
Three Snakes in One Hole: The First Systematic

Hardware Accelerator Design for SOSEMANUK with

Optional Serpent and SNOW 2.0 Modes∗

Goutam Paul
R. C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, Kolkata 700 108, India
goutam.paul@isical.ac.in

Anupam Chattopadhyay
Institute for Communication Technologies and Embedded Systems,

RWTH Aachen University, Aachen 52074, Germany
anupam.chattopadhyay@ice.rwth-aachen.de

Abstract

With increasing usage of hardware accelerators in modern heterogeneous System-
on-Chips (SoCs), the distinction between hardware and software is no longer rigid.
The domain of cryptography is no exception and efficient hardware design of so-called
software ciphers are becoming increasingly popular. In this paper, for the first time we
propose an efficient hardware accelerator design for SOSEMANUK, one of the finalists of
the eSTREAM stream cipher competition in the software category. Since SOSEMANUK
combines the design principles of the block cipher Serpent and the stream cipher SNOW
2.0, we make our design flexible to accommodate the option for independent execution
of Serpent and SNOW 2.0. In the process, we identify interesting design points and
explore different levels of optimizations. We perform a detailed experimental evaluation
for the performance figures of each design point and in each case our figures by far
outperform the existing benchmarks. The best throughput achieved by the combined
design is 67.84 Gbps for SOSEMANUK, 33.92 Gbps for SNOW 2.0 and 2.12 Gbps for
Serpent. The throughput for SOSEMANUK by far outperforms all existing benchmarks
on the eSTREAM candidates.

Keywords: Cryptography, Hardware Accelerator, Serpent, SNOW 2.0, SOSEMANUK,
Stream cipher implementation.

1 Introduction

The eSTREAM [13] competition aimed at identifying modern stream ciphers in two separate
profiles, one for software and the other for hardware platforms. Out of 34 initial submissions,

∗This work was done in part while the first author was visiting RWTH Aachen, Germany as an Alexander
von Humboldt Fellow.

1

four software stream ciphers, namely, HC-128, Rabbit, Salsa20/12, SOSEMANUK and three
hardware stream ciphers, namely, Grain v1, MICKEY 2.0 and Trivium made into the final
portfolio.

With advancement of technology, the difference between hardware and software stream
ciphers is becoming blurred day by day. To satisfy the shrinking energy budgets, dedicated
accelerators and customized instruction-sets are also commonly found in modern processors [3]
and heterogeneous multiprocessor System-on-Chips (SoCs). Along the same direction, recent
years have witnessed several attempts in hardware accelerator designs of software ciphers [21,
30, 42, 26, 19, 35, 31, 4, 33, 40].

In the call for the AES competition [1], one of the requirements was that the cipher should
be implementable in both hardware and software. After Rijndael [10] won the competition
in 2001, initial few years were predominated by software implementations. However, subse-
quently many hardware designs have been attempted and now Intel has made a special AES
instruction set in their x86 series of processors [3].

The story of eSTREAM competition [13] is however different. It created two separate
profiles for software and hardware. Some of the initial submissions, such as Rabbit and
Salsa20/12, were for both the profiles. During later rounds the categorization was made
exclusive and both Rabbit and Salsa20/12 were moved to the software category. From sub-
mission to final selection, SOSEMANUK [7] was in the software category all throughout.
However, in [17], hardware performances of selected eSTREAM candidates were analyzed
and the following interesting conclusion was drawn about SOSEMANUK.

With regard to SOSEMANUK, the utility as a hardware cipher is clear thus in our

opinion requires adding to the hardware focus profile.

However, it is surprising that no hardware design was attempted for SOSEMANUK af-
ter [17] which remains the only hardware benchmark for this cipher so far. This is despite
the fact that there is no practical attack on SOSEMANUK and the cipher retains its claimed
128-bit security. There exist hardware designs for the other eSTREAM software finalists, e.g.,
for HC-128 [4], Rabbit [35] and Salsa20/12 [42, 19]. In this paper, we complete the picture
by proposing an efficient hardware for SOSEMANUK. We design a flexible accelerator for
SOSEMANUK with additional modes for Serpent [6] block cipher and SNOW 2.0 stream
cipher [12] whose design principles are used to construct SOSEMANUK.

The origin of the name SOSEMANUK is explained in [7, Section 1]. Literally, it means
snow-snake, which is appropriate since it combines Serpent (which literally means snake) and
SNOW 2.0. Though the word snow does not imply any kind of snake (except possibly snake-
shaped object made out of snow), we note that the names of all the three ciphers begin with
the letter “S” which is itself serpentine in shape! Hence we take the liberty to refer to the
three ciphers as three snakes in the title. The design is generally referred as TripleS. A more
specific notation to identify different design points is introduced later.

1.1 Our Contributions

We list our contributions as follows.

1. We propose a novel and efficient hardware for SOSEMANUK. It is the first of its kind
since other than [17], no other hardware design of SOSEMANUK has been attempted.

2. For the first time, we present a flexible accelerator that combines a block cipher and
two stream ciphers.

2

3. We identify 12 incremental design points in the design process and report optimizations
and evaluations of each of them.

4. Our design outperforms all existing hardware (as well as software) designs of Serpent,
SNOW 2.0 and SOSEMANUK, along with those of all other eSTREAM candidates.

5. We propose a tweak to prevent the differential fault attacks [29, 25] on SOSEMANUK
with negligible increase in area and no compromise on throughput.

6. Duplicating hardware components to perform parallel data stream processing for through-
put maximization is done in some of the existing cryptographic hardware designs[3]. We
do not employ such tricks and apart from absolute throughput and area, we also report
throughput per area as one of the figures of merit.

2 Brief Description of Serpent, SNOW 2.0 and SOSE-

MANUK

SOSEMANUK [7] combines the design philosophies of the block cipher Serpent [6] and the
stream cipher SNOW 2.0 [12]. Below we mention the salient design features of each of the
three ciphers.

2.1 Description of Serpent

Serpent was a candidate for the AES competition. It is a 32-round Substitution-Permutation
(SP)-network operating on four 32-bit words. It encrypts a 128-bit plaintext P to a 128-bit
ciphertext C in 32 rounds under 33 many 128-bit subkeys K̂0, . . . , K̂33. The cipher supports
three different key lengths, namely 128-bit, 192-bit or 256-bit. Keys with less than 256 bits
are expanded into full 256-bit keys by appending one “1” bit to the MSB end, followed by
as many “0” bits as required. Serpent uses 8 many 4-to-4-bit S-boxes S0, . . . , S7. The cipher
can be formally described as

B̂0 = IP (P), B̂i+1 = Ri(B̂i), C = FP (B̂32),

where IP and FP are the initial and the final permutations respectively over the 128 bit-
positions and the round function Ri is defined as

Ri(X) = L
(

Ŝi(X ⊕ K̂i)
)

, for i = 0, . . . , 30,

Ri(X) = Ŝi

(

X ⊕ K̂i

)

⊕ K̂32, for i = 31.

Here L is a linear transformation (LT) and Ŝi is the application of the S-box Si mod 8 32 times
in parallel. When the S-boxes are applied in bitslice mode, each of them act as 128-bit to
128-bit S-box and the initial and final permutation steps are no longer required. We describe
the S-boxes in Appendix A.1 and the linear transformation in Appendix A.2.

The 256-bit effective key (after necessary padding) is written as eight 32-bit words w−8,
. . ., w−1 which are then expanded into an intermediate key w0, . . . , w131 by the following
recurrence.

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i) ≪ 11, (1)

3

for i = 0, . . . , 131, where φ is the fractional part of the golden ratio (
√
5+1)/2 or 0x9e3779b9

in hexadecimal. Now the S-boxes are used to transform the prekeys wi into words ki of the
round keys. This transformation is described in Appendix A.3.

2.2 Description of SNOW 2.0

SNOW 2.0 [12] uses an LFSR of length 16 (each entry is a 32-bit word) with feedback
polynomial

π(x) = αx16 + x14 + α−1x5 + 1 ∈ F232 [x],

where α is a root of x4 + β23x3 + β245x2 + β48x + β239 ∈ F28 [x] and β is a root of x8 + x7 +
x5 + x3 + 1 ∈ F2[x].

Let (st+15, . . . , st) denote the state of the LFSR at time t ≥ 0. There is a finite state
machine (FSM) with two registers R1, R2 and an S-box S. The output of the FSM and the
keystream word generated are respectively given by

Ft = (st+15 ⊞R1t)⊕R2t, for t ≥ 0,

zt = Ft ⊕ st, for t ≥ 1.

For t ≥ 0, the registers R1 and R2 are updated as

R1t+1 = st+5 ⊞R2t, R2t+1 = S(R1t).

Note that ⊞ means addition modulo 232.
SNOW 2.0 supports a secret key K of either 128 or 256 bits and a 128-bit initialization

vector (IV). The details of the key initialization are given in Appendix B.

2.3 Description of SOSEMANUK

SOSEMANUK [7] has a key length of either 128 bits or 256 bits and an IV of 128 bits. It
uses two primitives from Serpent, namely, Serpent24 used in the key schedule and Serpent1,
used during the keystream generation. Serpent24 is Serpent reduced to 24 rounds instead of
32 rounds, where the last round (i.e., 24th round) retains the linear transformation unlike
true Serpent. Thus,

R23(X) = L
(

Ŝ23(X ⊕ K̂23)
)

⊕ K̂24.

Serpent1 is just one round of Serpent with the S-box S2, but without the key addition and
the linear transformation.

The LFSR used is defined over the same finite field as in SNOW 2.0, but is of length 10
instead of 16. The new value is computed as

St+10 = St+9 ⊕ α−1st+3 ⊕ αst, t ≥ 1.

The FSM uses two 32-bit registers R1, R2 as in SNOW 2.0, but instead of an S-box connecting
them, it has a transformation Trans connecting them. The update of the FSM for t ≥ 1 and
the output ft are given below.

R1t = (R2t−1 +mux(lsb(R1t−1), st+1, st+1 ⊕ st+8)) mod 232,

R2t = Trans(R1t−1), ft = ((st+9 +R1t) mod 232)⊕R2t,

4

where lsb(x) is the least significant bit of the word x and mux(c, x, y) selects x if c = 0, or
y if c = 1, and

Trans(z) = (0x54655307× z mod 232) ≪ 7.

The outputs of the FSM are grouped by four and then the output keystream words are
generated as

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)

⊕(st+3, st+2, st+1, st).

The key setup corresponds to the key setup of Serpent24, that produces 25 128-bit subkeys.
The 128-bit IV is used as input to Serpent24 block cipher and the outputs (Y r

3 , Y
r
2 , Y

r
1 , Y

r
0)

from the r-th rounds of Serpent24, corresponding to r = 12, 18, 24, are used to load R1, R2
as (R1, R2) = (Y 18

0 , Y 18
2) and the LFSR as

(s6, s7, s8, s9) = (Y 12
3 , Y 12

2 , Y 12
1 , Y 12

0),

(s4, s5) = (Y 18
1 , Y 18

3),

(s0, s1, s2, s3) = (Y 24
3 , Y 24

2 , Y 24
1 , Y 24

0).

3 Design Space Exploration

In order to support flexibility of operation across and within a cipher, our proposed design is
weakly programmable via custom assembly instructions. The design structure is as shown in
the following figure 1. By loading the program memory with the assembly instructions and
setting up the I/O as shown in the figure, the design can be plugged in easily in a System-
on-Chip (SoC) environment. Note that, the number of ports and port-width for output
keystream and the data memory bank vary from design to design.

Figure 1: TripleS Architecture

TripleS

Program

Memory

Data Memory

Bank
Data Memory

Bank

clock

reset

key

IV

is_long_key

bool

128

256

32

Keystreamword

5

We started with the design and related optimizations in an incremental fashion and the
process led to 12 different design points. For ease of discussion, let us introduce a few nota-
tions. Let Se, Sn and So denote the implementations of the individual ciphers Serpent, SNOW
2.0 and SOSEMANUK respectively. Analogously, Sen means a combined implementation for
both Serpent and SNOW 2.0 and Seno means a combined implementation of all the three
ciphers. We use a second subscript u preceded by a comma to denote a version of the same
cipher with the LFSR unrolled (we would explain shortly what does unrolled mean). We
use a superscript (n) to denote that there are n pipeline stages in the design. For example,

S
(2)
eo,u means a 2-stage implementation of SOSEMANUK and Serpent together with the LFSR

unrolled.

Figure 2: Critical paths for Serpent Round functions

x0

x2

x1

x3

x4

AND XOR

XOR XOR

OR XOR

XOR

Copy

OR XOR

AND

XOR

XOR XOR

NOT

x0 ROTL

x2 ROTL

XOR x1

Truncate

XOR

ROTL

ROTL

XOR

Truncate

x3

XOR ROTL

ROTL

Serpent Linear Transformation

Serpent S-box S2

From a preliminary RTL analysis, the critical paths for S-box and LT are identified as
shown in Fig. 2 (dotted lines). These could be further split into two pipeline stages. For
Serpent, this decision is actually counter-productive since, the throughput degrades from 1
round per cycle to 1 round per 2 cycles. On the other hand the throughput (in terms of
bits per cycle) of both SNOW 2.0 and SOSEMANUK remains the same. This boosts the
throughput of SNOW 2.0 and SOSEMANUK as a higher clock frequency could be achieved
due to a smaller critical-path.

The LFSR evolution of SOSEMANUK and SNOW 2.0 is always implemented in 2 pipeline
stages. Whereas the Serpent (in Se, Sen, Seo or Seno) is implemented in either 2 stages or
3 stages. In Fig. 3, we show how the Serpent components were divided across the different
pipeline stages for 2-stage implementation. In case of the 3-stage implementation, the linear
transformation is done in the 3rd pipeline stage and the loading of input operands for LT is
done in the 2nd stage.

In Fig. 3, we show how the LFSR components were divided across the different pipeline
stages. The rationale for generating the addresses in the first pipeline stage is twofold. First,
it accommodates for the 1 cycle read latency of the storage. Second, the addresses for the next
SNOW 2.0 iteration is already available in the LFSR and therefore, the pipeline can operate

6

at maximum throughput. Splitting the second pipeline stage into further stages would either
cause a decrease in the throughput or a complex bypass logic leading to the same critical
path.

Figure 3: TripleS Architecture: Pipelining

Serpent 2-stage

Serpent 3-stage

SNOW 2.0, SOSEMANUK LFSR Evolution

We started with a basic design of 3-stage Serpent, which we call S
(3)
e,basic. Both from timing

and area perspective, several optimizations were applied to this design point leading to an
optimized version S

(3)
e . The optimizations are explained in Section 5. These optimizations

were retained in subsequent evolution of the design points. From S
(3)
e , we reduced one pipeline

stage to double the throughput of Serpent, in terms of bits per cycle, yielding S
(2)
e . Now we

added a 2-stage version of SNOW 2.0 onto it, giving us S
(2)
en . From this, we created an

independent version of SNOW 2.0, i.e., S
(2)
n . From S

(2)
en , we gradually developed S

(2)
eno, S

(3)
eno

and S
(3)
eno,u, one after another. We did an experiment with further SNOW 2.0 unrolling here

and created S
(3)
eno,uu. To keep the focus on SOSEMANUK, we traced back to S

(3)
eno,u and then

we bifurcated - in one path we developed S
(3)
eo,u and in another path we developed first S

(2)
eno,u

and then S
(2)
eo,u. Finally, we developed a fault attack resistant version of S

(2)
eno,u, denoted by

S
′(2)
eno,u. All the design iterations were guided by intermediate performance evaluation of the

RTL description.

4 Instruction Set Design

For the programmability of the architecture, one could opt for a configurable input, where
only 3 operational modes are specified to run SOSEMANUK, Serpent or SNOW 2.0. However,
such a design would not allow for any algorithmic flexibility. We intended to design an ISA
that would let users execute the 3 main modes as well as variants of these ciphers. For a
typical bus interface, the instruction word needs to be nibble/byte/word-oriented. As we
explored the flexibility of specifying the indices in Serpent rounds, the most compact opcode
required 32 bits.

7

4.1 Serpent Rounds

For Serpent key scheduling, eight 32-bit words, namely, w0, . . . , w7 are operated with the same
transformation, however, with different variable ordering. To keep the operator generic, the
variable ordering is encoded in the instruction. For 4 different variable ordering, 4 different
instructions are designed. Each bitsliced implementation of Serpent S-box is triggered via
one specific instruction. This requires total 4 + 8, i.e., 12 instructions.

Each of the Serpent bitsliced S-boxes takes five inputs, of which the first four contain
four 32-bit words to process and the fifth one serves as an auxiliary variable. We use five
variables, denoted by ri, i = 0, . . . , 4, for the S-box and the linear transformation (LT). If the
inputs to the S-box are in r0, r1, r2, r3, then r4 is the default auxiliary variable and as per
the S-box definitions, the output indices are given in the second column of Table 4.1. These
S-box outputs go directly as inputs to LT, which produces the outputs in the same locations.

Table 1: Input and output indices of ri for different Serpent rounds

S-box
Standard mapping In first 8 rounds

(when S-box in = 0, 1, 2, 3)
S-box in

S-box out LT in
S-box out = LT in (as per standard mapping) (as per our permutation network)

S0 1, 4, 2, 0 0, 1, 2, 3 1, 4, 2, 0 1, 4, 2, 0
S1 2, 0, 3, 1 1, 4, 2, 0 2, 1, 0, 4 2, 0, 3, 1
S2 2, 3, 1, 4 2, 1, 0, 4 0, 4, 1, 3 2, 3, 1, 4
S3 1, 2, 3, 4 0, 4, 1, 3 4, 1, 3, 2 1, 2, 3, 4
S4 1, 4, 0, 3 4, 1, 3, 2 1, 0, 4, 2 1, 4, 0, 3
S5 1, 3, 0, 2 1, 0, 4, 2 0, 2, 1, 4 1, 3, 0, 2
S6 0, 1, 4, 2 0, 2, 1, 4 0, 2, 3, 1 0, 1, 4, 2
S7 4, 3, 1, 0 0, 2, 3, 1 4, 1, 2, 0 4, 3, 1, 0

Figure 4: TripleS Instruction-Set

0b32[0]

0b01 0b000 0b27[0]

0b01 0b001 0b27[0]

snow load key

snow init

0b01 0b011 0b27[0] snow op

0b10 0b000 0bx[2]=wup_idx 0bx[8]=wup_arg 0b17[0] serpent wup

0b10 0b010 0bx[3]=sks_idx 0b24[0] serpent sks

0b10 0b100 0bx[15]=in_idx 0bx[12]=out_idx serpent fss

0b10 0b110 0b0[27] serpent fsf

nop

0b11 0b000 0b0[27] sosemanuk fsf

0b11 0b001 0bx[16]=in_idx 0b0[11] sosemanuk load

0b11 0b011 0b0[27] sosemanuk op

0b11 0b100 0b0[27] sosemanuk sks2

However, the outputs of LT need to be fed as input to the next S-box in the next round.
Thus, after the first round, S0 puts the outputs in r1, r4, r2, r0 which also remain the outputs of
LT. In the second round, S1 takes inputs from r1, r4, r2, r0 and produces outputs in r2, r1, r0, r4
(as per row S1, column 4 in the table) instead of r2, r0, r3, r1 (row S1, column 2 in the table).
This continues and the indices for the first 8 rounds are shown in the third and fourth column
of Table 4.1.

In software, the S-box and LT are implemented typically as functions or macro and there-
fore in any Serpent round the S-box output indices and the LT input indices can remain
the same. On the other hand, the default hardware implementation is to use signals [17] for

8

passing the data between round key access, S-box computation and linear transformation.
Unlike [17], we created a software-controlled permutation network, resulting in a mux-based
implementation. This provides for additional flexibility in controlling the mapping without
any noticeable throughput degradation. The inputs and outputs of the permutation networks
are shown in the fourth and the fifth column of Table 4.1.

The mapping of the permutation network can be explained by an example as follows.
Consider the 5th Serpent round, i.e., the row corresponding to S4 in the table. The indices
for the S-box input are 4, 1, 3, 2 and those for the S-box output are 1, 0, 4, 2. If one creates a
list [4, 1, 3, 2, 0] of the input ri indices, where position 4 corresponds to r0, then the positions
of the output indices 1, 0, 4, 2 in this list is given by 1, 4, 0, 3 respectively. As shown in the
table, this is precisely the output of the permutation network, which serves as the input to
the next LT.

In the accelerator design exploration, this assembly control of permutation network in-
dices allowed us to efficiently implement round key access, S-box implementation and linear
transformation. The permutation network is decoupled from the combinatorial logic, which
could be conveniently moved between pipeline stages for best timing results. A subtle benefit
of this scheme is the possibility to accommodate different permutation network mapping for
different algorithm variants.

For each of these Serpent round functions, at least 4 indices are required, where the 5th
index can be computed from them. This requires total 12 3-bit indices requiring total 36 bits.
To restrict the instruction bitwidth within 32, an instruction is issued before the first round
specifying the input indices for round key function. The input indices of linear transformation
of round n acts as input indices of S-box of round n+ 1.

For every round, the same instruction with different index parameters is called. There is
a special instruction for the final round, which skips the linear transformation. Therefore,
total 3 different instructions for initialization, Serpent round and final round are needed.

The instruction set is flexible for diverse indexing options in the Serpent rounds as well
as different order of S-box accesses during key scheduling. Naturally, the increase or decrease
of Serpent rounds is also possible.

4.2 SNOW 2.0 Operations

The instruction set for SNOW 2.0 contains only 3 instructions namely, load key, initialization
and keystream generation. The key, IV and keylength are loaded via input pins. This is
followed by 32 rounds of initialization. Finally the keystream generation instruction is issued.
Naturally, the datapath for initialization and keystream generation is shared.

The LFSR feedback polynomial is hardwired in the microarchitecture for maximizing the
performance.

4.3 Additional SOSEMANUK Operations

The key scheduling and round functions’ instructions from Serpent could be completely reused
for SOSEMANUK. Additionally, SOSEMANUK initialization required one instruction for
loading the LFSR. This instruction requires two different sets of parameters. The first set
specifies indices of input data and the second set specifies LFSR indices. Since we stored
the output indices of every Serpent round, the first set of parameters are already available in
the microarchitecture. Therefore, only the LFSR indices need to be stored. The values are
stored into R1 and R2, when the LFSR indices are specified as 10 and 11 respectively. Note

9

that, SNOW 2.0 uses a larger LFSR compared to SOSEMANUK leaving few LFSR positions
redundant.

For the encryption operation, two specific instructions for keystream generation and Ser-
pent round call is designed. The keystream generation for SOSEMANUK uses a different
transformation compared to SNOW 2.0 though, the rest of the datapath is shared.

All the instructions are 32 bit wide, of which 2 bits are used to distinguish between
different mode of the application. Currently, three different modes i.e. Serpent, SNOW 2.0
and SOSEMANUK are supported. Depending on the mode, slightly different behavior for
LFSR shifting, register initialization and S-box access is triggered. The complete ISA and
the corresponding opcodes are shown in Fig. 4. The introduction of this flexibility led to
additional decoder logic, which accounted for 10% area overhead in the worst case. Sample
assembly routines for Serpent, SNOW 2.0 and SOSEMANUK are provided in the appendices.

5 Microarchitecture Design and Optimizations

We describe the different design choices and optimizations of the microarchitecture in the
following subsections.

5.1 Storage

We employed diverse types of storage for TripleS. In the following, by register, we indicate
Standard Cell Memories (SCM) when referring to registers. For look-up tables and S-Boxes,
suitable Memory Macro (MM) is selected by using a commercial memory compiler. There
are three specific requirements for storage among Serpent, SNOW 2.0 and SOSEMANUK.

For SNOW 2.0 and SOSEMANUK, α and α−1 values are precomputed and stored in 256
entry 32-bit wide look-up tables. For initial implementation of SOSEMANUK, 1 read port is
sufficient for both the tables. For unrolled version, 2 read ports are required for each.

For Serpent round key, 132 entry 32-bit wide storage with both read and write operations
is required. Since each Serpent round requires 4 accesses to the storage, it is divided into
two separate memories storing even and odd-indexed locations. For this purpose, a suitable
dual-port memory macro was selected by using Faraday Memory Compiler [15].

SNOW 2.0 requires an S-box implementation with 32-bit input and 32-bit output. This
S-box can be decomposed into the 8-bit input, 8-bit output Rijndael S-box and a few logical
operations [12, Section 6]. The complete Rijndael S-box is hardcoded into the architecture,
which incurs little area overhead and does not affect the runtime performance.

5.2 Sliding LFSR

SNOW 2.0 has 16 32-bit registers and SOSEMANUK requires only 10 32-bit registers. In
our generic design we have 16 32-bit registers. When the design executes in SOSEMANUK
mode, 6 slots of the LFSR are left unused. For SOSEMANUK keystream generation, four
consecutively dropped words from the LFSR are XOR-ed with four consecutive Serpent1

outputs. We use the LFSR locations 0 to 3 to store the dropped words before they are
XOR-ed. This utilizes the shifting naturally. The same effect is achieved in [17] by creating
a separate shift register.

10

Figure 5: Schematic Diagram of LFSR Unrolling

s
t+9

s
t+3

s
t+1

s
t

-1

R1 Trans R2

Serpent1

ft (x 4)

(a) LFSR Rolled

s
t+9

s
t+4

s
t+3

s
t+1

s
t

-1

R1 Trans R2

Serpent1

ft (x 4)

-1

(b) LFSR Unrolled

5.3 Unrolled LFSR

For some of our design points, we create a version with the LFSR unrolled for two steps with
an aim to achieving better throughput. The idea is to perform two consecutive updates of the
LFSR in one clock cycle. This involves shifting of the LFSR by two positions and loading the
positions St+9 and St+8 with two new values. Pictorially the rolled and the unrolled versions
of the LFSR are shown in Fig. 5. For clarity, the unrolling effects in the FSM update is not
shown. Naturally, it involves two consecutive computations of R1 and R2 in the same clock
cycle.

In principle, further unrolling is possible. However, the Serpent1 function for keystream
generation is called after every four iterations of LFSR updates of SOSEMANUK. By unrolling
two steps of output generation, the Serpent1 function needs to be called once after every 2
cycles (4/2) of our implementation. If we unroll one more iteration, it would mean that the
Serpent1 function needs to be called after every ⌈4/3⌉ = 2 cycles. In other words, we need to
wait till 2 cycles of our implementation anyway before generating the keyword and this gives
us no advantage at all.

5.4 Additional Optimizations

Apart from LFSR unrolling and optimization of the permutation network, several other design
optimizations are performed to improve the throughput and area. These are briefly described
in the following.

• The rotate operations in Serpent contain constant operands. Instead of having a flexible
rotation unit, dedicated bit wiring is used for the rotations.

• Each of the 8 S-boxes in Serpent are accessed in a particular order. An 8-bit global
register, called serpent rk index, is used for incrementing the indices of round key access.
The 5 lower-order bits from the same register are used to determine the particular S-box
to be called in a particular round.

• Serpent key scheduling requires 8 registers, namely, w0, . . . , w7. These are re-used again
during keystream generation for two different purposes. First, for storing the S-box

11

input indices for the next Serpent round. Second, for holding the intermediate values
ft+3, ft+2, ft+1, ft of SOSEMANUK during the generation of its keystream.

5.5 Security Enhancement

Most of the attacks on SNOW 2.0 and SOSEMANUK have complexity more than 2128 and
hence not practical for a keylength of 128 bits. These works include the guess and determine
attacks in [2, 41, 16] and linear cryptanalysis of SOSEMANUK and SNOW 2.0 [22, 9].

There are two fault attacks on SOSEMANUK with better complexity. The differential
fault attack of [29] requires around 6144 faults, and this is an work equivalent to around 248

SOSEMANUK iterations and a storage of around 238.17 bytes. The time complexity of 248 is
dominated by a pruned complexity of 216 to guess the values of 8 LFSR states and 8 FSM
outputs and a complexity of 232 to guess the initial value of R1. In [25], an improved attack
is presented that requires only around 4608 faults, 235.16 SOSEMANUK iterations and 223.46

bytes storage. This complexity is dominated by 23.16 (instead of 216 as in [29]) for the first
part and a complexity of 232 to guess the initial value of R1.

To prevent this fault attack, we duplicate the LFSR’s S1, S8 and S9, since the fault attack
in [29] must determine the complete LFSR state in order to be successful. We call this variant

S
′(2)
eno,u. If at any step the two copies of any one of the three LFSR’s do not have the same value,

then the process is aborted. Thus the complexity of guessing the LFSR states is increased by
at least 296, thereby moving the total complexity beyond 2128.

Though the published fault attack [29] is not practical, we demonstrate the counter-
measure just to emphasize the fact that such an attack (and any similar attack that may be
devised in future) can be easily protected with negligible decrease in performance.

6 Performance Evaluation

All the design points were first modeled in Synopsys Processor Designer version G-2012.06-
SP2 Linux [38], a high-level processor design environment. The algorithm outputs were
verified with cycle-accurate instruction-set simulation. Optimized RTL implementation is
generated from the high-level description automatically, which is again functionally verified
by running RTL simulation. The high-level design environment considerably reduced the
modeling and exploration efforts. The RTL model complexity, in terms of lines of code, is
approximately 20× that of the high-level description. On the other hand, as has been demon-
strated with several commercial and academic studies, the RTL generated from the Processor
Designer performs reasonably well when compared with manual developer. The generated
core, in this way, could be assembly-programmable and also retain high implementation ef-
ficiency. The implementation efficiency suffers to some extent, as has been shown in [5],
particularly due to the pre-conceived structural template of processors.

The generated RTL model is synthesized with Synopsys Design Compiler version D-
2010.03-SP4 [36], with target technology being UMC Faraday LL/RVT low-K process and
the assumption of best conditions at 1.32V and -40◦C. During synthesis, compile ultra option
with high timing effort and topographical mode is used. Repeated synthesis with increasing
clock frequency is performed as long as no timing violation is reported. The generated timing
results are used to analyse the critical path and then timing optimizations to the high level
description of the model are applied accordingly. RTL switching activity is recorded and pro-
vided as an input to Synopsys PrimeTime version D-2010.03-SP4 [37]. for obtaining power

12

estimates. The performance estimates for memory structures are obtained by using Faraday

Memory Compiler [15], 65nm technology library. For all the design points, the memory access
time satisfies the core frequency.

6.1 Area, Timing and Power

The evolution of design points are associated with corresponding area, timing and power fig-
ures. For convenience, first the area results are presented in Table 2, followed by throughput,
power and energy-efficiency results in Table 3. In the following, the design evolution, its
rationale and the observed results are presented stepwise.

Table 2: Design Area Distribution

Design
Core Area (KGates) Memory Total Area

Combinational Sequential Total Ports (Bytes) (KGates) (KGates)

S
(3)
e,basic 41.391 4.585 45.976 2 combined 528 15.84 61.816

S
(3)
e 30.595 4.689 35.284 2 combined 528 15.84 51.124

S
(2)
e 39.989 3.67 43.659 2 combined 528 15.84 59.499

S
(2)
en 42.711 6.848 49.559 2 combined, 1 read 528, 2048 32 81.559

S
(2)
n 10.796 3.7 14.496 1 read 2048 16.24 30.736

S
(2)
eno 53.083 7.031 60.114 2 combined, 1 read 528, 2048 32 92.114

S
(3)
eno 53.728 7.976 61.704 2 combined, 1 read 528, 2048 32 93.704

S
(3)
eno,u 49.334 7.835 57.169 2 combined, 2 read 528, 2048 45.8 102.969

S
(3)
eno,uu 69.308 7.973 77.281 2 combined, 2 read 528, 2048 45.8 123.08

S
(3)
eo,u 42.13 7.81 49.94 2 combined, 2 read 528, 2048 45.8 95.74

S
(2)
eo,u 56.602 6.994 63.596 2 combined, 2 read 528, 2048 45.8 109.396

S
(2)
eno,u 67.801 7.071 74.872 2 combined, 2 read 528, 2048 45.8 120.672

S
′(2)
eno,u 67.743 7.598 75.341 2 combined, 2 read 528, 2048 45.8 121.141

S
(3)
e,basic → S

(3)
e : The basic Serpent implementation, i.e., S

(3)
e,basic, is improved with the per-

mutation network optimization of Section 4.1 and other optimizations mentioned in
Section 5.4 to significantly improve the area. The introduction of instruction-set and
corresponding decoding logic compromised the throughput slightly.

S
(3)
e → S

(2)
e : In order to achieve higher bits per cycle, we moved to a 2-stage Serpent imple-

mentation.

S
(2)
e → S

(2)
en : SNOW 2.0 is included in the design, and this results in further area increase,

mainly contributed by the memories storing α and α−1 values.

S
(2)
en → S

(2)
n : To gauge the achievable runtime performance of SNOW 2.0, a standalone

implementation is next attempted. This also shows that the combined implementation
of Serpent and SNOW 2.0, S

(2)
en consumes less area than simple addition of individual

SNOW 2.0 and Serpent implementations. This reflects and efficient sharing of resources.

S
(2)
en → S

(2)
eno : SOSEMANUK mode is included in S

(2)
en to reach S

(2)
eno. This caused an increase

in the area by 10.55 KGates. The achievable throughput is constrained by the Serpent
critical path at this design point.

13

S
(2)
eno → S

(3)
eno : To improve the throughput of SOSEMANUK, Serpent datapath is distributed

among 3 pipeline stages. This resulted in minor area increase, reduced Serpent through-
put and increased SOSEMANUK’s initialization latency. However, the clock frequency
improved from 1010 MHz to 1280 MHz, improving the keystream generation speed of
both SNOW 2.0 and SOSEMANUK.

S
(3)
eno → S

(3)
eno,u : Recognizing that the critical path of Serpent round with the permutation

network is able to accommodate larger combinational path of SOSEMANUK, we decided
to unroll the LFSR. The unrolling affected the FSM update of SOSEMANUK. Though it
reduced the clock frequency from 1280 MHz to 1060 MHz, it increased the throughput
significantly by doubling the bits per cycle. Corresponding area increase is nominal,
which is also reflected in the throughput per area improvement in Fig. 6 between S

(3)
eno

and S
(3)
eo,u.

S
(3)
eno,u → S

(3)
eno,uu : We attempted further unrolling for the SNOW 2.0. It reduced the clock

frequency even further and increased the area significantly. This caused a sharp drop
in the throughput per area for SOSEMANUK. Naturally, the same metric is improved
for SNOW 2.0.

S
(3)
eno,u → S

(3)
eo,u : The area, timing and power results for SOSEMANUK implementation with-

out SNOW 2.0 mode is studied at this point. Omission of SNOW 2.0 mode reduced the
area by only 7.229 KGates, which is 7% of the total area. This is understandable, since
the area overhead of SNOW 2.0 is dominated by α and α−1 values which are present in
SOSEMANUK anyway.

S
(3)
eo,u → S

(2)
eo,u → S

(2)
eno,u : We moved back again from a 3-stage to a 2-stage implementation.

The rationale is that the critical path of unrolled SOSEMANUK datapath is comparable
to the critical path of a 2-stage Serpent implementation. Therefore, it is advisable to
retain the 2-stage Serpent implementation for higher Serpent throughput. This reduces
the throughput of SNOW 2.0 and SOSEMANUK slightly at the benefit of increased
Serpent throughput (S

(2)
eno,u).

S
(2)
eno,u → S

′(2)
eno,u : Finally, fault detection logic is implemented, which does not affect the

throughput at all. The area increment is only 0.469 KGates.

From Table 3, the variation of throughput along the design points can be observed. For
Serpent, a move from 3-stage to 2-stage implementation is always associated with an increase
in throughput. The implementation of SNOW 2.0 is done for all the design points in 2
pipeline stages, resulting in 32 bits per cycle throughput. For SOSEMANUK, the initial
implementation at S

(2)
eno and S

(3)
eno generated 128 bits of output after every 6 cycles. This is due

to 4 consecutive LFSR operations followed by a 1-cycle stall when the intermediate values are
loaded in the Serpent1 address generation instruction. In the 6th cycle, the Serpent1 function
is executed. S

(3)
eno onwards the LFSR was unrolled. This with parallel execution of Serpent1

function and LFSR operations resulted in a throughput of 64 bits per cycle. The decision
of moving from 3-stage to 2-stage implementation (S

(3)
eno,u → S

(2)
eno,u) reduces the achievable

throughput for SNOW 2.0 and SOSEMANUK at the cost of increased Serpent throughput.
For the multi-mode design points, the area efficiency results in terms of throughput per

area are presented in Fig. 6. The gradual changes in the area efficiency between different
points are as following.

14

Table 3: Design Runtime, Energy Performance

Design
Core Throughput Core Power Energy (pJ/bit)

Frequency (bits per cycle) (Gbps) (mW) Core Memory
(MHz) SE SN SO SE SN SO SE SN SO SE SN SO SE SN SO

S
(3)
e,basic

1600 2 - − 3.2 − − 37.73 − − 11.89 − − 8.11 − −

S
(3)
e 1500 2 - − 3 − − 27.39 − − 9.13 − − 8.11 − −

S
(2)
e 1060 4 - − 4.24 − − 37.47 − − 8.84 − − 8.11 − −

S
(2)
en 1040 4 32 − 4.16 33.28 − 28.65 10.75 − 6.89 0.32 − 8.11 0.58 −

S
(2)
n 1950 - 32 − − 62.4 − − 11.24 − − 0.18 − − 0.58 −

S
(2)
eno 1010 4 32 21.33 4.04 32.32 21.54 28.23 16.34 25 6.99 0.51 1.16 8.11 0.58 0.58

S
(3)
eno 1280 2 32 21.33 2.56 40.96 27.3 28.25 18.43 24.44 11.04 0.45 0.9 8.11 0.58 0.58

S
(3)
eno,u 1060 2 32 64 2.12 33.92 67.84 20.39 21.29 20.40 9.62 0.63 0.3 8.11 0.53 0.53

S
(3)
eno,uu 990 2 64 64 1.98 63.36 63.36 24.78 48.99 25.40 12.51 0.77 0.4 8.11 0.53 0.53

S
(3)
eo,u 1040 2 - 64 2.08 − 66.56 20.31 − 19.67 9.76 − 0.3 8.11 − 0.53

S
(2)
eo,u 1000 4 - 64 4 − 64 29.01 − 27.81 7.25 − 0.43 8.11 − 0.53

S
(2)
eno,u 1000 4 32 64 4 32 64 31.84 19.9 30.81 7.96 0.62 0.48 8.11 0.53 0.53

S
′(2)
eno,u 1000 4 32 64 4 32 64 34.56 20.49 33.85 8.64 0.64 0.53 8.11 0.53 0.53

Figure 6: Area Efficiency Chart for Multi-mode Designs

G
b

p
s
/K

G
a

te
s

(s
c
a

le
d

)

0

10

20

30

40

50

60

70

80

Serpent

SNOW 2.0

SOSEMANUK

15

S
(2)
en → S

(2)
eno : The area efficiency of both SNOW 2.0 and SOSEMANUK decrease for accom-

modating an additional mode.

S
(2)
eno → S

(3)
eno : By increasing the pipeline stages, higher throughput with little area increase

is achieved for SNOW 2.0 and SOSEMANUK. Area efficiency for Serpent decreases.

S
(3)
eno → S

(3)
eno,u : LFSR unrolling improves the throughput of SOSEMANUK, though increas-

ing the overall area. This is reflected in reduced area efficiency for SNOW 2.0 and
Serpent.

S
(3)
eno,u → S

(3)
eno,uu : LFSR unrolling for SNOW 2.0 reduces the area efficiency for SOSE-

MANUK and improves the same for SNOW 2.0.

S
(3)
eno,u → S

(3)
eo,u : Removing SNOW 2.0 mode decreases the area, and thus, improves the area

efficiency further.

S
(3)
eo,u → S

(2)
eo,u : Moving back to the 2-stage pipeline increases the area efficiency for Ser-

pent. Due to the drop of clock frequency and increase of area, the area efficiency for
SOSEMANUK is compromised.

S
(2)
eo,u → S

(2)
eno,u : The area efficiency drops further when SNOW 2.0 mode is included in the

design.

6.2 Initialization Latency

The initialization latency of the different algorithms for different design points are shown in
Table 4. For Serpent, all the design points require 99 cycles for initialization. The initialization
involves 33 rounds of key scheduling. For each round, there are two instructions for computing
the recurrence followed by a 1-cycle S-box computation.

Table 4: Initialization Latency of Different Algorithms

Design
Core Frequency Initialization Latency (Cycles)

(MHz) Serpent SNOW 2.0 SOSEMANUK

S
(3)
e,basic

1600 33×3 = 99 - -

S
(3)
e 1500 33×3 = 99 - -

S
(2)
e 1060 33×3 = 99 - -

S
(2)
en 1040 33×3 = 99 32 -

S
(2)
n 1950 - 32 -

S
(2)
eno 1010 33×3 = 99 32 25×3 + 1 + 24×1 + 1 + 3 = 104

S
(3)
eno 1280 33×3 = 99 32 25×3 + 1 + 24×2 + 1 + 3 = 128

S
(3)
eno,u 1060 33×3 = 99 32 25×3 + 1 + 24×2 + 1 + 3 = 128

S
(3)
eno,uu 1060 33×3 = 99 32 25×3 + 1 + 24×2 + 1 + 3 = 128

S
(3)
eo,u 1040 33×3 = 99 - 25×3 + 1 + 24×2 + 1 + 3 = 128

S
(2)
eo,u 1000 33×3 = 99 - 25×3 + 1 + 24×1 + 1 + 3 = 104

S
(2)
eno,u, S

′(2)
eno,u 1000 33×3 = 99 32 25×3 + 1 + 24×1 + 1 + 3 = 104

For SNOW 2.0, the initialization requires 32 initial clocking of the LFSR, which are
accomplished in 32 cycles.

For SOSEMANUK, the truncated key schedule requires 25 rounds, with each round con-
suming 3 cycles similar to Serpent. This is followed by the encryption of IV with Serpent24.
This operation requires 1 cycle for initialization of the permutation network indices and 1
additional final cycle, which accesses the round key twice. In between, the 24 rounds require

16

2 and 1 cycle for 3-stage and 2-stage design variants respectively. The loading of the LFSR,
R1 and R2 needs altogether 3 cycles.

In terms of overall performance, the two best design points are S
(2)
eno,u and S

(3)
eno,u. Whereas

S
(3)
eno,u gives better performance for SNOW 2.0 and SOSEMANUK, S

(2)
eno,u provides better

performance for Serpent.

6.3 Benchmarking with Other Implementations

Before our current work, hardware performance of SOSEMANUK has been discussed only
in [17]. According to [17], the maximum clock frequency achieved in 0.13µm Standard Cell
CMOS technology was 188.3 MHz, leading to a throughput of 6.026 Gbps with a power
consumption of 14702 µW and an energy-efficiency 2.44 pJ/bit. Total area was 18.819 KGates
and the Throughput per Area (TpA) was 61.77 Kbps/µm2. From the throughput figures, it
can be observed that the design presented in [17] generated 32 bits per cycle. Though it is
hard to compare across different technology nodes, it can be safely assumed that from 0.13µm
to 65nm allows for 2 times improvement (due to Moore’s Law [27]) in maximum achievable
clock frequency, while 2 times further improvement is contributed by the 64 bits per cycle
implementation in our case. However, our throughput in Gbps is found to be 10 × faster
than theirs. This is also reflected in the TpA of S

(3)
eno,u, which is 514.72 kbps/µm2. This is an

improvement of 8.33 × compared to the best available ASIC results in 0.13µm.
For an improved comparison, we did synthesize a design point of ours, namely S

(3)
eo,u, with

UMC Faraday 0.13µm L130E High Speed FSG Process technology, using 1.2v, 25◦c typical
conditions. The design could by synthesized comfortably at 200 MHz with an equivalent core
area of 37.6 KGates and a TpA of 66.45 Kbps/µm2. The frequency could be further improved
to 400 MHz with a corresponding TpA of 116.05 Kbps/µm2, considering core area.

It is important to note that, all of our implementations used memory macro for storing
S-Boxes, α and α−1 values. This allows maximum flexibility. It is not clear if dedicated hard-
ware is synthesized (ROM/SCM/MM) for implementing the same in [17], which introduces
another difficulty in comparison. Overall, our designs are driven by primarily, flexibility and
throughput. While extremely high throughput is not desirable in all the deployment sce-
narios, it provides an additional knob to the end-user, who may, reduce the clock frequency
comfortably to achieve an intended throughput and thus reduce power consumption.

The best hardware for SNOW 2.0 is due to [14]. They implemented on XC4VLX15 series
of Xilinx ISE 6.3.03i FPGA and report a throughput of 8.076 Gbps at a clock speed of 252.4
MHz. Throughput per slice was 3.42 Mbps/slice. The throughput in terms of bits per cycle
of [14] is same as the proposed design. Absence of standard cell synthesis results prevented
us from further benchmarking the performance of SNOW 2.0 algorithm.

The available published hardware implementation of Serpent in [24] compared hardware
performances of Serpent and Rijndael AES at 0.6µm 3LM technology (AMS CUA). The
comparison is as follows.

Rijndael Serpent

Actual chip area (mm2) 49.0 49.0

Throughput in ECB mode (Gbps) 2.26 1.96

Clock frequency (MHz) 88.5 122.9

Compared to the 0.6µm technology, 65nm is 6 technology generations ahead indicating a
potential speed-up of 2

6
2 , i.e., 8 times [27]. Even our multi-mode design point S

(2)
eno,u achieves

a frequency of 1000 MHz, which is 8.13× more than that reported in [24]. In terms of bits per

17

Table 5: Throughputs reported in [28]

Machine
SOSEMANUK SNOW 2.0

cycles/word Gbps cycles/word Gbps
Intel Pentium M (1.7 GHz) 4.68 11.62 4.75 11.45
Intel Pentium 4 (2.8 GHz) 5.81 15.42 5.01 17.88

AMD Athlon 64 X2 4200+ (2.2 GHz) 4.07 17.30 4.83 14.58

cycle, the design in [24] reports 4× more throughput than ours due to their 4× replication of
Serpent units.

Though AES and SOSEMANUK are structurally different, it is interesting to note that
the highest throughput obtained in our SOSEMANUK implementation outperforms state-of-
the-art AES (both software and hardware) implementations [24, 34, 20, 8, 23].

It is trivial to show performance improvement in a dedicated accelerator compared to
the software implementations on general-purpose processors. For the sake of completeness,
we compare the performance with those reported in [28]. There, the throughputs of SOSE-
MANUK and SNOW 2.0 are as given in Table 5. The proposed accelerator improves these
performances by at least 3.7× and 1.8× for SOSEMANUK and SNOW 2.0 respectively.

To compare the throughput of our SOSEMANUK hardware with that of other eSTREAM
finalists, we quote the throughput results as available in the literature. For hardware category,
we have the following pairs of throughputs (in Gbps), the first of which is in 0.25µm [18] and
the second in 0.13µm [17].

• Grain: 4.475 (Grain-v1) & 14.48 (Grain-128),

• MICKEY: 0.287 & 0.413,

• Trivium: 18.568 & 22.3.

For the software category, we have the following throughput figures (in Gbps).

• Salsa20/12 [19]: 6.4 (0.18µm),

• Rabbit [35]: 25.62 (Xilinx Virtex-5 LXT FPGA),

• HC-128 [4]: 22.88 (65nm).

It is difficult to benchmark implementations across different process technology nodes and
moreover, across different technology generations. Nevertheless, it can be appreciated that
our proposed SOSEMANUK hardware implementation is clearly comparable in throughput
with several state-of-the-art hardware-oriented stream ciphers and improves upon the software
performance significantly. Additionally, the flexibility provided by the presented design can
be used for the following.

• Dynamically switching between SOSEMANUK, SNOW 2.0 or Serpent. Enhancing this
to SNOW 3G [39] remains an interesting future work.

• An ISA for the ciphers allow different software-based control of the algorithm flow. This
can be used for security-performance trade-offs as well as for potential mechanism to
counter side-channel attacks.

• Diverse indexing options in the Serpent rounds and S-Box accesses leaves considerable
room for exploring completely new cipher designs.

18

7 Conclusion and Future Work

We propose a hardware accelerator for the eSTREAM finalist software stream cipher SOSE-
MANUK. Since the cipher combines the design principles of the block cipher Serpent and the
stream cipher SNOW 2.0, we accommodate these two ciphers also in our design. In terms of
performance, our hardware beats all stand-alone hardware implementations of all the three
ciphers as well as the existing hardwares for all the other ciphers of eSTREAM portfolio.

Because of the complicated design of SOSEMANUK, the hardware area is not suitable
for light-weight applications; however, our design can certainly be used as a flexible hardware
accelerator serving the purpose of both block and stream ciphers. It can be noted that
LFSR unrolling of SNOW 3G resulted in diminishing area-efficiency [32]. In that context, the
unrolling results of SOSEMANUK, experimented in this work, is encouraging and we intend
to probe further unrolling possibility. The area efficiency for SNOW 2.0 with unrolling option
can be explored, too.

References

[1] Announcing Development of a Federal Information Processing Standard for Advanced
Encryption Standard. National Institute of Standards and Technology Docket No.
960924272-6272-01, RIN 0693-ZA13, January 2, 1997 Available at http://csrc.nist.
gov/archive/aes/pre-round1/aes_9701.txt.

[2] H. Ahmadi, T. Eghlidos and S. Khazaei. Improved Guess and Determine Attack
on SOSEMANUK. Available at http://www.ecrypt.eu.org/stream/papersdir/085.
pdf, 2005.

[3] Intel AES Instruction Set. Available at http://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-aes-instructions-set.

[4] A. Chattopadhyay, A. Khalid, S. Maitra and S. Raizada. Designing high-throughput
hardware accelerator for stream cipher HC-128. In IEEE ISCAS, pp. 1448–1451, 2012.

[5] A. Chattopadhyay and G. Paul. Exploring security-performance trade-offs during hard-
ware accelerator design of stream cipher RC4. In 2012 IEEE/IFIP 20th International
Conference on VLSI and System-on-Chip (VLSI-SoC), pp.251,254, 7-10 Oct. 2012 doi:
10.1109/VLSI-SoC.2012.6379039

[6] E. Biham, R. J. Anderson and L. R. Knudsen. Serpent: A new block cipher proposal. In
FSE, pp. 222–238, 1998.

[7] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget, L.
Granboulan, C. Lauradoux, M. Minier, T. Pornin and H. Sibert. SOSEMANUK, a fast
software-oriented stream cipher. In CoRR, abs/0810.1858, 2008.

[8] J. W. Bos, D. A. Osvik and D. Stefan Fast Implementations of AES on Various Platforms.
Available at eprint.iacr.org/2009/501.pdf, 2009.

[9] J. Y. Cho and M. Hermelin. Improved Linear Cryptanalysis of SOSEMANUK. In ICISC,
pp. 101–117, 2009.

19

[10] J. Daemen and V. Rijmen. AES Proposal: Rijndael. Federal Information Processing
Standards Publication 197, November 26, 2001. Available at http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[11] P. Ekdahl, T. Johansson. SNOW – a new stream cipher. In Proceedings of First Open
NESSIE Workshop, Heverlee, Belgium, 2000.

[12] P. Ekdahl and T. Johansson. A New Version of the Stream Cipher SNOW. In SAC,
pp. 47–61, 2002.

[13] eSTREAM: the ECRYPT Stream Cipher Project. Available at http://www.ecrypt.eu.
org/stream

[14] W. H. Fang, T. Johansson and L. Spaanenburg. SNOW 2.0 IP core for trusted hardware.
International Conference on Field Programmable Logic and Applications, pp. 281–286,
2005.

[15] Faraday Memory Compiler. Available at http://www.faraday-tech.com/html/

products/freelibrary/memoryCompiler.html.

[16] X. Feng, J. Liu, Z. Zhou, C. Wu and D. Feng. A Byte-Based Guess and Determine Attack
on SOSEMANUK. In ASIACRYPT, LNCS vol. 6477, pp. 146–157, 2010.

[17] T. Good and M. Benaissa. Hardware results for selected stream cipher candidates. In
State of the Art of Stream Ciphers (SASC), pp. 191–204, 2007.

[18] F. K. Gürkaynak, P. Luethi, N. Bernold, R. Blattmann, V. Goode, M. Marghitola, H.
Kaeslin, N. Felber and W. Fichtner. Hardware Evaluation of eSTREAM Candidates:
Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, Trivium, VEST, ZK-Crypt. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/015, 2006.

[19] L. Henzen, F. Carbognani, N. Felber and W. Fichtner. VLSI hardware evaluation of
the stream ciphers Salsa20 and ChaCha, and the compression function Rumba. In IEEE
International Conference on Signals, Circuits and Systems, pp. 1–5, 2008.

[20] A. Hodjat, D. D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede. A 3.84 Gbits/s AES crypto
coprocessor with modes of operation in a 0.18-µm CMOS technology. In Proceedings of
the 15th ACM Great Lakes symposium on VLSI, pp. 60–63, 2005.

[21] P. Kitsos, G. Kostopoulos, N. Sklavos and O. Koufopavlou. Hardware Implementation
of the RC4 stream Cipher. In Proc. of 46th IEEE Midwest Symposium on Circuits &
Systems, Cairo, Egypt, pp. 1363–1366, 2003.

[22] J. K. Lee, D. H. Lee, S. Park. Cryptanalysis of sosemanuk and SNOW 2.0 using linear
masks. In ASIACRYPT, LNCS vol. 5350, pp. 524–538, 2008.

[23] Ruby B. Lee and Yu-Yuan Chen. Processor accelerator for AES. In Proceedings of
the 8th IEEE Symposium on Application Specific Processors (SASP), pp. 16–21, doi:
10.1109/SASP.2010.5521153, 2010.

[24] A. K. Lutz, J. Treichler, F. K. Gürkaynak, H. Kaeslin, G. Basler, A. Erni, S. Reichmuth,
P. Rommens, S. Oetiker and W. Fichtner. 2Gbit/s Hardware Realizations of RIJNDAEL
and SERPENT: A Comparative Analysis. In CHES, LNCS vol. 2523, pp. 144–158, 2003.

20

[25] Z. Ma and D. Gu. Improved Differential Fault Analysis of SOSEMANUK. In 8th IEEE
International Conference on Computational Intelligence and Security, pp. 487–491, 2012.

[26] D. P. Matthews Jr. Methods and apparatus for accelerating ARC4 processing. US
Patent Number 7403615, Morgan Hill, CA, July, 2008. Available at http://www.

freepatentsonline.com/7403615.html.

[27] G. E. Moore. Cramming more components onto integrated circuits. In Electronics, vol.
38, no. 8, April 19, 1965, pp. 114–117.

[28] Performance Figures. The eSTREAM Project - eSTREAM Phase 3. Available at http:
//www.ecrypt.eu.org/stream/phase3perf.html.

[29] Y. E. Salehani, A. Kircanski and A. Youssef. Differential Fault Analysis of SOSE-
MANUK. In AFRICACRYPT, LNCS vol. 6737, pp. 316–331, 2011.

[30] P. Schaumont and I. Verbauwhede. Hardware/software codesign for stream ciphers. In
State of the Art of Stream Ciphers (SASC), 2007. Available at http://www.ecrypt.eu.
org/stream/papersdir/2007/016.pdf.

[31] S. Sen Gupta, A. Chattopadhyay and A. Khalid. HiPAcc-LTE: An Integrated High Per-
formance Accelerator for 3GPP LTE Stream Ciphers. In INDOCRYPT, pp. 196–215,
2011.

[32] S. Sen Gupta, A. Chattopadhyay and A. Khalid. Designing Integrated Accelerator for
Stream Ciphers with Structural Similarities. In Cryptography and Communications 5(1),
pp. 19–47, 2013.

[33] S. Sen Gupta, A. Chattopadhyay, K. Sinha, S. Maitra and B. P. Sinha. High Performance
Hardware Implementation for RC4 Stream Cipher. In IEEE Transactions on Computers,
doi: 10.1109/TC.2012.19, 2012.

[34] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater and J.-D. Legat. Efficient Implementation
of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs.
In CHES, pp. 334–350, 2003.

[35] D. Stefan. Hardware Framework for the Rabbit Stream Cipher. In Inscrypt, pp. 230–247,
2009.

[36] Synopsys Design Compiler. Available at http://www.synopsys.com/Tools/

Implementation/RTLSynthesis/Pages/default.aspx.

[37] Synopsys PrimeTime. Available at http://www.synopsys.com/Tools/

Implementation/SignOff/Pages/PrimeTime.aspx.

[38] Synopsys Processor Designer. Available at http://www.synopsys.com/Systems/

BlockDesign/processorDev.

[39] Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. Doc-
ument 2: SNOW 3G Specification. ETSI/SAGE Specification, Version: 1.1, September
6, 2006.

21

[40] T. H. Tran, L. Lanante, Y. Nagao, M. Kurosaki and H. Ochi. Hardware Implementation
of High Throughput RC4 Algorithm. In IEEE ISCAS, pp. 77–80, 2012.

[41] Y. Tsunoo, T. Saito, M. Shigeri, T. Suzaki, H. Ahmadi, T. Eghlidos and S. Khazaei.
Evaluation of SOSEMANUK With Regard to Guess-and-Determine Attacks. Available
at http://www.ecrypt.eu.org/stream/papersdir/2006/009.pdf, 2006.

[42] J. Yan and H. M. Heys. Hardware Implementation of the Salsa20 and Phelix Stream Ci-
phers. In IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
pp. 1125–1128, 2007.

[43] X. Zhang and K. Parhi. An Efficient 21.56 Gbps AES Implementation on FPGA. In
Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. pp. 465–470.
2004.

A Serpent S-box, Linear Transformation and Key Schedul-

ing

In this appendix, we describe some relevant parts of Serpent specification.

A.1 Bitsliced Implementation of Serpent S-boxes

In [6], the eight Serpent S-boxes act on 4-bit words and are defined as permutations of Z16,
as follows.

S0 : 3, 8, 15, 1, 10, 6, 5, 11, 14, 13, 4, 2, 7, 0, 9, 12
S1 : 15, 12, 2, 7, 9, 0, 5, 10, 1, 11, 14, 8, 6, 13, 3, 4
S2 : 8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2
S3 : 0, 15, 11, 8, 12, 9, 6, 3, 13, 1, 2, 4, 10, 7, 5, 14
S4 : 1, 15, 8, 3, 12, 0, 11, 6, 2, 5, 4, 10, 9, 14, 7, 13
S5 : 15, 5, 2, 11, 4, 10, 9, 12, 0, 3, 14, 8, 13, 6, 7, 1
S6 : 7, 2, 12, 5, 8, 4, 6, 11, 14, 9, 1, 15, 13, 3, 10, 0
S7 : 1, 13, 15, 0, 14, 8, 2, 11, 7, 4, 12, 10, 9, 3, 5, 6

In each round, 32 copies of one S-box is applied in parallel to map 128-bit input to 128-bit
output. In bitslice mode, each S-box takes 4 32-bit words as inputs and produces 4 32-bit
words as outputs. The bitsliced implementation is described below. The notations ˆ , &, | and
˜ mean bitwise XOR, AND, OR and NOT operations respectively. The notation a〈op〉 = b
means a = a〈op〉b. In each case, r0, r1, r2, r3 act as the input words and r3 act as an auxilliary
variable. The output indices are given in the second column of Table 4.1.

S-box S0(r0, r1, r2, r3, r4) {

r3 ^= r0; r4 = r1;

r1 &= r3; r4 ^= r2;

r1 ^= r0; r0 |= r3;

r0 ^= r4; r4 ^= r3;

r3 ^= r2; r2 |= r1;

r2 ^= r4; r4 = ~r4;

r4 |= r1; r1 ^= r3;

r1 ^= r4; r3 |= r0;

r1 ^= r3; r4 ^= r3;

}

S-box S1(r0, r1, r2, r3, r4) {

22

r0 = ~r0; r2 = ~r2;

r4 = r0; r0 &= r1;

r2 ^= r0; r0 |= r3;

r3 ^= r2; r1 ^= r0;

r0 ^= r4; r4 |= r1;

r1 ^= r3; r2 |= r0;

r2 &= r4; r0 ^= r1;

r1 &= r2;

r1 ^= r0; r0 &= r2;

r0 ^= r4;

}

S-box S2(r0, r1, r2, r3, r4) {

r4 = r0; r0 &= r2;

r0 ^= r3; r2 ^= r1;

r2 ^= r0; r3 |= r4;

r3 ^= r1; r4 ^= r2;

r1 = r3; r3 |= r4;

r3 ^= r0; r0 &= r1;

r4 ^= r0; r1 ^= r3;

r1 ^= r4; r4 = ~r4;

}

S-box S3(r0, r1, r2, r3, r4) {

r4 = r0; r0 |= r3;

r3 ^= r1; r1 &= r4;

r4 ^= r2; r2 ^= r3;

r3 &= r0; r4 |= r1;

r3 ^= r4; r0 ^= r1;

r4 &= r0; r1 ^= r3;

r4 ^= r2; r1 |= r0;

r1 ^= r2; r0 ^= r3;

r2 = r1; r1 |= r3;

r1 ^= r0;

}

S-box S4(r0, r1, r2, r3, r4) {

r1 ^= r3; r3 = ~r3;

r2 ^= r3; r3 ^= r0;

r4 = r1; r1 &= r3;

r1 ^= r2; r4 ^= r3;

r0 ^= r4; r2 &= r4;

r2 ^= r0; r0 &= r1;

r3 ^= r0; r4 |= r1;

r4 ^= r0; r0 |= r3;

r0 ^= r2; r2 &= r3;

r0 = ~r0; r4 ^= r2;

}

S-box S5(r0, r1, r2, r3, r4) {

r0 ^= r1; r1 ^= r3;

r3 = ~r3; r4 = r1;

r1 &= r0; r2 ^= r3;

r1 ^= r2; r2 |= r4;

r4 ^= r3; r3 &= r1;

r3 ^= r0; r4 ^= r1;

r4 ^= r2; r2 ^= r0;

r0 &= r3; r2 = ~r2;

r0 ^= r4; r4 |= r3;

r2 ^= r4;

}

S-box S6(r0, r1, r2, r3, r4) {

r2 = ~r2; r4 = r3;

r3 &= r0; r0 ^= r4;

r3 ^= r2; r2 |= r4;

r1 ^= r3; r2 ^= r0;

r0 |= r1; r2 ^= r1;

r4 ^= r0; r0 |= r3;

r0 ^= r2; r4 ^= r3;

r4 ^= r0; r3 = ~r3;

r2 &= r4;

r2 ^= r3;

23

}

S-box S7(r0, r1, r2, r3, r4) {

r4 = r1; r1 |= r2;

r1 ^= r3; r4 ^= r2;

r2 ^= r1; r3 |= r4;

r3 &= r0; r4 ^= r2;

r3 ^= r1; r1 |= r4;

r1 ^= r0; r0 |= r4;

r0 ^= r2; r1 ^= r4;

r2 ^= r1; r1 &= r0;

r1 ^= r4; r2 = ~r2;

r2 |= r0;

r4 ^= r2;

}

A.2 Bitsliced Implementation of Serpent Linear Transformation

Here ROTL(a, b) means rotate the 32-bit word a by b positions and T32(a) means truncate
a to its lower-order 32 bits.

LT(x0, x1, x2, x3) {

x0 = ROTL(x0, 13);

x2 = ROTL(x2, 3);

x1 = x1 ^ x0 ^ x2;

x3 = x3 ^ x2 ^ T32(x0 << 3);

x1 = ROTL(x1, 1);

x3 = ROTL(x3, 7);

x0 = x0 ^ x1 ^ x3;

x2 = x2 ^ x3 ^ T32(x1 << 7);

x0 = ROTL(x0, 5);

x2 = ROTL(x2, 22);

}

A.3 Serpent Subkey Generation

The S-boxes are used to transform the prekeys w0, . . . , w7 into words ki of the round keys as
follows.

{k0, k1, k2, k3} = S3(w0, w1, w2, w3)

{k4, k5, k6, k7} = S2(w4, w5, w6, w7)

{k8, k9, k10, k11} = S1(w8, w9, w10, w11)

{k12, k13, k14, k15} = S0(w12, w13, w14, w15)

{k16, k17, k18, k19} = S7(w16, w17, w18, w19)

· · ·
{k124, k125, k126, k127} = S4(w124, w125, w126, w127)

{k128, k129, k130, k131} = S3(w128, w129, w130, w131).

Now, the i-th subkey is formed as

Ki = {k4i, k4i+1, k4i+2, k4i+3}.

The above assumes bitsliced implementation of the S-boxes. Otherwise IP needs to be applied
to the round keys to place the key bits in proper position.

24

B SNOW 2.0 Key Initialization

According to the SNOW 2.0 specification [12], the cipher supports a secret key K of either
128 or 256 bits and a 128-bit initialization vector IV = (IV3, IV2, IV1, IV0). The 128-bit key
is denoted by (k3, . . . , k0) and the 256-bit key is denoted by (k7, . . . , k0). For the 128-bit case,
the LFSR is loaded as follows.

s15 = k3 ⊕ IV0, s14 = k2, s13 = k1, s12 = k0 ⊕ IV1,

s11 = k3 ⊕ 1, s10 = k2 ⊕ 1⊕ IV2, s9 = k1 ⊕ 1⊕ IV3, s8 = k0 ⊕ 1,

s7 = k3, s6 = k2, s5 = k1, s4 = k0,

s3 = k3 ⊕ 1, s2 = k2 ⊕ 1, s1 = k1 ⊕ 1, s0 = k0 ⊕ 1.

For the 256-bit case, it is loaded as

s15 = k7 ⊕ IV0, s14 = k6, s13 = k5, s12 = k4 ⊕ IV1,

s11 = k3, s10 = k2 ⊕ IV2, s9 = k1 ⊕ IV3, s8 = k0,

and si = k1 ⊕ 1 for i = 0, . . . , 7. Next, the LFSR is clocked 32 times without producing any
output and the new element to be inserted is given by

st+16 = α−1St+11 ⊕ st+2 ⊕ αst ⊕ Ft.

C Serpent, SNOW 2.0 and SOSEMANUK custom as-

sembly routines

In this appendix, sample assembly programs for the applications are provided.

C.1 Serpent assembly snapshot

nop

nop

serpent wup01 0

serpent wup02 2

serpent sks3

...

serpent wup01 128

serpent wup02 130

serpent sks3

nop

nop

serpent roundset 0, 1, 2, 3, 4

nop

serpent fss 1, 4, 2, 0, 3, 1, 4, 2, 0

nop

serpent fss 2, 1, 0, 4, 3, 2, 0, 3, 1

nop

serpent fss 1, 0, 4, 2, 3, 1, 4, 0, 3

nop

...

serpent fss 0, 2, 1, 4, 3, 1, 3, 0, 2

nop

serpent fss 0, 2, 3, 1, 4, 0, 1, 4, 2

nop

serpent fss 0, 0, 0, 0, 0, 0, 0, 0, 0

nop

serpent fsf

C.2 SNOW 2.0 assembly snapshot

loadkey snow

25

init snow

init snow

init snow

init snow

init snow

init snow

init snow

init snow

...

nop

nop

op snow

op snow

op snow

op snow

op snow

C.3 SOSEMANUK assembly snapshot

serpent wup01 0

serpent wup02 2

serpent sks3

serpent wup11 4

serpent wup12 6

serpent sks2

serpent wup01 8

serpent wup02 10

serpent sks1

...

nop

serpent roundset 0, 1, 2, 3, 4

nop

serpent fss 1, 4, 2, 0, 3, 1, 4, 2, 0

nop

serpent fss 2, 1, 0, 4, 3, 2, 0, 3, 1

nop

serpent fss 0, 4, 1, 3, 2, 2, 3, 1, 4

nop

serpent fss 4, 1, 3, 2, 0, 1, 2, 3, 4

nop

serpent fss 1, 0, 4, 2, 3, 1, 4, 0, 3

...

sosemanuk load 14, 8, 15, 9

serpent fss 3, 0, 1, 4, 2, 2, 3, 1, 4

nop

serpent fss 0, 1, 4, 2, 3, 1, 2, 3, 4

nop

serpent fss 1, 3, 0, 2, 4, 1, 4, 0, 3

nop

serpent fss 3, 2, 1, 0, 4, 1, 3, 0, 2

nop

serpent fss 3, 2, 4, 1, 0, 0, 1, 4, 2

nop

serpent fss 0, 1, 2, 3, 4, 4, 3, 1, 0

nop

sosemanuk fsf

nop

nop

sosemanuk load 7, 6, 5, 4

nop

nop

set_init, mode 2

op sosemanuk

op sosemanuk

sosemanuk sks2

op sosemanuk

sosemanuk sks2

op sosemanuk

sosemanuk sks2

op sosemanuk

sosemanuk sks2

26

