maximally include 102 state bits rather than 146.

As was mentioned above, if attackers simplify the ANF representation
more, the number of secret keys which are retrieve and the chance of
success for recovering them will increase . Hence, we focus on the most
simplification of update function.

Lower round strategy: In lower rounds, In addition to simplifying
the non-linear terms, we aim to nullify those state bits taking part in
update function linearly such as bi+31, bi+43 and bi+56. The results are
briefly stated in table 1. As a consequence, in lower rounds, ten state
bits are totally nullified. The ten state bits also cause some other state
bits to simplify. In table 2, some of them are mentioned.

Upper round strategy: In upper rounds, nullifying ten state bits is
infeasible since we are unable to classify the IV variables without conflict.
It forces us to neglect some state bits nullification due to attack’s success,
especially ones taking part in linear term of update function . In total,

7



State bit Nullification The level of simplification
bi+31 bi−4 Makes up monomials which maximally

include 14 state bits instead of 20.
bi+43 bi−4 Two terms of high degrees are nullified.
bi+56 bi−3 and bi+13 Makes up monomials which maximally

include 48 state bits instead of 103.

Table 1: The results of those state bits participating in update function linearly.

State bit Nullification The level of simplification
bi+23 bi−5 The most non-linear terms are nullified.
bi+28 bi−7 The most non-linear terms are nullified.
bi+36 bi−11 and bi−7 Makes up monomials which maximally

include 18 state bits instead of 29.
bi+39 bi−7 and bi+17 Makes up monomials which maximally

include 27 state bits instead of 38.
bi+40 bi−7 and bi+20 Makes up monomials which maximally

include 22 state bits instead of 37.

Table 2: Some other state bits simplified via nullifying these ten state bits.

just seven state bits are nullified for upper rounds. The consequences
are mentioned in table 4.

After the update function is exactly analyzed, it is realized that we
can nullify ten state bits up to 100 initialization rounds. Thus, we nullify
ten state bits in Grain-v1 with 100 initialization rounds and seven state
bits in Grain-v1 with more than 100 initialization rounds (from 100 to
110).

Step 2 This phase is also a sophisticated, manual process. Unlike
Grain128, this phase is a big challenge because entire IV variables have to
be classified into three categories without conflict. In this phase, we will

State bit Nullification
bi+21 bi−7

bi+28 bi−7

bi+33 bi−10 and bi+13

bi+37 bi−10 and bi+17

bi+45 bi−7 and bi+17

bi+52 bi−7 and bi+17

bi+60 bi−11 and bi+17

bi+63 bi−2 and bi+20

Table 3: The state bits nullified in upper rounds.

8



nullify ten state bits for lower rounds and seven state bits for upper ones.
We will be capable of doing so via intelligent choices of IV variables.

Regarding update function of Grain-v1 [1], ANF representation of any
state bit includes different kinds of monomials. We divide these monomials
into four classes as belows:

1. Monomials making up one IV variable, i.e. they are linear in terms
of IV.

2. Monomials making up one IV and one key variable, i.e. they are
linear in terms of IV and key.

3. Monomials making up key variables, they can be of any degree.

4. Those monomials which do not belong in previous classes.

This division alleviates classification of IV variable to dynamic vari-
ables, cube variables and constant assigned variables. One IV of first class
is assigned to dynamic variables and others are considered as zero. Second
class must be chosen as cube variables. All monomials belonging to third
class are considered as a new equation called pr. In forth class, in which
every monomial consists of one IV variable at least, we have to nullify all
of them by assigning constant value to IV variables (usually zero).

Since these state bits become too sophisticated after many initializa-
tion steps, they must be written by using recursive description as well. It
causes the ANF representation of every state bit to be straightforward,
and to be more simplified. Hence, this method is iterated while the ANF
representation becomes simple enough. Then, cryptanalysts can easily
classify the IV variables by our division.

However, due to existing common IV bits in the ANF representation
of different state bits, the conflict is likely to be inevitable. For tackling
the problem, we use special technique for common IV bits. First, those
IV bits participating in more than state bits are identified. Then, those
state bits in which such IV bits can just belong to one class determine
the class of them. In order to specify how to nullify more than one state
bit by intelligent choice, we explain it for the earlier state bits with 100
initialization rounds in which the most simplification is done. Precise ex-
planations about other state bits with 100 initialization rounds are stated
in appendix B.

According to step 1, {bi−11, bi−10, bi−8, bi−7, bi−5, bi−4, bi−3, bi+13, bi+17, bi+20}
must set to zero; bi−11, bi−10 and bi−8 are earlier state bits and more eas-
ier for nullification. These three state bits are equal to b80+9, b80+10 and
b80+12 in output bit 100 respectively. Thus, the recursive descriptions of
these state bits are as follows:

bi−11 = b89 = b80+9

= s9 + b10 + b11 + b13 + b18 + b19 + b23 + b30 + b37 + b40 + b42

+b46 + b52 + b54 + b61 + b65 + b69 + b71b72 + b18b24 + · · ·
+b46 · · · b72 + b30 · · · b61 + s34 + s12 + s55b72 + s12s34s55

+s12s55 + s12s55b72 + s55b72 (9)

9



bi−10 = b90 = b80+10

= s10 + b10 + · · ·+ b72 + b73 + b19b25 + · · ·+ b47 · · · b73
+b31b62 + s35 + s13 + s56 + b73 + s13s35s56 + s13s56

+s13s56b73 + s56b73 (10)

bi−8 = b92 = b80+12

= s12 + b12 + · · ·+ b74b75 + b21b27 + · · ·+ b49 · · · b75
+b33 · · · b46 + s37 + s15 + s85 + b75 + s15s37s58 + s15s58

+s15s58b75 + s37s58b75 + s58b75 (11)

In the case of b89, we assign zero to s12 and s34, and select s9 as
dynamic variables and s55 as cube variable. Therefore, the equation 9 is
converted to s9+pr1+s55(1+ b72) as we mentioned above. If s9 is chosen
pr1 + s55(1 + b72), b89 will be set to zero. Since pr1 and 1 + b72 consist
of key bits , their amounts are unknown and have to be guessed in online
phase.

In relation to b90, we assign zero to s13 and s35, and select s10 as dy-
namic variables and s56 as cube variable. As a consequence, the equation
10 is converted to s10+pr2+s56(1+b73); b90 will be nullified by assigning
pr2+s56(1+b73) to s10. In online phase, pr2 and 1+b73 must be guessed.

As for b92 , we assign zero to s37 and s58, and select s15 as dynamic
variables. Consequently, the equation 11 is converted to s15 + pr3; and
one polynomial must be guessed. Not that we are forced to assign zero to
s58 since it is necessary for nullifying bi+13 = b113.

In bi−7 = b93 = b80+13 (Appendix B), we assign zero to s59, and choose
s38 as dynamic and s51 as cube variable. Regarding s16 is common IV
variable and have to be selected as dynamic for nullifying bi−4 = b96, we
assign ˆpr5 + s51 to it. Thus, bi−7 is converted to s38 + ˆpr4 + s51. By
choosing ˆpr4 + s51 for s38, we can set b93 to zero. In online phase, ˆpr4
must be guessed.

In bi−5 = b95 = b80+15, we assign zero to s61, and select s18 as dynamic
variable and s50 as cube one. Regarding s40 is common IV variable and
have to be selected as dynamic for nullifying bi+20, we assign ˆpr20+s50(1+
b67) to it. By choosing ˆpr5+s50(1+ b67) for s18, we can set b95 to zero. In
online phase, ˆpr5 must be guessed; (1 + b67) will be guessed in nullifying
bi+20.

According to the structure of bi−4 = b96 = b80+16,we are unable to
zero it directly, we must nullify s80 first. If s80 be nullify, conflict will
happen. Thus, we simplify and convert it to ˆPr6 + Pr10 + s51. Then, we
assign zero to s19 and s41, and assign one to s62. Finally, we select s16 as
dynamic variables, which is equal to ˆPr5 + s51, and s51 as cube variable
that are caused b96 to be nullified.

Nullification of the remaining state bits is more complex since we are
unable to nullify them directly. In each one, we have to zero a number
of other state bits. The prime results are classified in table 4 and precise
explanations are stated in appendix B.

10



State bit Other state bits nullified Constant assigned variables Cube variables Dynamic variables The number of guess terms
bi−4 = b96 s80 Zero = {19, 41}, one = {62} {51} {16} 1
bi−3 = b97 b80 Zero = {25, 46} {49} {0, 17} 2
bi+13 = b113 b85, b89, b93, b95 Zero = {8, 30, 58}, one = {36} {51} {5, 33} 3
bi+17 = b117 b81, b82, b83, b99, b100, s83 Zero = {4, 6, 7, 22, 26, 27, 28, 29, 41, 47} {49, 50, 51, 55} {1, 2, 3, 44, 45, 54} 7
bi+20 = b120 b84, b86, b102, b103, s86, s87 Zero = {26, 52, 53} {50, 55} {31, 32, 40, 48, 57} 5

Table 4: The main results about nullification of other state bits

5.2 Online phase

In this phase, we illustrate how the key bits are retrieved given the pa-
rameters of preprocessing phase.

Step 1 we first select a big cub and set whole subcubes summing over
them. The size of subcubes is at least d − 3 (considering the size of big
cube is d). Then, we guess entire secret expressions that exist in dynamic
variables to calculate them during the cube summations. In Grain-V1 with
100 initialization rounds, we choose d = 9 as the size of big cube where
five IV bits were determined and others must be selected from following
set. Note that some selections of big cubes give the better consequences
than other which depend on the structure of Grain-V1.

{11, 14, 20, 21, 23, 24, 38, 39, 42, 43, 46, 60, 63}

Step 2 Given that the number of secret expressions is e, the number of
guesses is 2e. For any guess, sum over the subcubes selected in previous
step with dynamic variables accordingly and the constant assigned bits
in preprocessing phase. Thus, a list of sums (with dimension of 2e) are
obtained from any guess. Then, the guesses score, which is the number
of one in list of summation, are calculated for any guess and sorted from
the lowest score to the highest score.

In dynamic cube attack [4], the guess score is measure of non-randomness
in the subcube summation. In other words, those guesses having the low-
est score are most likely the correct guesses for the secret expressions.
Consequently, calculation of the guess having lowest score is the simple
technique for finding the value of secret expression.

However, depending on the parameters of the attack and the structure
of algorithm, this technique does not always lead to correct answer since
there are likely to be guesses having a score is equal to the lowest score.
For instance,, unlike other rounds, we are able to usually find correct guess
for different random key in 100th round due to the most simplification.

Full key recovery attack: If we find the value of the linear expres-
sions, we are capable of retrieving those key bits existing in such expression
by Gaussian elimination. Thus, we focus on finding the value of linear ex-
pressions that exactly contain only a key bit, and retrieve these key bits
by assigning the corresponding value from the best guess.

In output bit 100, we gain four linear expression and retrieve four key
bits accordingly. We repeat this technique for other rounds, while we

11



nullify seven state as stated in table 2. Due to classification of IV bits is
easier, we can derive more linear expression by changing both dynamic and
cube variable. Note that the attack fail to retrieve the correct guess with
more probability in upper rounds. Altogether, we gain 51 key bits from
different linear expressions existed in output bits 100-110. The remaining
key bits are calculated by exhaustive search.

Complexity: The size of subcube is at least d−3, and the size of secret
expressions is e. Thus, the complexity of summing over all its subcubes is
limited to d22d+e. We could retrieve 51 key bits by dynamic cube attack
and the remaining 29 key bits by exhaustive search. Consequently, the
complexity is equal to 51× 262 × 233 + 229 ≈ 248.

6 Conclusion and Open Issues

In this paper, we first specified how to effectively simplify the output
function of Grain-v1. Then, we could nullified more than one state bits
via the suitable classification of IV bits. These classifications enabled us
to apply dynamic cube attack which is the first key recovery attack on
reduced version of Grain-v1. Finally, we could establish a full key recovery
attack with feasible time complexity.

An important future work is applying this technique to either Grain-
v1 with more initialization rounds or other algorithms with the same
structure. We commence to apply this attack to other variant of Grain-v1
that needs to spend more time for stating precise explanation.

12



7 Appendix A

bi+45 =bi−14bi−7bi−2[bi+2 = bi−57bi−50bi−45bi−41bi−33bi−26 + bi−69

bi−63bi−57bi−50bi−45 + bi−41bi−33bi−26bi−18bi−15 + · · · ][bi+10

= bi−49bi−42bi−37bi−33bi−25bi−18 + bi−61bi−55bi−49bi−42bi−37

+ bi−33bi−25bi−18bi−10bi−7 + · · · ][bi+17 = bi−42bi−35bi−30bi−26

bi−18bi−11 + bi−54bi−48bi−42bi−35bi−30 + bi−26bi−18bi−11bi−3

bi + · · · ] + bi−26bi−20bi−14bi−7bi−2 + [bi+2 = bi−57bi−50bi−45

bi−41bi−33bi−26 + bi−69bi−63bi−57bi−50bi−45 + bi−41bi−33

bi−26bi−18bi−15 · · · ][bi+10 = bi−49bi−42bi−37bi−33bi−25bi−18+

bi−61bi−55bi−49bi−42bi−37 + bi−33bi−25bi−18bi−10bi−7 + · · · ]
[bi+17 = bi−42bi−35bi−30bi−26bi−18bi−11 + bi−54bi−48

bi−42bi−35bi−30 + bi−26bi−18bi−11bi−3bi · · · ][bi+25 = bi−34

bi−27bi−22bi−18bi−10bi−3 + bi−46bi−40bi−34bi−27bi−22 + bi−18

bi−10bi−3([bi+5 = bi−54bi−47bi−42bi−38bi−30bi−23 + bi−66bi−60

bi−54bi−47bi−42 + bi−38bi−30bi−23bi−15bi−12 + · · · ])([bi+8 = bi−51

bi−44bi−39bi−35bi−27bi−20 + bi−63bi−57bi−51bi−44bi−39 + bi−35

bi−27bi−20bi−12bi−9 + · · · ]) + · · · ][bi+28 = bi−31bi−24bi−19bi−15

bi−7bi + bi−43bi−37bi−31bi−24bi−19 + bi−15bi−7bi([bi+8 = bi−51

bi−44bi−39bi−35bi−27bi−20 + bi−63bi−57bi−51bi−44bi−39 + bi−35

bi−27bi−20bi−12bi−9 + · · · ])([bi+12 = bi−48bi−41bi−36bi−32bi−24

bi−17 + bi−60bi−54bi−48bi−41bi−36 + bi−32bi−24bi−17bi−9bi−6+

· · · ]) + · · · ] + · · ·
(12)

13



bi+52 =bi−7bi[bi+5 = bi−54bi−47bi−42bi−38bi−30bi−23 + bi−66bi−60

bi−54bi−47bi−42 + bi−38bi−30bi−23bi−15bi−12 + . . .][bi+9 =

bi−50bi−43bi−38bi−34bi−26bi−19 + bi−62bi−56bi−50bi−43

bi−38 + bi−34bi−26bi−19bi−11bi−8 + . . .][bi+17 = bi−42bi−35

bi−30bi−26bi−18bi−11 + bi−54bi−48bi−42bi−35bi−30 + bi−26

bi−18bi−11bi−3bi + · · · ][bi+24 = bi−35bi−28bi−23bi−19bi−11

bi−4 + bi−47bi−41bi−35bi−28bi−23 + bi−19bi−11bi−4([bi+4 =

bi−55bi−48bi−43bi−39bi−31bi−24 + bi−67bi−61bi−55bi−48

bi−43 + bi−39bi−31bi−24bi−16bi−13 + . . .])([bi+7 = bi−52bi−45

bi−40bi−36bi−28bi−21 + bi−64bi−58bi−52bi−45bi−40 + bi−36

bi−28bi−21bi−13bi−10 + . . .]) + . . .]bi−19bi−13bi−7bi

[bi+5 = bi−54bi−47bi−42bi−38bi−30bi−23 + bi−66bi−60bi−54bi−47

bi−42 + bi−38bi−30bi−23bi−15bi−12 + . . .] + [bi+9 = bi−50bi−43

bi−38bi−34bi−26bi−19 + bi−62bi−56bi−50bi−43bi−38 + bi−34bi−26

bi−19bi−11bi−8 + . . .][bi+17 = bi−42bi−35bi−30bi−26bi−18

bi−11 + bi−54bi−48bi−42bi−35bi−30 + bi−26bi−18bi−11bi−3bi + · · · ]
[bi+24 = bi−35bi−28bi−23bi−19bi−11bi−4 + bi−47bi−41bi−35bi−28

bi−23 + bi−19bi−11bi−4([bi+4 = bi−55bi−48bi−43bi−39bi−31bi−24+

bi−67bi−61bi−55bi−48bi−43 + bi−39bi−31bi−24bi−16bi−13 + . . .])

([bi+7 = bi−52bi−45bi−40bi−36bi−28bi−21 + bi−64bi−58bi−52bi−45

bi−40 + bi−36bi−28bi−21bi−13bi−10 + . . .]) + . . .]([bi+32 = bi−27bi−20

bi−15bi−11bi−3([bi+4 = bi−55bi−48bi−43bi−39bi−31bi−24 + bi−67

bi−61bi−55bi−48bi−43 + bi−39bi−31bi−24bi−16bi−13 + . . .]) + bi−39

bi−33bi−27bi−20bi−15 + bi−11bi−3([bi+4 = bi−55bi−48bi−43bi−39

bi−31bi−24 + bi−67bi−61bi−55bi−48bi−43 + bi−39bi−31bi−24bi−16

bi−13 + . . .])([bi+12 = bi−48bi−41bi−36bi−32bi−24bi−17 + bi−60bi−54

bi−48bi−41bi−36 + bi−32bi−24bi−17bi−9bi−6 + . . .])([bi+16 = bi−44

bi−37bi−32bi−28bi−20bi−12 + bi−56bi−50bi−44bi−37bi−32 + bi−28

bi−20bi−13bi−15bi−2 + . . .]) + . . .])([bi+35 = bi−24bi−17bi−12bi−8bi

([bi+7 = bi−52bi−45bi−40bi−36bi−28bi−21 + bi−64bi−58bi−52bi−45

bi−40 + bi−36bi−28bi−21bi−13bi−10 + . . .]) + bi−36bi−30bi−24bi−17

bi−12 + bi−8bi([bi+7 = bi−52bi−45bi−40bi−36bi−28bi−21 + bi−64bi−58

bi−52bi−45bi−40 + bi−36bi−28bi−21bi−13bi−10 + . . .])([bi+15 =

bi−44bi−37bi−32bi−28bi−20bi−13 + bi−56bi−50bi−44bi−37bi−32+

bi−28bi−20bi−13bi−5bi−2])([bi+18 = bi−41bi−34bi−29bi−25bi−17

bi−10 + bi−53bi−47bi−41bi−34bi−29 + bi−25bi−17bi−10bi−2([bi+1 =

bi−58bi−51bi−46bi−42bi−34bi−27 + bi−70bi−64bi−58bi−51bi−46+

bi−42bi−34bi−27bi−19bi−16 + . . .]) + . . .]) + . . .]) . . .

(13)

14



8 Appendix B

The way of nullification the state bits by classification of IV bits

bi−11 = b89 = b80+9

= s9 + b10 + b11 + b13 + b18 + b19 + b23 + b30 + b37 + b40 + b42 +

b46 + b52 + b54 + b61 + b65 + b69 + b71b72 + b18b24 + · · ·+ b46 · · · b72 +
b30 · · · b61 + s34 + s12 + s55b72 + s12s34s55 + s12s55 + s12s55b72 +

s55b72 (14)

b89 = s9 + Pr1 + s55(1 + b72) (15)

s9 = Pr1 + s55(1 + b72) (16)

cube bites: {55}
Dynamic bits: {9}
Zero Bits: {12, 34}

bi−10 = b90 = b80+10

= s10 + b10 + · · ·+ b72 + b73 + b19b25 + ..+ b47..b73 +

b31b62 + s35 + s13 + s56 + b73 + s13s35s56 + s13s56 + s13s56b73 +

s56b73 (17)

b90 = s10 + Pr2 + s56(1 + b73) (18)

s10 = Pr2 + s56(1 + b73) (19)

cube bites: {56}
Dynamic bits: {10}
Zero Bits: {13, 35}

bi−8 = b92 = b80+12

= s12 + b12 + ..+ b74b75 + b21b27 + ..+ b49..b75 +

b33..b46 + s37 + s15 + s85 + b75 + s15s37s58 + s15s58 + s15s58b75 +

s37s58b75 + s58b75 (20)

b92 = s15 + Pr3 + s58(1 + b75) (21)

s15 = Pr3 (22)

cube bites: {}
Dynamic bits: {15}
Zero Bits: {37, 58}

15



bi−7 = b93 = b80+13

= s13 + b13 + ..+ b75b76 + b22b28 + ..+ b50..b76 +

b34..b65 + s38 + s16 + s59 + b76 + s16s38s59 + s16s59 + s16s59b76 +

s38s59b76 + s59b76 (23)

b93 = ˆPr5 + Pr4 + s51 + s38 = ˆPr4 + s51 + s38 (24)

s38 = ˆPr4 + s51 + s38 (25)

cube bites: {51}
Dynamic bits: {38}
Zero Bits: {59} Gusse bit: {1}

bi−5 = b95 = b80+15

= s15 + b15 + ..+ b77 + b24b30 + ..+ b52..b78 +

b36..b67 + s40 + s18 + s61 + s18s40s61 + s18s61 + s18s61b78 +

s40s61b79 + s61b7 (26)

b95 = Pr19 + Pr5 + s50(1 + b67) + s18 = ˆPr5 + s50(1 + b67) + s18 (27)

s18 = ˆPr5 + s50(1 + b67) (28)

cube bites: {50}
Dynamic bits: {18}
Zero Bits: {61} Gusse bit: {2}

bi−4 = b96 = b80+16

= s16 + b16 + · · ·+ b78 + b25b31 + · · ·+ s41 + s19s80 + s62s80

+s19s41s62 + s19s62s80 + s62b79s80 + s80b79 + b79

+s19s62b79 + s41s62b79 (29)

s80 = s62 + s38 + s23 + s13 + s3 + s51 + s0 + Pr + s25 + b63

+s3 × 1 + s46s64 + 1× b63 + s3s25s46 + s3s46 × 1

+s3s46b63 + s25s46b63 + s64b63 × 1

= ˆPr6 + s49(1 + b66) + Pr10 + s49(1 + b66) + s51

= ˆPr6 + Pr10 + s51 (30)

b96 = Pr5 + s80 + s16 = P̂ r5 + s51 + s16 (31)

16



s16 = ˆPr5 + s51 (32)

Cube bites: {51}
Dynamic bits: {16}
Zero assigned bits: {19, 41}
One assigned bits: {62}
The number of guessed term: {1}

bi−3 = b97 = b80+17

= s17 + b17 + · · ·+ b80 + b54 · · · b80 + b36 · · · b69 + s42

+s20s81 + s63s81 + s81b80 + s20s42s63 + s20s42s81

+s20s42b80 + s42s63b80 + s63s81b80 (33)

b80 = s0 + b0 + · · ·+ b63 + · · ·+ b37 · · · b63 + b21 · · · b52
+s25 + s3 + s46 + b63 + s3s25s46 + s3s46 + s3s46b63

+s25s46b63 + s46b63

= Pr6 + s46(1 + b63) + s0 + s3

= s0 + Pr6 + Pr10 + s49(1 + b66)

= s0 + ˆPr6 + s49(1 + b66) (34)

Cube bites: {49 which was used before}
Dynamic bits: {0}
Zero assigned bits: {25, 46}
One assigned bits: {−}
The number of guessed term: {1}

b97 = s17 + b17 + · · ·+ b79 + · · ·+ b36 · · · b69 = ˆPr7 + s17 (35)

s17 = ˆPr7 (36)

Cube bites: {−}
Dynamic bits: {17}
Zero assigned bits: {−}
One assigned bits: {−}
The number of guessed term: {1}

bi+13 = b113 = b80+33

= s33 + b33 + · · ·+ b85 + b89 + b93 + b95 + b96 + · · ·
+b70 · · · b96 + b54 · · · b85 + s58 + s36s97 + s79s97 + s36s58s79

+s36s58s97 + s36s58b96 + s58s79b96 + s79s97b96 (37)

{b89, b93, b95} which were set to zero before.

17



b85 = s5 + b5 + · · ·+ b68 + · · ·+ b42 · · · b68 + b26 · · · b57
+s30 + s8 + s51 + b68 + s8s30s51 + s8s51 + s8s51b68 + s30s51b68

+s51b68

= s5 + Pr8 + s51(1 + b68) (38)

s5 = Pr8 + s51(1 + b68) (39)

Cube bites: {51}
Dynamic bits: {5}
Zero assigned bits: {8, 30}
One assigned bits: {−}
The number of guessed term: {2}

b113 = s33 + b33 + · · ·+ b75 · · · b96 + b54 · · · b85 + s36s97 + s97

= s33 + Pr8 (40)

s33 = Pr8 (41)

Cube bites: {−}
Dynamic bits: {33}
Zero assigned bits: {58}
One assigned bits: {36}
The number of guessed term: {1}

bi+17 = b117 = b80+37

= s37 + b37 + b38 + · · ·+ b82 + b89 + b93 + b97 + b99 + · · ·
+b74 · · · b100 + b58 · · · b89 + s62 + s40s101 + s101b100

+s83s101 + s40s62s83 + s40s62s101 + s40s62b100

+s62s83b100 + s83s101b100 (42)

{b89, b93, b97, s37} which were set to zero before.

s83 = s3 + s16 + s36 + s41 + s54 + 1 + b66 + s6 + s28 + s49 + 1× b66

+s6s28s49 + s6s49 + s6s49b66 + s28s49b66 + s49b66

= s3 + s6 + s16 + s26 + s28 + s49 + s54 + s6s28s49 + s6s49

+s6s49b66 + s28s49b66 + s49b66 (43)

{s6, s16, s28} which were set to zero before.
{s3} which is dynamic variable and used in nullifying b100.

s83 = Pr10 + s26 + s41 + s49 + s54

s54 = Pr10 + s49 (44)

18



Cube bites: {49}
Dynamic bits: {54}
Zero assigned bits: {26, 41}
One assigned bits: {−}
The number of guessed term: {1}

b82 = s2 + b2 + · · ·+ b65 + · · ·+ b39 · · · b65 + b23 · · · b54 + s27

+s5 + s48 + b65 + s5s27s48 + s5s48 + s5s48b65 + s27s48b65

+s48b65 (45)

b82 = s2 + s48 + pr12 + s51(1 + b68) (46)

s2 = ˆpr12 + s51(1 + b68) (47)

Cube bites: {51}
Dynamic bits: {2}
Zero assigned bits: {−}
One assigned bits: {−}
The number of guessed term: {1}

b100 = s20 + b20 + · · ·+ b80 + b82 + · · ·+ b57 · · · b83 + b39 · · · b71 + s45

+s23s84 + s66s84 + s84b83 + s23s45s84 + s23s45s66 + s23s45b83

+s45s66b83 + s66s84b83 (48)

{b80, s20} which were set to zero before.
{b82, b83} which will be set to zero.

b83 = s3 + b3 + · · ·+ b66 + · · ·+ b40 · · · b66 + b24 · · · b55 + s28

+s6 + s49 + b66 + s6s28s49 + s6s49 + s6s49b66 + s28s49b66

+s49b66 (49)

b83 = s3 + pr10 + s49(1 + b66) (50)

s3 = pr10 + s49(1 + b66) (51)

Cube bites: {49}
Dynamic bits: {3}
Zero assigned bits: {6, 28}
One assigned bits: {−}
The number of guessed term: {2}

b100 = s45 + pr11 + s84

= +b67 + s45 + pr11 + s4 + s17 + s42 + s55 + s27 + 1 + b5 + · · ·
+s7 + s29 + s50 + s67 + s7s50b67 + s29s50b67 + s50b67

= s45 + ˆpr11 + s50(1 + b67) + s55 (52)

19



Cube bites: {50, 55}
Dynamic bits: {45}
Zero assigned bits: {4, 7, 27, 29}
One assigned bits: {−}
The number of guessed term: {1}

b99 = s19 + b19 + · · ·+ b79 + b81 + b82 + b82 + b79 + · · ·
+b82 · · · b34 + · · ·+ b82 · · · b56 + · · ·+ s44 + s22s83

+s65s83 + s83b82 + s22s44s83 + s22s44s65 + s22s44b82

+s44s65b82 + s65s83s82

= s44 + pr13 + s22s44 + s81 (53)

b99 = s81 (54)

Cube bites: {−}
Dynamic bits: {44}
Zero assigned bits: {22}
One assigned bits: {−}
The number of guessed term: {1}

b81 = s1 + b1 + · · ·+ b64 + · · ·+ b38 · · · b64 + b22 · · · b53
+s26 + s4 + s47 + b64 + s4s26s47 + s4s47 + s4s47b64

+s26s47b64 + s47s64

= s1 + s26 + s47 + pr14 (55)

b117 = s1 + s47(1 + b64) + s26s47b64 + pr + pr14

= s1 + ˆpr14 (56)

Cube bites: {−}
Dynamic bits: {1}
Zero assigned bits: {47}
One assigned bits: {−}
The number of guessed term: {1}

bi+20 = b120 = b80+40 = s40 + b40 + b41 + · · ·+ b85 + b92 + b96

+b100 + b102 + · · ·+ b77 · · · b103 + b61 · · · b92 + s65 + s43s104

+s86s104 + s43s65s86 + s43s65s104 + s43s65b103

+s65s86b103 (57)

{b85, b92, b96, b100} which were set to zero before.
{b102, b103} which will be set to zero.

20



b103 = s23 + b23 + · · ·+ b83 + b85 + · · ·+ b60 · · · b86 + b42 · · · b74
+s48 + s26s87 + s69s87 + s87b86 + s26s48s87 + s26s48s69

+s26s48b86 + s48s69b86 + s69s87b86 (58)

{b83, b85, s23} which were set to zero before.
{b86, s87} which will be set to zero.

b86 = s6 + b6 + · · ·+ b69 + · · ·+ b43 · · · b69 + b27 · · · b57 + s31 + s9

+s52 + b69 + s9s31s52 + s9s52 + s9s52b69 + s40s52b69 + s52b69

(59)

{s9} which was used as dynamic variable before.

b86 = s31 + Pr18 + s55(1 + b72) (60)

s31 = Pr18 + s55(1 + b72) (61)

Cube bites: {55}
Dynamic bits: {31}
Zero assigned bits: {52}
One assigned bits: {−}
The number of guessed term: {1}

s87 = s7 + s10 + s20 + s30 + Pr + s32 + s45 + s53 + s58 + s69

+s10s32s53 + s10s53 + s10s53b70 + s32s53b70 + s53b70 (62)

{s7, s20, s30, s58} which were set to zero before.
{s10, s45} which were used as dynamic variables before.

s87 = Pr18 + s50(1 + b67) + s55 + s32 + s53 + s10s32s53

+s10s53 + s10s53b70 + s32s53b70 + s53b70 (63)

s87 = Pr18 + s50(1 + b67) + s55 + s32 (64)

s32 = Pr18 + s50(1 + b67) + s55 (65)

Cube bites: {50, 55}
Dynamic bits: {32}
Zero assigned bits: {53}
One assigned bits: {−}
The number of guessed term: {1}

b103 = s48 + Pr15 (66)

s48 = Pr15 (67)

21



Cube bites: {−}
Dynamic bits: {48}
Zero assigned bits: {26}
One assigned bits: {−}
The number of guessed term: {1}

b102 = s22 + b22 + · · ·+ b82 + b84 + · · ·+ b61 · · · b85 + b43 · · · b75
+s47 + s25s86 + s68s86 + s86b85 + s25s47s86 + s25s47s68

+s25s47b85 + s47s68b85 + s68s86b85 (68)

{s22, s47, b85} which were set to zero before.
{s86} which will be set to zero.
{b84} which will be simplified.

b84 = s4 + b4 + · · ·+ b67 + · · ·+ b41 · · · b67 + b25 · · · b56
+s29 + s7 + s50 + b67 + s7s29s50 + s7s50 + s7s50b67 + s29s50b67

+s50b67

= Pr19 + s50(1 + b67) (69)

{s4, s7, s29} which were set to zero before.

s86 = s6 + s9 + s19 + s29 + Pr + s31 + s44 + s52 + s57 + s68

+s9s31s52 + s9s52 + s9s52b69 + s31s52b69 + s52b69 (70)

{s6, s19, s29} which were set to zero before.
{s9, s44} which were used as dynamic variables before.

s86 = Pr17 + s55(1 + b72) + s31 + s52 + s57 + s9s31s52

+s9s52 + s9s52b69 + s31s52b69 + s52b69 (71)

{s52} which was set to zero before.

s86 = Pr17 + s57 (72)

s57 = Pr17 (73)

Cube bites: {−}
Dynamic bits: {57}
Zero assigned bits: {−}
One assigned bits: {−}
The number of guessed term: {1}

b102 = b84 + Pr

= Pr19 + s50(1 + b67) (74)

22



b120 = s40 + Pr + Pr19 + s50(1 + b67) + P̂ r

= s40 + Pr20 + s50(1 + b67) (75)

s40 = Pr20 + s50(1 + b67) (76)

Cube bites: {50}
Dynamic bits: {40}
Zero assigned bits: {−}
One assigned bits: {−}
The number of guessed term: {1}

References

[1] M. Hell, T. Johansson, and W. Meier, “Grain-a stream cipher for con-
strained environments. estream, ecrypt stream cipher project, report
2005/010, 2005.”

[2] H. Englund, T. Johansson, and M. Sönmez Turan, “A framework
for chosen iv statistical analysis of stream ciphers,” Progress in
Cryptology–INDOCRYPT 2007, pp. 268–281, 2007.

[3] I. Dinur and A. Shamir, “Cube attacks on tweakable black box poly-
nomials,” Advances in Cryptology-EUROCRYPT 2009, pp. 278–299,
2009.

[4] I. Dinur and A. Shamir, “Breaking grain-128 with dynamic cube at-
tacks,” in Fast Software Encryption, pp. 167–187, Springer, 2011.

[5] S. Fischer, S. Khazaei, and W. Meier, “Chosen iv statistical analysis
for key recovery attacks on stream ciphers,” Progress in Cryptology–
AFRICACRYPT 2008, pp. 236–245, 2008.

[6] M. Ågren, M. Hell, T. Johansson, and W. Meier, “A new version of
grain-128 with authentication,” in Symmetric Key Encryption Work-
shop, SKEW (February 2011), 2011.

23


