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Abstract

The incidence matrix between a set of monomials and a set of vec-
tors in IF2 has a great importance in the study of coding theory, cryp-
tography, linear algebra, combinatorics. The rank of these matrices
are very useful while computing algebraic immunity(AI) of Boolean
functions in cryptography literature [18, 7]. Moreover, these matri-
ces are very sparse and well structured. Thus, for aesthetic reason
finding rank of these matrices is also very interesting in mathematics.
In this paper, we have reviewed the existing algorithms with added
techniques to speed up the algorithms and have proposed some new
efficient algorithms for the computation of the rank of incidence ma-
trix and solving the system of equations where the co-efficient matrix
is an incidence matrix. Permuting the rows and columns of the inci-
dence matrix with respect to an ordering, the incidence matrix can be
converted to a lower block triangular matrix, which makes the compu-
tation in quadratic time complexity and linear space complexity. Same
technique is used to check and computing low degree annihilators of
an n-variable Boolean functions in faster time complexity than the
usual algorithms. Moreover, same technique is also exploited on the
Dalai-Maitra algorithm in [9] for faster computation. On the basis of
experiments, we conjecture that the AI of n-variable inverse S-box is
b
√
nc+ d n

b
√

nce− 2. We have also shown the skepticism on the existing
fastest algorithm in [1] to find AI and lowest degree annihilators of a
Boolean function.

Keywords: Boolean function, algebraic immunity, rank of matrix, LU-
decomposition.

1 Notations

In this section, we introduce the basic notations and definitions which are
useful to read the later part of the article.

IF2: The finite field on two elements i.e., GF (2).
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Vn: The n dimensional vector space over IF2. The vectors of Vn are repre-
sented in terms of it’s standard basis (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

wt(v): The weight of a vector v = (v1, . . . , vn) ∈ Vn, is defined as wt(v) =
|{vi : vi = 1}|.

u ⊆ v: For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we define
u ⊆ v if ui = 1 implies vi = 1 for 1 ≤ i ≤ n.∑
and +: The sum notations, are used as context based, whether it is over

IF2 or, over real field IR.

Pn : The binary quotient polynomial ring on n-variables IF2[x1, x2, . . . , xn]/
〈x2

1 − x1, x
2
2 − x2, . . . , x

2
n − xn〉.

xα: The polynomials of the form xα1
1 xα2

2 . . . xαn
n for αi ∈ {0, 1}, 1 ≤ i ≤ n are

called monomials, which are represented as xα where α = (α1, α2, . . . , αn) ∈
Vn. Monomials are also represented as xi1xi2 . . . xik where αi1 = αi2 =
· · · = αik = 1 and other αi’s are 0. Each polynomial from Pn can be
represented as

∑
α∈Vn

aαx
α, where aα ∈ IF2. Pn is a vector space over IF2

with the monomial basis {xα : α ∈ Vn}.

deg(p): The degree of a polynomial p =
∑
α∈Vn

aαx
α ∈ Pn is defined by

deg(p) = max{wt(α) : aα = 1}.

Pn,d: The subspace of polynomials of degree at most d with the monomial
basis Bn,d = {xα : wt(α) ≤ d}.

log(X): For a set of monomials X, log(X) denotes the set of exponent
vectors of the monomials i.e., log(X) = {α : xα ∈ X}.

xV : For a set of vectors V , xV denotes the set of monomials with exponents
from V i.e., xV = {xα : α ∈ V }.

Evaluation of Polynomial: A vector v ∈ Vn satisfies a monomial xα if
α ⊆ v. A polynomial p =

∑
α∈Vn

aαx
α ∈ Pn is evaluated at a vector v ∈ Vn

as p(v) =
∑

α∈Vn,α⊆v
aα ∈ IF2.

Ordering of monomials and vectors: A tricky ordering of vectors and
monomials can speed up the computation. Here, we define some orderings
of vectors in Vn. If u, v ∈ Vn, then

1. u < v if int(u) < int(v) where int(u) is the integer value of the binary
string representation of u.
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2. u <w v if (wt(u) < wt(t)) or, (wt(u) = wt(v) and int(u) < int(v)).

3. Given a set of monomials X, u <X v if (u, v ∈ log(X) and u < v) or,
(u, v 6∈ log(X) and u < v) or, (u ∈ log(X) and v 6∈ log(X)).

In the ordering <X , the elements of log(X) are ordered first by < and
then the rest of elements are ordered by <.

Abusing the notation, we also use the same notations for the monomial
ordering as

1. xu < xv if u < v.

2. xu <w xv if u <w v

3. Given a set of vectors V , xu <V xv if (u, v ∈ V and u < v) or,
(u, v 6∈ V and u < v) or, (u ∈ V and v 6∈ V ).

Incidence matrix (MX
V ): A vector v ∈ Vn is incident on a polynomial

p ∈ Pn if p(v) = 1. The incidence matrix MX
V for an ordered set of

monomials X ⊆ Pn and an ordered set of vectors V ⊆ Vn is defined as

MX
V [i, j] =

{
1 if Xj(vi) = 1
0 if Xj(vi) = 0

where Xj and vi are j-th and i-th element of the ordered sets X and U
respectively. If X = {xα1 , . . . , xαm} is an ordered set of monomials, then
the incident matrix can be defined as

MX
V [i, j] =

{
1 if αj ⊆ vi
0 if Otherwise.

Incidence matrix (Md
V ): If X = Bn,d with an ordering, then we denote

the incidence matrix for a set of vectors V as Md
V in stead of lengthy

notation M
Bn,d

V .

Boolean function: The polynomials from Pn are also called as Boolean
functions on n-variables. The form of the polynomial defined above is
called algebraic normal form (ANF) of Boolean functions. The evaluations
of the polynomial p ∈ Pn at each vector of Vn with an order is called
as truth table representation of p. The truth table representation of a
polynomial can be viewed as a 2n-tuple binary vector and it’s weight
is defined as wt(p) = |{v ∈ Vn : p(v) = 1}|. A polynomial p ∈ Pn
is called balanced if wt(p) = 2n−1. The support set of p is defined as
S(p) = {v ∈ Vn : p(v) = 1}. One may refer to [6] for the standard
cryptographic definitions related to Boolean functions. In this article, we
use the term polynomial in place of Boolean function.
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Annihilator: Given p ∈ Pn, a nonzero polynomial q ∈ Pn is called an
annihilator of p if p ∗ q = 0, i.e., p(v)q(v) = 0 for all v ∈ Vn. The set of all
annihilators of p ∈ Pn is denoted by An(p).

Algebraic immunity (AI): Algebraic immunity of a polynomial p is de-
fined as AI(p) = min{deg(q) : q ∈ An(p) ∪ An(1 + p)}. In some article,
algebraic immunity is mentioned as annihilator immunity.

wt(M), den(M): For a m × n binary matrix M , the weight and density of
M are defined as wt(M) = |{M [i][j] : M [i][j] = 1}| and den(M) = wt(M)

mn
respectively.

2 Introduction

The incident matrix MX
V is an interesting tool in the study of combinatorics,

coding theory, cryptography and polynomial interpolation. In coding theory,
polynomials of degree at most d forms a Reed-Muller code of order d of
length 2n. The matrix Md

Vn
is the transpose of the generator matrix for the

Reed-Muller code of length 2n and order d [16]. Hence, the matrix Md
V is

the transpose of the restricted generator matrix for the Reed-Muller code
of length 2n and order d to the set V . A generalized version of the matrix
Md
V is used for polynomial interpolation in Guruswami-Sudan list decoding

technique for Reed-Solomon code [17]. The matrix Md
V can also be treated

as a generalized Vandermonde matrix in the study of combinatorics.
Moreover, the incidence matrix Md

V has a great importance in the study
of algebraic cryptanalysis. It is related to algebraic immunity, for which
the rank of this matrix is very important [18]. There are some algorithms,
which have been studied to find the rank of Md

V and finding solution of the
system of equations Md

V γ = 0 [18, 12, 13, 1, 9], which gives the annihilators
of degree d of polynomials of support set V .

Algebraic attacks have received a lot of attention in studying the security
of crypto systems [6]. For some keystream generators, algebraic attacks
worked very well comparatively to all other known attacks. Particularly,
algebraic attack using annihilators [5, 18] are highly effective on keystream
generators like LFSR based nonlinear combiner and filter models.

In algebraic cryptanalysis point of view, a polynomial p should not be
used to design a cryptosystem if An(p) ∪ An(1 + p) contains low degree
polynomials [5, 18]. The term algebraic immunity of a polynomial p, AI(p),
is defined so. It is known that for any polynomial p ∈ Pn, AI(p) ≤ dn2 e [18].
Thus, the target of a good design is to use a polynomial p such that neither
p nor 1 + p has an annihilator at a degree less than dn2 e. There is a need
to construct such polynomials and the first one in this direction appeared
in [8]. Later some more constructions with this property has been presented
in [2, 3, 10, 15].
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If q ∈ Pn is an annihilator of p ∈ Pn then q(v) = 0 for v ∈ S(p). To find
an annihilator q ∈ Pn,d, one has to solve the system linear equations∑

α∈Vn,wt(α)≤d,α⊆v

aα = 0 for v ∈ S(p).

That is,
Md
S(p)γ = 0 (1)

where transpose of γ is the unknown row vector (aα), for α ∈ Vn and wt(α) ≤
d. To check the existence of d or lesser degree annihilator of p, one has to
check whether the rank of matrix Md

S(p) is |Pn,d| =
∑d

i=0

(
n
i

)
. In this article,

we discuss the rank of the matrix MX
V for an order sets of vectors V and

monomials X, with more attention on the special case Md
S(p).

For an ordered set of vectors V and an ordered set of monomials X, the
matrix MX

V carries many structures compared to a random binary matrix
of same dimension. Some of the structures are discussed as follows.

1. Each column of MX
V is represented by a specific monomial and each

entry of the column tells whether that monomial is satisfied by the
input vector which identifies the row, i.e., the rows of this matrix
correspond to the evaluations of the monomials from X on the vectors
from V . Hence, there is one-to-one correspondence from the vectors
v ∈ Vn to the row vectors of length |X|. All the information in each
row of length |X| can be algebraically retrieved by the corresponding
vector of length n. This property can be used to find out the value at
any positions instead of travelling all the entries of a rows/columns.
In the case of Md

S(p), each row is an evaluation of a d or lesser degree
monomial at a support vector of p. The information in wt(p)× |Bn,d|
matrix Md

S(p) can be retrieved from the wt(p) × n matrix M1
S(p). If

this algebraic property can be used, the algorithm may also take less
than the quadratic time complexity on the number of monomials. The
strategy of polynomial interpolation has been exploited to decrease the
complexity in the paper [1], though some faults of the algorithm have
been presented in this paper.

2. Let V ⊂ Vn and X ⊂ Bn,n be randomly chosen subsets such that
|V | = |X| = 2n−1. Since a vector v ∈ V of weight i is expected
to be satisfied by 2i−1 monomials from X, the wt(MX

V ) is expected

around w =
1
2

n∑
i=0

(
n

i

)
2i−1 =

1
4

n∑
i=0

(
n

i

)
2i =

(1 + 2)n

4
=

3n

4
. So, the

den(MX
V ) = w

22n−2 = (3
4)n tends to zero as n tends to infinity, where

as the density is expected as 1
2 for a random matrix. The matrix

is very sparse. Hence, sparse matrix algorithms can be used for the
purpose [21, 14, 11].
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A vector v of weight i is satisfied by
∑d

i=0

(
n
i

)
monomials of degree d

or less. Hence, for a randomly chosen balanced p ∈ Pn, the wt(Md
S(p))

is expected around w =
1
2

n∑
i=0

(
(
n

i

) d∑
j=0

(
i

j

)
), where as the number of

entries in Md
S(p) is e =

1
2

n∑
i=0

(
n

i

) d∑
j=0

(
n

j

)
. The density den(Md

S(p))

(i.e., w
e ) tends to zero for d > 1 and large n. In the following table we

have put the values of the den(Md
S(p)) for some n and d = bn2 c.

Table 1: Sparseness of Md
S(p)

n 11 12 13 14 15 16
d 5 5 6 6 7 7

den(Md
S(p)) .0742 .0673 .0426 .0383 .0244 .0218

3. If degree of a monomial is higher, then the evaluation of the monomial
at a vector has low chance to be non-zero. If the monomials are ordered
by <w, then it can be seen that each row gets sparser towards the right
end because the degree of monomials increases as we move towards
right end of the matrix. Therefore, the upper triangular part of MX

V

would be very sparse. MX
V looks like a lower triangular matrix except a

few non-zero entries at the upper triangular part. This sparseness can
be exploited for the fast implementation. Similar sparseness can also
be observed if the monomials and support vectors are ordered by <.
We will use such sparseness structure in our algorithms in Section 5.

Therefore, solving equation 1 can be faster as compared to solving an ar-
bitrary system of equations of same dimension if the structures of MX

V are
carefully exploited. For example, in [9], some more structures have been
exploited to make it constant time faster in average case.

In Section 3, we have studied some existing algorithms and proposed
how the sparseness can be exploited to make them faster. In Section 4, we
have shown the incorrectness of the ACGKMR algorithm proposed in [1].
In the Section 5, we have proposed a technique on the ordering of vectors
and monomials which makes the matrix Md

S(p) a lower block triangular. The
Section 5.2 contains the main results of this article to reduce the computation
time. Further, in Section 5.3, we use the same technique on the Dalai and
Maitra’s algorithm presented in [9] to make it even faster. Experimental
results of some important exponent S-boxes are presented in Section 6. On
the basis of experiments, we conjecture that the AI of n-variable inverse
S-box is b

√
nc+ d n

b
√
nce − 2.
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3 Basic Algorithms

In this section, we study the basic algorithms to find the rank of matrix MX
V

or, solving MX
V γ = 0.

3.1 Technique 1

The most basic algorithm for finding the rank of MX
V and solving MX

V γ = 0
is by using the standard algorithms like Gaussian elimination, Strassen’s
method etc. This is equivalent to the algorithm mentioned in [18, Algo-
rithm 1]. The theoretical bound of time complexity is O(2ω(n−1)). Using
the well known Gaussian elimination technique we have ω = 3; Strassen’s
algorithm [20] takes ω = log2 7 ≈ 2.807 and also the one by Coppersmith
and Winogard in [4] takes ω = 2.376. Since the matrix Md

S(p) is very sparse,
in practice, it is more efficient than a random matrix of same size. To make
it faster, one can also use some suitable sparse algorithms [21, 14, 11].

3.2 Technique 2

The evaluation of xα at α is 1 (i.e., xα(α) = 1) for α ∈ Vn. While working
for the matrix MX

V , one can eliminate aα for α ∈ V ∩ log(X) easily during
Gaussian elimination process to increase the efficiency. This technique is
used for the matrix Md

S(p) in [18, Algorithm 2] to find out annihilators.
Here, we describe for a faster implementation of this technique exploiting
the triangular nature and sparseness of the some part of matrix MX

V . Let
the ordering of the monomials of U = log(X) and vectors of V be <V and
<U respectively. Then, the form of matrix MX

V is

MX
V =

(
A B
C D

)
.

Here the sub matrices are incidence matrices A = MW
W , B = MZ

W , C = MW
Y

and D = MZ
Y where W = V ∩U , Y = V \W and Z = U \W . The matrix A

is lower triangular with diagonal entries are non-zero. This property helps
to speed up the row operations for the rows of MX

V associated with the
sub-matrix A.

Now we will give attention on the matrix Md
S(p). The form of matrix

Md
S(p) is

Md
S(p) =

(
A B
C D

)
. (2)

Here the sub matrices are incidence matrices A = MW
W , B = MZ

W , C =
MW
Y and D = MZ

Y where W = S(p) ∩ log(Bn,d), Y = S(p) \ W and
Z = log(Bn,d) \W . It is clear that the matrix A is lower triangular with
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nonzero diagonal entries. This property helps to speed up the row oper-
ations for the rows of Md

S(p) associated with the sub-matrix A. Since the
incident vectors in W are of low weight (i.e., up to d), the sub-matrices
A and B are very sparse. This nature, in addition to the lower trian-
gularity of A, makes more efficient to find rank of Md

S(p). For a ran-

dom p ∈ Pn, |W | and |Z| are approximately 1
2

∑d
i=0

(
n
i

)
. So, wt(A) and

wt(B) are approximately w =
1
4

d∑
i=0

(
(
n

i

) d∑
j=0

(
i

j

)
) ≤ 1

4

d∑
i=0

(
(
n

i

) d∑
j=0

(
d

j

)
)

= 2d−2
d∑
i=0

(
n

i

)
. Then, the den(A) and den(B) are bounded by

2d−2
∑d

i=0

(
n
i

)
(1
2

∑d
i=0

(
n
i

)
)2

=
2d∑d
i=0

(
n
i

) .
For d = bn−1

2 c, we have around 2d−2 × 2n−2 nonzero entries for the
matrices A and B of size 2n−2 × 2n−2. So den(A) and den(B) are bounded
by 2d−n+1 = O(2−

n
2 ) = O(2−d). This sparseness in A and B can be further

exploited to speed up the process. The algorithm can be implemented in
two parts. At first, elementary row reduction can be done for the upper half
of the matrix Md

S(p) and then rest (updated) part can be done using any
usual technique. While doing elementary row operations in the upper part,
one can explore only the positions of non-zero entries in the row instead of
exploring all elements of the matrix. Hence, the reduction process can be
made faster in the order of O(2

n
2 ) for the upper part of the matrix Md

S(p).

3.3 Technique 3

The discussion in this section refers to the algorithm for checking the rank of
Md
S(p) described in [9]. Since the sub-matrix A in Equation 2 is a nonsingular

lower triangular matrix, we solve for Md
S(p) in two steps in technique 3.2.

At first step, the row reduction is done on the rows associated with W and,
in the next step, the reduction is done on the updated rows associated with
Y . The strategy described in [9] avoids the first step and directly works
with the modified version of the matrix D. Here, we need to find rank of
a |Y | × |Z| matrix D′ rather than to find rank of a (|W | + |Y |) × (|W | +
|Z|) = wt(p) × |Bn,d| matrix Md

S(p). As [9], the matrix D′ is computed as
D′ = D′[u, α] for u ∈ Y and α ∈ Z such that

D′[u, α] =


d−wt(α)∑
i=0

(
wt(u)− wt(α)

2

)
mod 2 if α ⊆ u

0 other wise.
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Given u, α with wt(u) > d and wt(α) = l ≤ d, the probability that α ⊆ u

is

∑n
i=d+1

(
n−l
i−l
)∑n

i=d+1

(
n
i

) which is very lesser than .5 for l > 0. Further, even v ⊆ u,

there is 50% chance that D′[u, v] = 1. Therefore, the matrix D′ is very
sparse and algorithms to find the rank of sparse matrix [21, 14, 11] can be
used for the purpose.

4 LU decomposition and Algorithm in [1]

Let M be a square matrix. An LU decomposition is a factorization of M of
the form M = LU , where L and U are lower and upper triangular matrices
of the same size respectively. LU decomposition is a handy tool in several
fundamental algorithms in linear algebra such as solving a system of linear
equations, inverting a matrix, or computing the determinant of a matrix.

In this section, we discuss about the algorithm presented in [1] to find
the rank of Md

S(p) and to find the solutions of Md
S(p)γ = 0. For the reference,

we call this algorithm as ACGKMR algorithm. The algorithm exploits the
LU decomposition of Md

S(p) for the purpose and is claimed as a quadratic
time complexity on the number of columns (i.e, the number of monomials).
Here, we have shown that the algorithm is wrong for different reasons.

4.1 Equivalence between Solving a System of Linear Equa-
tions and Finding Affine Annihilators

The problems of finding the solutions of a system of linear equations, finding
the rank of a matrix, inverting of a nonsingular matrix are considered as
equivalent problems in linear algebra. These problems on m×m matrix can
be solved in O(nω) time complexity, where the known lowest value of ω is
2.376. Since a general matrix needs O(n2) memory for it’s representation
i.e., the space complexity, by any strategy the value of ω can not be less
than 2. Consider P is an another problem which takes at most quadratic
time complexity on the size of problem. If the problem of solving system of
linear equations can be reduced to the problem P in O(m2) time complexity
then one can solve a system of linear equations in O(m2) time complexity.
In the following part, we have shown that finding the solutions of a system
of linear equations on IF2 is not harder than finding the affine annihilators
of a Boolean function.

Theorem 1. The problem of finding the solutions of a system of m linear
homogeneous equations on m variables on IF2 can be reduced to the problem
of finding the affine annihilators of a polynomial in Pm−1 in O(m2) time
complexity.

Proof. Consider M is the m ×m coefficient matrix of the system of linear
equations. Without loss of generality, we consider that the first column of M
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is not all zero column. Since the first column is nonzero, there must be a row
(say, k-th row) whose 1st entry is 1. Now entry wise adding (over IF2) kth
row with all other rows whose 1st entry is 0, we can make the first column
all 1’s. This operation takes O(m2) complexity. We keep the same name
M for the updated matrix after these row operations. Now we construct
pM ∈ Pm−1 where S(pM ) = {(Mi,2,Mi,3, . . . ,Mi,m), 1 ≤ i ≤ m} i.e., the
vectors formed by last (m − 1) entries of each row. Here wt(pM ) = m.
The matrix M1

S(pM ) is same as M . Therefore, the coefficients of 1-degree
annihilators of pM give the solutions of M .

Example 1. Consider M =


1 0 1 1 0
0 0 0 1 1
1 0 0 0 1
0 1 0 1 1
0 0 1 0 0

, a 5× 5 coefficient matrix

of a system of homogeneous linear equations. To make its first column all
1, we add either the 1st row or the 3rd row with the 2nd, 4th and 5th rows.
Adding the 1st row, we have the updated matrix

M =


1 0 1 1 0
1 0 1 0 1
1 0 0 0 1
1 1 1 0 1
1 0 0 1 0

 .

We construct a polynomial pM ∈ p4 where S(pM ) = {(0, 1, 1, 0), (0, 1, 0, 1),
(0, 0, 0, 1), (1, 1, 0, 1), (0, 0, 1, 0)}. It can be easily verified that the matrix
M1
S(pM ) i.e., the coefficient matrix of the system of equations a0 + a1x1 +

a2x2 + a3x3 + a4x4 = 0 for (x1, x2, x3, x4) ∈ S(pM ) is same as M .

Since finding annihilators of a polynomial is reduced to find the solutions
of a system of linear equations, we have the following proposition.

Proposition 1. The problem of finding the solutions of a system of linear
equations on IF2 is equivalent to the problem of finding the affine annihilators
of a Boolean function.

For an random p ∈ Pn, the matrix M1
S(p) can be realized as a random

matrix except the first column. The reason is that each column evaluated
by the linear monomials xi are independent to each other. Hence both
problems reduce to each other. When d > 1, i.e., searching for the d-degree
annihilators, the matrix Md

S(p) seems different than an arbitrary matrix. The
columns corresponding to the nonlinear monomials are algebraically depen-
dent on the columns of lower degree monomials. Hence, it does not seem
the problem of finding solution of system linear equations can be reduced to
searching for non-affine annihilators. But it is not proved yet. It is an open
problem.

10



Therefore, if there is an algorithm to find 1-degree annihilator of p ∈ Pn
in O(n2) time complexity, then a binary system of linear equations can
be solved in O(n2) time complexity. Note that the quadratic complexity
is the least complexity as one needs O(n2) space to represent the matrix.
The ACGKMR algorithm proposed in Eurocrypt 2006 [1], which requires
quadratic time complexity on the number of monomials to find out the
lowest degree annihilator of a polynomial. Therefore, “solving a system of
n linear equations on n-variables requires O(n2) running time complexity”.
This result would be a great contribution to the study of linear algebra.
Therefore, we got a big doubt on the correctness of ACGKMR algorithm
and the mistake is described in the following subsection to stand with our
doubt.

4.2 LU Decomposition

If M is a nonsingular matrix then there is a permutation matrix P such
that PM = LU where L and U are nonsingular lower and upper diagonal
matrices respectively. If p ∈ Pn having no annihilator of degree d then
the vectors of S(p) can be ordered in such a way that Md

S(p) = LU where
L and U are nonsingular lower and upper diagonal matrices respectively.
Once Md

S(p) is factorized into LU , solving Md
S(p)γ = LUγ = 0 can be solved

in quadratic time complexity. This technique is exploited in ACGKMR
algorithm to find the annihilators of Md

S(p) which is briefly described in the
following paragraphs.

Let {α1, α2, . . . , αD} be the set of exponent vectors of weight at most d
with an ordering and S = S(p). ACGKMR algorithm is iterative in nature
and starts with a matrix M1 = (vα1

1 ), where v1 ∈ S is chosen in such a
way that vα1

j = 1. Then the LU decomposition is done as M1 = (1)(1) and
S = S \ {v1}. Let the iteration for LU-decomposition be done till i-th step.
For the i+ 1-th step we have the following processing.

Mi+1 =
(
Mi Ci
Ri v

αi+1

i+1

)
=

(
Li 0
RiU

−1
i 1

)(
Ui L−1

i Ci
0 v

αi+1

i+1 +RiU
−1
i L−1

i Ci

)
= Li+1Ui+1

where Ci = (vαi+1

1 . . . v
αi+1

i )t, Ri = (vα1
i+1 . . . v

αi
i+) and vi+1 ∈ S is chosen

in such a way that rank of Mi+1 = i + 1 i.e., vαi+1

i+1 + RiU
−1
i L−1

i Ci = 1.
Considering the output of RiU−1

i L−1
i Ci = 1 is uniform, the probability of

getting such vi+1 = 1 is 1
2 .

In the ACGKMR algorithm, the term v
αi+1

i+1 +RiU
−1
i L−1

i Ci is computed
(at the last paragraph of page no. 153 [1]) in a strange way without any

11



proper explanation, i.e., vαi+1

i+1 −
∑i

j=1 v
α1
i+1.Pi+1,j where Pi+1,j is the jth coor-

dinate of Pi+1 = (L−1
i Ci)t. Hence RiU−1

i should be same as (vα1
i+1, . . . , v

α1
i+1),

which can be easily verified that it can not be true. Even if we consider that
there is a typing mistake, we believe that RiU−1

i can not be written as a so
simple expression. Hence it is another reason for not trusting the algorithm.

Now, we shall discuss about the obstacles present in the faster compu-
tation for LU decomposition of Md

S(p). Here, faster computation we mean
quadratic time complexity computation i.e., O(22n). During the process we
face 3 computations, i.e., RiU−1

i , L−1
i Ci and RiU−1

i L−1
i Ci to be made faster.

If RiU−1
i and L−1

i Ci are available, then RiU
−1
i L−1

i Ci can be computed in
O(2n) time. Further, if U−1

i and L−1
i are known priorly then RiU

−1
i and

L−1
i Ci can be computed in O(2n+wt(vi)) and O(22n−wt(αi)) as weight of Ri

and Ci are at most 2wt(vi) and 2n−wt(αi) respectively. The computation of
L−1 and U−1 can be computed recursively. But we do not find any technique
to make this computation lesser than the quadratic time complexity. There
may exist some other hidden way, but computing U−1

i and L−1
i efficiently is

still an unsolved task for the purpose.
Another instance in [1, Table 1] is an example that how the paper was

not written and reviewed carefully. It is known that the Kasami function
in n-variables have exponents of the form 22k − 2k + 1 with gcd(n, k) = 1.
Therefore, the degree of Kasami function is k + 1. In [1, Table 1], the
exponent of Kasami function on 14 and 15 variables is written as 4033 =
22∗6 − 2 ∗ 6 + 1 where as gcd(14, 6) 6= 1 6= gcd(15, 6). Moreover, the degree
of Kasami exponent on 12, 16 and 20 variables are supposed to be 6, 8 and
10 as k = 5, 7 and 9 respectively.

5 Lower-block triangularity of MX
V

An n×m matrix M is called a lower-block triangular matrix if the structure
of M is as follows.

M =


M11 M12 . . . M1l

M21 M22 . . . M2l

. . . . . .
. . . . . .

Ml1 Ml2 . . . Mll

 (3)

where Mij are ni ×mj sub-matrices for 1 ≤ i, j ≤ l with
∑l

i=0 ni = n and∑l
j=0mj = m and Mi,j are zero sub-matrices for j > i.

5.1 Ordering <w

Let the monomials in Bn,n and vectors in Vn be ordered by <w. Consider a
set of monomials X ⊆ Bn,n and a set of vectors V ⊆ Vn. Let X0, X1, . . . , Xn

be disjoint subsets of X, partitioned on the degree of monomials. The set

12



Xi contains all the monomials of degree i from X. If xα ∈ Xi, xβ ∈ Xj and
i < j then xα <w x

β and α <w β.
Similarly, the vector set V is partitioned by the weight of vectors and

are denoted by V 0, V 1, . . . , V n. If v ∈ V i, xα ∈ Xj and i < j, it is clear
that v <w α and α * v. Hence, we have the following theorem.

Theorem 2. The incidence matrix MX
V is a lower block triangular matrix

with Mij = MXj

V i on the ordering <w of elements of V and X.

Example 2. Let X be the set of monomials on 4-variables such that log(X) =
{0, 2, 3, 4, 8, 9, 14, 15} and set of vectors V = {0, 3, 4, 5, 7, 9, 12, 15}. The
vectors are shown in their integer form. Then, log(X0) = {0}, log(X1) =
{2, 4, 8}, log(X2) = {3, 9}, log(X3) = {14}, log(X4) = {15} and V 0 = {0}, V 1 =
{4}, V 2 = {3, 5, 9, 12}, V 3 = {7}, V 4 = {15}. Then the matrix

MX
V =



1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1


is a lower block triangular matrix.

Since MX
V is lower block triangular, one can implement block wise Gaus-

sian row elimination from the down to top i.e., doing block wise Gaussian
row reduction of transpose of MX

V to reduce the time complexity for com-
puting rank of MX

V .
Consider V,X are chosen randomly such that |V | = |X| = 2n−1. Here

|Xi| and |V i| are approximately 1
2

(
n
i

)
for 0 ≤ i ≤ n. The time complexity

for ith block wise row elimination of is O(
(
n
n−i
)3) = O(

(
n
i

)3). Hence, the

time complexity for finding rank of MX
V is O(

∑n
i=0

(
n
i

)3).
Now we will discuss about the rank of Md

S(p). In this case, X = Bn,d

and V = S(p). So, |Xi| =
(
n
i

)
for 0 ≤ i ≤ d and |Xi| = 0 for d+ 1 ≤ i ≤ n.

If p ∈ Pn is a random polynomial, then we have |V i| ≈ 1
2

(
n
i

)
, for 0 ≤ i ≤ n.

During the block wise row operation of matrix Md
S(p) from down to top, every

time all columns (monomials) should be eliminated to have rank equal to
number of columns. So, same number of rows are eliminated and rest of
the rows augmented to the next block of rows. Since |Xn−j | = 0, 0 ≤
j < n − d, there is no computation needed for the jth block wise row
elimination. For jth block operation, n − d ≤ j ≤ n, the number of rows

is rj = |V n−j |+
j−1∑
i=0

|V n−i| −
j−1∑
i=n−d

(
n

n− i

)
≈ 1

2

j∑
i=0

(
n

i

)
−

j−1∑
i=n−d

(
n

i

)
. For

13



d < n
2 , rj =

1
2

(
(
n

j

)
+

j−1∑
i=n−d

(
n

i

)
+
n−d−1∑
i=d+1

(
n

i

)
+

d∑
i=n−j+1

(
n

n

)
+
n−j∑
i=0

(
n

i

)
)

−
j−1∑
i=n−d

(
n

i

)
=

1
2

(
(
n

j

)
+
n−d−1∑
i=d+1

(
n

i

)
+
n−j∑
i=0

(
n

i

)
) = O(2n). At the jth block

wise operation, the sub matrix has rj many rows,
n−j∑
i=0

(
n

i

)
many columns

and
(
n
n−j
)

many columns to be eliminated. Therefore, the time complexity
for the jth block wise row elimination is

O(rj

(
n

n− j

)
(
n−j∑
i=0

(
n

i

)
)) = O(rj

(
n

n− j

)2

) = O(rj

(
n

j

)2

)

and hence, finding rank of Md
S(p) is O(

n∑
j=n−d

(rj

(
n

j

)2

)) = O(2n
n∑

j=n−d

(
n

j

)2

).

However, as discussed in Subsection 3.2, each sub-matrix is sparser by O(2d),
which can be exploited for block wise elimination to speed up the process
by O(2d). Thus, the time complexity is better than the time complexity of
usual algorthims described in Section 3. Moreover, we have advantage in
space complexity as we need only the sub-matrix of size rj×

(
n
j

)
= O(2n

(
n
j

)
)

at the jth block operation in stead of the whole 2n−1 × 2n−1 matrix.
The following section contains the main result, by changing the ordering

to <, we gain better time and space complexity.

5.2 Ordering <

Let the monomials of Bn,n and vectors of Vn be ordered by <. Con-
sider a set of monomials X ⊆ Bn,n and a set of vectors V ⊆ Vn. Let
X0, X1, . . . , X2k−1, k ≤ n, be disjoint subsets of X, partitioned on the value
of last k coordinates of the exponent vector α of monomials xα. The su-
perscript i of Xi denotes the integer value of last k-coordinates of exponent
vector α. If xα ∈ Xi, xβ ∈ Xj and i < j then xα < xβ and α < β.

Example 3. Consider X = B4,2. Then log(B4,2) = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12}
with the ordering <. Here the vectors are represented in their integer form.
Fixing the last two coordinates of α, we have log(B0

4,2) = {0, 1, 2, 3},log(B1
4,2) =

{4, 5, 6}, log(B2
4,2) = {8, 9, 10} and log(B3

4,2) = {12}.

Similarly, the vector set V is partitioned by the value of last k coordinates
of vectors of V and are denoted by V 0, V 1, . . . , V 2k−1

. If v ∈ V i, xα ∈ Xj

and i < j, it is clear form the ordering < of vectors that v < α and α * v.
Let denote vect(i) is the vector form of binary representation of i. Hence,
we have the following lemma.
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Lemma 1. The incidence matrix MXj

V i is a zero matrix if vect(j) * vect(i)
for 0 ≤ i, j ≤ 2k − 1.

Example 4. Let X be the set of monomials on 4-variables such that log(X) =
{1, 2, 3, 4, 8, 9, 10, 14} and set of vectors V = {0, 3, 4, 5, 7, 9, 12, 15}. The vec-
tors are shown in their integer form. If we fix last two coordinates, then
log(X0) = {1, 2, 3}, log(X1) = {4}, log(X2) = {8, 9, 10}, log(X3) = {14} and
V 0 = {0, 3}, V 1 = {4, 5, 7}, V 2 = {9}, V 3 = {12, 15}. Then the matrix

MX
V =



0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1


Here, MX1

V 0 ,MX2

V 0 ,MX3

V 0 ,MX2

V 1 ,MX3

V 1 ,MX1

V 2 ,MX3

V 2 are zero sub-matrices of MX
V .

Since vect(j) * vect(i) for j > i, MXj

V i is zero matrix for j > i. So, we
have the following theorem.

Theorem 3. The incidence matrix MX
V is a lower block triangular matrix

with Mij = MXj

V i on the ordering < of elements of V and X.

Since MX
V is lower block triangular, one can implement block wise Gaus-

sian row elimination from down to top for reducing the time complexity of
computing the rank of MX

V . Hence we have the following result on the rank
of MX

V .

Corollary 1. The rank(MX
V ) < |X| iff rank(MX

V
) < |X| where V =

∪pi=0V
2k−1−i and X = ∪pi=0X

2k−1−i for some 0 ≤ p ≤ 2k − 1.

Therefore, we have the following necessary condition on the rank of MX
V .

Corollary 2. If
∑p

i=0 |V 2k−1−i| <
∑p

i=0 |X2k−1−i| for some 0 ≤ p ≤ 2k−1,
then rank(MX

V ) < |X|. Moreover, if |V | = |X| and
∑p

i=0 |V i| >
∑p

i=0 |Xi|
for some 0 ≤ p ≤ 2k − 1, then rank(MX

V ) < |X|.

In Example 4, we have |V 3 ∪ V 2| = 3 and |X3 ∪ X2| = 4. Hence,
rank(MX

V ) < |X|. There is an annihilator on the monomials from X of the
polynomial having support set V . The inequality in Corollary 2 classifies
some polynomials of having low AI.

For a random set of 2n−1 vectors, V , and a random set of 2n−1 monomi-
als, X, |V i| ≈ 2n−k−1 and |Xi| ≈ 2n−k−1. Now one can use the Corollary 1
and Corollary 2, to check the rank of MX

V . One can use corollary 2 in better
way by finding a proper permutation on the variables x1, x2, . . . , xn, such
that

∑p
i=0 |V 2k−1−i| <

∑p
i=0 |X2k−1−i| for a some p. Then, one can compute

rank of MX
V faster.
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Corollary 3. If rank(MX
V ) = |X| then for every permutation on variables

x1, x2, . . . , xn and every k, p, 0 ≤ k ≤ n, 0 ≤ p < 2k,
∑p

i=0 |V 2k−1−i| ≥∑p
i=0 |X2k−1−i|.

Hence, using Corollary 1, one has to perform block wise row elimination
operation from down to top of the matrix, to compute the rank of MX

V .
During the operation, the un-eliminated rows in a block are augmented
with the next block.

Example 5. Consider the sets X and V in Example 4. Then the block wise
Gaussian row reduction can be done as following. The block of rows enclosed
by double lines are to be reduced.

M
X
V =

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1

1CCCCCCCCCCA

→

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0

1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0

1 1 1 1 1 1 1 1

1CCCCCCCCCCA
→

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0

0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

1CCCCCCCCCCA

→

0BBBBBBBBBB@

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

1CCCCCCCCCCA
→

0BBBBBBBBB@

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

1CCCCCCCCCA

After the row reduction, we got rank(MX
V ) = 6 i.e., there are two free

monomials x2 and x2x4. So, there are 2 linearly independent annihilators
on the monomials from X of the polynomial having support set V .

Now consider V,X are chosen randomly such that |V | = |X| = η.
Since k variables are fixed, there are 2k blocks of rows of size approxi-
mately η

2k . The time complexity for row elimination of each block is O(η ×
( η
2k )2) = O(η32−2k). Hence, the time complexity for finding rank of MX

V is
O(2k × η32−2k) = O(η32−k). If |V | = |X| = 2n−1, the time complexity for
finding rank of MX

V is O(23n−k). If one fixes all n variables, theoretical time
complexity becomes O(22n), i.e., quadratic time complexity. Moreover, the
space complexity for the computation is O(2n) as one needs only the block
of rows during the computation.

Theorem 4. For a randomly chosen V ⊂ Vn and X ⊂ Bn,n such that
|V | = |X| = 2n−1, the expected time complexity and space complexity to
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compute the rank of the 2n−1 × 2n−1 matrix MX
V is O(22n) and O(2n) re-

spectively i.e., quadratic time complexity and linear space complexity on the
|X| respectively.

Now we will discuss about the rank of Md
S(p), which is important to

compute AI(p) for p ∈ Pn. In this case, X = Bn,d and V = S(p). Since
the monomial set X is not randomly chosen, the time complexity differs
than the described one in Theorem 4. Fixing the last k coordinates, we

have |Bi
n,d| = bi =

d−wt(i)∑
j=0

(
n− k
j

)
for 0 ≤ i < 2k, 0 ≤ k ≤ n. If p ∈ Pn

is a random polynomial, then we have |V i| ≈ 2n−k−1, 0 ≤ i < 2k. Here
onwards, we follow the notation K = 2k − 1 and N = 2n − 1. During the
block wise row operation (from down to top) of matrix Md

S(p), every time all
columns (monomials) in the block should be eliminated to have rank equal
to number of columns. So, the same number of rows also are eliminated and
rest of the rows are augmented to the next block of rows. Hence, during
the jth block wise row operation, for 0 ≤ j ≤ K, the number of rows is

rj = |V K−j |+
j−1∑
i=0

(|V K−i| − bK−i) ≈ (j + 1)2n−k−1 −
j−1∑
i=0

bK−i. At the jth

operation, the sub-matrix contains rj rows and cj =
K−j∑
i=0

bi columns, bK−j

columns from these cj columns to be eliminated. So, the time complexity for
the row elimination of jth block is O(rjcjbK−j) and hence, time complexity

to find the rank of Md
S(p) is O(

K∑
j=0

rjcjbK−j).

For k = n, the time complexity to compute the rank ofMd
S(p) isO(

N∑
j=0

rjcjbN−j).

Here,

bi =
d−wt(i)∑
i=0

(
0
i

)
=

{
1 if wt(i) ≤ d
0 if wt(i) > d.

So, bN−j =

{
1 if wt(j) ≥ n− d
0 if wt(j) < n− d,

cj =
N−j∑
i=0

bi =
∑

0≤i≤N−j

wt(i)≤d

1 =
d∑
i=0

(
n

i

)
−

∑
0≤i≤j−1

wt(i)≥n−d

1

and rj ≈
j + 1

2
−

j−1∑
i=0

bN−i =
j + 1

2
−

∑
0≤i≤j−1

wt(i)≥n−d

1.
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When wt(j) < n − d i.e., bN−j = 0, there is no column to eliminate
and hence no operation needed for the block operation. When wt(j) ≥
n − d, i.e., bN−j = 1, there is only one column (monomial) to eliminate.
So, the time complexity for j-th block operation is O(rjcj). Therefore, the
time complexity to find the rank of Md

S(p) is O(
∑

0≤j≤2n−1

wt(j)≥n−d

rjcj). Now we will

simplify it.∑
0≤j≤N

wt(j)≥n−d

rjcj =
∑

0≤j≤N

wt(j)≥n−d

(
j + 1

2
−

∑
0≤i≤j−1

wt(i)≥n−d

1)(
d∑
i=0

(
n

i

)
−

∑
0≤i≤j−1

wt(i)≥n−d

1)

≤
∑

0≤j≤N

wt(j)≥n−d

(
j + 1

2
−

∑
0≤i≤j−1

wt(i)≥n−d

1)(
d∑
i=0

(
n

i

)
)

There are
n∑

i=n−d

(
n

i

)
many terms in the summation

∑
0≤j≤N

wt(j)≥n−d

j. The

integer i has wt(i) many non-zero positions in binary expansion and each
non-zero position k contributes the value 2k to the summation. In the sum-

mation, each position, k, for 0 ≤ k < n contributes the value
1
n

n∑
i=n−d

i

(
n

i

)
=

n∑
i=n−d

(
n− 1
i− 1

)
many times.

So,
∑

0≤j≤N

wt(j)≥n−d

j + 1
2

=
1
2

(
∑

0≤j≤N

wt(j)≥n−d

j +
n∑

i=n−d

(
n

i

)
)

=
1
2

(
n∑

i=n−d

(
n− 1
i− 1

)
(20 + 21 + · · ·+ 2n−1) +

n∑
i=n−d

(
n

i

)
)

=
1
2

(
n∑

i=n−d

(
n− 1
i− 1

)
(2n − 1) +

n∑
i=n−d

(
n

i

)
) = 2n−1

n∑
i=n−d

(
n− 1
i− 1

)
+

1
2

n∑
i=n−d

(
n− 1
i

)
)

Now, in the summation
∑

0≤j≤N

wt(j)≥n−d

∑
0≤i≤j−1

wt(i)≥n−d

1, an integer k with wt(k) ≥

n − d, is counted l of times, where l = |{s : k < s ≤ N,wt(s) ≥ n − d}|.
Let, i1, i2, . . . , N are integers with weight at least n− d, then i1 is counted
n∑

i=n−d

(
n

i

)
− 1 times, i2 is counted

n∑
i=n−d

(
n

i

)
− 2 times and so on.

So,
∑

0≤j≤N

wt(j)≥n−d

∑
0≤i≤j−1

wt(i)≥n−d

1 = (
n∑

i=n−d

(
n

i

)
− 1) + (

n∑
i=n−d

(
n

i

)
− 2) + · · ·+ 0
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=
1
2

n∑
i=n−d

(
n

i

)
(

n∑
i=n−d

(
n

i

)
− 1)

Hence,
∑

0≤j≤N

wt(j)≥n−d

rjcj ≤ (2n
n∑

i=n−d

(
n

i

)
− (

n∑
i=n−d

(
n

i

)
)2)

d∑
i=0

(
n

i

)

= (
d∑
i=0

(
n

i

)
)2

n∑
i=d+1

(
n

i

)
.

Theorem 5. For a randomly chosen polynomial p ∈ Pn, the expected time
complexity and space complexity to compute the rank of the matrix Md

S(p) is

O((
d∑
i=0

(
n

i

)
)2

n∑
i=d+1

(
n

i

)
) and O( max

0≤j≤N
rjcj) respectively.

Since simplifying the above expression is not very easy, the time com-
plexity bound given in the Theorem 5 is not a tight upper bound. Hence the
theoretical time complexity is deduced in Theorem 5 do not have significant
advantage over the general algorithm. However, in practice, it is very fast
and can be used to compute for n = 20. Moreover, exploiting the sparseness
of the sub-matrices, the computation speed can be further improved.

5.3 Ordering < and Dalai-Maitra Algorithm

In the sub-section 3.3, we discussed Dalai-Maitra algorithm in [9] to exploit
the sparseness of the matrix D′ for finding the rank of Md

S(p). In this section,
we shall further use the ordering < for faster computation. Now we shall
follow the notations in sub-section 3.3. Now order the set of monomials Y
and set of vectors Z by <. For k, 0 ≤ k ≤ n, make partition of Y and Z
on their last k coordinates as Y 0, . . . , Y 2k−1 and Z0, . . . , Z2k−1 respectively.
Now, denoting D′[Y i, Zj ] is the sub-matrix in D′ corresponding to the vector
set Y i and monomial set Zj , we have the following theorem.

Theorem 6. The matrix D′ is a lower block triangular matrix with D′ij =
D′[Y i, Zj ], 0 ≤ i, j ≤ 2k − 1 on the ordering < of elements of Y and Z.

Comparing to the partitions in subsection 5.2, we have |Y i| ≈ |V
i|

2 , |Zi| ≈
|Xi|
2 . Therefore, the computation in this technique is expected to be 8 times

faster than the computation in subsection 5.2. However, the theoretical
complexity is same as in Theorem 5.

6 Experiment

Using the method described in Section 5.3, it is possible to check AI of a
polynomial from P20 with less memory. In this section we present some
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experimental results on some important power S-boxes (i.e., multi out put
polynomials from IF2n to IF2n) as presented in [1]. The AI of an S-box is the
minimum of the AI of the non-trivial linear combination of the component
functions of the S-box. The AI of n-variable inverse function is bounded by
b
√
nc + d n

b
√
nce − 2, Kasami and Niho exponents are bounded by b

√
nc +

d n
b
√
nce [19].
Experimentally, we check that the AI of inverse S-box is b

√
nc+d n

b
√
nce−2

for n ≤ 21. Moreover, we found that the number of annihilators of the
component functions and it’s complement functions at b

√
nc + d n

b
√
nce − 2

are same. Therefore, we have the following conjecture.

Conjecture 1. Let INV : IF2n 7→ IF2n be the inverse mapping i.e., INV (x) =
x−1 = x2n−2 for x ∈ IF2n. Then AI(INV ) = b

√
nc+d n

b
√
nce−2. The number

of (b
√
nc+ d n

b
√
nce − 2)-degree annihilators of α0 +

∑n
i=1 aiINV

i are same,
where INV i is the ith component function of INV and α0, ai ∈ {0, 1} and
not all ai are 0.

A Kasami exponent K : IF2n 7→ IF2n is of the form x22k−2k+1 for k ≤ n
2

and gcd(n, k) = 1. The degree of Kasami exponent is k + 1. Therefore,
AI(K) ≤ min{k + 1, b

√
nc + d n

b
√
nce}. The following table presents the

experimental result of AI(K) for the largest k ≤ n
2 and gcd(n, k) = 1.

n k deg(K) b
√
nc+ d n

b
√
nce AI(K)

10 3 4 7 4
11 5 6 7 5
12 5 6 7 5
13 6 7 8 6
14 5 6 8 6
15 7 8 8 7
16 7 8 8 7
17 8 9 9 8

For odd n = 2s + 1, a Niho exponent N : IF2n 7→ IF2n is of the form

x2s+2
s
2−1 if s is even and x2

3s+1
2 +2s−1 if s is odd. The degree of Niho expo-

nent is d = n+3
4 if n ≡ 1 mod 4 and d = n+1

2 if n ≡ 3 mod 4. Therefore,
AI(N) ≤ min{d, b

√
nc + d n

b
√
nce}. The following table presents the experi-

mental result of AI(N).
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n deg(N) b
√
nc+ d n

b
√
nce AI(N)

9 3 7 3
11 6 7 5
13 4 8 4
15 8 8 7
17 5 9 5
19 10 9 9
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