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Abstract. The goal of a profiling attack is to challenge the security of a cryptographic device in the
worst case scenario. Though template attack are reputed as the strongest power analysis attack, they
effectiveness is strongly dependent on the validity of the Gaussian assumption. This led recently to the
appearance of nonparametric approaches, often based on machine learning strategies. Though these
approaches outperform template attack, they tend to neglect the time series nature of the power traces.
In this paper, we propose an original multi-class profiling attack that takes into account the temporal
dependence of power traces. The experimental study shows that the time series analysis approach is
competitive and often better than static classification alternatives.
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1 Introduction

Embedded devices such as smart cards, mobile phones, and RFID tags are widely used in our
everyday lives. These devices implement cryptographic operations allowing to secure, for example,
bank transfers, buildings and cars. A modern bank card embeds securely a secret information
allowing in fine to transfer cash. This operation is allowed by the smart card when it receives the
right PIN code. During the verification of the PIN code, a PIN-related information (associated to
the right PIN) is processed by the device. This secret information could be retrieved by physical
attacks that analyze the power consumption [23], the processing time [22], or the electromagnetic
emanation [14] of the device. In this work, we focus on attacks based on power consumption
analysis. These attacks aim to infer the key-related information (label) from a time series of power
measurements called trace.

Differential Power Analysis (DPA) [23] is an example of physical attack which first models the
theoretic power consumption for each secret information. Then the real and the predicted power
consumption are compared by using metrics, also known as distinguishers, such as the correlation
coefficient [11], the difference of means [23], the mutual information [15], or the Kolmogorov-
Smirnov Test [37]. The rationale is that the likelihood of a secret information is related to the
degree of similarity between the predicted and the real power consumption.

Profiling attack (PA), and more precisely Template Attack (TA) [10], makes another step for-
ward in the use of statistical modelling of power consumption; it estimates the conditional density
function of the time series for each key-related information by using a Gaussian parametric model.
Thereafter, the time series are classified under a maximum likelihood approach. If the assump-
tion of gaussianity holds, it can be considered as the strongest power analysis in an information
theoretic sense [10].

In recent years the cryptographic community explored new approaches based on machine learn-
ing models. These methods demonstrate that template attacks underestimate the security of em-
bedded devices. Lerman et al. [25, 26] compared a template attack with a binary machine learning



approach, based on non-parametric methods, against a cryptographic device (FPGA Xilinx Spar-
tan XC3s5000) implementing 3DES. In this work the authors dealt with a limited number of traces
(between 125 and 256 samples) and a very high number of dimensions (between 6,000 and 10,000
points per trace) by adopting a robust dimensionality reduction methods. Hospodar et al. [19, 20]
analyzed a software implementation of a portion of the AES algorithm. Their experiments support
the idea that non-parametric techniques can be competitive and sometimes better (i.e. less number
of traces in the attack phase) than state-of-the-art approaches when simplistic assumptions do not
hold. Bartkewitz [3] generalized this idea by considering multi-class models allowing to improve
the attack success with respect to the binary approach. In the same year Heuser et al. [18] analyzed
a multi-class machine learning model for a profiling attack in several contexts (e.g. varying the
signal-to-noise ratio by an additional Gaussian noise, and varying the number of required traces
in the attack phase to achieve a fixed guessing entropy).

However, all the attacks proposed so far tend to disregard the temporal nature of the trace and
the potential source of information available in the temporal dependencies between power values.
We aim to fill this gap by proposing an original multi-class profiling attack based on the adoption
of a time series approach. The idea is to adopt a time series prediction algorithm (notably the Lazy
Learning algorithm [1, 8]) i) to characterize the temporal dependencies in the traces associated to
each target value (related to a secret key) and ii) to design a classifier based on the temporal
likelihood of the new traces.

We make a detailed assessment of the proposed approach by considering 6 datasets with dif-
ferent signal-to-noise ratios. The experimental results confirm that the classical template attack is
not optimal in several contexts [3, 18–20, 25–27]. At the same time we show that our time series
profiling attack is competitive (or better) with state-of-the-art approaches. Our interpretation is
that the proposed method allows a more compact way to address the issue of large dimensionality.
So far classification techniques in side channel attack focus on a set of values associated to relevant
parts of the trace. Given the noise and the large number of collected values, this demands the
adoption of feature selection techniques which have to deal with a large dimensionality issue. This
is no more the case in our approach where the time series is no more seen as a very large set of
independent values but rather as an auto-regressive stochastic process which can be described by
a low dimensional mapping.

This paper is organized as follows. Section 2 reviews the state-of-the-art of profiling attacks
including the well-known template attack and the profiling attack based on machine learning clas-
sification models. Section 3 introduces our original attack based on time series modeling. Section 4
illustrate the power of our proposal with several datasets. We conclude the paper in Section 5.

2 Profiling Attack

2.1 Preliminaries

Let e be an encryption algorithm (a block-cipher) that transforms plaintext m ∈M into ciphertext
c ∈ C under the control of a secret key Oi ∈ O where O = {O1, O2, ..., OK}. More formally

e : O ×M→ C
c = eOi(m)

Let d be the decryption algorithm such that

d : O × C →M
m = dOi(c)
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Traditional cryptanalysis techniques search relations between plaintexts, ciphertexts and the
corresponding used keys. On the other hand, profiling attacks analyze the implementation of
cryptographic operations. In particular they perform the worst-case security evaluation of crypto-
graphic devices with the most powerful adversary in the information theoretic sense, by analyzing
the relation between the leaked information (i.e. the power consumption) and the secret key Oi.

During the encryption, a function fOi(m) called a sensitive variable [34] (f in short) is executed.
Examples of this function are:

fOi(m) = Oi (1)

fOi(m) = m⊕Oi (2)

fOi(m) = SBox(m⊕Oi) (3)

where ⊕ is the exclusive-or and SBox is a nonlinear function.
The attacker focuses on a single (or combined [13]) function f in order to recover the key.

The best attack is the one which maximizes the success rate. In order to be close to the power
consumption, the value of f is mapped with a leakage model to another value Q ∈ Q where
Q = {Q1, Q2, ..., QK}. Examples of leakage models are the identity, the Hamming weight (HW),
and the Hamming distance (HD) [28].

For each value of this function let us observe N times the power consumption of a device
(identically to the one that the attacker wants to target) over a time interval of length n and denote

by trace the series of observations. Let jT i =
{
j
tT i ∈ R | t ∈ [1;n]

}
be the j-th trace associated to

the target value Qi and T be a set of traces.
Profiling Attack approaches model the stochastic dependency between the value of Qi and a

trace jT i. More precisely, they estimate the probability distribution P (Qi|jT i; θi) (where θi is the
parameter of the distribution) on the basis of a set of traces (training set) associated to each target
value (also known as class).

2.2 Template Attack

In order to classify a trace, the Template Attack strategy estimates a template P (Qi|jT i; θi) for
each target value Qi. By making the assumption of normality, each template’s estimation demands
the estimation of the means µi and the covariance matrix Σi from the data.

Once a template is estimated for each target value, the classification of a new trace T is obtained
by computing the value Q̂ ∈ Q which maximizes the a posteriori probability

Q̂ = arg max
Q

P (Q|T ) (4)

= arg max
Q

P (T |Q)× P (Q)

P (T )
(5)

= arg max
Q

P̂ (T |Q; µ̂i, Σ̂i)× P̂ (Q) (6)

where the apriori probabilities P̂ (Q) are estimated by the user accordingly.
If a set T of traces for a constant secret key are available, the attacker uses the equation (or

the log-likehood rule):

P̂ (Q|T ) =
(
∏
T∈T P̂ (T |Q))× P̂ (Q)∑

q∈Q(
∏
T∈T P̂ (T |q))× P̂ (q))

(7)
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2.3 Profiling Attack based on Machine Learning

In recent years we have assisted to a growing use of machine learning for profiling attack. These
techniques do not require the adoption of any parametric or normal assumption and are more suit-
able to deal with very large dimensional noisy datasets. A conventional machine learning approach
to classification relies on two main steps: the dimensionality reduction and the model building.

Dimensionality reduction Dimensionality reduction (also known as feature selection or points
of interest) aims to extract a subset of p informative variables out of the original n variables [2, 32,
33]. There are plenty of advantages in dimensionality reduction: speed up of the learning process,
enhancement of model interpretability, reduction of the amount of storage and improvement of the
quality of models by mitigating the curse of dimensionality [4].

The curse of dimensionality is a well known problem in machine learning which states that
by increasing dimensionality, the sparsity of data increases at an exponential rate, too. This is
a problem when considering classifiers which have to group traces associated to the same target
value.

There are several feature selection methods in the literature but we restrict ourselves to three
methods. The MAX method selects a set of highest values in a trace.

Another feature selection is the minimum Redundancy Maximum Relevance (mRMR). It was
first proposed in the bioinformatics literature [31] in order to deal efficiently with configurations
where the number of points in each trace is much larger than the number of traces in the learning
set. Its purpose is to rank variables by prioritizing the ones which have a low mutual dependence
(i.e., low redundancy) while still providing a large amount of information about the output (i.e.,

large relevance). The method starts by selecting the variable r =
{
j
tT i | i ∈ [1;K] ; j ∈ [1;N ]

}
having the highest mutual information about the target variable Q = {Qi | i ∈ [1;K]}. Then,
given a set of selected variables R, the criterion updates this set by adding the variable t ={
j
tT i | i ∈ [1;K] ; j ∈ [1;N ] ; t /∈ R

}
that maximizes the mutual information with the target variable

and that minimizes the mutual information with the already selected variables.

Another feature selection method is the Sum of Squared Pairwise t-differences (SOST) [16]
based on the T-Test. The T-Test assesses whether the weighted means of traces associated to two
different classes are significantly different from each other at time t. More precisely it is expressed
by:

tµi − tµj√
tσi

2

Ni
+

√
tσj

2

Nj

(8)

where tµi, tσi and Ni are respectively the means, the standard deviation and the number of traces
at time t that are associated to the class Qi.

The SOST method selects the most relevant components t that have the highest values accord-
ing to:

K∑
j>i=0

 tµi − tµj√
tσi

2

Ni
+

√
tσj

2

Nj


2

(9)

Model building Machine learning literature proposes plenty of nonparametric algorithms to es-
timate P (Qi|jT i; θi) on the basis of data. Two well-known examples are Random Forest (RF) [9]
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and a Support Vector Machine (SVM) [12]. These two techniques allow to remove the Gaussian as-
sumption and to infer in a data driven manner the model which best fits the stochastic dependency
between target value and power consumption.

SVM In a binary classification setting (e.g. Q1 = −1 and Q2 = 1), if the two classes are separable,
the SVM algorithm is able to compute from a set of traces the separating hyperplane with the
maximal margin, where the margin is the sum of the distances from the hyperplane to the closest
traces of each of the two classes.

The SVM classification computes the parameters b (the bias) and w (the weight vector) of the
separating hyperplane [w>T + b] by solving the following convex optimisation problem:

min
1

2
(w>w) (10)

subject to

Qi(w
>jT i + b) ≥ 1 ∀i ∈ [1; 2] , j ∈ [1;N ] (11)

A trace T is assigned to class Q1 if w>T + b < 0 and to Q2 otherwise.
In nonlinearly separable setting the formulation is changed by introducing a set of slack vari-

ables ξij ≥ 0 with i ∈ [1; 2] , j ∈ [1;N ] then leading to the problem

min
w

1

2
(w>w) + C

2∑
i=1

N∑
j=1

ξij (12)

subject to
Qi(w

>jT i + b) ≥ 1− ξij ∀i ∈ [1; 2] , j ∈ [1;N ] C ≥ 0 ξij ≥ 0 (13)

A larger C means that a higher penalty to classification errors is assigned.
SVM is also modifiable to nonlinear classification tasks by performing a nonlinear transforma-

tion κ of traces. This function is named kernel function and can have several forms (e.g. linear,
polynomial, radial basis function, sigmoid). Its purpose is to find a linear separation in a higher
dimension if there are no linear separation in the initial dimension. We used the kernel Radial
Basis Function in our experiments.

Several extensions for constructing a multi-class SVM are possible such as one-against-one and
one-against-all [21]. We used the one-against-one strategy in our experiments since all methods
perform similarly [24].

RF The Random Forest algorithm was introduced by Breiman in 2001 to address the problem of
instability in large decision trees, where by instability we denote the sensitivity of a decision tree
structure to small changes in the training set. In other words, large decision trees prone to high
variance resulting in high prediction errors.

Let DTi be a decision tree. In order to reduce the variance, this method relies on the prin-
ciple of model averaging by building a set of B (B > 1) approximately unbiased decision trees
({DT1,DT2, ...,DTB}) and returning the most consensual prediction. This means that the target
value Q̂ of an unlabeled observation T is calculated through a majority vote of the set of trees.
More formally,

Q̂ = fmajority (DT1 (T ) ,DT2 (T ) , ...,DTB (T )) (14)
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where fmajority is the majority vote function and DTi is the i-th classification tree which returns
its prediction for T .

RF is based on two aspects. First each tree is constructed with a different set of traces through
the boostrapping method. This method builds a bootstrap sample for each decision tree by resam-
pling (with replacement) the original data set. Observations in the original data set that do not
occur in a bootstrap sample are called out-of-bag observations and are used as a validation set.
Secondly, each tree is built by adopting a random partitioning criterion. This idea allows to obtain
decorrelated trees, thus improving the accuracy of the resulting RF model. The number of trees
(B) in the random forest has to be large enough to create diversity among the predictions. In our
experiment we use 500 trees.

In conventional decision trees each node is split using the best split among all variables. In the
case of a random forest, each node is split using the best among a subset of variables randomly
chosen at that node. Also, unlike conventional decision trees, the trees of the random forest are
fully grown and are not pruned. In other words, each node contains traces associated to a value
of the key. This implies null training error but large variance and consequently a large test error
for each single tree. The averaging of the single trees represents a solution to the variance issue
without increasing the bias, and allows the design of an overall accurate predictor. Hence the
improvements in prediction obtained by random forests are solely a result of variance reduction.

3 A time series approach for profiling attacks

The most distinctive aspect of a time series is the existence of a stochastic dependency between
past and future values. This section introduces our original approach to take into account such
dependency in trace values during a profiling attack.

State-of-the-art approaches assume that this dependency is negligible: during a pre-processing
step (i.e. a feature selection step) traces are projected in new dimensions (before a classification
step) where (1) the new dimensions correlate highly with the target value and (2) (optionally)
correlate weakly between them. Here we intend to show that in fact such temporal dependence is
relevant and can be used in order to improve the success rate of the attack.

The autoregressive formalism is the conventional way to represent the stochastic dependency
in a time series. According to this formalism there exists a dependency between the future value
j
t+1T i and a set of past values

{
j
tT i,

j
t−1T i, ...,

j
t−pT i

}
such that

j
t+1T i = fθi

(
j
tT i,

j
t−1T i, ...,

j
t−pT i

)
+ ε (15)

where ε is the additive noise and f is the unknown autoregressive function.

In order to take into account the temporal dependence we fit a time series model fθi for each
class. Several linear (e.g. AR and MA) and nonlinear time series models exist in literature [6]. In
our experiments we will consider a Lazy Learning (LL) technique [1, 8] to estimate a nonlinear
prediction model. Lazy learning proved to be a very effective technique in a number of academic
and industrial case studies [7]. It implements a local regression model by tuning automatically the
number of neighbors on the basis of a fast leave-one-out procedure.

Once a time series model is fitted for each class, we use them to perform classification of new
traces T . Our technique returns the class either by minimizing the fitting error on T :

Q̂ = arg min
i

n∑
t=p

(
f̂θ̂i

(
t−1T , t−2T , ..., t−(p−1)T

)
− tT

)2
(16)
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or by mapping the fitting error to the real class with a classifier h (e.g. a random forest). In this
case the fitting step is seen as a transformation (symbolized by g) of traces to a new coordinate
system such that

Q̂ = h (g (T )) (17)

where h (h : RK → Q) maps the vector g of fitting errors of each time series model to the
predicted target value.

The resulting method presents two main advantages with respect to the state-of-the-art: (1) it
allows to take into account the natural temporal ordering of data, and (2) it reduces the variance
of the feature selection step. This is expected to reduce the complexity of the resulting method
with respect to static classifiers since a time series model considers a few number of points (p− 1
points instead of n) at a time. As a consequence the new approach has a lower variance and
leads to a more robust method against noise. The main drawback is that it requires to compute
the fitting error for each trace and for each time series model. However, in a practical point of
view, the proposed approach is parallelizable: each time series model can be executed on different
processors/cores allowing to speed up the profiling attack.

4 Experiments

In order to assess the quality of the time series approach, we benchmarked it against template at-
tacks and profiling attacks based on static classification models and three feature selection strate-
gies (MAX, mRMR and SOST). We used several datasets with different signal to noise ratios. The
parameters of each classification and time series models are estimated with a learning set made
of 80% of the original dataset. For each model we search the best number of inputs per clock
cycle of the crypto device (between 2 and 5 since additional points in the same clock cycle do not
provide additional information [32]) by using a validation set. Finally a test set (independent of
the learning and the validation set) is used to compare the accuracy of each approach.

4.1 Target implementation

In order to easily reproduce the results, the experiments were carried out on power leakages that are
freely available on the DPAContest V1 website [35] where the cryptographic device (a SecmatV1
SoC in ASIC) implements the unprotected block-cipher DES (see Figure 6 for an illustration of
DES). Note that the proposed profiling attack is generalizable to other crypto algorithms.

The target value represents the Hamming distance between the left blocks of rounds 15 and 16
(i.e. L15 and L16 in Figure 6). Since we have no control on the crypto device (the keys/plaintexts
was randomly chosen) we focused on the target values of 7 to 25 in order to have at least several
traces per class. We choose this target value because (1) it is highly correlated with the traces,
(2) it allows to recover 48 bits of the secret key3 when the ciphertext is known, and (3) it is good
enough in order to compare several approaches.

In the worst case we need
(
32
16

)
× 8 (less than 238) tests to find all the secret key when the

target value is known (in the best case we need only 8 tests to find the secret key). In order to
reduce the number of tests an attacker can target the Hamming weight of a byte (which involves a
worse success rate due to a decreasing of the signal-to-noise ratio). Another solution is to use this
Hamming distance as an input to other attacks such as an Algebraic Side Channel Attack [29] or

3 The last 8 bits of the key are searched with a brute-force strategy.
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a classical DPA combined with a template attack approach [30]. But the purpose of this section is
essentially to compare several approaches in several contexts with real datasets and, therefore, to
validate the theoretical analyzes performed in previous sections.

4.2 Measurement Setup

In order to generate the traces of the DPAContest V1 an oscilloscope collected 81,089 traces
(see a trace in Figure 7), each composed of 20,000 points. A more detailed description of the
attacked implementation and the measurement setup can be found in [35]. As a preprocessing
step we reduced the size of each trace by zooming on the time interval when the target value is
manipulated. For this we computed the Pearson correlation between each time of 500 traces and
their relatively target values (see Figure 8). We selected a time interval of 100 where the first
significant correlation is obtained (a trace in this time interval is plotted in Figure 9).

As stated in the previous section, we focused on the target values (i.e. de HD) between 7 and
25. We reduced the size of the dataset to 8095 by computing the average of 10 traces (associated
to the same target value) in order to reduce the noise. Table 1 shows the number of traces per
target value. It is worth to note that the number of traces per class is strongly imbalanced.

We added a gaussian noise in order to analyze the signal-to-noise impact on the prediction
of each approach4. The Gaussian noise follows a Gaussian distribution with a mean of 0 and a
standard deviation varying by 0.001 between 0 and 0.005. It allows to confront several models
against 6 different contexts. Another approach would be to reduce the number of traces involved
in the average. We decided to use the first approach in order to have the same number of traces in
each dataset while controlling the noise level with a good precision. The limit of 0.005 for the noise
level was mainly based on the result of Figure 10 which shows the impact of the added noise to two
traces associated to two different target values. A higher noise level does not allow to distinguish
classes which include more than 70% of traces of the dataset.

Target value 7 8 9 10 11 12 13 14 15 16

Number of traces 6 21 51 122 245 435 666 880 1064 1128

Target value 17 18 19 20 21 22 23 24 25

Number of traces 1067 873 675 423 239 127 51 16 6
Table 1. Number of traces per target value.

4.3 Experimental results

We first check the quality of the time series fit. Figure 1 shows the fitting returned by three LL
models5 (with a p, being the lazy model’s complexity, equal to 2) associated to the 7-th, the 16-th
and the 25-th HD. As it can be seen, each time series model predicts values close to the actual
data.

The second experiment compares the template attack against the time series approach. Clearly,
from Figure 2, it can be observed that the success rates are similar when the traces containing
a high signal-to-noise ratio. Moreover, as expected, the higher is the level of noise, the lower

4 The Shapiro-Wilk test (with a significance level of 5%) corroborates that the noise on the collected traces follows
a univariate Gaussian distribution.

5 We used the implementation available on CRAN [5].
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Fig. 1. Fitting of three traces (associated with classes 7, 16 and 25) by three lazy models (with a p equal to 2).

is the performances of both approaches due to the fact that there are less information leakage
available. However the time series approach outperforms the state-of-the-art approach when the
noise increases. Another important advantage of the time series approach over TA is that the
higher the noise the higher the difference between their success rates. It confirms the robustness
of the new approach against noise and therefore the model parameters are expected to be more
reliably estimated.
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Fig. 2. Success rate per noise level on test set using time series approaches vs template attacks. A/B symbolizes the
use of the preprocessing method A with the classifier B.

The third experiment assesses the time series approach vs. a static classification strategy based
on random forest. The results are shown in Figure 3. Random forest allows a higher success rate
than template attack in high noise level while their results are similar in the high signal-to-noise
ratio context. It confirms the results of previous research [3, 18–20, 25–27] that template attack is
not optimal on several contexts. Nevertheless the success rates of the random forest is lower than
the time series approach when the level of noise increases.
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Fig. 3. Success rate per noise level on test set using time series approaches vs random forest. A/B symbolizes the
use of the preprocessing method A with the classifier B.

The last experiment compares the time series approach to a classifier based on support vector
machine. The result is plotted in Figure 4. It highlights a similar performance between both
approaches when we pick out the best feature selection method for each noise level. However our
approach allows a higher success rate (in a noisy context) without the drawback of selection of the
best feature selection for each noise level. Note that the selection step of the classification model
(both in the regression and in the classification approach) influences the success rate.
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Fig. 4. Success rate per noise level on test set using time series approaches vs support vector machine. A/B symbolizes
the use of the preprocessing method A with the classifier B.
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4.4 Discussion and open questions
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Fig. 5. Three errors densities of fitting on a testing set by different lazy models (where p equal to 2) for classes 9,
16 and 20.

The experimental results of the previous sections suggest some considerations. The first one con-
cerns accuracy. We show that for several datasets our approach improves the accuracy of the power
analysis attack with respect to conventional template attack as well as to static classification model
approach in low signal-to-noise ratio settings.

The time series models and the feature selection methods can be seen as a pre-processing step
where traces are projected in new dimensions. Their influences in the success rate can be described
in terms of the Bias-Variance trade-off [17]. An increase in the complexity of the model leads to an
increase of its variance which in turns induces a high sensitivity to noise. On the other hand, in a
low noise context where the variance of models does not influence its success rate a more complex
model is advantageous due to the fact that its low bias improves its success rate. As a result, a low
(resp. high) complex model is favorable in the case of a low (resp. high) signal-to noise context.
This reasoning is supported by our experiments: the pre-processing model with the lowest complex
outperforms the others in the noisy case. More precisely, the MAX function as well as the time
series models lead to higher success rates when we use a RF or a SVM for the classification step. In
contrast the SOST and the mRMR seem to outperform the MAX function when the noise is low.
As a result the choice of a feature selection should be related to the level of noise on the collected
traces. Surprisingly the lazy models combined with the RF or the SVM have a high success rate
compared to the presented methods in low and high signal-to-noise case. This is motivated by its
low bias rate and its low variance rate.

An interesting open problem concerns the selection of the classification model in the time
series approach. Our results suggest that a random forest or a support vector machine allow to
improve the accuracy compared to a MIN function. We could guess that the reason is related to
the estimation’s accuracy of the error of fitting of each time series model. This estimation is linked
to the number of traces used in the learning set of each time series model. A higher number of
trace leads to a better estimation of each parameter [36]. As the number of traces in each class is
not uniformly distributed (i.e. the number of traces in each class is imbalanced), some time series
models estimate better their error of fitting compared to other. As a result, the error of fitting of
each time series model should be weighted with the accuracy of their model. We speculate that the
RF and the SVM estimate these weight values which allow them to outperform the MIN function.
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Another issue is that there are some classes that are more difficult to fit than other. Indeed Figure 5
shows that the distribution of the fitting’s errors is different for each class. As a result an important
question for further research is to determine whether we can improve the success rate by varying
the p value for each time series model or at least to rebalance the learning set.

5 Conclusion

Profiling attacks are useful tools in the evolution of leaking cryptographic devices in a worst case
scenario. In this paper, we first proposed a new and efficient profiling attack in a multi-class
problem. More precisely we introduced a transformation of traces to new dimensions by taking
into account the temporal dependence of traces. This new approach offers several starting points
for further work with other time series models in the profiling attacks.

We showed that the choice of a feature selection should be related to the level of noise in the
collected traces. It led to discuss the advantage of our new proposed technique from a theoretical
point of view based on the bias-variance trade-off. We put forward that such profiling attack is
less sensitive to noise thanks to its lower variance compared to the presented attacks. Therefore,
our method can be carried out in all scenarios where the previously profiling attacks are relevant.

The theoretical point of view is confirmed with several experiments where the new approach
allows to improve (significantly) the success rate in several contexts (with several levels of noise).
Eventually we discussed the results that lead to interesting open questions such that the impact
of differences between the distributions, for each class, of fitting errors in the time series approach.
Another interesting question concerns the effect of the number of traces in the learning set for
each approach. A more robust model against noise needs less traces in the learning set. As a
result, future works will verify whether our proposal outperforms the previous models in a high
dimensionality context where the number of traces is less than the number of components in each
trace. Another future work will focus on the imbalanced nature of the problem by introducing
rebalanced methods that allow to improve the classification models [36].

In summary this paper confirms that template attack can be improved with machine learning
models by designing automatically models from data. More precisely a more powerful adversary
is obtained by taking into account the temporal dependence of traces. Hence, practically secure
crypto implementations would clearly require to be analyzed with the time series approach.
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Appendix

Initial Permutation

Input

L0 R0

F1

O1

+

L15 R15

F16

O16

+

L16 R16

Final Permutation

Output

Fig. 6. The overall Feistel structure of DES where Input is the plaintext, Output is the ciphertext, Li (resp. Ri) is the left
(resp. right) block input of the i-th round, Oi is the i-th subkey, Fi is the i-th nonlinear function, and + is the exclusive-or
operation.
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Fig. 7. A trace from the DPAContest V1 where the blue lines represent the time interval
where the target value is manipulated.

Fig. 8. Correlation between traces and the target value
for each time.

Fig. 9. A zoom on a trace when the target value is ma-
nipulated.
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Fig. 10. Each figure shows two traces associated to two different target values (i.e. 14-th and 19-th HD) with a different
noise level.
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