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Abstract

In some wireless environments, minimizing the size of messages is paramount due to the
resulting significant energy savings. We present CCS which is a new family of tweakable en-
ciphering schemes (TES). The main focus for this work is minimizing ciphertext expansion,
especially for short messages including plaintext lengths less than the underlying block cipher
length (e.g., 16 bytes). CMCC is an instantiation of the scheme providing misuse resistant
authenticated encryption with associated data (AEAD), and it leverages existing modes such
as CBC, Counter, and CMAC. Our work can be viewed as extending the line of work starting
with [HR03] to plaintext sizes smaller than the block cipher block length which is a problem
posed in [Hal04]. Since changes to the ciphertext randomize the plaintext, we can leverage the
protocol checks in higher layer protocols as additional authentication bits allowing us to reduce
the length of the authentication tag. For protocols that send short messages, our scheme is
similar to Counter with CBC-MAC (CCM) for computational overhead but has much smaller
expansion. We prove CCA2 security and misuse resistant authenticated encryption (MRAE)
security for different variants of CMCC. Our contributions include both stateless and stateful
versions which enable minimal sized message numbers using different network related trade-offs.

Keywords: Private key CCA2 encryption, energy constrained cryptography, authenticated
encryption.

1 Introduction

The current paradigm of providing confidentiality and integrity protection for distributed appli-
cations through the use of encryption combined with MAC’s (Message Authentication Codes) is
reasonably efficient for many environments. In particular, for network message sizes that range
from several hundred bytes or more, having MAC’s that utilize 8-20 bytes is not unduly inefficient.
For resource constrained environments, where message lengths are often less than one-hundred
bytes, existing MAC’s impose a more significant overhead. Since it requires more energy to send
longer messages, it is important to reduce message sizes in protocols used by wireless devices. This
need becomes even more critical for low bandwidth networks.

A key reason that MAC’s need to be long is that the most popular symmetric block cipher modes
can be predictively modified by an attacker. Counter mode (CTR) can be modified by flipping bits
so the attacker can precisely control the changes to the message. Cipher Block Chaining (CBC)
can be modified such that changes to one block are predictable while the preceding block is ran-
domized (see [Bellovin] for attacks that utilize this property). Also, the most common schemes for
CCA (Chosen Ciphertext Attack) security [Katz-Yung1] utilize a CPA (Chosen Plaintext Attack)
encryption scheme combined with a MAC (Message Authentication Code) [DolvDwkNaor].
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In this paper we present a new symmetric encryption scheme, Chosen Ciphertext Secure (CCS),
that utilizes a pseudorandom function (PRF) (e.g., AES but other choices are possible). Our
construction uses multiple invocations of the PRF so that any modifications to ciphertext result
in a randomized plaintext. We will show that this property implies that our scheme has CCA2
security. CCS is a tweakable enciphering scheme (TES) [LskvRvstWgnr, HR03]. We obtain CCA2
security with a small concrete security bound using only 2-3 bytes of ciphertext expansion.1

We will make use of variable length input pseudorandom functions fi that have a fixed length
output size. In order to better understand the intuition behind our scheme, consider the case where
the plaintext is the concatenation of the strings P1 and P2 where each string’s length equals the
pseudorandom function output size (e.g., 16 bytes in the case of AES). Our encryption scheme is:

X = f2(M,P1)⊕ P2

X2 = f2(X)⊕ P1

X1 = f1(M,X2)⊕X

where the ciphertext is X1, X2, and M is a public message number (or the tweak [LskvRvstWgnr]).
For maximum security, M is unique, with high probability, for each message encrypted under a given
key K. Then if the adversary flips some bits in X1, the corresponding bits in X are flipped during
decryption, and this produces random changes to P1 during decryption (see 2nd equation). The
first equation is then applied which results in random changes to P2. A similar argument applies if
we flip one or more bits in X2. Since changes to any bits in the ciphertext result in random changes
to the plaintext, it follows that the decryption oracle in the CCA2 security experiment (or inverse
permutation in the definition of TES security) has limited usefulness to the adversary.

For longer messages, the plaintext P is split into the equal length substrings P1, . . . , Pk, (the
lengths may differ by one byte if necessary) and we have:

X = fk(M,P1)⊕ Pk
Xk = fk(X)⊕ Pk−1

...

X2 = f2(X)⊕ P1

X1 = f1(M,X2, . . . , Xk)⊕X

where the resulting ciphertext is X1, . . . , Xk.
A common scenario is one where some packet loss and/or packet reordering may occur so that

the communication peers aren’t fully synchronized. We present two versions of our scheme with
different trade-offs to handle loss of synchronization. The stateless version uses a public message
number and its size is constrained thus limiting the number of messages that can be encrypted
under a single key while avoiding resuse of the message numbers. The stateful version uses a
private message number which is encrypted and the last few bytes of the resulting ciphertext are
sent with the ciphertext. This mechanism enforces a different trade-off; the limit here is on the

1An existing TES could also be used but a limitation of existing schemes is that the plaintext must be at least as
long as the block cipher length (16 bytes for AES).
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maximum amount of disorder between encryption order and decryption order. It also hides the
number of messages previously sent. If the communication peers are synchronized, then CCS
requires no additional overhead for message numbers.

Alternatively, the k = 2 construction above can also be applied to longer messages (see Sec-
tion 3.3). We describe a particular instantiation of CCS: CBC-MAC-CTR-CBC (CMCC) mode.
CMCC is a general purpose authenticated encryption mode [BellrNamp]. We apply CBC encryp-
tion in the first equation above (and replace f2 with f3), use a MAC followed by a CTR mode
variant in the 2nd equation, and CBC encryption again in the 3rd equation. We prove that CMCC
is misuse resistant [RogwyShrmptn]: encryptions using the same message number, plaintext, and
associated data are identifiable to the adversary as such, but security is preserved if the same mes-
sage number is reused where either the plaintext or associated data is distinct. Since changes to
the ciphertext randomize the resulting plaintext, with high probability, we achieve authentication
by appending a string consisting of τ bits set to zero to the plaintext prior to encryption. We
also consider the case where the authentication string is the MAC of the plaintext and associated
data: CMCC with MAC or CWM. For CWM, we obtain stronger security bounds. Relative to SIV
[RogwyShrmptn], CMCC has smaller ciphertext expansion.

1.1 Definitions for Authenticated Encryption

We give motivation for our definition of authenticated encryption.
Consider CCM, OCB, or another counter mode variant with a 4 byte authentication tag. Then

for the CCA2 security game, submit the message (plaintext) with all 1’s and also the message
with all 0’s. The adversary obtains a ciphertext response corresponding to one of the plaintexts.
Then randomly flip bits in this ciphertext for each new ciphertext query and attach a random
authentication tag. Then the probability of winning is q(2−32). The reason is that this bound
is the probability that one of the submitted ciphertexts is valid. If it’s valid then we get the
plaintext back which shows us the bits that we flipped. And if the flipped bits are zero, then
the original message had all 1’s and vice versa. Now compare this to CMCC with a 4 byte zero
bit authentication string. Then our CCA2 security bound is approximately q(2−64) for a 12 byte
message. Thus CMCC has much stronger CCA2 security given a short authentication tag. If we
run the same attack against CMCC as in the preceding paragraph, then the probability of a valid
ciphertext is approximately the same. But the corresponding plaintext would be randomized with
high probability and thus would give us no information about the challenge plaintext. For a 2 byte
authentication tag, the numbers would be q(2−16) and q(2−56).

Some of the existing definitions for authenticated encryption do not distinguish between forgeries
and privacy breaches; thus the two cases above would have the same security. This becomes more
important given short authentication tags; in particular, classifying a forgery as a a complete loss
of security is not always appropriate. Depending on the application, a single forgery may not be
enough to disrupt the application (e.g., VoIP), and depending on the encryption scheme, it may
be detectable during higher layer protocol checks. Thus a definition should differentiate between
privacy and authentication. The definition should be general enough to handle the case of a zero
length authentication string where changes to the ciphertext randomize the resulting plaintext so
that the upper layer protocol checks detect and reject the message.

Our definition gives the Adversary encryption and decryption oracles (real world) vs. a random
injection function and its inverse and asks the Adversary to distinguish between the two (see
Section 2). This definition is similar to the PRI definition in [RogwyShrmptn] but only requires an
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injection for each fixed message number and associated data values.

1.2 Applications

For constructing a secure channel (with both confidentiality and authentication) using our encryp-
tion scheme, it follows that we can shorten or eliminate our MAC tag since the adversary cannot
make a predictable change to the encrypted message, as in CCM or other schemes. (These other
schemes depend on the MAC to detect such a change). With our scheme, a change to the packet is
highly likely to cause the packet to be rejected due to a failure to satisfy application protocol checks.
Another possibility (e.g., Voice over IP (VoIP)) is that the randomized packet will have a mini-
mal effect. With only a small probability can the adversary achieve a successful integrity attack.
Our scheme is computationally comparable to existing schemes such as CCM [WhitHousFerg], but
yields reduced message sizes. Since network transmission and reception incurs significant energy
utilization, it follows that we can expect to achieve significant energy savings. Our analytical results
for wireless sensor networks show that energy utilization is proportional to packet length, and that
the cryptographic computational processing impact on energy use is minor.

If we consider VoIP, a 20 byte payload is common. The transport and network layer headers
(IP, UDP, and RTP) bring another 40 bytes, but compression [cRTP, Bormann] is used to reduce
these fields down to 2-4 bytes. The link layer headers add another 6 bytes. Thus the total packet
size is 30 bytes, assuming the UDP checksum of 2 bytes is included. In this case, by omitting the
recommended 10 byte authentication tag and using CCS with 2 bytes of expansion, we obtain a
1/5 savings in message size and corresponding savings in energy utilization. (Actually, the savings
is larger since encryption schemes send randomness (e.g., an IV) as well. For example, CCM sends
a 13 byte nonce with each message.) Furthermore if the encryption boundary is just after the CID
field (which is used to identify the full headers), then the UDP checksum is encrypted and acts as a
2 byte authentication tag. Even if the adversary was lucky enough to obtain the correct checksum,
the resulting Voice payload would be noise, with high probability.

Wireless sensor networks also use short packets [VuranAkyldz] to maximize resource utilization;
these packets are often in the range of 10-30 bytes. For the adversary, large numbers of queries are
likely to be either impossible or highly anomalous in these constrained low bandwidth networks.

1.3 Our Contributions

Our contributions are as follows:

1. We give a new family of private key encryption schemes with minimal ciphertext expansion.
We obtain CCA2 security with a small concrete security bound using only 2-3 bytes of ci-
phertext expansion, for a full range of message sizes. Our work can be viewed as extending
the line of work starting with [HR03] to plaintext sizes smaller than the block cipher block
length. Halevi posed this problem in [Hal04]. When message numbers are not reused for
CMCC, we obtain a security bound which is dominated by q/β where β is the minimum of
the block length and half the length of the plaintext plus the length of the authentication tag
for the challenge ciphertext (here we allow a zero length authentication tag). When message
numbers are not reused and we include an authentication tag with τ bits, then we obtain a
bound dominated by 1/β if invalid queries result in session termination, q/β if invalid queries
do not result in session termination, q/(2τβ) if the authentication tag is computed using a
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keyed MAC algorithm (CWM) but invalid queries are allowed and 2−τ/β for CWM where
invalid queries result in session termination.

2. We instantiate the CCS construction with a new block cipher mode: CMCC. CMCC is
a general purpose misuse resistant authenticated encryption mode. We define security for
misuse resistant authenticated encryption and prove a security bound for CMCC. CMCC has
less ciphertext expansion than SIV [RogwyShrmptn].

3. We give both stateless and stateful versions of our schemes where we minimize message
number sizes in both versions. As discussed above, each version enables a different trade-off
based on the network and application parameters.

4. We give a rough comparison for CPU overhead, network overhead, and energy consumption
between CCM and CMCC, where energy is based on a wireless sensor node, the Mica2Dots
platform. Here we assume an 8 byte authentication tag for CCM and a 2 byte authentication
string for CMCC. This gives a comparable level of CCA2 security for plaintexts in the 12-
16 byte range (see Remark above). Authentication security is increased beyond 2 bytes for
CMCC given the higher layer protocol checks. The exact strength is dependent on the specific
protocols including the application layer. For some protocols, a 2 byte authentication string
would not be sufficient for authentication and would have to be increased in length. On the
other hand, a protocol such as VoIP has application layer checks and a randomized voice
packet will not constitute a successful attack. Thus a 2 byte authentication string for CMCC
may be sufficient for an application such as VoIP.

1.4 Related Work

There was originally work in the IETF IPsec Working Group on a confidentiality-only mode; the
original version of ESP provided confidentiality without integrity protection [Atknsn]. However,
[Bellovin] showed that CBC and stream-cipher like constructions were vulnerable to attacks that
could be prevented by adding a MAC.

Given a message with redundancy, the idea that authenticity can be obtained by enciphering it
with a strong pseudorandom permutation goes back to [RogwyBellr]. The authors formally prove
a bound on adversary advantage against authenticity which requires that the probability that an
arbitrary string decodes to a valid message is low. In [AnBellr], the authors show that public redun-
dancy is not always sufficient and that private (keyed) redundancy leads to stronger authentication
properties. Struik [Struik] presented application requirements and constraints, independently of
this work at roughly the same time this work was started.

In [Desai], Desai gives CCA-secure symmetric encryption algorithms that don’t use a MAC
and don’t provide explicit integrity protection outside of the CCA-security. CCS shares this CCA-
security without a MAC property. The most efficient one is UFE which utilizes variable length
pseudorandom functions. Its ciphertext expansion is |r| bits where r is a uniform random value;
security can be compromised if the same r is used for multiple messages. Since r is uniform random,
collisions are likely after 2|r|/2 messages. Furthermore, with small probability, collisions will occur
after a much smaller number of messages. The UFE security bound is q(q+1)/2|r|. If the adversary
can make 220 queries, then Theorem 4.2 gives a security bound around 2−60 for CMCC, given a 20
byte message. UFE would require a 13 byte ciphertext expansion to assure the same security level.
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SIV and PTE [RogwyShrmptn] are misuse resistant authenticated encryption (MRAE) schemes.
SIV includes a MRAE scheme where the expansion includes the block cipher block size (e.g., 16 byte)
IV plus the nonce. Thus CMCC is a MRAE scheme with smaller expansion (which is important for
short messages), and comparable security for applications that require less than a 16 byte MAC.
Some applications can utilize a 4 byte or smaller MAC and meet security requirements. The RFC
5297 specification of SIV has the same number of block cipher invocations as CCM. Our security
definition is similar to the PRI security definition in [RogwyShrmptn] except we only require the
injection to hold for fixed message number and associated data values.

CMCC uses the same authentication construction as PTE. However, the TES that
[RogwyShrmptn] recommends for PTE is not capable of encrypting messages with less than the
block size of the underlying block cipher.

Collisions in the IV [RogwyShrmptn] (or random message number in [Desai]) will result in loss
of privacy for the affected messages. Thus security is increased if the IV is long (e.g., 16 bytes
for SIV). In other words, decreasing ciphertext expansion results in less security. Security for
our scheme increases as message length grows, so privacy is stronger when ciphertext expansion
is minimal, given message lengths between 10 and 32 bytes. The parameter X in our scheme is
similar to the σ parameter in [Desai] and to the IV in [RogwyShrmptn]. These last two parameters
create ciphertext expansion whereas X does not. Our scheme is targeted at environments where
minimizing ciphertext expansion is valuable.

CMC [HR03] is the first of the tweakable enciphering schemes (TES), originally motivated by
the problem of disk encryption. CMC sandwiches a masking layer (involving xor and a pass over
the message blocks) in between two encryption layers. CMC plaintexts must be a multiple of the
block cipher length. EME [HR04] and EME∗ [Hal04] are improved schemes with the latter able to
encrypt any length equal or longer than the block length. Halevi [Hal04] poses the open problem
of encrypting short plaintexts with lengths less than the block length.

Naor and Reingold [NR] initiated another approach for constructing a TES: hash-ECB-hash.
The schemes here include PEP [CS06b], TET [Hal07], HEH [Sarkar], iHCTR and HOH [Sarkar].
The hashing layers use finite field multiplications so they obtain a performance advantage over the
earlier schemes when finite field operations become significantly faster than block cipher operations.
A third approach, hash-CTR-hash, is embodied in HCTR [WFW05] and HCH [CS06a].

Since our scheme uses encryption only in the forward direction combined with xor, our construc-
tion is able to handle messages of varying lengths including lengths shorter than the underlying
block length which is an advantage over CMC and the above schemes. The stateful version of our
scheme includes the integration of a minimal sized message number that enables the number of
messages previously sent to be hidden. We also require one less block cipher invocation then CMC
and EME*. The EME ciphers are more parallelizable.

1.5 Organization

In Section 2, we give basic cryptographic definitions. In Section 3, we present our tweakable enci-
phering scheme CCS; we also give the CMCC instantiation including the authenticated encryption
scheme with minimal ciphertext expansion. Section 4 gives the proof that CMCC has CCA2 se-
curity and provides misuse resistant authenticated encryption. Section 5 gives our performance
analysis and results, including a comparison of energy utilization between CCS and CCM, for
wireless sensor nodes. In Section 6 we draw conclusions.
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2 Definitions

2.1 Pseudorandomness

The concatenation of two strings S and T is denoted by S|T, or S, T where there is no danger of
confusion.

We write w ←W to denote selecting an element w from the set W using the uniform distribu-
tion. We write x← f() to denote assigning the output of the function f , or algorithm f , to x. SC

denotes the complement of set S.
Throughout the paper, the adversary is an algorithm which we denote as A.
We follow [GGM86] as explained in [Shoup] for the definition of a pseudo-random function:

Let l1 and l2 be positive integers, and let F = {hL}L∈K be a family of keyed functions where each
function hL maps {0, 1}l1 into {0, 1}l2 . Let Hl1,l2 denote the set of functions from {0, 1}l1 to {0, 1}l2 .

Given an adversary A which has oracle access to a function in Hl1,l2 or F . The adversary will
output a bit and attempt to distinguish between a function uniformly randomly selected from F
and a function uniformly randomly selected from Hl1,l2 . We define the PRF-advantage of A to be

AdvprfF (A) = |Pr[L← K : AhL() = 1]− Pr[f ← Hl1,l2 : Af () = 1]|

AdvprfF (q) = max
A
{AdvprfF (A)}

where the maximum is over adversaries that run with number of queries bounded by q.
Intuitively, F is pseudo-random if it is hard to distinguish a random function selected from F

from a random function selected from Hl1,l2 .
We also define AdvprpF (q) in the same manner where the comparison is with a random permu-

tation and F is a family of keyed permutations.

2.2 CCA Encryption

Given the symmetric key encryption scheme S = (Gen,Enc,Dec). For key K, EncK : P ×M→ C
where P is the message set, M is the set of message numbers, and C is the set of ciphertexts.
DecK : C ×M→ P ∪ {⊥} where DecK(C,M) =⊥ if there is no P,M such that EncK(P,M) = C.

We define the CCA2 encryption experiment ExpCCA2(S, n, q,A) here:

1. The algorithm Gen(1n) is run and the key K is generated.

2. The adversary A is given the input 1n and oracle access to EncK() and DecK().

3. The adversary outputs a pair of messages m0 and m1 of the same length.

4. A random bit b ← {0, 1} is selected. The ciphertext c ← EncK(mb) is computed and given
to A.

5. The adversary continues to have oracle access to EncK() and DecK(). However, the adversary
is not allowed to query the decryption oracle with the ciphertext c. The adversary is limited
to q total queries (including the queries issued before the challenge ciphertext is generated).

6. The adversary outputs a bit b̄. The output of the experiment is 1 if b̄ = b and 0 otherwise.
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The adversary may not reuseM in encryption oracle queries with the same key. IfDecK(C,M) = P,
for adversary query (C,M), then the adversary will not subsequently submit (P,M) to EncK().

The encryption scheme S is defined to have CCA2 security for (ε, q, µ) if for all probabilistic
polynomial time adversaries A limited to q queries and µ total encryption and decryption blocks,
Pr[ExpCCA2(S, n, q, µ,A) = 1] ≤ 1/2 + ε. We define AdvCCA2

S,n,q,µ(A) = Pr[ExpCCA2(S, n, q, µ,A) =
1]− 1/2.

We also consider the case where the Adversary is not allowed to make additional oracle queries
after it submits a decryption oracle query which returns ⊥ .

2.3 CPA Encryption

Given the CCA2 encryption experiment above, except we remove the decryption oracle from the
experiment. We define the resulting experiment as the CPA encryption experiment, and if the
adversary probability of success is bounded as above, we say that the encryption scheme is CPA
secure for (ε, q, µ). We have the analogous definition for AdvCPAS,n,q,µ(A).

2.4 Authenticated Encryption (AE) and Misuse Resistant Authenticated En-
cryption (MRAE)

Given plaintext (message) set P, associated data set AD, ciphertext set C, and message number
set N . An authenticated encryption scheme (AE) is a tuple Π = (K, E ,D) such that E : K ×N ×
AD×P → C, D : K×N ×AD×C → P ∪{⊥}, and D(E(K,N,A, P )) = P for all N ∈ N , A ∈ AD,
P ∈ P. If there is no P ∈ P such that C = E(K,N,A, P ), then D(K,N,A,C) =⊥ . We write DK

and EK in place of D(K, ...) and E(K, ...).
For our security definition, we define the ideal world object as a random injective function.

The expansion function is e : N ×AD × P → N. Let InjN ,Ae (P, C) be the set of functions f from
N ×AD ×P into C such that for each A ∈ AD and N ∈ N , f(N,A, .) is an injection from P into
C. We also require that |f(N,A, P )| = |P |+ e(N,A, P ).

Let Π = (K, E ,D) be an AE with message space P, associated data set AD, message number
set N , and expansion e. The AE-advantage of adversary A against Π is

Adv
AE(q,µ)
Π (A) = Pr[K ← K : AEK(.,.,.)DK(.,.,.) ⇒ 1]− Pr[f ← InjN ,Ae (P, C) : Af(.,.,.),f−1(.,.,.) ⇒ 1]

when encryption oracle queries use unique message numbers. f−1(N,A,C) = P if f(N,A, P ) =

C and returns ⊥ if no such triple (N,A, P ) exists. We define MRAE-advantage and Adv
MRAE(q,µ)
Π

analogously except encryption oracle queries are allowed to repeat message numbers. We also define

Adv
AE(q,µ)
Π = maxAdv

AE(q,µ)
Π (A) over all adversaries A that ask q queries totaling µ blocks. We

define Adv
MRAE(q,µ)
Π = maxAdv

MRAE(q,µ)
Π (A) over all adversaries A that ask q queries totaling µ

blocks for the MRAE environment where message numbers may be repeated in encryption oracle
queries. As above, we will also consider the case where the game is restricted if the adversary
submits a decryption oracle query which returns ⊥; in this case, the adversary will not be allowed
to make additional oracle queries prior to its output.
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3 CCS

In this section, we present CCS. CCS includes a stateless version with public message numbers,
and a stateful version with private message numbers. CCS is based on a variable input length
pseudorandom function (we give examples of these later in the paper). The terminology fi refers
to a keyed pseudorandom function (keyed with key Ki). M is the message number.

We assume fi maps an arbitrary length domain string to a fixed length output string, where
the output length is the same across all i. We call the output length the output block size. k is the
number of bytes in the plaintext divided by the output block size (in bytes), and then rounded up
to the nearest integer. If this integer is one, then k = 2 :

k = max{d|P |/output block sizee, 2}.

We will segment a plaintext message P into k input blocks. The input block size for P is the largest
size less than or equal to the output block size such that the message P can be divided into k input
blocks each with the input block size or one byte less than the input block size if needed. If P
divides into k equal sized blocks, then input block size = |P |/k. We define α to be 2 raised to the
input block size, in bits. As an example, consider a pseudorandom function constructed using the
AES encryption algorithm [AES]. The output block size is 16 bytes. If P has 33 bytes, then k = 3,
the input block size is 11 bytes, and α = 288.

3.1 Informal Design Intuition for Message Numbers

M is a per message value that can be selected by the caller of the encryption API. Our goal is to
allow the caller to use any strategy or algorithm for selecting M. For the k > 2 case, the caller must
not reuse M ; reusing M will result in a loss of CPA security. The k = 2 case is misuse resistant
when the authentication field is included; security is maintained provided that the same message
number is not reused with the same key and plaintext. When the caller explicitly selects M, then
the scheme uses M as the public message number and is stateless.

We also allow the caller to use private message numbers. In this case,

EK̄(i)) = Mi, i ≥ 0,

for private message number i where encryption key K̄ is shared by the communication peers for the
block cipher E (we assume the block size is 16 bytes). If the sender and receiver communication is
synchronized, then M doesn’t need to be transmitted. Otherwise, we send the least significant 2-3
(IL) bytes of the value Mi as described above except we eliminate Mi values from the sequence
if the least significant IL byte(s) duplicate a previous Mj ’s least significant IL byte(s) where
(γ−j) ≤ 2(window size)+1 given Mi as the γth element in the sequence (after eliminating previous
last IL-byte duplicates and Mj is the jth element of the resulting sequence). In other words, Mi’s
that are close together are selected to have distinct least significant byte(s). This does require a
small amount of additional computation to compute the sequence of Mi values but doesn’t require
significant additional work over the case where the least significant bytes are allowed to collide
(since 2(window size) + 1 will be less than the birthday bound). The window size parameter
(w s) controls how much the encryptor and decryptor are allowed to fall out of synchronization.

Private message numbers allow the number of messages previously sent to be hidden and also
minimize the size of the ciphertext but the scheme is stateful.

9



3.2 CCS Specification

LSBj(x) and MSBj(x) denote the j least significant bytes and j most significant bytes of byte
string x respectively. The two communication peers are denoted as the initiator (init) and responder
(resp), respectively. There are two channels; one with the initiator as the encryptor and the
responder as the decryptor, and the other with the initiator as the decryptor and the responder
as the encryptor. We will describe the private message number (stateful) case; for public message
numbers (stateless case), K̄1, K̄2, EK̄1

, and EK̄2
are not used, and Sections 3.2.2, 3.2.3, and 3.2.6

are not needed. Also, M replaces the message number tag T in Sections 3.2.4 and 3.2.5.

3.2.1 Key Generation

Keys K̄1 and K̄2 are randomly generated for the pseudorandom permutations EK̄i i = 1, 2 and the
randomly generated keys L1, . . . , Lk determine the PRF’s f1, . . . , fk. The keyK = K̄1, K̄2, L1, . . . , Lk.
EK̄i is a permutation on the set of binary strings with l bits.

3.2.2 Initial State

uinit = uresp = 0. inite = initd = respe = respd = 0. (inite and initd are part of the initiator
state; respe and respd are part of the responder state.) IL is the number of bytes of ciphertext
expansion. w s is initialized to a positive integer. m1 = 2(w s) + 1. Initially the sequences of M
values, Seq(init) and Seq(resp) are empty.

3.2.3 Creating the Sequences of M Values

Let x be the encryptor, x ∈ {init, resp}. Let v = 1 if x = init, and let v = 2 if x = resp. Let
Seq(x) = M0, . . . ,Mxe−1.
start: candidate(M) = EK̄v(ux)
IF LSBIL(candidate(M)) = LSBIL(Mi) for any i, 0 ≤ i ≤ xe − 1, where (xe − i) ≤ m1,
ux = ux + 1, go to start;
ELSE
{
Mxe = candidate(M); Seq(x) = M0, . . . ,Mxe

ux = ux + 1;
}
ENDIF
SeqNox[M ] = i if M is the ith element in the sequence Seq(x).

3.2.4 Encryption

Given private message number i where i = SeqNox[M ]. We set T = LSBIL(M). T is the message
number tag. We assume P is a plaintext byte string (the number of bits in P is divisible by 8).
For k ≥ 2, the plaintext P is split into the equal length substrings, where length is the input block
size, P1, . . . , Pk; (the lengths may differ by one byte per our discussion above, but for convenience
we will assume they are equal length for the remainder of the paper and all of our results hold with
only minor changes in the non equal case) the encryptor computes the following values sequentially
(but the 2nd through 2nd to last values can be computed in parallel):
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X = fk(M,P1)⊕ Pk
Xk = fk(X)⊕ Pk−1

...

X2 = f2(X)⊕ P1

X1 = f1(M,X2, . . . , Xk)⊕X

where X1| . . . |Xk|T is the resulting ciphertext. We write EncK(P,M) = X1| . . . |Xk|T. For a
pseudorandom function based on an underlying cryptographic algorithm with a block size (e.g., an
AES based prf), padding may be necessary. In this case, we pad using the padding algorithm from
the CMAC specification [CMAC].

3.2.5 Decryption

Let y ∈ {init, resp} where y 6= x. Given C|T where C = X1| . . . |Xk. There exists at most one M̄
in Seq(x) such that LSBIL(M̄) = T and |SeqNox[M̄ ] − yd| ≤ w s. If it exists, then set M = M̄
and compute the sequence

X = f1(M,X2, . . . , Xk)⊕X1

P1 = X2 ⊕ f2(X)

...

Pk−1 = Xk ⊕ fk(X)

Pk = X ⊕ fk(M,P1)

and output DecK(C, T ) = P1| . . . |Pk. Otherwise, output DecK(C, T ) =⊥ .
If DecK(C, T ) 6=⊥, then we say M is the message number used to decrypt C, T ; SeqNox[M ]

is the corresponding private message number. In this case, if SeqNox[M ] > yd, then set yd =
SeqNox[M ].

3.2.6 Channel Assumption

The decryption algorithm returns ⊥ if the ciphertext was created using a message number M
that was too far out of synchronization. The following assumption guarantees that decryption is
successful (i.e., does not output ⊥).

Let y ∈ {init, resp} where y 6= x. The next ciphertext that is decrypted, X1| . . . |Xk|T is such
that there exists M̄ in Seq(x) such that LSBIL(M̄) = T and |SeqNox[M̄ ]− yd| ≤ w s.

Given the channel assumption, there exists M̄ such that LSBIL(M̄) = T, and the algorithm
for creating the sequence ensures that M̄ is unique.

Table 1 summarizes the parameters for the stateful scheme.

3.3 CMCC

Although our emphasis has been on utilizing CCS to protect short messages in energy constrained
environments, we now discuss further a specific instantiation of the k = 2 case of CCS: CBC-
MAC-Counter-CBC (CMCC) mode. CMCC is a general purpose authenticated encryption mode

11



Parameter Description

k Number of plaintext segments: P = P1| . . . |Pk.
α α = 2|Pi|, i = 1, . . . , k.

M per message value obtained by using PRP on private message number

EK̄() PRP used to create M values

l number of bits in the strings mapped by EK̄(); assume l = 128

q bound on number of adversary queries

IL number of bytes of ciphertext expansion

w s bound on ciphertext reordering that still ensures decrypt success

Table 1: Summary of Parameters for Stateful CCS Scheme

which is misuse resistant and optimized for energy constrained environments. As before, we will
have a stateless version with public message numbers, and a stateful version with private message
numbers. Also as before, the scheme is identical to k ≥ 2 when the message has 32 bytes or less.
The stateless version has full misuse resistance against reuse of the message numbers, whereas the
stateful version has resistance as well, but some private message numbers may result in decryption
failures if too far outside the decrypt window.

For stateless version encryption, we initially utilize CBC mode and obtain the value X. Here
we utilize EK̄ to create the CBC IV W from the message number M. This prevents the adversary
from being able to manipulate M and P1 in a way that allows collisions in X values to be created.
Then we apply a MAC algorithm to W,X and use the result as the IV for a variant of counter mode
encryption to encrypt P1 and obtain X2. Note that if the message has length less than or equal
to 32 bytes, then the output of the MAC function is xor’d with P1 to obtain X2 and additional
counter blocks are not needed. Finally we create the other half of the ciphertext, X1 using CBC
mode applied to X2 and exclusive-or with X.

For stateful encryption, the only difference is in how the message numbers are handled: the
message number tag is T = LSBIL(EK̄(i)) for message number i. This follows the description in
Section 3.3.

Figures 1 - 3 describe the stateless version of CMCC, and Figure 4 gives the stateful version.

3.3.1 Notation

We use | to denote concatenation of strings, and ⊕ denotes bitwise xor. bj is the bit b repeated j
times. The notation R128 = 012010000111 denotes the bit string with 120 zero bits, followed by the
bits 1,0,0,0,0,1,1, and 1. x << n denotes the left shift operator (filling vacated bits with zero bits),
after shifting the string x by n bits to the left. |S| denotes the length of the string S. B denotes
the block length of the underlying block cipher (128 bits for AES). Ek denotes encryption using
the block cipher and input key k.

LSBj(x) and MSBj(x) denote the j least significant bytes and j most significant bytes of byte
string x respectively.
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3.3.2 Padding

We will apply the padding scheme from the AES-CMAC algorithm to our mode when CBC en-
cryption is performed. One difference is that we will sometimes need to pad by a full block length
(B/8 bytes)2 and we use the same padding scheme as when the padding is between 1 and B/8− 1
bytes.

1. Given the CBC encryption key K, and byte strings S1 and S2, where |S1| ≤ |S2|. We define
pad(S1)S2 as follows:

2. pad length is the number of bits (which is a multiple of 8) needed to bring S1 up to the length
of S2 and then bring S1 up to a multiple of the block size. More formally,

pad length = |S2| − |S1|+B − (|S2| mod B)

where mod values are taken between 1 and B.

3. We define L = EK(0B). If the most significant bit of L is zero, then define K1 = L << 1,
otherwise, we define K1 = (L << 1) ⊕ R128. If the most significant bit of K1 is zero, then
define K2 = K1 << 1. Otherwise, we define K2 = (K1 << 1)⊕R128.

If pad length = 0, then |S1| is a multiple of B; let F be the last block of S1. We define
pad(S1)S2 to be S1 with its last block replaced with F ⊕K1.

If 1 ≤ pad length ≤ B, then we append the following string to the last (possibly empty)
block F of S1 : 10pad length−1. pad(S1)S2 is S1 with the last block of S1 replaced with
F |10pad length−1 ⊕K2.

4 Proof of Security

We first give some examples illustrating attacks against CMCC. We then prove CPA security for
the stateless version of CCS (the message number tag T defined above will only be used in the
stateful scheme). We will then prove CCA2 security for CMCC (with a zero length authentication
tag); the bound is dominated by q/β. When message numbers are not reused and we include an
authentication tag with τ bits, then we obtain a bound dominated by 1/β if invalid queries result
in session termination, q/β if invalid queries do not result in session termination, q/(2τβ) if the
authentication tag is computed using a keyed MAC algorithm (CWM) but invalid queries are
allowed and 2−τ/β for CWM where invalid queries result in session termination.

We then prove MRAE security for CMCC. The main difference is that ciphertext queries that
do not return invalid can be used to create new plaintexts that satisfy a relation (see examples
below) that is less likely to be satisfied given a random injection. We also give a stronger MRAE
security bound for CWM.

To give more insight into the best attacks and security properties of CMCC, we utilize the
following examples.
Example 1: Without the encoding step (for the zero bit authentication tag), CMCC is not MRAE

2If S1 is a multiple of B and S2 is one byte longer, than we pad S1 with B/8 bytes. If both strings are the same
length which is a multiple of B then we do not add any padding bytes.
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Plaintext Z = {0}τ

divide into 2 strings 

Q

EL2 (V+1) …P1,1
EL2(V+i)

P1,2 P1,i+1

X

Pad(P1)P2
L3

A

MAC
V

CBC

pad

X1

X2

L2

P1

P2

pad Pad(X2)X CBC

L1

N{0xb6}16-|N|

M

EK

W

Ciphertext: X1, X2

|P1| = |P2| or |P1| = |P2| - 8

W|Y

Figure 1: CMCC Stateless Encryption

secure (the adversary advantage is large in the MRAE security game). To illustrate this fact, the
adversary submits a plaintext query followed by a ciphertext query using the same message number
M and value X2. Both queries are twice the block length of the underlying block cipher. The adver-
sary can compute X1⊕ X̄1 = X ⊕ X̄. The adversary then creates two new plaintexts by modifying
both P2 and P̄2 so that the two corresponding ciphertexts have equal X values. Note that the
two plaintexts have distinct P1 values (P11 and P12). The adversary submits both plaintexts along
with the message number M and receives the two ciphertexts whose X2 values xor to P11 ⊕ P12.
This relation is only satisfied with probability 1/α for a random injection and thus the adversary
advantage is large.

Example 2: Given a collision of X values for two plaintext queries in the MRAE security game
(message numbers may be reused). Then the adversary can modify the respective P2 values to
create two new plaintexts such that the corresponding ciphertexts have equal X values. Then the
adversary can win with high probability as in the preceding example. This attack works even if
the zero bit authentication tag is being used. Thus q(q − 1)/2α will be part of the security bound
for CMCC MRAE security.

We now prove that CCS is CPA secure.

Theorem 4.1 If k = 2, then the CCS encryption presented in the previous section is CPA secure
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CMCC Mode - Encryption
CBC(IV, P,Key) is CBC encryption with initialization vector IV, plaintext P, and key Key.
MAC(IV, P,Key) is MAC algorithm with output string of length l/8 bits (one block) with
initialization vector IV, plaintext P, and key Key. pad() is the padding algorithm defined in
Section 3.3. EK̄ is the block cipher with key K̄.

Encryption Inputs: plaintext P, key K = K̄, L3, L2, L1, public message number N, and
associated data A.

Given constant 0xb6 . . . 0xb6, (repeated 16 times), we take the 16 − |N | most significant
bytes and prepend them to N to obtain M, where |N | denotes the length of N in bytes.

Let Z be the bit string with τ zero bits (τ is the number of authentication bits).

Let W = EK̄(M).

Q = P |Z.

Let Q = P1|P2 where |P1| = |P2| or |P1| = |P2| − 8 (P1 may be one byte shorter than P2.)

X = CBC(W,pad(P1)P2 , L3)⊕ P2, X is truncated to the length of P2.

Y = X|A, V = MAC(W,Y,L2), (We assume the MAC has the usual security against adaptive
message existential forgery property and that the MAC is a PRF. For concreteness, one may
assume the MAC is AES CMAC [CMAC].)

P1 = P̄1,1| . . . |P̄1,i|P̄1,i+1 where i ≥ 0, P̄1,1, . . . , P̄1,i are full blocks and P̄1,i+1 is a partial (possibly
empty) block,

X2 = V ⊕ P̄1,1|EL2(V + 1)⊕ P̄1,2| . . . |EL2(V + i)⊕ P̄1,i+1.
(EL2(V + j) is truncated to the length of P̄1,j+1 for j ≥ 1, and bits 31,63 of V are zeroed for j=1.)

X1 = CBC(W,pad(X2)X , L1)⊕X, X1 is truncated to the length of X.

Ciphertext: X1, X2

Figure 2: CMCC Mode Encryption - Stateless Version
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Decryption Inputs: X1, X2, N,A
Given constant 0xb6 . . . 0xb6, (repeated 16 times), we take the 16− |N | most significant bytes and
prepend them to N to obtain M, where |N | denotes the length of N in bytes.
W = EK̄(M).

X = CBC(W,pad(X2)X1 , L1)⊕X1

Y = X|A, V = MAC(W,Y,L2)

X2 = X̄2,1| . . . |X̄2,i|X̄2,i+1 where i ≥ 0 and X̄2,1, . . . , X̄2,i are full blocks and X̄2,i+1 is a partial
empty block, P1 = V ⊕ X̄2,1|EL2(V + 1)⊕ X̄2,2| . . . |EL2(V + i)⊕ X̄2,i+1

P2 = CBC(W,pad(P1)X , L3)⊕X

Q = P1|P2, U = LSBτ/8(Q)

if (U ! = Z), return ⊥, otherwise Q = P̃ |Z and return Plaintext P̃ , N

Figure 3: CMCC Mode Decryption - Stateless Version

for (ε, q) with

ε = q(q − 1)/α+
k∑
i=1

Advprffi
(q)

given that the adversary is restricted to q queries and given α = 2m/8 where Len is the byte length
of the challenge ciphertext and m = bLen/2c. If k ≥ 2, then CCS encryption is CPA secure for
(ε, q) for the same value of ε (assuming message numbers are not reused).

Proof: We first handle the k = 2 case. We will initially assume that f1 and f2 are random
functions (in the idealized model). We will first obtain the probability bound for ensuring no
collisions in the X values for the adversary queries. For 2 ≤ i ≤ q, (i− 1)/α is an upper bound on
the probability that the X value for the ith ciphertext collides with the X value for one of the first
i− 1 ciphertexts. Thus (

1− q − 1

α

)
. . .

(
1− 1

α

)
≈ e−q(q−1)/2α

is a lower bound on the probability of no collisions in the X values for the adversary queries.
For sufficiently small values of q(q − 1)/2α, we can approximate the right hand side in the above
inequality by 1 − (q(q − 1)/2α) and use q(q − 1)/2α as the upper bound on the probability of
collisions in the X values.

Since the X values are distinct, and f2 is a random function, it follows that the f2(X) values are
uniformly distributed and independent. Thus the X2 values give no information about P1. Since
X2 is uniform random, it follows that f1(M,X2) is also uniform random and thus the X1 values
give no information about the X values, except if there is a collision between two query X2 values.
As discussed above for collisions between X values, we can use q(q− 1)/2α as the upper bound on
the probability of collisions in the X2 values. Thus the ciphertexts give no information about the
X values.
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Encryption Inputs: plaintext P, key K = K̄, L3, L2, , L1, private message number i, and
associated data A.

Z is the bit string with τ zero bits; Q = P |Z

Let Q = P1|P2 where |P1| = |P2| or |P1| = |P2| − 8 (P1 may be one byte shorter than P2.)

State initialization is per the Key Generation, Initial State, and Creating the Sequence of Secret
Message Numbers subsections above.

Let i = SeqNox[M ]. X = CBC(M,pad(P1)P2 , L3)⊕ P2, X is truncated to the length of P2.

Y = X|A
V = MAC(M,Y,L2),

P1 = P̄1,1| . . . |P̄1,i|P̄1,i+1 where i ≥ 0, P̄1,1, . . . , P̄1,i are full blocks and P̄1,i+1 is a partial (possibly
empty) block,

X2 = V ⊕ P̄1,1|EL2(V + 1)⊕ P̄1,2| . . . |EL2(V + i)⊕ P̄1,i+1.
(EL2(V + j) is truncated to the length of P̄1,j+1 for j ≥ 1, and bits 31,63 of V are zeroed for j=1.)

X1 = CBC(M,pad(X2)X , L1)⊕X, where X1 is truncated to the length of X.

Ciphertext: X1, X2, T = LSBIL(M)

Decryption Inputs: X1, X2, T, A

Let y ∈ {init, resp} where y 6= x. There exists at most one M̄ in Seq(x) such that LSBIL(M̄) = T
and |SeqNox[M̄ ]− yd| ≤ w s. If it exists, then M = M̄, otherwise return ⊥ .

If DecK(C, T ) 6=⊥, then we say M is the message number used to decrypt C, T ; SeqNox[M ] is the
corresponding private message number. In this case, if SeqNox[M ] > yd, then set yd = SeqNox[M ].
X = CBC(M,pad(X2)X1 , L1)⊕X1

Y = X|A.
V = MAC(M,Y,L2),

X2 = X̄2,1| . . . |X̄2,i|X̄2,i+1 where i ≥ 0 and X̄2,1, . . . , X̄2,i are full blocks and X̄2,i+1 is a partial
empty block, P1 = V ⊕ X̄2,1|EL2(V + 1)⊕ X̄2,2| . . . |EL2(V + i)⊕ X̄2,i+1

P2 = CBC(M,pad(P1)X , L3)⊕X

Q = P1|P2

U = LSBτ/8(Q)

if (U ! = Z), return ⊥, otherwise Q = P̃ |Z and return Plaintext P̃ , i = SeqNox(M)

Figure 4: CMCC Mode - Stateful Version
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We have

Pr[A guesses b] = Pr[A guesses b
∧

collision] + Pr[A guesses b
∧

no collision]

≤ Pr[collision] + Pr[A guesses b
∧

no collision]

≤ q(q − 1)/α+ Pr[A guesses b|no collision]

= q(q − 1)/α+ 1/2.

Now we prove the case where the fi functions are pseudorandom functions (prfs). We construct
an adversary Dg where g is either (h1, h2) or (h1, f2) and hi, 1 ≤ i ≤ 2 are random functions and
f2 is a prf. Then AdvCPA(h1,h2) ≤ q(q − 1)/α. Dg will attack f2 as a prf. Let A be an adversary that
attacks our encryption scheme. Dg runs A. D uses g to answer A’s encryption and decryption
oracle queries. When A outputs bit b, D also outputs bit b.

Advprff2
(q) ≥ Advprff2

(Dg) = |Pr[D(h1,f2)() = 1]− Pr[D(h1,h2)() = 1]|

≥ AdvCPA(h1,f2,n,q)
(A)− q(q − 1)/α.

Thus AdvCPA(h1,f2,n,q)
(A) ≤ Advprff2

(q) + q(q − 1)/α for all adversaries A. Now let g = (h1, f2) or

g = (f1, f2) where f1 and f2 are prfs and h1 is a random function. Then

Advprff1
(q) ≥ Advprff1

(Dg) = |Pr[D(f1,f2)() = 1]− Pr[D(h1,f2)() = 1]|

≥ AdvCPA(f1,f2,n,q)
(A)−Advprff2

(q)− q(q − 1)/α.

for all adversaries A. Thus Adv(f1,f2,n,q)(A) ≤ q(q − 1)/α+
∑2

i=1Adv
prf
fi

for all adversaries A.
Since the message numbers M are all distinct, we again have the same probability bound to

ensure the X values are distinct. Thus we obtain the k ≥ 2 result in the same manner as for the
above argument.

We now prove CCA2 security (no message number reuse) for CMCC. The intuition for the proof
is as follows: We cannot, except for padding based collisions in CBC(W,P1) (based on encoding
distinct P1 values to identical encoded values), create two new plaintexts that will yield identical X
values. The reason is that M is fresh for the challenge ciphertext. Given the challenge ciphertext,
we have the q/β bound for X collisions and P1 collisions involving plaintext and ciphertext queries
respectively. We also have the bound for collisions in the counter mode blocks and CBC blocks.
Other than these events, X is fresh and CBC(W,P1) is also fresh so P1 and P2 aren’t leaked to
the adversary (W is fresh for all plaintext queries, and P1 is fresh for all the ciphertext queries).

Let χ(m) =

{
1 if m > 128
0 otherwise.

Theorem 4.2 The adversary is restricted to q queries; given α = 2m/8 where Len is the byte
length of the challenge ciphertext and m = bLen/2c. B is the block length and µ is the total
number of blocks in all the query plaintexts and ciphertexts. Let β = min{α, 2B}. Let the CMCC
MAC function be CMAC [CMAC] and s is the maximum number of CMAC blocks in a query.
The stateless and stateful versions of CMCC (where the authentication string Z can be any length
including zero length) are CCA2 secure for (ε, q) with

ε = q/β + q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)
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Proof: case i: challenge ciphertext has α < 2B.
We may replace CMAC with a random function which gives rise to the term (5s2 + 1)q2/2B +
AdvprpE (sq+1) [IwataKrswa] in the security bound. Similarly, we may replace the block cipher used
in CBC encryption for computing X1 with a random function giving us the AdvprpE (q)+q(q−1)/2B+1

term. Let the challenge ciphertext be M,X1, X2. Given qe encryption queries and qd decryption
queries where qe + qd = q.

Let Bad1 be the event where the Y value for the challenge ciphertext equals the Y value for
one of the encryption query ciphertexts. (We will see that the adversary’s optimal strategy will
not have any Y collisions between the challenge ciphertext and the ciphertext query ciphertexts.)
Let Bad2 be the event where the returned P1 value for a ciphertext query equals the P1 value
for the challenge ciphertext. For the computation of V , if event Bad1 does not occur, then the
random MAC function is invoked on a fresh value and V is uniformly distributed. Thus X2 leaks
no information about P1 or X. Also, the random function for computing X1 leaks no information
about X or P2, given that Bad2 does not occur. (The optimal adversary strategy for ciphertext
queries is to submit queries of the form M, X̄1, X2 for X̄1 6= X1.)

Thus

AdvCCA2
S,n,q (A) = Pr[ExpCCA2(S, n, q,A) = 1]− 1/2

≤ Pr[ExpCCA2(S, n, q,A) = 1|Bad1

∧
Bad2]Pr[Bad1

∧
Bad2] +

Pr[ExpCCA2(S, n, q,A) = 1|Bad1]Pr[Bad1] +

Pr[ExpCCA2(S, n, q,A) = 1|Bad2]Pr[Bad2]− 1/2

≤ Pr[ExpCCA2(S, n, q,A) = 1|Bad1

∧
Bad2] + Pr[Bad1] + Pr[Bad2]− 1/2

≤ 1/2 + qe/α+ qd/α− 1/2

= q/α

where we assume no encoding (padding of P1 for decryption queries) collisions which accounts for
the q/2B term.
case ii: the challenge ciphertext has α ≥ 2B : We have potential counter mode block collisions. In
this case, |X| > B, counter block collisions are detectable, and dµ/2 + qe2/2B+2 is a bound on the
probability of these collisions.

Remark: The above theorem is stated generally, and includes the case where the MAC function
for computing V does not make use of the value W (stateless case) or M (stateful case). For our
implementation of CMCC, the MAC is computed over the string W |Y (stateless case) and thus
Bad1 in the above theorem cannot occur. The security bound is still unchanged though as discussed
in the theorem proof. The authentication tag is either not present (zero length) or is present where
invalid queries do not terminate the session.

Theorem 4.3 The adversary is restricted to q queries; given α = 2m/8 where Len is the byte
length of the challenge ciphertext and m = bLen/2c. B is the block length and µ is the total number
of blocks in all the query plaintexts and ciphertexts. Let β = min{α, 2B}. Let the CMCC MAC
function be CMAC [CMAC] and s is the maximum number of CMAC blocks in a query. The
stateless and stateful versions of CMCC where the authentication string Z has nonzero length τ is
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CCA2 secure where the security bound is approximately

1

β
+ q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)

if an invalid query results in session termination. Otherwise the security bound is

q

β
+ q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)

If we have CMCC with MAC (CWM) where the string Z is replaced with a keyed MAC com-
puted over the plaintext and associated data, then the security bound (where invalid queries do not
terminate the session) is

q

2τβ
+ q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)

For CWM where an invalid query terminates the session, the security bound is

2−τ/β + q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)

Finally, if α ≤ 2τ , then the security bound is

q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)

Proof: We first note that distinct W values (since message numbers are not reused) eliminates
the possibility that W |Y values for distinct queries are equal. Thus the adversary’s optimal strategy
is to make ciphertext queries (except for the challenge plaintexts).

Suppose that an invalid query results in session termination. Then the security bound is

1

β

1− (2−τ (β − 1)/β)q

1− (2−τ (β − 1)/β)
+ q/2B + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) + q(q − 1)/2B+1 +

χ(m)dµ/2 + qe2/2B+2 +AdvprfEK̄
(q)

where the first term represents the Adversary’s probability of success for obtaining a ciphertext
query based collision for P1 values (finite geometric series). The other terms are the same terms
from the proof of Theorem 4.2. The first term is very close to 1/β.

Thus the 2nd security bound is still the same as for Theorem 4.2. Then the security bound from
Theorem 4.2 is modified to reflect that the ciphertext queries will be invalid, with high probability,
for the third and fourth security bounds. The last security bound reflects that the ciphertext query
attack cannot produce a valid ciphertext with matching X2, M, and P1 values, given the constraint.

Remark: For the stateless scheme, if there is a field in the associated data which is distinct for
each message (e.g., sequence number field), then this can be utilized for the message number and
the advantage is that no additional bytes for the message number are sent over the network.
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Theorem 4.4 Let µ be the total number of blocks in the adversary queries, and B is the cipher
block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [CMAC]. Let s be the
maximum number of CMAC blocks in a query. CMCC encryption (stateless version) is a misuse
resistant authenticated encryption scheme with MRAE-advantage bounded by

q(q − 1)/2α+ q(q − 1)/β + 2−τ + 1/β + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +

AdvprpE (q) + q(q − 1)/2B+1 + 2−τq/α2 + χ(m)µ2/2B−1 + q2/2B+1 +AdvprfE (q)

given that the adversary is restricted to q queries, E is the underlying block cipher for CMAC (e.g.,
AES), α = 2m/8 where Len is the byte length of the minimal length query response, m = bLen/2c,
and τ is the number of bits in the authentication tag.3

Proof: There are three types of relations that distinguish CMCC from a random injection:

1. For messages where |α| is shorter than the block length, and M = M̄, we have the relation
X2 ⊕ X̄2 = P1 ⊕ P̄1 with higher probability equal to 1/α + (α − 1)/α2 for CMCC versus
1/α for the random injection. The reason is that we may have a collision of X values with
probability 1/α and if that does not occur, the resulting V values may still be equal in the
first log2(α) bits.

2. If M = M̄, X2 = X̄2, and P1 = P̄1, then X1⊕X̄1 = P2⊕P̄2. The latter occurs with probability
1/β for CMCC but it occurs with probability 1/β2 for a random injection.

3. For messages such that |X1| = block length, M = M̄, P2 = P̄2, and P1 6= P̄1, we have
the relation X2 ⊕ X̄2 = P1 ⊕ P̄1 with probability 1/2B given a random injection, but with
probability 0 for CMCC.

case i: All plaintexts have length less than 2 ∗B− τ bits: We use a games based proof to establish
the bound claim for the theorem. Game G0 is depicted in Figure 5. Game G0 gives the adversary
the CMCC encryption and decryption oracles and the adversary’s probability of success is equal to
the adversary’s MRAE-advantage against CMCC.

Game G1 is the same as game G0 except:

1. Initialize is modified: Initially we set QD(N,A) = ∅ for all N,A. QD(N,A) is a subset of the
plaintexts.

2. The line: if (U ! = Z) return ⊥; otherwise Q = P̃ |Z and return Plaintext P̃ , A,N is replaced
with:
Q̄ is a random string of length |Q| in QD(N,A)C , Ū = LSBτ/8(Q̄). If (Ū ! = Z) return ⊥,
else Q̄ = P̃ |Z, return P̃ , N.

3. If the adversary submits the encryption query P,A,N, then we set QD(N,A) = QD(N,A)∪
{P}.

Then
|Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]| ≤ 2−τ + 1/β.

3Replace 2−τ with x2−τ and 1/β with x/β if up to x− 1 invalid ciphertexts do not result in session termination.
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Game G2 is the same as game G1 except we replace the CMAC MAC function with a random
function. Now consider an adversary AO where O is either the game G1 encrypt oracle or the game
G2 encrypt oracle. When A submits P , A, N, then X1, X2 is returned and we give the distinguisher
D X2⊕P1 = F (P,A,N) where F is either CMAC or a random function. When A outputs b, D also
outputs b (b ∈ {0, 1}). Then A′s probability of success is bounded by the probability bound for any
adversary to distinguish CMAC from a random function which is (5s2 + 1)q2/2B +AdvprpE (sq + 1)
[IwataKrswa] where E is the underlying block cipher, e.g., AES, and s is the maximum number of
blocks in any query.

Thus
|Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]| ≤ (5s2 + 1)q2/2B +AdvprpE (sq + 1)

Game G3 is the same as game G2 except the block cipher used in CBC encryption for computing
X1 is replaced with a random function. Using a similar argument as above for game G2, we obtain

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ AdvprpE (q) + q(q − 1)/2B+1

Game G4 is the same as game G3 except the line:
X2 = V ⊕ P̄1,1|EL2(V + 1)⊕ P̄1,2| . . . |EL2(V + i)⊕ P̄1,i+1.
is appended with
if X2 ∈ set of used X2, bad4 = true and reselect X2 : X2 ← set of used XC

2 . We accomplish the
reselection by redefining the random function replacement for CMAC at the input values W, Y. If
X2 /∈ set of used X2, then set of used X2 = set of used X2 ∪ {X2}. Then

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ q(q − 1)/2β.

Game G5 is the same as game G4 except the line
X = CBC(W,pad(P1)P2 , L3)⊕ P2,
is replaced with
X = CBC(W,pad(P1)P2 , L3) ⊕ P2; if X ∈ set of used X, bad5 = true and reselect X : X ←
set of used XC . If X /∈ set of used X, set of used X = set of used X ∪ {X}. Note there is no
leakage of information about the X values since the X2 values are distinct and the computation of
X1 includes adding X to the random function output that has X2 as an input. Then

|Pr[AG4 ⇒ 1]− Pr[AG5 ⇒ 1]| ≤ q(q − 1)/2α.

Game G6 is depicted in Figure 6. Then game G6 and game G5 are indistinguishable except that
collisions are possible in the strings S2 where C = S1|S2 but are not possible for the X2 values;
also, it is possible in game G5 that a ciphertext query that is not invalid will return a plaintext and
another encrypt query with a different plaintext returns the same ciphertext. This last sequence is
not possible in game G6. Thus

|Pr[AG5 ⇒ 1]− Pr[AG6 ⇒ 1]| ≤ q(q − 1)/2β + 2−τq/α2.

Thus the bound claimed in the theorem statement holds.
case ii: At least some plaintexts have length greater than or equal to 2∗B−τ bits: Here we modify
the bound by adding in the χ(m)µ2/2B−1 and q2/2B+1 terms for counter mode block collisions and
padding collisions for plaintexts of different lengths, respectively.
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Initialize: Select the CMCC key, using the uniform random distribution. Let Z be the bit string
with τ zero bits. bad4 = bad5 = false. Let set of used X = ∅. Let set of used X2 = ∅.
Encrypt(P , A, N): See Figure 2 for definition.
Decrypt(C, A, N): See Figure 3 for definition.
Output: Return the adversary’s output.

Figure 5: CMCC MRAE proof Game G0

Initialize: Select a random injection f ∈ InjN ,Ae (P, C) . Let Z be the bit string with τ zero bits.
e(N,A, P ) = τ for all N , A, and P.
Encrypt(P , A, N): Return f(N,A, P ).
Decrypt(C, A, N): f−1(N,A,C) = P if f(N,A, P ) = C and return ⊥ if no such triple (N,A, P )
exists.
Output: Return the adversary’s output.

Figure 6: CMCC MRAE proof Game G6

Remark: (i) We can replace the 2−τ term in the above theorem with 2−(τ+γ) where γ quantifies
the number of higher level protocol check bits. (ii) We can eliminate the 2−τ term if |P2| ≤ τ.
(iii) We can replace the 2−τ term in the above theorem with 2−2τ if we use CMCC with MAC
(CWM). In this case, Z holds a MAC computed over the plaintext and associated data A (e.g.,
using CMAC) instead of a zero bit string. (iv) For AE-advantage, remove the first 3 terms from
the above theorem bound to obtain the bound

1/β + (5s2 + 1)q2/2B +AdvprpE (sq + 1) +AdvprpE (q) +

q(q − 1)/2B+1 + 2−τq/α2 + χ(m)µ2/2B−1 + q2/2B+1 +AdvprfE (q)

Table 2 gives the Theorem 4.3 bounds for varying message lengths and varying numbers of
adversary queries to the oracles.

5 Performance Analysis for Wireless Sensor Networks

We discuss and compare performance to other schemes (e.g. CCM [WhitHousFerg] and others)
for short messages, including energy utilization. Energy utilization is important for low power
constrained devices and we use the measurements from [WanGurEblGupShtz] to make an estimate
for energy consumption on wireless sensor platforms. We compare CCM to CMCC for energy
utilization.

In [WanGurEblGupShtz], the authors measure energy utilization for a variety of cryptographic
algorithms due to CPU utilization and networking for the Berkeley/Crossbow motes platform,
specifically on the Mica2dot sensor platform. Table 3 gives the results from [WanGurEblGupShtz]
with respect to AES encryption, message transmission, and message receipt.

A key point, which is not specific to the Mica2dot platform, is that energy utilization for
transmitting or receiving a byte from the wireless network is 10-100 times greater than the energy
needed per byte of AES encryption processing, for wireless sensor nodes.

We estimate energy utilization for CCM and CMCC based on the number of AES encryption
operations (pseudorandom function evaluations) and sizes of messages. The other CPU operations
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plaintext β q µ bound with bound without CWM bound CWM bound
length invalid invalid queries with invalid without invalid

queries queries queries

2 bytes 224 220 224 2−107 2−107 2−107 2−107

4 bytes 232 220 224 2−107 2−107 2−107 2−107

6 bytes 240 220 224 2−20 2−40 2−52 2−72

8 bytes 248 220 224 2−28 2−48 2−60 2−80

8 bytes 248 224 230 2−24 2−48 2−56 2−80

10 bytes 256 224 230 2−32 2−56 2−64 2−88

12 bytes 264 224 230 2−40 2−64 2−72 2−96

16 bytes 280 224 230 2−56 2−80 2−88 2−103

20 bytes 296 224 230 2−72 2−96 2−103 2−103

Table 2: Theorem 4.3 bounds for the adversary advantage given q queries for 2, 4, 6, 8, 10, 12,
16, and 20 byte messages, where τ = 32. Security increases as message length increases (or if the
length is less than or equal to τ.) The security bound is approximately q/β when invalid queries
are allowed, 1/β when an invalid query terminates the session, q2−τ/β when invalid queries are
allowed for CMCC with MAC (CWM), and 2−τ/β for the smaller lengths when an invalid query
terminates the session for CWM.

Operation Energy Utilization

Energy to transmit one byte 59.2 µJ

Energy to receive one byte 28.6 µJ

Energy per byte of AES encryption 1.6 µJ
including key setup, averaged
over messages of 64-1024 bytes

Table 3: Energy Utilization for Operations on the Mica2Dots Platform from [WanGurEblGupShtz]

such as exclusive-or are minor usages and not counting them will not affect our results significantly.
Table 4 gives the results.

Let R = dL/16e, where L is the message length in bytes. For CCM, the number of AES block
encryptions is equal to 2R+ 2. For CMCC, the number of prf invocations (AES block encryptions)
is 4W + 1 = 3W + max{W − 1, 0} + 2 where W = dL/32e. The number drops by 1 if we assume
precomputation of the message numbers which is likely in the stateful version and possible in the
stateless version as well. CCM eliminates R prf invocations with precomputation, so CMCC has an
advantage for messages with 32 bytes or less (for number of prf invocations given precomputation),
but CCM has an advantage for longer messages.

Table 4 assumes (1) that CCM uses the minimal recommended length MAC tag of 8 bytes which
increases the length of the message by 8 bytes while CMCC includes the 2 byte message number
tag T as described above along with a 2 byte authentication string for a total of 4 bytes (2) that
both CCM and CMCC are applied to the full length message which will cause our measurements
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Message Length No. CCM prf calls No. CMCC prf calls CCM energy use CMCC energy use

8 bytes 4 5 1819.2 838.4

16 bytes 4 5 2292.8 1312

20 bytes 6 5 2580.8 1548.8

24 bytes 6 5 2817.6 1785.6

32 bytes 6 5 3291.2 2259.2

48 bytes 8 9 4289.6 3308.8

64 bytes 10 9 5288 4256

80 bytes 12 13 6286.4 5305.6

128 bytes 18 17 9281.6 8249.6

Table 4: Energy utilization (µJ) for sending network messages with CCM and CMCC protection,
Mica2dot platform.

to favor CCM slightly,4 and (3) Messages are less than 216 bytes so CCM sends a 13 byte nonce
with each message.

The amount of energy used for CCM is

(32R+ 16)(1.6µJ) + (L59.2µJ) + 16(1.6µJ) + 21(59.2µJ) = 1294.4 + 59.2L+ 51.2R(µJ)

and the amount of energy for CMCC is

4dL/32e16(1.6µJ) + (L+ 4)(59.2µJ) + 25.6µJ = 102.4dL/32e+ 59.2L+ 262.4µJ

Thus we see that energy utilization is proportional to message length. For faster schemes (e.g.,
OCB, etc.), the more efficient computations will result in an even closer correlation between message
length (including the MAC bytes) and energy utilization. The reason is that the main energy use is
in the networking, and reducing the computational load will result in a higher percentage of energy
use by networking.

We haven’t included length fields in either CCM or CMCC as part of the comparison. Including
such fields would give results very close to the ones above.

5.1 Implementation

We have completed an initial implementation as part of our submission to the Caesar competition
for authenticated encryption. Details can be accessed at http://groups.google.com/group/crypto-
competitions.

4CMCC can be applied to the application payload or additional payloads as well (e.g., IPsec). For example, the
transport layer checksum and port numbers both act as tag fields for CMCC. In other words, a random change to
these fields is likely to cause a failure in transport layer processing leading to message rejection. If link layer encryp-
tion/integrity protection is employed, then an integrity failure can be detected prior to sending a large application
layer message through multiple wireless network hops. In this case, using CMCC can result in significant energy
savings regardless of the size of the application layer messages.
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6 Conclusions

We have presented CCS which is a new family of tweakable enciphering schemes (TES). The main
focus for this work is minimizing ciphertext expansion, especially for short messages including plain-
text lengths less than the underlying block cipher length (e.g., 16 bytes). CMCC is an instantiation
of the scheme providing provably secure misuse resistant authenticated encryption, and it leverages
existing modes such as CBC, Counter, and CMAC. Our work can be viewed as extending the line
of work starting with [HR03] to plaintext sizes smaller than the block cipher block length which is
a problem posed in [Hal04]. Depending on the environment, we obtain CCA2 security with only
2-3 bytes of expansion (for the message number). Since changes to the ciphertext randomize the
plaintext, we can leverage the protocol checks in higher layer protocols as additional authentication
bits allowing us to reduce the length of the authentication tag.

We have given a comparison of energy utilization in wireless sensor networks between CMCC
and CCM and showed that energy use is proportional to packet length. Thus CMCC can achieve
significant energy savings when applied to protocols that send short messages due to its small
ciphertext expansion. Our contributions include both stateless and stateful versions which enable
minimal sized message numbers using different network related trade-offs.
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