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Abstract. Mixnets are one of the main approaches to deploy secret and
verifiable electronic elections. General-purpose verifiable mixnets how-
ever suffer from the drawback that the amount of data to be verified
by observers increases linearly with the number of involved mix nodes,
the number of decryptors, and the number of voters. Chase et al. pro-
posed a verifiable mixnet at Eurocrypt 2012 based on so-called malleable
proofs - proofs that do not increase with the number of mix nodes. In
work published at PKC 2013, the same authors adapted malleable proofs
to verifiable distributed decryption, resulting in a cryptographic voting
scheme. As a result, the amount of data to be verified only increases
linearly with the number of voters. However, their scheme leaves several
questions open which we address in this paper: As a first contribution,
we adapt a multi-party computation protocol to build a distributed key
generation protocol for the encryption scheme underlying their voting
scheme. As a second contribution, we decompress their abstract scheme
description, identify elementary operations, and count the number of
such operations required for mixing and verification. Based on timings
for elementary operations, we extrapolate the running times of the mix-
ing and verification processes, allowing us to assess the feasibility of their
scheme. For the German case, we conclude that the replacement of postal
voting by cryptographic voting based on malleable proofs is feasible on
an electoral district level.
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1 Introduction

Since Chaum’s seminal work [1], many cryptographic voting schemes have been
proposed aiming for secret and verifiable elections. Beside blind signatures and
homomorphic tallying, the use of mixnets has gained lots of interest in the re-
search community. The success of the mix-based approach is largely due to re-
cent mathematical achievements with respect to verifiable mixnets for large-scale
elections, e.g., Wikström [2–4], Lipmaa and Zhang [5], and Bayer and Groth [6].
In the mix-based approach, the election is usually conducted in the following



way: Voters individually encrypt their votes with the public key of the election
authority and publish the resulting ciphertexts on a bulletin board. After the
declared voting phase, a mixnet is used to anonymize all encrypted votes from
eligible voters such that after the anonymization process, individual, encrypted
votes can be decrypted by the election authority.

Mixnets are instantiated by independent mix nodes. Each mix node in turn
verifies the proofs of all predecessor mix nodes, re-randomises and shuffles the
encrypted votes, and adds a non-interactive zero-knowledge proof to its output
attesting that it has shuffled correctly. The election authority is instantiated
by a set of decryptors (often referred to as trustees). After the anonymization
process, each decryptor partially decrypts the list of anonymized ciphertexts and
generates a proof that it has partially decrypted this list correctly. Individual
plaintexts can be reconstructed by combining a threshold number of partial
decryptions. These plaintext votes are used afterwards to calculate the election
result. After the tallying, observers (who might be individual voters) verify all
proofs generated by all mix nodes and decryptors to convince themselves that
the announced election result is correct. The amount of data to be processed
by each observer depends linearly on the number of mix nodes, the number of
decryptors, and the number of voters.

At Eurocrypt 2012, Chase et al. invented the concept of malleable proof sys-
tems [7]. Rather than generating individual and independent proofs, malleable
proofs allow an individual mix node i+ 1 to “update” the zero-knowledge proof
πi of mix node i and to add another permutation and randomisation, resulting
in proof πi+1. The updated proof is of the same general form as the original one,
only the constants having changed. Therefore, the amount of data to be verified
only increases linearly with the number of decryptors and voters but is indepen-
dent of the number of mixers. Chase et al. propose using the DLIN encryption
scheme [8] and Groth-Sahai proofs [9] in the DLIN setting to instantiate their
construction. The appeal of malleable proofs has motivated work published re-
cently at PKC 2013 [10]. In this work, the authors adapt malleable proofs to
distributed decryption and thereby instantiate a cryptographic voting scheme
(henceforth referred to as the CKLM13 scheme), which forms the basis of the
current work. In CKLM13, the amount of data to be processed by each observer
only increases linearly with the number of voters.

Our Contribution. While the underlying ideas and constructions are of great
theoretical value, so far the practical use of malleable proofs within cryptographic
voting schemes was beyond the scope of the work by Chase et al. [10]. Specifi-
cally, two practical questions remain open, which are addressed in our paper. 1)
Though proposing a cryptographic voting scheme based on malleable proofs, to
date there is no distributed key generation protocol for DLIN known and there-
fore CKLM13 implicitly relies on a single trusted key distribution party. 2) The
concept and the instantiation of malleable proofs for cryptographic voting have
been highly theoretical and an evaluation of the real-world feasibility of tallying
and verification in terms of computational efficiency is pending.



To address the first problem, we propose a distributed key generation protocol
for the DLIN encryption scheme. This allows us to extend the CKLM13 scheme
to a fully distributed cryptographic voting scheme. We do so by adapting a multi-
party computation (MPC) protocol invented by Smart and Geisler [11] to the
DLIN encryption scheme. The distributed key generation protocol comes at the
cost of the assumption that at most t < n/3 election administrators (decryptors)
are actively cheating. While we concede that cryptographic elections should be
verifiable even if all administrators are dishonest, we point out that this problem
has not previously been addressed at all for the DLIN encryption scheme: to the
best of our knowledge, no DLIN key generation algorithm has been proposed to
date that is secure against even one dishonest participant.

In the remainder of this work, we refer to this extended version of CKLM13
as our modified CKLM13 scheme. To answer the second question, we investigate
the CKLM13 scheme in detail and expand its abstract description. This allows us
to identify and count elementary operations. Using timings from the MIRACL
pairing-based cryptography library [12], we draw conclusions about the real-
world feasibility of cryptographic voting schemes based on malleable proofs.
With reference to the election statistics of Darmstadt, Germany, we conclude
that the postal voting process can be replaced by cryptographic voting based on
malleable proofs, while on a city level the application of cryptographic voting
based on malleable proofs is beyond practical use.
Structure. The remainder of this work is structured as follows: In Section 2,
we provide the reader with preliminaries used throughout the paper. Section
3 is dedicated to the construction of a distributed key generation protocol for
the DLIN encryption scheme. Thereafter, in Section 4, we analyze the Groth-
Sahai proofs used in CKLM13 with respect to elementary operations. Based on
implementation timings of the underlying cryptography, we draw conclusions
about the feasibility of the modified scheme. Finally, we conclude our paper and
give directions for future work in Section 5.

2 Preliminaries

In this section we introduce the notation and cryptographic concepts that we
use in our work.
Notation. We denote assignment of value a to variable x by x ← a; assigning
to x a value chosen uniformly at random from set S we denote by x � S. In
cryptographic groups we denote group elements by capital letters and integers
(modulo the group order) by small ones. Algorithm names are set in SansSerif.
Public-Key Threshold Encryption. A public-key encryption scheme is a
triple of algorithms (KeyGen,Encrypt,Decrypt) where KeyGen takes a security
parameter as input and produces a public and a secret key; Encrypt takes a
message and a public key and produces a ciphertext and Decrypt is deterministic,
takes a secret key and a ciphertext as input and returns a message.

A threshold encryption scheme is characterised by two parameters, a number
of decryptors n and a security threshold t < n. Informally, the properties we want



are that any subset of at least t + 1 decryptors can jointly decrypt ciphertexts
but no set of size at most t can gain any information from ciphertexts. In par-
ticular, at no point in a setup–encryption–decryption cycle is any one party or
subset of size at most t in possession of a full decryption key. Following Fouque,
Pointcheval and Stern [13], a threshold key generation scheme is defined by a 4-
tuple of algorithms3: KeyGen takes a security parameter as input and outputs a
public key pk and n key shares ski for the decryptors; Encrypt takes a message m
and a public key pk and outputs a ciphertext c; Decrypt takes a ciphertext c and
a key share ski and outputs a decryption share di; Combine takes a ciphertext
c and a set of at least t + 1 decryption shares di and outputs either a message
m or the special symbol ⊥ to denote failure. For any public key pk and set of
key shares (ski)

n
i=1 produced by KeyGen, for any message m and any ciphertext

c produced by Encrypt on m and pk and for any subset S ⊆ {1, . . . , n} of size
|S| = t + 1 it must hold that if for all s ∈ S we compute ds ← Decrypt(c, xs)
then Combine(c, (ds)s∈S) returns m. This property is known as correctness.

DLIN Encryption. As opposed to many other cryptographic voting schemes,
CKLM13 builds upon the DLIN (also known as BBS after its authors [8]) en-
cryption scheme, which relies on the weaker decisional linear Diffie-Hellman
(DLIN) assumption rather than the decisional Diffie-Hellman (DDH) assump-
tion to achieve IND-CPA security. The scheme lives in a cyclic group G with
generator G of some order q, a prime power.

A secret key is a pair (x, y) � Zq × Zq and the corresponding public key
is (X,Y ) = (Gx, Gy). To encrypt a M ∈ G one picks a pair (r, s) � Zq ×
Zq and computes (A,B,C) ← (Xr, Y s,MGr+s). To decrypt one recomputes
M as C/(A1/xB1/y) where the inversions are taken over the field Fq. DLIN
encryption, like ElGamal, is homomorphic: the componentwise group operation
on two ciphertexts is a ciphertext for the group operation on the two underlying
messages. This property allows a ciphertext to be re-randomised by adding an
encryption of the neutral element in G which forms the basis for the use of DLIN
encryption in mixnets. Creating a threshold version of DLIN encryption is the
subject of Section 3.

Pairing-Based Cryptography. A pairing group is a triple of groups (G1,G2,GT )
of some order q with an efficiently computable bilinear, non-degenerate map
e : G1 ×G2 → GT i.e. for generators G1, G2 of G1,G2 respectively and integers
a, b we have e(aG1, bG2) = e(G1, G2)ab and e(G1, G2) is again a generator of
GT .

The only known implementations of such groups that are useful for cryptog-
raphy are based on elliptic curves; such an implementation is called symmetric
if G1 = G2 and asymmetric if the two groups are different and no efficient
homomorphisms are known between them.

Shamir’s Secret Sharing Scheme. Shamir’s secret sharing scheme [14] allows
a party to share a secret among any n parties such that any subset of t ≤ n

3 The original definition also contains verification keys, which we view as part of the
public key, and mentions decryption proofs explicitly which we view as part of the
decryption shares.



parties can reconstruct the secret but any smaller subset gains no information
about the secret. Each party obtains as a share the value of a degree-t bounded
polynomial at a distinct index over a suitable finite field such that the secret is
the value at some other index (usually 0). Given any t shares, the secret can be
reconstructed by interpolation using Lagrange coefficients.

3 Key Generation with Multi-Party Computation

Voting is among the most security-sensitive applications that can be conducted
over the Internet. Therefore, complex trust distribution concepts are in place to
prevent malicious collaborations among internal/external attackers from violat-
ing the desired security properties. As opposed to ElGamal, which is often con-
sidered the standard in the cryptographic voting community, the DLIN encryp-
tion scheme does not come with a distributed key generation protocol. Hence,
the CKLM13 scheme [10] implicitly relies on a trusted key distribution party,
which forms a crucial security bottleneck of the overall scheme. This section is
organised as follows: First, we explain the distinction between a key generation
algorithm and a protocol and show why we want the latter, but for DLIN this
does not follow directly from the former. Next, we give the key generation al-
gorithm for DLIN, introduce multi-party computation and deploy it to turn the
algorithm into a protocol. We analyse our new protocol with respect to efficiency
and security. Finally, we show how our protocol greatly simplifies the threshold
decryption operation.

3.1 Security of Threshold Encryption: Algorithm versus Protocol

The definition of threshold encryption (for example, [13]) only postulates a key
generation algorithm which gives security if it is run by a trusted party who
then securely distributes the key shares to the decryptors. In practice, what
is required however is a key generation protocol that the decryptors can run
jointly and that, following our informal specification, never puts any one party
in possession of a key with which it could decrypt messages directly [16].

For the ElGamal encryption scheme, constructing a threshold key generation
protocol is comparatively easy although not without subtleties [17]. This may
be a reason that the distinction between threshold key generation algorithms
and protocols is usually not made in the literature. For DLIN however, it is not
an easy task to construct a secure key generation protocol from the algorithm,
without a trusted party.

DLIN encryption uses two public keys X and Y . Since their use is completely
symmetric, we discuss the problem relating only to a single public key X = Gx

for some secret x. During decryption, one raises a ciphertext component A to the
power 1/x. The threshold key generation algorithm therefore picks an x, creates
a public key Gx, computes x̄← 1/x and creates shares x̄i of x̄ — the decryptors
get shares of the inverse of the element used as the exponent of the public key.
One could try and build a protocol that starts with all parties generating shares



of x and interpolating Gx. However, the shares of the inverse 1/x are not the
same as the inverses of shares of x and there is no easy method to obtain one from
the other. One might think that one could simply start with shares of x̄ = 1/x
instead but then one cannot easily compute the public key which is now G1/x̄.

3.2 A Threshold Algorithm

To construct a threshold scheme for DLIN encryption, we start with Shamir’s
secret sharing scheme. This gives a key generation algorithm but not yet a pro-
tocol: pick a DLIN key pair and Shamir-share the decryption keys. Shamir’s
scheme has homomorphic properties that allow shares to be used for decryption
without ever reconstructing the key. In more detail, if G is a cyclic group of order
q with generator G and (xi)i are Shamir-shares of a secret x in Fq then (Gxi)i
are Shamir-shares of Gx since G can be viewed as a vector space over Fq and
the polynomial p defined by the shares can be lifted from Fq to G. This leads to
the following threshold DLIN scheme.

KeyGen (algorithm.) For given t and n, pick secret keys x, y � Fq. Compute
x̄← 1/x and ȳ ← 1/y over Fq. Create a (t, n) Shamir-sharing of x̄ and give
each decryptor her share x̄i; repeat for ȳ. Output the public key (X,Y ) ←
(Gx, Gy).

Encrypt Like for non-threshold DLIN encryption.
Decrypt(A,B,C) For the decryptor with shares x̄i, ȳi, create a decryption share

as Di ← Ax̄iBȳi .
Combine Given any set of at least t + 1 decryption shares (Ds)s∈S,|S|>t, inter-

polate D as the value at 0 of the degree-t-bounded polynomial p such that
p(s) = Ds for all s ∈ S. The final decryption is M ← C/D.

This scheme still leaves open two questions. The first is how to check if the
values Ds provided by the decryptors are correct - Chase et al. [10] suggest using
malleable proofs here. Our solution to the second problem will remove the need
for such proofs completely. The second problem to which Chase et al. do not
provide a solution is, as mentioned, how to turn the key generation algorithm
above into a protocol and eliminate the trusted party that generates keys.

3.3 Multi-Party Computation

Multi-Party Computation (MPC) [18] is the theory of cryptographic protocols
in which a set of parties {Pi}, each holding some secret input xi, jointly compute
some function (yi)i = f((xi)i) of their inputs in a manner as secure as if everyone
sent their xi to a trusted party who computed f and returned the appropriate
yi to each Pi.

Our starting point is the MPC protocol by Smart and Geisler [11] for identity-
based schemes that require exponent inversion. The key technique in this pro-
tocol is a development of an idea by Bar-Ilan and Beaver [19] for group element



inversion. Smart and Geisler’s protocol was originally given for distributed de-
cryption in a class of identity-based encryption schemes making use of exponent
inversion; another protocol by Kate and Goldberg [20] achieves distributed key
generation for this class of schemes but their techniques do not translate into our
scenario: in IBE, one party ends up in possession of a decryption key whereas in
an election, no-one should ever be able to decrypt individual ballots.

We make two minor modifications to the Smart-Geisler protocol. First, we
adapt the protocol to DLIN encryption. Secondly, the original protocol runs a
fast key generation followed by comparatively costly MPC for decryption whereas
we are considering a scenario in which decryption operations are much more time-
critical than key generation so we prefer to use MPC to generate keys and a faster
decryption operation. (Technically, Smart and Geisler propose generating shares
of x where the public key is X = Gx and using MPC to raise an element to 1/x
at decryption time; we generate shares of x̄ = 1/x for decryption and use MPC
to compute the public key as G1/x̄.)
Security threshold. Our protocol, as an artifact of the MPC protocol that we
use, requires a security threshold t < n/3. We assume that broadcasting a value
to all parties and sending a value privately to another party are possible. Our
protocol is then secure against up to t parties actively cheating i.e. sending false
values during the protocol. Constructing such a protocol for larger t we leave as
an open problem. In return for this restriction on the size of t, we obtain not
only the first threshold DLIN key generation protocol but also a very efficient
one that allows us to dispense with the zero-knowledge proofs that threshold
schemes usually require at decryption time.
Secure Interpolation. When reconstructing a degree-t Shamir-shared secret,
as long as at least t + 1 of the shares are correct the presence of any incorrect
shares can be detected if the following secure interpolation procedure is used.
Pick a set S ⊆ {1, . . . , n} of any t + 1 indices and interpolate the secret from
these (as the value at 0 of the degree-t bounded polynomial going through (i, xi)
for all i ∈ S, where xi is the share at index i). Next, again using the set S
interpolate the values of the polynomial at the indices of all other shares outside
S and check that these points correspond to the actual shares received. If any
of these checks fail, abort the setup protocol.

3.4 Our Protocol

Our MPC protocol will let each decryptor obtain a decryption key share x̄i and
all decryptors will obtain a public key X = Gx where x̄ = 1/x. (To obtain the
shares for the other public key component Y too, one runs the protocol twice
in parallel.) We give the protocol from the point of view of a party Pi. In our
protocol, we denote by x(j) a value received from party j, either as a broadcast
or a private message; for j = i this refers to the local variable x of party Pi (this
notation allows us to iterate or sum over indices). We denote values that are
common to all players with a star, i.e. u∗.
PRSS. We begin by setting up a Pseudo-Random Secret Sharing (PRSS) [15].
For details see Appendix B.2. This allows all parties to repeatedly draw values



xl for any label l that form a sharing of some fresh random secret x∗l . This need
only be done once for each set of decryptors; they can generate many sets of
keys with the same PRSS by picking fresh labels each time.
Decryption key shares. Once the PRSS is set up, draw a value x̄ that will be
your decryption key share. Also draw a further value r. (W.l.o.g. the labels for
x̄ and r are known to all parties.) Compute4 u← x̄ · r. Since x̄ and r were both
degree-t shares of their respective secrets, the shares u are now degree-2t shares
of a value u∗.
Round 1: sharing u. Locally create a degree-t sharing of u and send each
Pj her share uj . This can be achieved by letting c0 ← u and picking random

coefficients c1, . . . , ct � Zq to define a polynomial p(x) =
∑t
k=0 ckx

k and letting
uj ← p(j) for all j.
Round 2: interpolating u′. Collect shares u(j) from all other parties and
interpolate u′ from the values (u(j))nj=1 as the value at zero of a polynomial of
degree 2t. This and all following interpolations must be done securely in the
sense defined above, i.e. check that all received shares lie on a polynomial of
correct degree and abort the protocol if any checks fail. Broadcast your value of
u′ to all parties.
Round 3: reconstructing u∗. Receive values u

′(j) from all other players and
interpolate u∗ from these values. All parties now hold a common value u∗ which
is the product of the secrets r∗ and x̄∗ defined by the shares r and x̄ respectively.
Compute your public key share X ← Gr/u

∗
and broadcast this to all parties.

Round 4: public key. Receive shares X(j) from all parties and interpolate X∗

from these values. X∗ is the public key. We repeat that interpolation must be
done securely, i.e. checking all other shares against the subset used for interpo-
lation.

To generate the two public keys for DLIN encryption (X∗ and Y ∗ in the
notation of this section) the respective rounds of the two protocols can be com-
bined, giving the same communication cost (number of messages) as for a single
public key.

3.5 Efficiency and Security

Efficiency. It is well-known that MPC can in theory be used to compute any
functionality yet in practice, the resulting protocols are too slow to be usable,
usually due to a massive communication overhead. Our MPC protocol has a
communication cost (in number of rounds or messages sent) equivalent to one
single MPC multiplication, even for both public keys X and Y since they can be
computed in parallel. This is definitely efficient enough to be run in practice: the
cost of using MPC for the setup is dwarfed by the cost of malleable proofs so we
expect key generation to account for only a small proportion of the running time
of the whole protocol. Moreover, the PRSS setup which is the most expensive
part of the setup can be run once for a group of parties and the PRSS obtained
can then be re-used for many elections, generating new keys using fresh labels

4 All operations take place in the ring Zq so “mod q” is implicit in any operation.



each time. Further, setup is a much less time-critical operation than tallying in
a typical deployment of a voting scheme. Therefore, we omit a full analysis of
the computational cost of the setup protocol.
Security. Textbook MPC theory says that our MPC protocol is secure against
passive adversaries, i.e. who do not send false values during the protocol. How-
ever, the simple nature of our protocol together with the security threshold
t < n/3 yields active security for free. The only operations which parties per-
form on values that they have received from other, potentially malicious parties
are interpolations of polynomials of degree at most 2t. Therefore, since for each
such interpolation there are at least 2t+ 1 correct shares, the malicious parties
cannot send incorrect values without causing the protocol to abort. It is impor-
tant that all interpolations are done securely, i.e. after computing the desired
value from any set S of t+1 (or 2t+1) shares it must be verified that all further
shares lie on the polynomial defined by the shares in S of the correct degree-
bound. We do not care about resilience of the setup protocol against malicious
parties causing the protocol to abort: in an election scenario, if a decryptor is
caught cheating during key generation then one will probably want to choose a
new decryptor and re-run the whole setup.

3.6 Threshold Decryption

To decrypt a ciphertext (A,B,C), each decryptor Pi holding shares x̄i and ȳi
publishes Di = Ax̄iBȳi . This is again a degree-t Shamir-share of D = A1/xB1/y.
To combine decryption shares and complete a decryption, one interpolates D
securely from any t + 1 shares (Di)i (i.e. checks that all further shares lie on
the polynomial defined by the ones used to decrypt). This secure interpolation
ensures correctness of the decrypted result if t < n/3. On the other side, at
the current state, correctness of the election result cannot be ensured against
thresholds t ≥ n/3. As a consequence, zero-knowledge proofs do not provide any
benefit at decryption time, which allows us to discard them at decryption time.

If any shares appear incorrect then one can isolate the incorrect shares using
Reed-Solomon decoding [21] and still recover the correct decryption as long as
t < n/3, so up to t malicious decryptors can neither cause a false result to
be announced nor prevent the correct result from being computed. This is a
significant improvement of the efficiency of the decryption process compared to
the original CKLM13 scheme (in which it is proposed using another round of
malleable proofs) and could be applied to other voting schemes as well.

4 Computational Analysis of the Proofs in CKLM13

In this section we analyze the computational cost of the malleable proofs un-
derlying the mixnet in the CKLM13 scheme [10]. Since Chase et al. only give
an abstract description of their proofs we need to make a reasonable choice of
a concrete setting in which to instantiate them. The only known implementa-
tion that yields somewhat efficient malleable proofs is that of Groth-Sahai (GS)



proofs [9] in a pairing group; this is again an abstract concept for which we need
to choose specific groups.

4.1 Choice of Setting

Elliptic curves form the basis of all known implementations of pairing groups
which are widely believed to have cryptographic security properties. For such
groups, the relevant parameters are q, the logarithm of the group size (roughly:
the bit length of group elements) and k, the embedding degree of the group [22].
As a rule of thumb, the cost of operations in such a group is proportional to
q2 whereas security is proportional to q · k; a rough estimate is that for given
q, k, the security level is equivalent to a qk/24 bit symmetric key. It is clear
that choosing k as large as possible results in the greatest efficiency at a desired
security level. The parameter k is determined by details of the construction of
the underlying elliptic curve; the best known choice is a Barreto-Naehrig (BN)
curve [23] which achieves k = 12. For this reason, BN curves are the standard
choice for implementing pairing-based cryptography nowadays. In this case, to
get the equivalent of 128-bit security [24] requires group elements of bit-length
q = 256 bits.

Choosing BN curves gives an asymmetric pairing group, i.e. a triple of groups
(G1,G2,GT ) with a pairing e : G1 × G2 → GT such that no efficient homo-
morphisms between G1 and G2 are known in either direction5. However, the
CKLM13 scheme is given in a symmetric setting where G1 = G2 so to deploy
it on a BN curve requires some modifications that are well established in the
literature. Despite the cost of additional equations incurred in the transforma-
tion from symmetric to asymmetric settings, the resulting asymmetric protocols
usually greatly outperform their symmetric ancestors. We therefore choose to
analyse the cost of the CKLM13 malleable proofs in a q = 256 bit BN curve
with the necessary modifications to the protocol.

For CKLM13, we require two modifications. First, instead of the DLIN as-
sumption (which only applies to a single group), we require what is technically
known as SDLIN (symmetric DLIN) [25], the assumption simply states that
DLIN holds in both groups G1 and G2 of the setting. This is commonly be-
lieved to be the case in groups derived from elliptic curves and the switch from
DLIN to SDLIN does not change the protocol. Secondly, since we are using an
asymmetric setting, any group element that appears both in groups G1 and
G2 in the symmetric protocol needs to be replaced by a pair of elements in the
asymmetric protocol and “guarded” by an additional equation in the proof. This
technique is standard in converting pairing-based schemes from the symmetric
to the asymmetric setting.

5 All three groups are in fact isomorphic but security stems in part from the fact that
no efficient way to compute isomorphisms between G1 and G2 is known.



4.2 Overview of Groth-Sahai Proofs

Groth-Sahai (GS) proofs are based on pairing groups and can be instantiated
under several assumptions for several types of equations. We assume an initial
set of parameters is given that describe groups (G1,G2,GT ) of some order p a
prime or prime power, with generators (G1, G2, GT ) respectively and a bilinear
map e : G1×G2 → GT . This setting is provided by BN curves; we can abstract
away any further details of the curves for the moment. Of interest to us are so-
called Pairing Product Equations (PPE) under the SDLIN security assumption.
A PPE is an equation with vectors of variables a over G1 and b over G2 of the
form

v • b · a •w · a • Γ • b = t

where · is the group operation in GT and • is a scalar product over the pairing,
i.e. a•b :=

∏
i e(ai, bi) and a•Γ •b :=

∏
i

∏
j e(ai, bj)

Γij . v,w and t are constants
in G1,G2 and GT respectively.

A GS proof proves that the prover knows an assignment of values to a number
of variables which satisfies a set of equations. These values are often known as
a witness. The prover starts by making a commitment to each value and then
produces a proof pair6of elements for each equation. The entire proof consists of
a commitment for every variable appearing in the equations and a proof pair for
each equation. Verifying a GS proof involves evaluating a verification equation
for each given equation involving the commitments to the variables, the constants
in the original equation and the proof pair.
Mathematical overview. In this section we give some of the mathematical
ideas necessary to understand how our costing of GS proofs works; the reader
can skip the mathematical overview if so inclined without missing the essence of
our paper.

The SDLIN GS proofs [25] use modules B1 := (G1)3, B2 := (G2)3, BT :=
(GT )9 that can be seen as groups of vectors and matrices over the original
groups and inherit a bilinear pairing eB : B1×B2 → BT . Thus, a basic operation
(addition or multiplication) in a module costs 3 respectively 9 operations in the
underlying group; the pairing eB costs 9 e-pairings.

All variables must be committed to; for the vector a over G1 this is done by
picking a matrix R1 of random integers modulo p and computing commitments
c ← ι(a) + R1 · U1 where ι is an inclusion map from G1 to B1 and U1 is a
matrix of constants defined in the setup information. The process for b over G2

is analogous.
A GS proof of a PPE in the DLIN setting is a pair (θ, π) ∈ (B1)3 × (B2)3

computed according to the following equations.

π ← R>1 ι2(w) +R>1 Γι2(b) +R>1 ΓR2U2 − T>U2 (Π)

θ ← R>2 ι1(v) +R>2 Γ
>ι1(a) + TU1 (Θ)

6 This is our terminology. Such a pair is commonly just called a “proof” but we wish
to distinguish between the elements associated with a particular equation and the
proof as a whole.



Here R1, R2 are the random elements used to commit to elements in a, b re-
spectively, T is a matrix of random integers modulo p chosen to randomise the
proof of this PPE and U1, U2 are matrices of constants defined in the setup
information.

Verification of such a proof involves checking the following equation. Here
c,d are the commitments to a, b respectively and ⊗ is the scalar product over
the pairing eB in the B-modules.

ι1(v)⊗ d · c⊗ ι2(w) · c⊗ Γd ?
= ιT (t) · U1 ⊗ π · θ ⊗ U2 (V)

To count the number of operations in the CKLM13 scheme, we must deal
with several small issues. First, the original paper describes the protocol in terms
of a set of equations that are “almost” PPEs — almost, because they use abbre-
viations in their notation and our first step is to expand these into actual PPE
that can be processed by the GS proof system. Secondly, we make the necessary
changes to deploy the protocol in an asymmetric setting. Thirdly, starting with
the equations to create and verify proofs of PPE we optimise them for the spe-
cific equations in CKLM13, i.e. we remove terms that cancel out or have all-zero
coefficients.

4.3 Results

We let L be the number of votes shuffled in a run of the mixnet. Of the 4L
variables and 11 equations given in CKLM13, equations 1–4 are simple PPE, 5
and 6 together require L supporting variables and equations to expand into a
full PPE, 7 and 8 are linear PPE, 9–11 are quantified (∀i : 1 ≤ i ≤ L) so are
in fact L PPE each. To map these into an asymmetric setting requires another
2L supporting variables and 4L supporting equations. All together we end up
with 8 + 8L equations of which the first 8 have L-fold products each and the
remaining 8L have only constant-size products; in total we have 4L variables in
G1 and 7L in G2.

Analysing the equations and taking into account components that have all-
zero coefficients (which therefore contribute nothing to the cost of computation),
we find an upper bound on the computation cost as presented in Table 1. For
our detailed calculations we refer to Appendix C.

Table 1. Number of elementary operations in proof creation and verification in
CKLM13.

Task G1 mult. G2 mult. G1 op. G2 op. GT op. Pairing

Create proof 163L + 72 183L + 72 134L + 48 167L + 48
Verify proof 657L + 252 657L + 324

For the remainder of this work, we refrain from considering group operations
in G1, G2, and GT , because these are about the factor bit-length of group el-
ements faster than multiplications [26] and consequently do not influence the



Table 2. Operation timings for Barreto-Naehrig curve over 256-bit prime fields with
embedding degree 12 with the MIRACL library and the Beuchat et al. implementation.

Elementary Operation MIRACL Beuchat et al.

G1 Multiplication 0.22 ms n.a.
G2 Multiplication 0.44 ms n.a.
Pairing 2.32 ms 0.39 ms

feasibility analysis significantly. The following formula allows us to estimate the
running time of an individual mix node and the voter’s verification:

s(L) = (163× L+ 72)×G1 Multiplication Time +

(183× L+ 72)×G2 Multiplication Time +

(657× L+ 324)× Pairing Time

Optimisations. We stress that our results are only an upper bound on the cost
of computing a CKLM13 proof as there are several feasible optimisations that
we have not yet considered. More details on possible optimisations are included
in our detailed analysis in Appendix C.
Timings. To the best of our knowledge, the MIRACL cryptography C library
[12] is the most established open-source library to support BN curves. Recent
timings taken on a 2.4 GHz Intel i5 520M processor [27] lead to the results
provided in Table 2 (second column). The fastest claimed results for pairings on
256-bit BN curves which we are aware of are from Beuchat et al. [28, 29] who
compute a pairing in 0.39 ms, compared to 2.32 ms currently achievable with
MIRACL. However, times for multiplications using their implementation are
not available (ref. to Table 2 third column). As pairings are the most expensive
operation in the CKLM13 scheme, in the following, we hypothetically assume
Beuchat et al.’s pairing time of 0.39 ms, while all other costs are assumed to be
equal to MIRACL. The hypothetical timings for Beuchat et al.’ implementation
are considered in parallel to the MIRACL timings.

To bring these numbers into relation to real-world elections, we consider
cryptographic voting as substitution for postal voting in the German case. In
the German federal election 2009, 62.2 millions citizens were eligible to vote
[30]. On average, electoral districts in Darmstadt, Germany have a size of 1100
voters, while for postal votes on average 3.5 electoral districts are aggregated.
In 2009, 21.4% of the eligible voters cast their vote via postal voting. Consid-
ering all eligible voters, this results in 13.3 millions postal votes, while for each
postal voting district in Darmstadt, Germany, this results in 824 postal votes.
Table 3 summarizes the expected running times for one mix node both for the
MIRACL library and the hypothetical Beuchat et al. implementation. It should
be noted that the running time for the voter’s verification is close to the run-
ning time of an individual mix node. These timings show that malleable proof
based cryptographic voting schemes are feasible for a moderate number of voters,



however their efficiency does not compare with Wikström’s work or Bayer and
Groth’s work that achieve mix proofs and their verification for 100.000 ElGamal
ciphertexts in around 2 minutes [3, 6].

Table 3. Expected running times for individual mix nodes in the CKLM13 scheme
with different numbers of voters.

Number of voters MIRACL Beuchat et al.

10 17.2 s 3.9 s
824 (Electoral District) ≈ 22, 5 min ≈ 5.1 min
1.000 ≈ 27, 3 min ≈ 6.2 min
100.000 ≈ 45 h ≈ 10 h
10.000.000 ≈ 190 d ≈ 43 d
13.300.000 (German Federal Election) ≈ 252 d ≈ 57 d

5 Conclusion

In this work, we build upon the CKLM13 cryptographic voting scheme [10],
which is based on the concept of malleable proofs invented in [7]. As opposed
to existing mix-based approaches, CKLM13 allows to generate verification data
which is independent of the number of mix nodes and the number of decryptors
involved in the tallying process. However, so far the theoretical innovations are
far from practical use. To bridge the gap between innovation and practice, in this
paper, we have addressed two crucial questions which remain open in CKLM13.
First, we propose a distributed key generation protocol for the DLIN encryption
scheme based upon a multi-party computation protocol due to Smart and Geisler
[11] and therefore succeed in ensuring security against up to n/3 misbehaving
participants. By construction of the protocol, we do not achieve security against
n/3 or more dishonest decryptors whatever happens in the decryption phase;
for fewer than n/3 dishonest decryptors however the correctness of the election
result is verifiable even without any proofs of correct decryption, allowing us
to omit them for the time being. Secondly, we investigate CKLM13 in detail
and identify elementary operations underlying their constructions. We count the
number of such operations used for a single mix node. Based on timings from
the MIRACL library, we calculate the running time for single mix nodes, which
is almost the same as the running time of a voter verifying the election result.

We base our conclusion upon data obtained from the German Federal election
in 2009. It turns out that the replacement of postal voting by cryptographic
voting based on malleable proofs would be feasible on an electoral district level.
Assuming that three mix nodes are in place with an average number of 824
absentee voters, tallying the election and the voter’s verification of the result can
be finalized in 90 minutes. This corresponds to the time needed to tally the postal
votes in Darmstadt, Germany [31]. However, the results obtained in this work



also show that the application of large-scale malleable proof based cryptographic
voting is not feasible today. The tallying process on a city level (100.000 eligible
voters) would require more mix nodes to be involved. Considering malleable
proof based cryptographic voting on city level with five mix nodes and the voter’s
verification would result in a running time close to two weeks.

We guide future research in several directions: The constructed distributed
key generation protocol for the DLIN encryption scheme is based on the as-
sumption that t < n/3 participants are actively cheating (for both privacy and
verifiability). Privacy against up to t < n/2 cheating administrators should be
possible with standard MPC techniques. According to Smart [32], implementing
our key generation protocol on top of SPDZ [33], for which a practical implemen-
tation exists, should even give privacy and verifiability against up to t = n − 1
cheaters [32]. For verifiability against even n out of n cheating decryptors, we
believe that this is achievable more cheaply than by using another round of mal-
leable proofs by exploiting the pairing operation directly, but leave this idea for
future work. Either way, the malleable proofs in the mixnet constitute the domi-
nating cost of the CKLM13 protocol (should one wish to use malleable proofs of
correct decryption, these can be based on a much simpler set of GS equations).
This justifies our choice to restrict our formal analysis of computational costs
in the CKLM13 protocol to the mixing phase. Even though carefully designed,
we leave the analysis and the correctness proof of the constructed protocol as a
task for future work.

The feasibility estimations of this work are an upper bound on the real cost
in a full implemented version of the modified CKLM13 scheme. For instance,
expressions of the form

∑l
i=1 viXi in a group Gj , j ∈ {1, 2} we counted as l

products and l − 1 sums, yet algorithms exist [22] to perform such operations
more efficiently. One might also consider applying batch techniques [34] because
proofs have large numbers of equations of very similar form. Thereby, the number
of pairings required to verify a proof might be significantly reduced. Finally, there
exist cryptographic libraries providing better performance than MIRACL. The
works of Beuchat et al. [28, 29] show that pairing times can be reduced to 1/5 of
the MIRACL timings, which would speed up the mixing and verification process
by a factor 5. For the future, Beuchat et al.’s implementation should be extended
towards a full cryptographic library such that ultimately an cryptographic voting
scheme based on malleable proofs can be deployed.
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A Mathematical Background

A.1 Generating Subsets

In our MPC protocol, to set up the PRSS participants need to iterate over all
subsets S ⊆ {1, . . . , n} of size |S| = n− t that contain a given index i.

The following algorithm from Knuth [35, 7.2.1.3 Alg. T] enumerates all sub-
sets of size t of {1, . . . , n}. The command yield outputs the next item but does
not return from the function.
procedure combinations(n, t)

100 c← []
101 for k ← 1, . . . , t do
102 c[k]← k − 1

103 c[t+ 1]← n; c[t+ 1]← 0



104 x← 0; j ← t
105 loop
106 item← []
107 for k ← 1, . . . , t do
108 item[k]← c[t− k + 1] + 1

109 if j > 0 then
110 x← j
111 else
112 if c[1] + 1 < c[2] then
113 c[1] + +
114 yield item
115 else
116 j ← 2

117 c[j − 1]← j − 2
118 x← c[j] + 1
119 while x == c[+ + j] do
120 c[j − 1] = j − 2
121 x← c[j] + 1

122 if j > t then
123 yield item
124 halt
125 c[j]← x
126 j −−

A.2 Polynomial Interpolation

Let F be a field. A degree-t-bounded polynomial p over F is defined uniquely by
t+ 1 “points” that can be

– Points (x, y) s.t. p(x) = y.

– Coefficients ci in the representation p(x) =
∑t
i=0 cix

i.

Converting from coefficients to points is called evaluating the polynomial,
converting from points to coefficients or finding the value at a new point given
a set of existing ones is called interpolating the polynomial.

Given t+1 points (xi, yi)
t
i=0 with xi 6= xj for i 6= j, the unique polynomial p of

degree at most t through these points can be epxressed as p(x) =
∑t
i=0 Li(x) ·yi

where the li are the Lagrange coefficients

li(xi) =

t∏
j=0,j 6=i

x− xj
xi − xj

A common case in secret sharing schemes is interpolating the secret as a value
at 0 given shares si representing values at given points i in a set S of the right



size. In this case the interpolation formula reduces to

p(0) =
∑
i∈S

si ·
∏

j∈S,j 6=i

(−j)
i− j

We can see that this is a linear function in the inputs si. This allows us to lift
polynomial interpolation and secret sharing from Fq into cyclic groups of order
q (actually, into any vector spaces over Fq): If φ(s1, . . . , st+1) is the interpolation
function over Fq then for the corresponding function Φ on a group G of order q
(replacing + by the group operation and · by group exponentiation),

Φ(Ga1 , . . . , Gst+1) = Gφ(s1,...,st+1)

A.3 Polynomials with a Zero-Set

For a set S ⊆ {1, . . . , n} of size t, let p0:S be the unique polynomial of degree
at most t such that p0:S(s) = 0 on all s ∈ S and p0:S(0) = 1. To evaluate this
polynomial at a point x /∈ S, one computes

p0:S(x) =
∏
s∈S

(x− s)
/∏
s∈S

(−s)

Since our application requires many evaluations of such polynomials at different
points, one can precompute the denominator.

B Shamir’s Secret Sharing and Applications

B.1 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme [14] allows a person to share a secret x among n
people such that any t+1 of them can reconstruct the secret but any coalition of
t or fewer gain no information on the secret. This is done in a finite field of size
q > n by assigning each shareholder an index i (indices are public); the secret-
holder computes a random degree-bound t polynomial p such that p(0) = x i.e.
lets c0 = x, picks c1, . . . , ct � Fq and p(x) :=

∑t
j=0 cjx

j . Each shareholder then
receives p(i) as their share where i is their index. To reconstruct the secret, any
t+ 1 shareholders can interpolate p(0), for example using Lagrange coefficients:
for a set S of t+ 1 indices,

p(0) =
∑
s∈S

p(s) ·
∏

j∈S,j 6=s

(−j)
s− j

B.2 PRSS

Pseudorandom secret sharing (PRSS) [15] is an extension of Shamir’s scheme
that allows a group of parties to jointly generate shares of a secret without any



one party (or indeed a subset of less than t parties) needing to know the secret.
PRSS operates in two phases and uses a pseudorandom function. In the first
phase, every subset S of n− t parties communicates to jointly generate a shared
secret kS . In the second phase, all parties can generate shares of many fresh
secrets locally, i.e. without any further communication, by computing a function
of a public label and their keys kS for all the sets S that they are part of. The
result is that for each label l, all parties obtain a degree-t share of a secret
x∗l . This step is essentially a polynomial interpolation using a pseudorandom
function on the secret keys and the public label. For the ElGamal encryption
scheme, one can turn the key generation algorithm into a protocol using a PRSS
directly.

Preliminaries. We assume that G is a group of order a prime power q with
generator G and that F : Zq × L→ Zq is a pseudorandom function, where L is
some set of labels. We consider a set of n parties with indices i ∈ {1, . . . , n} that
wish to generate degree-t-bounded Shamir shares and describe the protocol for
party i.

Setup phase. For each set 7 S ⊆ {1, . . . , n} of size |S| = n− t containing your
own index i, generate a random value rS � Zq and distribute it securely to the

other members of S. For each such set S, obtain the random values r
(j)
S from all

other members of S and add them to create a key kS ←
∑
j∈S r

(j)
S . The result

of this step is that each set S of n − t parties now share a secret key kS ; the
communication and computation cost is proportional to

(
n
t

)
.

Drawing values. All players can now draw values from the PRSS given a label
l∗ ∈ L as follows: for each set S of size n − t containing your index, compute
the (unique) degree-t polynomial pS such that pS(0) = 1 and pS(j) = 0 for all
j ∈ {1, . . . , n} \ S. Your share x for label l∗ is

x(l∗) =
∑

S⊆{1,...,n}
|S|=n, i∈S

pS(i) · F (kS , l
∗)

If all players draw a value from the PRSS for a fresh common label l∗, the result
is that each Pi holds a degree-t share x(l∗) of a fresh secret x∗(l∗).

For the special case t = n − 1 there is a shortcut. Each Pi can simply pick
a random value xi as her share, these n values trivially define a polynomial of
degree-bound n− 1.

C Efficiency Analysis of Groth-Sahai Proofs in CKLM13

The malleable proofs for the mixnet in CKLM13 are based on the DLIN assump-
tion in a symmetric pairing setting and use the following set of equations [10,
Page 11], where we have underlined the witnesses:

7 How to enumerate these sets efficiently is described by Knuth [35] and given in
Appendix A.1.
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C.1 Additive versus Multiplicative Notation.

A group G comes with a group operation G×G→ G and the universal operation
of group exponentiation Z×G→ G. Groups can be written either additively, the
group operation being denoted G+H and exponentiation n·G, nG or sometimes
[25] [n]G, or multiplicatively in which case the operation is written G · H or
simply GH and exponentiation Gn. The notation varies between papers: Chase
et al. [10] write all groups multiplicatively whereas we stick with the notation
proposed by Groth and Sahai [9] in which G1 and G2 are written additively and
GT multiplicatively8.

8 The reason for this convention is that G1 and G2 are usually implemented as sub-
groups of the group of points on an elliptic curve where the operation is “point addi-
tion”; GT by contrast typically is a subgroup of (Z∗

q ,×). The astute reader may have
already noticed our use of this convention in the formula e(aG1, bG2) = e(G1, G2)ab

above.



We stress that all these conventions are simply a matter of notation and do
not change the nature of the actual operations in the groups themselves.

C.2 Expanding the Equations

The above notation contains several “abbreviations”. Groth and Sahai [9] give
us a template for proofs of pairing-product equations of the following form9,
where variables are underlined.
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·
m∏
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·
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i=1
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j=1

e
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)γij
= t (PPE)

Equations 1–4 can be cast into the PPE schema by inverting the u′i and ui,
swapping sides, letting the constants vi = 0(∀i) and setting γij = δij := (1 if
i = j else 0), i.e. Γ expressed as a matrix is the identity matrix. For example,
equation 1 becomes (switching to additive notation in G1,G2 too)

L∏
i=1

e
(

0, r′if
) L∏
i=1

e
(
ai,−u′i

) L∏
i=1

L∏
j=1

e
(
ai, r

′
jf
)δij

=

L∏
i=1

e (gi,−ui) (1’)

where the right-hand side is a constant in GT .
For equations 5 and 6 we have to expand the products10 of witnesses. For

example, to use the expression a+b in a PPE we introduce a new witness c = a+b
that we use in the actual PPE and a new equation (assuming the witnesses are
in G2)

e (G1, a) e (G1, b) e (−G1, c) = 1

With these new equations, old equations 5 and 6 can be cast as PPE like
equations 1–4. For equations 7 and 8, we rewrite the equations as PPE in the
asymmetric setting as

L∏
i=1

e
(
a1,i,−G2

)
= 1

L∏
i=1

e
(
b1,i,−G2

)
= 1 (7′, 8′)

Equations 9–11 are simple enough to turn into PPE, but note two complica-
tions. First, each of these equations is in fact L PPE since there is a quantification
over i. Secondly, in an asymmetric setting a witness that is used in both groups
needs to be committed to twice, once in each group, and an extra equation is
required to ensure that this commitment was done correctly.

For example, to use e
(
ai, ai

)
in an equation requires a commitment to ai in

both groups, two separate variables a1,i and a2,i and the extra equation

e
(
G1, a2,i

)
· e
(
a1,i,−G2

)
= 1

9 In the Groth-Sahai paper, the variables were named x and y and the constants a
and b which conflicts with the notation of CKLM13. We keep the naming of the
variables from CKLM13.

10 In our notation, sums.



All together we have the following variables.

Variables Group
a1,i, a2,i G1, G2

b1,i, b2,i G1, G2

f
r′i
1 , f

r′i
2 G1, G2

h
s′i
1 , h

s′i
2 G1, G2

gr
′
i G2

gs
′
i G2

ci = gr
′
i · gs′i G2

This is a total of 11L variables of which 4L lie in G1 and 7L in G2.
Equations 1–6 give us 6 PPE with L-fold products each, equations 7 and 8

are one PPE with an L-fold product each (but a simpler form) and equations
9–11 together with our supporting equations for the variable pairs and to expand
products give us 8L PPE with 2 or 3-fold products. Our supporting equations,
together with new equations 9–11, become (where each equation stands for a
sequence of L equations indexed by i):

e
(
ai,1, ai,2

)
e
(
−G1, b2,i

)
= 1 (9’)

e
(
r′i,1f,G2

)
· e
(
−f, r′i,1G2

)
= 1 (10’)

e
(
s′i,1h,G2

)
· e
(
−h, s′iG2

)
= 1 (11’)

e
(
a1,i, G2

)
· e
(
−G1, a2,i

)
= 1 (12’)

e
(
b1,i, G2

)
· e
(
−G1, b2,i

)
= 1 (13’)

e
(
r′i,1f,G2

)
· e
(
−G1, r

′
i,2f
)

= 1 (14’)

e
(
s′i,1h,G2

)
· e
(
−G1, s

′
i,2h
)

= 1 (15’)

e
(
G1, r

′
i,2G2

)
· e
(
G1, s

′
i,2G2

)
· e
(
−G1, ci

)
= 1 (16’)

C.3 Counting the Cost

We follow the recipe of Groth and Sahai for creating proofs of PPE and count
the cost of operations necessary to produce and verify these proofs.
Preliminaries. In the DLIN setting for Groth-Sahai proofs, the relevant spaces
involved are

A1 = G1 × A2 = G2
e−→ AT = GT

ι1 ↓ ι2 ↓ ιT ↓
B1 = (G1)3 × B2 = (G2)3 eB−→ BT = (GT )3×3



The basic operations we count are additions, multiplications and pairings
in (G1,G2,GT ). We assume integer operations are cheap by comparison and
disregard them. The inclusion maps are defined as

ιj : Gj → Bj , x 7→ (0, 0, x) (j ∈ {1, 2})

which involve no additions or multiplications so we disregard their cost. We only
use ιT on constants so we can precompute it and ignore its cost too.

In the formulae that follow, we denote a group operation (written additively)
in Gj where j ∈ {1, 2, T} by Sj , a multiplication Zq × Gj → Gj as Ej and a
pairing e : G1 ×G2 → GT as P .

The corresponding costs in the B-modules are tripled for j ∈ {1, 2} and
increased ninefold for i = T . A pairing in the B-modules costs 9P .
Setup. We ignore the cost of the Groth-Sahai setup as it is preformed once
before the poll and mixnet in the CKLM13 protocol are run and is therefore less
time-critical; the constants included in the setup information are nonetheless
important for our purposes.

For the DLIN setting, Groth and Sahai pick constants Uj,1, Uj,2, Uj,3 each in
Bj for both j ∈ {1, 2} to allow commitment to elements in the respective Aj .
(In the original paper, the B2 elements are called u and the B1 ones v.) The
original description of the DLIN setting is based on symmetric groups where
further matrices Hη are required to re-randomise the proofs; since we assume an
asymmetric group these are unnecessary.
Commitments. For each variable a in Gj for j ∈ {1, 2}Groth and Sahai commit
to this variable as

c = ιj(a) +
SBj

=3Sj

3∑
k=1

rj,kUj,k

3(2Sj+3Ej)

cost: 9Sj + 9Ej

where (rj,k)k is a vector of three randomly chosen integers for this variable and
the Uj,k are the constants produced during the set-up of the Groth-Sahai scheme.
Proofs. A Groth-Sahai proof of a PPE in the DLIN setting is a list of commit-
ments to the variables and a pair (π, θ) ∈ B2

3 × B1
3. For each PPE with l-fold

products, one draws a matrix T � Z3×3
q of random integers and, together with

the vectors of variables x and y in G1 and G2 respectively and the matrices
R1, R2 of the random values used to commit to them, the vectors of constants
a, b and the matrix Γ , one computes

π ← R>1 ι2(w) +R>1 Γι2(b) +R>1 ΓR2U2 − T>U2 (Π)

θ ← R>2 ι1(v) +R>2 Γ
>ι1(a) + TU1 (Θ)

In equations 1–6, Γ will be the identity matrix so we can simplify these
equations before we count operations. Further the constants vi are 0 for all i so
we can omit them too. The lengths of all vectors of variables and constants in
these equations are L.



π ← R>1 ·
3(LE2+(L−1)S2)

ι2

(
w +

LS2

b

)
+

3S2

(
R>1 R2 − T>

)
·

3(3E2+2S2)
U2 (Π1)

θ ← R>2 ·
3(LE1+(L−1)S1)

ι1 (a) +
3S1

T ·
3(3E1+2S1)

U1 (Θ1)

The total cost of such an equation is therefore (3L + 9)E1 + (3L + 9)E2 +
(3L+ 6)S1 + (4L+ 6)S2.

Equations 7’ and 8’ are L-fold linear PPE, i.e. Γ is all zeroes and even v = 0;
we can simplify the proof pair creation to the following.

π ← R>1 ·
3(LE2+(L−1)S2)

ι2(w) −
3S2

T> ·
3(3E2+2S2)

U2 (Π7)

θ ← T ·
3(3E1+2S1)

U1 (Θ7)

For the supporting equations 9’–16’ we have three cases.

– Equation 9’ has variable vectors of length l = 2 (“borrowing” the variable
b1,i to increase the number of variables in G1 to 2 as well; this variable will

have coefficient 0) and matrix Γ =

(
1 0
0 0

)
. We can apply this matrix to a

vector of group elements “for free” since its effect is simply to zero out the
second row. We can write the equations as

π ← R>1 · ι2 (w + Γ · b) +
(
R>1 ΓR2 − T>

)
· U2 (Π9)

θ ← R>2 · ι1 (v + Γ · a) + T · U1 (Θ9)

Like above, we compute the cost to get (for l = 2 and the extra l S1 opera-
tions from v + a): 15E1 + 15E2 + 14S1 + 14S2. This is the cost of a single
equation; Equation 9’ is as we have remarked earlier in fact a collection of
L equations.

– Equations 10’–15’ have vectors of length l = 1 and an all-zero matrix Γ since
no “quadratic” terms in the variables appear. The equations collapse to

π ← R>1 ·
3E2

ι2(w) −
3S2

T> ·
3(3E2+2S2)

U2 (Π10)

θ ← R>2 ·
3E1

ι1(v) +
3S1

T ·
3(3E1+2S1)

U1 (Θ10)

for a total cost per individual equation of 12E1 + 12E2 + 9S1 + 9S2.
– Equation 16’ has three variables in G2 but none in G1. We can omit the

cost of “inverting” π (the initial minus sign) since we could just invert the
integers in the matrix T instead, which we assume is for free. The proof
becomes

π ← − T> ·
3(3E2+2S2)

U2 (Π16)

θ ← R>2 ·
3(2E1+S1)

ι1(v) +
3S1

T ·
3(3E1+2S1)

U1 (Θ16)

for a cost per equation of 15E1 + 9E2 + 12S1 + 6S2.



C.4 Verification

Verifying a proof involves computing pairings. The size of the elements π and θ
in a proof is fixed (3-vectors over the B modules for (S)DLIN) but the number
of commitments to verify for each proof depends on the number of variables
involved. Following Groth and Sahai [9], but using the corrected formula by
Ghadafi et al. [25], we define a pairing operation on vectors of elements over the
B-modules: for any integer l,

⊗l : B1
l ×B2

l → BT , (u,v) 7→
l∏
i=1

eB(ui, vi)

where the pairing eB : B1 × B2 → BT over the plain B modules is defined in
terms of the basic pairing e, viewing B-elements as vectors and matrices over
the basic groups:

eB ((x1, x2, x3), (y1, y2, y3)) :=

 e (x1, y1) e (x1, y2) e (x1, y3)
e (x2, y1) e (x2, y2) e (x2, y3)
e (x3, y1) e (x3, y2) e (x3, y3)


The cost of an ⊗l operation is thus 9l · P + 9(l − 1)ST .
For the verification of a Groth-Sahai proof of a PPE of order (number of

variables in each group) l with constants v, w and commitments to variables c, d
for G1 and G2 variables respectively, the formula is

ι1(v)⊗l d · c⊗l ι2(w) · c⊗l Γd
?
= ιT (t) · U1 ⊗3 π · θ ⊗3 U2 (V)

For the equations in CKLM13, we can make several optimisations to reduce
the number of pairing computations. The first transformation applies to all equa-
tions: we can use bilinearity and hence distributivity over the group operation to
rewrite the second two pairings of vectors as c⊗L (ι2(w) · Γd) where the group
operation (·) on vectors is to be understood component-wise. In some cases it is
cheaper to factor out d instead, though.

– Equations 1’–6’. Here l = L but v = 0 and Γ is the identity matrix so we
are left with

c ⊗L
9L·P+

9(L−1)ST

(
ι2(w) ·

9LST

d

)
?
= ιT (t) ·

9ST

U1 ⊗3
27P+
18ST

π ·
9ST

θ ⊗3
27P+
18ST

U2 (V1)

– Equations 7’, 8’: l = L, v = 0 and Γ is all zeroes.

c ⊗L
9L·P+

9(L−1)ST

ι2(w)
?
= ιT (t) ·

9ST

U1 ⊗3
27P+
18ST

π ·
9ST

θ ⊗3
27P+
18ST

U2 (V7)

– Equation 9’: l = 2, w = 0 and applying Γ is for free. We factor out d:(
ι1(v) ·

18ST

c

)
⊗2

18P+9ST

Γd
?
= ιT (t) ·

9ST

U1 ⊗3
27P+
18ST

π ·
9ST

θ ⊗3
27P+
18ST

U2 (V9)



– Equations 10’–15’: l = 1 and Γ is all zeroes; we are left with

ι1(v)⊗1
9P

d ·
9ST

c⊗1
9P

ι2(w)
?
= ιT (t) ·

9ST

U1 ⊗3
27P+
18ST

π ·
9ST

θ ⊗3
27P+
18ST

U2 (V10)

– Equation 16’: l = 3 but w = 0 and Γ is all zeroes:

ι1(v) ⊗3
27P+
18ST

d
?
= ιT (t) ·

9ST

U1 ⊗3
27P+
18ST

π ·
9ST

θ ⊗3
27P+
18ST

U2 (V)

C.5 Discussion

Our results indicate a rough upper bound on the cost of creating and verifying a
CKLM13 proof. There are many optimisations which we have not yet considered
and that could be analysed in future work, for example:

– Taking into account that 2 out of 3 group elements of any B-vector in the
image of ιj (j ∈ {1, 2}) are always zero.

– Taking into account that many of the constants in the supporting equations
lie in {0, 1}, eliminating the need for further multiplications.

– Reusing intermediate results between the various equations rather than re-
computing them from scratch each time. For example, the constants ui, v

′
i, w
′
i

appear twice each in eq. 1–6 and the variables ai, bi even three times each,
leading to possibilities for optimisation.

– Multi-exponentiation. Expressions of the form
∑l
i=1 viXi in a group Gj , j ∈

{1, 2} we counted as l · Ej + (l − 1)Sj yet algorithms exist to perform such
multi-exponentiations11more efficiently than exponentiating each element in-
dividually and adding the results. Any expression of the form R> ·b or similar
that looks like a “matrix-vector product” is in fact a multi-exponentiation
and could be improved upon by such techniques.

– Applying batching techniques [34]; since CKLM13 proofs have large numbers
of equations of very similar forms these should be readily applicable and in
particular massively reduce the number of pairings required to verify a proof.

11 Since we use additive notation for G1 and G2, a group exponentiation is a multipli-
cation in our notation.


