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Abstract

We revisit the problem of basing pseudorandom generators on regular one-way functions, and
present the following constructions:

• For any known-regular one-way function (on n-bit inputs) that is known to be ε-hard to invert,
we give a neat (and tighter) proof for the folklore construction of pseudorandom generator of
seed length Θ(n) by making a single call to the underlying one-way function.

• For any unknown-regular one-way function with known ε-hardness, we give a new construction
with seed length Θ(n) and O(n/ log (1/ε)) calls. Here the number of calls is also optimal by
matching the lower bounds of Holenstein and Sinha [FOCS 2012].

Both constructions require the knowledge about ε, but the dependency can be removed while keeping
nearly the same parameters. In the latter case, we get a construction of pseudo-random generator
from any unknown-regular one-way function using seed length Õ(n) and Õ(n/ log n) calls, where Õ
omits a factor that can be made arbitrarily close to constant (e.g. log log log n or even less). This
improves the randomized iterate approach by Haitner, Harnik and Reingold [CRYPTO 2006] which
requires seed length O(n·logn) and O(n/ log n) calls.
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1 Introduction

The seminal work of H̊astad, Impagliazzo, Levin and Luby (HILL) [12] that one-way functions (OWFs)
imply pseudorandom generators (PRGs) constitutes one of the centerpieces of modern cryptography.
Technical tools and concepts (e.g. pseudo-entropy, leftover hash lemma) developed and introduced in
[12] were found useful in many other contexts (such as leakage-resilient cryptography). Nevertheless,
a major drawback of [12] is that the construction is quite involved and too inefficient to be of any
practical use, namely, to obtain a PRG with comparable security to the underlying OWF on security
parameter n, one needs a seed of length O(n8)1. Research efforts (see [13, 11, 21], just to name a few)
have been followed up towards simplifying and improving the constructions, and the current state-of-
the-art construction [21] requires seed length O(n3). Let us mention all aforementioned approaches are
characterized by a parallel construction, namely, they run sufficiently many independent copies of the
underlying OWFs (rather than running a single trail and feeding its output back to the input iteratively)
and there seems an inherent lower bound on the number of copies needed. This is recently formalized
by Holenstein and Sinha [14], in particular, they showed that any black-box construction of a PRG from
an arbitrary OWF f requires Ω(n/ log n) calls to f in general.2

PRGs from Special OWFs. Another line of research focuses on OWFs with special structures that
give rise to more efficient PRGs. Blum, Micali [2] and Yao [23] independently introduced the notion
of PRGs, and observed that PRGs can be efficiently constructed from one-way permutations (OWPs).
That is, given a OWP f on input x and its hardcore function hc (e.g. by Goldreich and Levin [8]), a
single invocation of f already implies a PRG g : x 7→ (f(x), hc(x)) with a stretch3 of Ω(log n) bits and
it extends to arbitrary stretch by repeated iterations (seen by a hybrid argument):

x 7→ ( hc(x), hc(f
1(x)), . . . , hc(f

`(x)), . . .)

where f i(x)
def
=f(f i−1(x)) and f1(x)

def
=f(x). The above PRG, often referred to as the BMY generator,

enjoys many advantages such as simplicity, optimal seed length, and minimal number of calls. Levin [17]
observed that f is not necessarily a OWP, but it suffices to be one-way on its own iterate. Unfortunately,
an arbitrary OWF doesn’t have this property. Goldreich, Krawczyk, and Luby [7] assumed known-
regular4 OWFs and gave a construction of seed length O(n3) by iterating the underlying OWFs and
applying k-wise independent hashing in between every two iterations. Later Goldreich showed a more
efficient (and nearly optimal) construction from known-regular OWFs in his textbook [5], where in
the concrete security setting the construction does only a single call to the underlying OWF (or ω(1)
calls in general). The construction was also implicit in many HILL-style constructions (e.g. [13, 11]).
Haitner, Harnik and Reingold [10] refined the technique used in [7] (which they called the randomized
iterate) and adapted the construction to unknown regular OWFs with reduced seed length O(n · log n).
Informally, the randomized iterate follows the route of [7] and applies a random pairwise independent
hash function hi in between every two applications of f , i.e.

f1(x)
def
=f(x); for i≥2 let f i(x;h1, . . . , hi−1)

def
=f(hi−1(f

i−1(x;h1, · · · , hi−2)))

The key observation is “the last iterate is hard-to-invert”[9], more precisely, function f , when applied to
hi−1(f

i−1;h1, · · · , hi−2), is hard-to-invert even if h1, . . ., hi−1 are made public. The generator follows by
running the iterate O(n/ log n) times, and outputting Ω(log n) hardcore bits per iteration, which requires

1More precisely, the main construction of [12] requires seed length O(n10), but [12] also sketches another construction
of seed length O(n8), which was formalized and proven in [13].

2The lower bound of [14] also holds in the concrete security setting, namely, Ω(n/ log (1/ε)) calls from any ε-hard OWF.
3The stretch of a PRG refers to the difference between output and input lengths (see Definition 2.4).
4A function f(x) is regular if the every image has the same number (say α) of preimages, and it is known- (resp.,

unknown-) regular if α is efficiently computable (resp., inefficient to approximate) from the security parameter.
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seed length O(n2/ log n) and can be further pushed to O(n · log n) using derandomization techniques
(e.g., Nisan’s bounded-space generator [18]). The randomized iterate matches the lower bound on the
number of OWF calls5, but it remains open if any efficient construction can achieve linear seed length
and O(n/ log n) OWF calls simultaneously.

Our Contributions. We contribute an alternative proof for the folklore construction of PRGs from
known-regular OWFs via the notion of unpredictability pseudo-entropy, which significantly simplifies
and tightens the proofs in [5]. We also give a new construction from any unknown-regular one-way
function using seed length Õ(n) and making Õ(n/ log n) calls. Here both parameters are optimal up to
an arbitrarily close to constant factor, and thus improves the results of the randomized iterate [9].

PRGs from Known-Regular OWFs. We start by assuming a (t,ε)-OWF f (see Definition 2.2)
with known regularity 2k (i.e., every image has 2k preimages under f). The first key observation is
that for uniform X (over {0, 1}n) we have X given f(X) has n + log (1/ε) bits of pseudo-entropy
(defined by the game below and formally in Definition 2.5). That is, no adversary A of running time
t can win the following game against the challenger C with probability greater than (2−k · ε). The

Challenger C

x← Un; y := f(x)

A wins iff x′ = x

Adversary A

x′ := A(y)

y

x′

Figure 1: The interactive game between A and C that defines unpredictability pseudo-entropy, where
x← Un denotes sampling a random x ∈ {0, 1}n.

rationale is that conditioned on any f(X) = y random variable X is uniformly distributed on set

f−1(y)
def
= {x : f(x) = y} of size 2k, and thus even if any deterministic (or probabilistic) A recovers

a x′∈f−1(y), the probability that X = x′ is only 2−k. Therefore, we obtain the following folklore
construction (explicit in [5] and implicit in many HILL-style generators) using three extractions along
with a three-line proof. In addition to simplicity, our technique can also be used to refine and tighten
the proofs given in [5] (see Section 3.2 for details).

1. f(X) has min-entropy n− k, and thus we can extract nearly n− k statistically random bits.

2. X has min-entropy k given any y = f(X), so we can extract another k statistically random bits.

3. The second extraction only reduces the unpredictability pseudo-entropy of X given f(X) by no
more than k (i.e., log(1/ε) bits remaining by the entropy chain rule), and hence we use Goldreich-
Levin hardcore functions [8] to extract O(log (1/ε)) bits.

The above construction is optimal (in seed length and the number of OWF calls), but requires the
knowledge about parameter ε, more precisely, we need ε to decide entropy loss d such that the first
extraction outputs n− k− d bits with statistical error bounded by 2−d/2 (by the Leftover Hash Lemma
[12]) and let the third extraction output more than d bits to achieve a positive stretch. It is unknown
how to remove the dependency on ε for free (see also the discussions in [5]). Fortunately, there is a
known repetition trick to solve the problem using seed length Õ(n) and Õ(1) OWF calls, where notation
Õ omits a factor of q ∈ ω(1) (i.e. q can be any factor arbitrarily close to constant such as log log log n).

PRGs from Unknown-Regular OWFs. We also give a new construction oblivious of the regularity
of f . The key idea is to transform any unknown regular OWF into another known regular OWF (over a

5As explicitly stated in [14], the lower bound of Ω(n/ logn) calls also applies to unknown regular OWFs.
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special domain). That is, for a (length-preserving) unknown-regular (t, ε)-OWF f : {0, 1}n → Y where

Y ⊆ {0, 1}n denotes the range of f , define function f̄ : Y × {0, 1}n → Y as f̄(y, r)
def
= f(y ⊕ r) where

“⊕” denotes bitwise XOR. It is not hard to see that f̄ has regularity 2n (regardless of the regularity of
f) and it preserves the hardness of f . Similar to that observed in the 1st construction, f̄(Y,R) hides
n+log (1/ε) bits of pseudo-entropy about (Y,R), and thus we can extract n+O(log (1/ε)) pseudorandom
bits, namely, we get a PRG ḡ that maps random elements over Y × {0, 1}n to pseudorandom ones over
Y × {0, 1}n+O(log(1/ε)). Nevertheless, to use ḡ we need to efficiently sample from UY = f(Un) (i.e.
uniform distribution over Y), which costs n random bits despite that the entropy of UY may be far
less than n. Therefore, the construction invests n bits (to sample a random y ∈ Y) at initialization,
runs ḡ in iterations, and outputs O(log (1/ε)) bits per iteration. The stretch becomes positive after
O(n/ log (1/ε)) iterations, which matches the lower bounds of [14]. The seed length remains of order
Θ(n) by reusing the coins for universal hash and G-L functions at every iteration, thanks to the hybrid
argument. Similarly, in case that ε is unknown, we pay a penalty factor Õ(1) for using the repetition
trick. That is, we construct a PRG from any unknown-regular OWF using seed length Õ(n) and
Õ(n/ log n) OWF calls.

2 Preliminaries

Notations and definitions. We use capital letters (e.g. X, Y , A) for random variables, standard
letters (e.g. x, y, a) for values, and calligraphic letters (e.g. X , Y, S) for sets. |S| denotes the cardinality

of set S. For function f , we let f(X )
def
= {f(x) : x ∈ X} be the set of images that are mapped from

X under f , and denote by f−1(y) the set of y’s preimages under f , i.e. f−1(y)
def
= {x : f(x) = y}.

We say that distribution X is flat if it is uniformly distributed over some set X . We use s ← S to
denote sampling an element s according to distribution S, and let s← S denote sampling s uniformly
from set S, and y := f(x) denote value assignment. We use Un to denote the flat distribution over
{0, 1}n independent of the rest random variables in consideration, and let f(Un) be the distribution
induced by applying function f to Un. We use CP(X) to denote the collision probability of X, i.e.,

CP(X)
def
=
∑

x Pr[X = x]2, and collision entropy H2(X)
def
= − logCP(X) ≥ H∞(X). We also define

average (aka conditional) collision entropy and average min-entropy of a random variable X conditioned
on another random variable Z by

H2(X|Z)
def
= − log

(
Ez←Z

[ ∑
x Pr[X = x|Z = z]2

] )
H∞(X|Z)

def
= − log ( Ez←Z [ maxx Pr[X = x|Z = z] ] )

An entropy source refers to a random variable that has some non-trivial amount of entropy. A function
µ : N→ [0, 1] is negligible if for every polynomial poly we have µ(n) < 1/poly(n) holds for all sufficiently

large n’s. We define the computational distance between distribution ensembles X
def
= {Xn}n∈N and

Y
def
= {Yn}n∈N as follows: we say that X and Y are (t(n), ε(n))-close, denoted by CDt(n)(X,Y )≤ ε(n),

if for every probabilistic distinguisher D of running time up to t(n) it holds that

| Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1] | ≤ ε(n) .

The statistical distance between X and Y , denoted by SD(X,Y ), is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = CD∞(X,Y )

We use SD(X,Y |Z) (resp. CDt(X,Y |Z)) as shorthand for SD((X,Z), (Y,Z)) (resp. CDt((X,Z), (Y,Z))).

3



Simplifying Assumptions and Notations. To simplify the presentation, we make the following
assumptions without loss of generality. It is folklore that one-way functions can be assumed to be
length-preserving (see [10] for formal proofs). Throughout, most parameters are functions of the security
parameter n (e.g., t(n), ε(n), α(n)) and we often omit n when clear from the context (e.g., t, ε, α).
Parameters (e.g. ε, α) are said to be known if they are known to be polynomial-time computable from
n. By notation f : {0, 1}n → {0, 1}l we refer to the ensemble of functions {fn : {0, 1}n → {0, 1}l(n)}n∈N.
As slight abuse of notion, poly might be referring to the set of all polynomials or a certain polynomial,
and h might be either a function or its description, which will be clear from the context.

Definition 2.1 (universal hash functions [3]) A family of functions H def
= {h : {0, 1}n → {0, 1}l}

is called a universal hash family, if for any x1 6= x2 ∈ {0, 1}n we have Prh←H[h(x1) = h(x2)] ≤ 2−l.

Definition 2.2 (one-way functions) A function f : {0, 1}n → {0, 1}l(n) is (t(n),ε(n))-one-way if f
is polynomial-time computable and for any probabilistic algorithm A of running time t(n)

Pr
y←f(Un)

[A(1n, y)∈f−1(y)] ≤ ε(n).

For ε(n) = 1/t(n), we simply say that f is ε(n)-hard. f is a one-way function if it is ε(n)-hard for
some negligible function ε(n).

Definition 2.3 (regular functions) A function f is α-regular if there exists an integer function α,
called the regularity function, such that for every n ∈ N and x ∈ {0, 1}n we have

|f−1(f(x))| = α(n).

In particular, f is known-regular if α is polynomial-time computable, or is unknown-regular otherwise.
Further, f is a (known-/unknown-) regular OWF if f is a OWF with (known/unknown) regularity.

Definition 2.4 (pseudorandom generators[2, 23]) A function g : {0, 1}n → {0, 1}l(n) (l(n) > n)
is a (t(n),ε(n))-secure PRG if g is polynomial-time computable and

CDt(n)( g(1n, Un) , Ul(n) ) ≤ ε(n).

where (l(n) − n) is the stretch of g, and we often omit 1n (security parameter in unary) from g’s
parameter list. We say that g is a pseudorandom generator if both 1/t(n) and ε(n) are negligible.

Definition 2.5 (unpredictability pseudo-entropy[1, 15]) Let (X,Z)
def
= {(Xn, Zn)}n∈N be a joint

distribution ensemble, we say that X has k(n) bits of pseudo-entropy conditioned on Z with respect to all
t(n)-time adversaries, denoted by Ht(n)(X|Z) ≥ k(n), if for any n ∈ N and any probabilistic adversary
A of running time t(n)

Pr
(x,z)←(Xn,Zn)

[A(1n, z) = x] ≤ 2−k(n)

Alternatively, we say that X is 2−k(n)-hard to predict given Z for all t(n)-time adversaries.

Unpredictability pseudo-entropy can be seen as a relaxed form of min-entropy by weakening adver-
sary’s running time from unbounded to parameter t(n), which (presumably) characterizes the class of
practical adversaries we care about. Note that the notion seems only meaningful in its conditional form
as otherwise (when Z is empty) non-uniform attackers can simply hardwire the best guess about X,
and thus Ht(n) collapses to H∞. Let us mention the unpredictability pseudo-entropy is different from
(and in fact, strictly weaker than [1, 15]) the HILL pseudo-entropy [12], which is another relaxed notion
of min-entropy by considering its computationally indistinguishable analogues.
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3 Pseudorandom Generators from Regular One-Way Functions

3.1 Technical Tools

The first technical tool we use is the leftover hash lemma. Informally, it states that when applying a
random universal hash function to min-entropy (or Rényi entropy) source, one obtain random strings
that are statistical close to uniform even conditioned on the description of hash function. The objects
were later formalized as randomness extractors [19]. Universal hash functions are also good condensers
(whose outputs have nearly maximal entropy) for a wider range of parameters than extractors.

Lemma 3.1 (Leftover Hash Lemma [12]) For any integers d<k≤n, there exists an (efficiently com-

putable) universal hash function family H def
= {h : {0, 1}n → {0, 1}k−d} such that for any joint distri-

bution (X,Z) where X ∈ {0, 1}n and H2(X|Z) ≥ k, we have

SD(H(X), Uk−d | H,Z) ≤ 2−
d
2

where H is uniformly distributed over the members of H, the description size of H is called seed length,
and d is called entropy loss, i.e., the difference between the entropy of X (given Z) and the number of
bits that were extracted from X.

Lemma 3.2 (Condensers from hash functions) Let H def
= {h : {0, 1}n → {0, 1}k} be any univer-

sal hash function family and let (X,Z) be any random variable with X ∈ {0, 1}n and H2(X|Z) ≥ k.
Then, for H uniform distributed over H we have H2(H(X) | H,Z) ≥ k − 1.

Proof. Let X1 and X2 be i.i.d. to X | Z = z (i.e. X conditioned on Z = z).

2−H2(H(X)|H,Z) = Eh←H,z←Z [ Pr[H(X1) = H(X2)|H = h, Z = z] ]

≤ Ez←Z [ Pr[X1 = X2|Z = z] ] + Ez←Z [ Pr[ H(X1) = H(X2) | X1 6=X2, Z = z] ]

≤ 2−k + 2−k = 2−(k−1) .

�

We refer to [20, 4, 16] for extremely efficient constructions of universal hash functions with short
description (of length Θ(n)), such as multiplications between matrices and vectors, or over finite fields.

Reconstructive extractors. We will also need objects that extract pseudorandomness from unpre-
dictability pseudo-entropy sources. Unfortunately, the leftover hash lemma (and randomness extractors
[19] in general) does not serve the purpose. Goldreich and Levin [8] showed that the inner product
function is a reconstructive bit-extractor for unpredictability pseudo-entropy sources. Further, there
are two ways to extend the inner product to multiple-bit extractors: (1) multiplication with a random
matrix of length O(n2) and extracts almost all entropy (by a hybrid argument); (2) multiplication with
a random Toeplitz matrix of length Θ(n) and extracts O(log (1/ε)) bits (due to Vazirani’s XOR lemma
[22, 8]). We will use the latter multi-bit variant (as stated below) to keep the seed length linear. Inter-
estingly, the Toeplitz matrix based functions also constitute pairwise independent and universal hash
function families.

Theorem 3.1 (Goldreich-Levin [8]) For distribution ensemble (X,Y ) ∈ {0, 1}n × {0, 1}∗, and for

any integer m ≤ n, there exists6 a function family HC
def
= {hc : {0, 1}n → {0, 1}m} of description size

Θ(n), such that

6For example (see [8]), we can use an m×n Toeplitz matrix am,n to describe the family of functions, i.e., HC
def
=

{hc(x)
def
=am,n · x, where x ∈ {0, 1}n, am,n ∈ {0, 1}m+n−1}.
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• If Y = f(X) for any (t,ε)-OWF f and X uniform over {0, 1}n, then we have

CDt′( HC(X) , Um | Y,HC) ∈ O(2m · ε) . (1)

• If X is ε-hard to predict given Y for all t-time adversaries, i.e. Ht(X|Y )≥ log(1/ε), then we have

CDt′( HC(X) , Um | Y,HC) ∈ O(2m · (n · ε)
1
3 ) . (2)

where t′ = t · (ε/n)O(1) and function HC is uniformly distributed over the members of HC .

Remark 3.1 To see the difference between the different versions above, consider the interactive game
in Figure 1, where by unpredictability A’s prediction is successful only if x = x′, but in contrast A inverts
OWF f as long as he finds any x′ satisfying f(x′) = y. Recall that the proof of the theorem can be seen
as an efficient local list decoding procedure for the Hadamard code, where in the former case the decoder
returns a random member from the candidate list while in the latter case it goes through all candidates
and outputs the one x′ satisfying f(x′) = y (if exists). We refer to Goldreich’s exposition [6] for further
details.

We recall two folklore facts below, namely the chain rule of unpredictability (pseudo-)entropy and
the replacement inequality. Intuitively, any leakage Y ∈ {0, 1}l decreases the unpredictability about
secret X by a factor of no more than 2l, which can be seen by a simple reduction (e.g., by replacing
Y with a random string). The replacement inequality states that any information that is (efficiently)
computable from the knowledge of the adversary does not help further reduce the unpredictability
(pseudo-)entropy of the secret in consideration.

Fact 3.1 (chain rule of entropies) For any joint distribution (X,Y ,Z) where Y ∈ {0, 1}l, we have

H∞(X|Y,Z) ≥ H∞(X|Z)− l ,

Ht′(X|Y,Z) ≥ Ht(X|Z)− l ,

where t′ ≈ t.

Fact 3.2 (replacement inequalities) For any joint distribution (X,Y ,Z) and any th-time computable
function h : Y → {0, 1}∗, we have

H∞(X|h(Y ), h, Z) ≥ H∞(X|Y,Z) ,

Ht−th(X|h(Y ), h, Z) ≥ Ht(X|Y,Z) .

3.2 PRGs from OWFs with Known Regularity and Hardness

We state our motivating observation as the lemma below.

Lemma 3.3 Let f : X → Y be a 2k-regular (t,ε)-OWF. Then, we have

Ht(X | f(X)) ≥ k + log (1/ε) , (3)

where X is uniform over X .

6



Proof. The (t,ε)-one-wayness of f guarantees that for any deterministic adversary A of running time t

Pr
x←X ,y:=f(x)

[ A(y)∈f−1(y) ] ≤ ε

which in turn implies (as conditioned on f(X) = y, X is uniform over f−1(y) of size 2k):

Pr
x←X ,y:=f(x)

[ A(y) = x ] ≤ 2−k · ε

which is essentially Equation (3) by taking a negative logarithm. Note that the above argument extends
to probabilistic t-time A as well, by considering A(y; r) on every fixing of his random coin r. �

The Construction for Known α and ε. For joint distribution (X, f(X)), the proposed PRG uses
universal hash functions h1, h2 to extract nearly (up to entropy loss) n− k and k bits from f(X) and
X respectively, and employs G-L function hc to extract Θ(log(1/εn)) bits of pseudo-entropy from X.
For convenience, we assume without loss of generality that the regularity is a power of two, i.e., α = 2k.

Theorem 3.2 (Preliminary Construction based on Known Regularity and Hardness) Let f :
{0, 1}n → {0, 1}n be a known 2k-regular length-preserving (t,ε)-OWF, let d, s be any integer functions

satisfying 9d+ 6s = 2 log(1/εn), let H1
def
= {h1 : {0, 1}n → {0, 1}n−k−d}, H2

def
= {h2 : {0, 1}n → {0, 1}k}

be universal hash function families, let HC
def
= {hc : {0, 1}n → {0, 1}d+s} be a Goldreich-Levin function

family, and let g be

g : {0, 1}n ×H1 ×H2 ×HC → {0, 1}n−k−d × {0, 1}k × {0, 1}d+s ×H1 ×H2 ×HC

(x, h1, h2, hc) 7→ (h1(f(x)), h2(x), hc(x), h1, h2, hc)

where x ∈ {0, 1}n, h1 ∈ H2, h2 ∈ H2, hc ∈ HC . Then, g is a ( t · (ε/n)O(1), O((23s · ε · n)
1
9 ) )-secure

PRG with stretch s.
We deal with the situation where n − k − d ≤ 0 by letting h1 output a dummy string. Another special
case k = 0 (i.e., f is a OWP) is handled by letting h1 and h2 output the identity and dummy strings
respectively.

Proof. The entropy conditions for the (pseudo)-randomness extractions are guaranteed by Lemma 3.4.
We have by Equation (4), Equation (5) and the leftover hash lemma that the first n− d bits extracted
are statistically random, namely,

SD( (H1(f(X)), H2(X)), Un−d | H1, H2)

≤ SD( H1(f(X)), Un−k−d | H1) + SD( H2(X), Uk | H1(f(X)), H1, H2)

≤ 2·2−
d
2 = 2·2

s
3
+ 1

9
log(εn) = O((23s · ε · n)

1
9 )

Next, as stated in Equation (6), conditioned on the prefix of n − d random bits (and the seeds used),
X remains (t− nO(1), ε)-hard to predict, and thus by Goldreich-Levin (Theorem 3.1)

CDt′( HC(X) , Ud+s | H1(f(X)), H2(X), H1, H2, HC) = O(2d+s · (n·ε)
1
3 ) = O(2−

d
2 ) = O((23s · ε · n)

1
9 )

holds for t′ = t · (ε/n)O(1). The conclusion follows by a triangle inequality. �

Lemma 3.4 (Entropy conditions) Let f , H1, H2 be defined as in Theorem 3.2, we have

H∞(f(X)) = n− k , (4)

H∞(X | h1(f(X)), h1) ≥ H∞(X)− (n− k − d) = k + d , (5)

Ht−nO(1)(X | h1(f(X)), h2(X), h1, h2) ≥ Ht(X | f(X), h2(X), h2) ≥ log (1/ε) . (6)

hold for every h1 ∈ H1, h2 ∈ H2, and X uniform over {0, 1}n.
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Proof. Equation (4) follows from the regularity of f , i.e., every y = f(x) has 2k preimages, and thus
f(X) is uniformly distributed over a set of size 2n−k. Equation (5) is due to the chain rule of min-
entropy (see Fact 3.1). The first inequality of Equation (6) is the replacement inequality (see Fact 3.2),
and the second one is obtained by applying the chain rule of unpredictability entropy to Equation (3),
i.e., Ht(X | f(X), h2(X), h2) ≥ Ht(X|f(X))− k = log (1/ε). �

Therefore, we already complete the proof for the PRG with linear seed length by doing a single
call to any 2k-regular ε-hard OWF provided that ε and k are known. We provide an alternative (and
simpler) proof to that given by Goldreich [5] for essentially the same construction via unpredictability
pseudo-entropy.

On Tightening Security Bounds. Concretely, if the underlying OWF is n− logn- (resp., 2−
n
3 -)

hard, then the outputs of the resulting PRG will be nearly n−
logn
9 - (resp., 2−

n
27 -) close to uniform (with

respect to reasonably weakened adversaries than counterparts of the OWF). The main lossy step in

the reduction is that we considered function f ′(x, h2)
def
= (f(x), h2(x), h2), where by Equation (6) X is

(ε, t)-hard to predict given f ′(X) and thus we directly applied Equation (2) to get the inferior bounds.
However, a closer look at f ′ suggests that it is almost 1-to-1, which implies that f ′ is a OWF (stated as
in Lemma 3.5), which allows us to use the tight version of Goldreich-Levin Theorem (see Equation (1)).
This is actually the approach taken by [5], where however f ′ was only shown to be roughly ε1/5-hard (by
checking the proof of [5, Prop 3.5.9]). We give a refined analysis below to get the tighter

√
ε-hardness

of f ′, and this eventually leads to the improved construction as in Theorem 3.3.

Lemma 3.5 Let f and H2 be as defined in Theorem 3.2, then function f ′(x, h2)
def
= (f(x), h2(x), h2) is

a (t,3
√
ε) one-way function.

Proof. Suppose for contradiction there exists A of running time t such that

Pr
[
A(f ′(X,H2))∈f ′−1(f ′(X,H2))

]
> 3
√
ε

Recall that f(X) has min-entropy n − k and conditioned on any y = f(X) X has min-entropy k,
and thus by the condensing property of universal hashing (see Lemma 3.2) we have CP(f(X), H2(X) |
H2) ≤ 2−(n−1) and it follows from Claim 3.1 (setting a = 2−n/

√
ε, X1 = (f(X), H2(X)), Z1 = H2) that

f ′(X,H2) hits set S (defined below) with negligible probability, i.e., Pr[f ′(X,H2) ∈ S] ≤ 2
√
ε where

S def
= {(y, w, h2) : Pr[(f(X), h2(X)) = (y, w) | H2 = h2] ≥ 2−n/

√
ε}

= {(y, w, h2) : |f ′−1(y, w, h2)| ≥ 1/
√
ε} .

Then, let E be the event that A inverts f ′ on any image whose preimage size is bounded by 1/
√
ε, i.e.,

E def
= A(f ′(X,H2))∈f ′−1(f ′(X,H2)) ∧ f ′(X,H2) /∈ S

Pr
[
A(f ′(X,H2))=X

]
≥ Pr [E ] · Pr[A(f ′(X,H2)) = X | E ]

> (3
√
ε− 2

√
ε) · ( 1

1/
√
ε

) = ε ,

where the probability of hard-to-invertness is related to unpredictability by the maximal preimage size.
The conclusion follows by reaching a contradiction to the (t,ε)-unpredictability of X given f ′(X,H2)
(as stated in Equation (6)). �

Claim 3.1 Let (X1,Z1) be a random variable, for a > 0 define Sa
def
= {(x, z) : Pr[X1 = x|Z1 = z] ≥ a},

it holds that Pr[(X1, Z1) ∈ Sa] ≤ CP(X1|Z1)/a.
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Proof. The proof is a typical Markov type argument.

CP(X1|Z1) = Ez←Z1

[ ∑
x

Pr[X1 = x|Z1 = z]2

]
=
∑
(x,z)

Pr[(X1, Z1) = (x, z)]·Pr[X1 = x|Z1 = z]

≥
∑

(x,z)∈Sa

Pr[(X1, Z1) = (x, z)]·Pr[X1 = x|Z1 = z]

≥ a · Pr[(X1, Z1) ∈ Sa] .

�

Theorem 3.3 (Improved Construction based on Known Regularity and Hardness) For the
same f , g, H1, H2, HC as assumed in Theorem 3.2 except that d and s satisfy 3d+ 2s = log(1/ε), we
have that g is a ( t · (ε/n)O(1), O((22s · ε)1/6)-secure PRG with stretch s.

Proof sketch. The proof is similar to Theorem 3.2. The first n− d bits extracted are 2−d/2-statistically
random, conditioned on which the next d + s bits are O(2d+s√ε)-computationally random. It follows
that the bound is 2−d/2 +O(2d+s√ε) = O(2−d/2) = O((22s · ε)1/6). �

Three Extractions are Necessary. We argue that three extractions (using h1, h2 and hc) seem
necessary. One might think that the first two extractions (using h1 and h2) can be merged using a single
universal hash function (that applies to the source (X, f(X)) and outputs n − d bits). However, by
doing so we cannot ensure the entropy condition (see Equation (6)) for the third extraction (using hc).
From another perspective, the merge would remove the dependency on the regularity and thus result in
a generic construction that does a single call to any unknown regular OWFs, which is a contradiction
to [14]. Furthermore, it seems necessary to extract from X at least twice, namely, using h2 and hc to
get statistically and computationally random bits respectively.

3.3 PRGs from Any Known Regular OWFs: Removing the Dependency on ε

The parameterization of the aforementioned construction depends on ε, but sometimes ε is unknown
or not polynomial-time computable. It is thus more desirable to have a construction based on any
known-regular OWF regardless of parameter ε (as long as it is negligible). We observe that by setting
entropy loss to zero (in which case hash functions are condensers) and letting G-L functions extract
O(log n) bits the resulting generator is a generic (i.e. without relying on ε) pseudo-entropy generator
(PEG) with a (collision) entropy stretch of O(log n) bits. Note however the output of the PEG is
not indistinguishable from uniform but from some high collision entropy sources (with small constant
entropy deficiency), which implies a PRG by running q ∈ ω(1) copies of the PEG and doing a single
extraction from the concatenated outputs.

Definition 3.1 (pseudoentropy generators) A function g : {0, 1}n → {0, 1}l+e (l > n) is a (t,ε)
H2-pseudoentropy generator (PEG) if g is polynomial-time computable and there exists a random vari-
able Y ∈ {0, 1}l+e with H2(Y ) ≥ l

CDt( g(Un) , Y ) ≤ ε.

where (l−n) is the stretch of g, and e is the entropy deficiency. We say that g is an H2-pseudoentropy
generator if 1/ε and t are both super-polynomial.

Theorem 3.4 (PEGs from any known-regular OWFs) For the same f , g, H1, H2, HC as as-
sumed in Theorem 3.2 except that d = 0 and s = 2 log n + 2, we have that if f is a one-way function
then g is a H2-pseudoentropy generator with stretch 2 log n and entropy deficiency 2.
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Proof sketch. It is not hard to see (using Lemma 3.2) that for d = 0 we have

2−H2(H1(f(X)),H2(X)) = CP(H1(f(X)), H2(X))

≤ Pr
X1,X2←Un

[H1(f(X1)) = H1(f(X2))] · Pr[H2(X1) = H2(X2) | f(X1) = f(X2) ]

≤ 2−(n−k−1) · 2−(k−1) = 2−(n−2) .

And we have by Lemma 3.5 and Goldreich-Levin the 2 log n+ 2 hardcore bits are pseudo-random given
H1(f(X)) and H2(X), which completes the proof. �

Theorem 3.5 (PRGs from any known-regular OWFs) For any known k, there exists a generic
construction of pseudo-random generator with seed length Õ(n) by making Õ(1) calls to any (length-
preserving) 2k-regular one-way function.

Proof sketch. The idea is to run q ∈ ω(1) independent copies of the PEGs as in Theorem 3.4 to get
an entropy stretch of 2q log n followed by a single randomness extraction with entropy loss q log n. This
yields a PRG with stretch q log n that is roughly O(q·n2

√
ε + n−q) computationally indistinguishable

from uniform randomness, where n−q is negligible for any q ∈ ω(1). �

3.4 PRGs from Any Unknown Regular OWFs

The first attempt: a parallel construction. A straightforward way to adapt the construction
to unknown regular OWFs is to pay a factor of n/ log n. That is, it is not hard to see the construction

for known regularity α = 2k remains secure even by using an approximated value α̃ = 2k̃ with accuracy
|k̃−k| ≤ log n. This immediately implies a parallel construction by running n/ log n independent copies
of our aforementioned construction, where each ith copy assumes regularity 2i· logn. Therefore, at least
one (unknown) copy will be a PRG and thus we simply XOR the outputs of all copies and produce it as
the output. Unfortunately, similar to the HILL approach, the parallelism turns out an inherent barrier
to linear seed length. We will avoid this route by giving a sequential construction.

Now we present the construction from any (length-preserving) unknown-regular OWF. We first
transform it into a hardness-preserving equivalent with known regularity 2n, as stated in Claim 3.2.

Claim 3.2 For any length-preserving unknown-regular (t,ε)-OWF f : {0, 1}n → {0, 1}n, define

f̄ : Y × {0, 1}n → Y
f̄(y, r)

def
= f(y ⊕ r)

(7)

where Ydef
=f({0, 1}n) ⊆ {0, 1}n, “⊕” denotes bit-wise XOR. Then, f̄ is a 2n-regular (t−O(n),ε)-OWF.

Proof. On uniform (y,r) over Y × {0, 1}n, y⊕ r is uniform over {0, 1}n. Thus, any algorithm inverts f̄
to produce (y, r) with probability ε implies another algorithm that inverts f with the same probability
by outputting y ⊕ r. Let us assume that f is α-regular. Then, for any y1 = f̄(y, r) = f(y⊕r) we have
|f−1(y1)| = α, and for any x ∈ f−1(y1) we have |{(y, r) ∈ Y ×{0, 1}n : y⊕ r = x}| = |Y| = 2n/α, which
implies |f̄−1(y1)}| = α · (2n/α) = 2n. �

Similarly to the known regular case, we first assume ε is known and then eliminate the dependency.
Intuitively, the output of f̄ hides n bits of min-entropy about its input (by the 2n-regularity) plus another
log (1/ε) bits of pseudo-entropy (due to the one-wayness), and thus one can extract n + O(log (1/ε))
pseudorandom bits. This is formalized in Claim 3.3, where we build a generator ḡ that expands random
elements over Y×{0, 1}n into pseudorandom ones over Y×{0, 1}n+O(log(1/ε)). The proof of Claim 3.3 is
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similar to that of Theorem 3.2, and we defer it to the appendix. Notice, however, generator ḡ is NOT a
practical PRG with positive stretch as the only black-box way to sample distribution UY is to compute
f(Un), which costs n random bits (despite that H∞(UY) might be far less than n). Quite naturally and
thanks to the hybrid argument, the construction simply iterates ḡ, reuses the random seeds (in each
iteration), and outputs s = O(log(1/ε)) bits per iteration.

Claim 3.3 Let f , f̄ be defined as in Claim 3.2, for any integers d, s satisfying 7d+ 6s = 2 log(1/εn),

let H def
= {h : {0, 1}2n → {0, 1}n−d} be a universal hash function family, let HC

def
= {hc : {0, 1}2n →

{0, 1}d+s} be a G-L function family, define ḡ as

ḡ : Y × {0, 1}n ×H×HC → Y × {0, 1}n+s ×H×HC

ḡ(y, r, h, hc)
def
= ( f̄(y, r), (h(y, r), hc(y, r)), h, hc)

(8)

Then, it holds that

CDt·(ε/n)O(1)( ḡ(Y,R,H,HC) , (UY , Un+s, H,HC) ) = O((23s · ε · n)
1
7 )

where UY
def
=f(Un), (Y,R) is identically distributed to UY × Un, and H, HC are uniform over H, HC

respectively.

Theorem 3.6 (PRGs from any unknown-regular OWFs with known hardness) Let f : {0, 1}n →
{0, 1}n be any (possibly unknown) regular length-preserving (t,ε)-OWF, define f̄ ,ḡ, H, HC , s as in
Claim 3.3, and define g as

g : {0, 1}n × {0, 1}n×H×HC → ({0, 1}s)` × {0, 1}n ×H×HC

g(x, r0, h, hc)
def
= (z1, z2, . . . , z`, r`, h, hc)

where let y0 := f(x), and for 1≤i ≤ ` iteratively compute (yi,ri, zi, h, hc):=ḡ(yi−1, ri−1, h, hc), h ∈ H,
hc ∈ HC , (yi, ri) ∈ Y × {0, 1}n and zi ∈ {0, 1}s. Then, for any s ≤ log(1/εn)/3, function g is a

(t · (ε/n)O(1) − ` · nO(1), O(` · (23s · ε · n)
1
7 ))-secure PRG with stretch ` · s− n.

Proof. The proof follows from Claim 3.3 by a standard hybrid argument. �

Therefore, for any unknown-regular OWF with known hardness, we obtain a PRG with linear seed
length, and by letting s ∈ Θ(log(1/εn)) the number of calls ` ∈ Θ(n/s) = Θ(n/ log(1/εn)) matches the
lower bound of [14]. This extends to the general case (where the hardness parameter is unknown) by
repetition.

Theorem 3.7 (PRGs from any unknown-regular OWFs) There exists a generic construction of
pseudo-random generator with seed length Õ(n) by making Õ(n/ log n) calls to any (length-preserving)
unknown-regular one-way function.

Proof sketch. For any unknown-regular OWF f , define ḡ as in Claim 3.3 except setting d = 0 and
s = 2 log n+ 1. It is not hard to see that the resulting ḡ is a H2-pseudoentropy generator with stretch
2 log n and entropy deficiency 1 (proof similar to that in Theorem 3.4). Following the steps sketched in
Theorem 3.5, for any q ∈ ω(1) run q independent copies of ḡ followed by an extraction with entropy
loss set to qlog n, we obtain a special pseudo-random generator ḡ′ over space

ḡ′ : Yq × {0, 1}qn ×Hq ×Hq
C → Y

q × {0, 1}q(n+logn) ×Hq ×Hq
C

Iterating ḡ′ for `′ = d(qn+ 1)/q log ne ∈ O(n/ log n) rounds yields a PRG g′ with stretch s′ ≥ 1, i.e.,

g′ : {0, 1}2qn×Hq×Hq
C → {0, 1}

2qn+s′ ×Hq×Hq
C

which completes the proof. �
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A Proofs Omitted

Proof of Claim 3.3. Note that f̄(Y,R) is identically distributed to UY , so it is equivalent to show

CDt·(ε/n)O(1)( (H(Y,R), HC(Y,R)) , Un+s | f̄(Y,R), H,HC ) = O((23s · ε · n)
1
7 ) .

It follows from the (t−O(n), ε)-one-way-ness of f̄ (see Claim 3.3) and Lemma 3.3 that

Ht−O(n)((Y,R) | f̄(Y,R)) ≥ n+ log (1/ε) . (9)

Then, similar to Lemma 3.4, we have the following entropy conditions

H∞((Y,R) | f̄(Y,R)) = n ,

Ht−O(n)((Y,R) | f̄(Y,R), h(Y,R), h) ≥ Ht−O(n)((Y,R) | f̄(Y,R))− (n− d) ≥ d+ log (1/ε) ,

hold for any h ∈ H, where the second inequality is by applying the chain rule to Equation (9). Therefore,

CDt·(ε/n)O(1)( (H(Y,R), HC(Y,R)) , Un+s | f̄(Y,R), H,HC )

≤ SD(H(Y,R), Un−d |f̄(Y,R), H) + CDt·(ε/n)O(1)(HC(Y,R), Ud+s | f̄(Y,R), H(Y,R), H,HC)

≤ 2−
d
2 +O(2d+s · (n·ε·2−d)

1
3 ) = 2−

d
2 +O(2d+s · (2

−(7d+6s)
2 ·2−d)

1
3 )

= O(2−
d
2 ) = O(2

3s+log(ε·n)
7 ) = O((23s · ε · n)

1
7 )
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where the first inequality is triangle, the statistical distance is due to the leftover hash lemma and the
computational distance of the second inequality is by the Goldreich-Levin Theorem. �
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