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Abstract

We put forward a new notion, function privacy, in identity-based encryption and, more gener-
ally, in functional encryption. Intuitively, our notion asks that decryption keys reveal essentially
no information on their corresponding identities, beyond the absolute minimum necessary. This
is motivated by the need for providing predicate privacy in public-key searchable encryption.
Formalizing such a notion, however, is not straightforward as given a decryption key it is always
possible to learn some information on its corresponding identity by testing whether it correctly
decrypts ciphertexts that are encrypted for specific identities.

In light of such an inherent difficulty, any meaningful notion of function privacy must be based
on the minimal assumption that, from the adversary’s point of view, identities that correspond to
its given decryption keys are sampled from somewhat unpredictable distributions. We show that
this assumption is in fact sufficient for obtaining a strong and realistic notion of function privacy.
Loosely speaking, our framework requires that a decryption key corresponding to an identity
sampled from any sufficiently unpredictable distribution is indistinguishable from a decryption
key corresponding to an independently and uniformly sampled identity.

Within our framework we develop an approach for designing function-private identity-based
encryption schemes, leading to constructions that are based on standard assumptions in bilinear
groups (DBDH, DLIN) and lattices (LWE). In addition to function privacy, our schemes are also
anonymous, and thus yield the first public-key searchable encryption schemes that are provably
keyword private: A search key skw enables to identify encryptions of an underlying keyword w,
while not revealing any additional information about w beyond the minimum necessary, as long
as the keyword w is sufficiently unpredictable.
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1 Introduction

Public-key searchable encryption is needed when a proxy is asked to route encrypted messages
based on their content. For example, consider a payment gateway that needs to route transactions
based on the transaction type. Transactions for benign items are routed for quick processing while
transactions for sensitive items are routed for special processing. Similarly, consider an email gateway
that routes emails based on the contents of the subject line. Urgent emails are routed to the user’s
mobile device, while less urgent mails are routed to the user’s desktop. When the data is encrypted
a simple design is to give such gateways full power to decrypt all ciphertexts, but this clearly exposes
more information than necessary.

A better solution, called public-key searchable encryption (introduced by Boneh, Di Crescenzo,
Ostrovsky and Persiano [BCO+04]), is to give the gateway a trapdoor that enables it to learn
the information it needs and nothing else. In recent years many elegant public-key searchable
encryption systems have been developed [BCO+04, GSW04, ABC+08, BW07, SBC+07, KSW08,
BSNS08, CKR+09, ABN10, AFV11] supporting a wide variety of search predicates.

Private searching. Beyond the standard notions of data privacy, it is often also necessary to
guarantee predicate privacy, i.e., to keep the specific search predicate hidden from the gateway. For
example, in the payment scenario it may be desirable to keep the list of sensitive items secret, and
in the email scenario users may not want to reveal the exact criteria they use to classify an email
as urgent. Consequently, we want the trapdoor given to the gateway to reveal as little as possible
about the search predicate.

While this question has been considered before [SWP00, OS07, BSW09, SSW09], it is often noted
that such a notion of privacy cannot be achieved in the public-key setting. For example, to test if
an email from “spouse” is considered urgent the gateway could simply use the public key to create
an email from the spouse and test if the trapdoor classifies it as urgent. More generally, the gateway
can encrypt messages of its choice and apply the trapdoor to the resulting ciphertexts, thereby
learning how the search functionality behaves on these messages. Hence, leaking some information
about the search predicate is unavoidable.

As a concrete example, consider the case of keyword searching [BCO+04]: A search key skw
corresponds to a particular keyword w, and the search matches a ciphertext Enc(pk,m) if and only
if m = w. In this case, it may be possible to formalize and realize a notion of “private keyword
search” asking that a search key reveals no more information than what can be learned by invoking
the search algorithm.

Function-private IBE: A new notion of security. Motivated by the challenge of hiding the
search predicates in public-key searchable encryption, in this paper we introduce a new notion of
security, function privacy, for identity-based encryption.1 The standard notion of security for anony-
mous IBE schemes (e.g., [BF03, BW06, Gen06, GPV08, ABB10, BKP+12]), asks that a ciphertext
c = Enc(pp, id,m) reveals essentially no information on the pair (id,m) as long as a secret key skid
corresponding to the identity id is not explicitly provided (but secret keys corresponding to other
identities may be provided). Our notion of function privacy takes a step forward by asking that it

1As observed by Abdalla et al. [ABC+08], any anonymous IBE scheme can be used as a public-key searchable
encryption scheme by defining the search key skw for a keyword w as the IBE secret key for the identity id = w. A
keyword w′ is encoded as c = Enc(pp, w′, 0) and one tests if c matches the keyword w by invoking the IBE decryption
algorithm on c with the secret key skw. The IBE anonymity property ensures that c reveals nothing else about the
payload w′. For this reason we focus on anonymous IBE schemes, although we note that our notion of function privacy
does not require anonymity.
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should not be possible to learn any information, beyond the absolute minimum necessary, on the
identity id corresponding to a given secret key skid.

Formalizing a realistic notion of function privacy, however, is not straightforward due to the
actual functionality of identity-based encryption. Specifically, assuming that an adversary who is
given a secret key skid has some a-priori information that the corresponding identity id belongs
to a small set S of identities (e.g., S = {id0, id1}), then the adversary can fully recover id: The
adversary simply needs to encrypt a (possibly random) message m for each id′ ∈ S, and then
run the decryption algorithm on the given secret key skid and each of the resulting ciphertexts
c′ = Enc(pp, id′,m) to identify the one that decrypts correctly. In fact, as long as the adversary has
some a-priori information according to which the identity id is sampled from a distribution whose
min-entropy is at most logarithmic in the security parameter, there is a non-negligible probability
for a full recovery.

Our contributions. In light of the above inherent difficulty, any notion of function privacy for
IBE schemes would have to be based on the minimal assumption that, from the adversary’s point of
view, identities that correspond to its given secret keys are sampled from distributions with a certain
amount of min-entropy (which has to be at least super-logarithmic in the security parameter). Our
work shows that this necessary assumption is in fact sufficient for obtaining a strong and meaningful
indistinguishability-based notion of function privacy.

Our work formalizes this new notion of security (we note that we call it function privacy to
emphasize the fact that skid hides the functionality that it provides). Loosely speaking, our basic
notion of function privacy requires that a secret key skid, where id is sampled from any sufficiently
unpredictable (adversarially-chosen) distribution,2 is indistinguishable from a secret key correspond-
ing to an independently and uniformly sampled identity. In addition, we also consider a stronger
notion of function privacy, to which we refer as enhanced function privacy. This enhanced notion
addresses the fact that in various applications (such as searching on encrypted data), an adversary
may obtain not only a secret key skid, but also an encryption Enc(pp, id,m) of some message m.
Our notion of enhanced function privacy asks that even in such a scenario, it should not be possible
to learn any unnecessary information on the identity id.

We refer the reader to Section 3 for the formal definitions, and for descriptions of simple attacks
exemplifying that the anonymous IBE schemes presented in [BF03, GPV08, ABB10, KP11] do not
even satisfy our basic notion of function privacy.3

Within our framework we develop an approach for designing identity-based encryption schemes
that satisfy our notions of function private. Our approach leads to constructions that are based
on standard assumptions in bilinear groups (DBDH, DLIN) and lattices (LWE). In particular, our
schemes yield keyword searchable public-key encryption schemes that do not reveal the keywords: A
search key skw reveals nothing about its corresponding keyword w beyond the minimum necessary,
as long as the keyword w is chosen from a sufficiently unpredictable distribution.

2We emphasize that the distribution is allowed to depend on the public parameters of the scheme. This is in
contrast to the setting of deterministic public-key encryption (DPKE) [BBO07], where similar inherent difficulties
arise when formalizing notions of security. Nevertheless, our notion is inspired by that of [BBO07], and we refer the
reader to Section 3 for an elaborate discussion (in particular, we discuss a somewhat natural DPKE-based approach
for designing function-private IBE schemes which fails to satisfy our notion of security and only satisfies a weaker, less
realistic, one).

3We note that other anonymous IBE schemes, such as [Gen06, BW06, BKP+12] for which we were not able to find
such simple attacks, can always be assumed to be function private based on somewhat non-standard entropy-based
assumptions (such assumptions would essentially state that the schemes satisfy our definition). In this paper we are
interested in schemes whose function privacy can be based on standard assumptions (e.g., DBDH, DLIN, LWE).

2



The bigger picture: Functional encryption and obfuscation. Our notion of function privacy
for IBE naturally generalizes to functional encryption systems [BSW11, O’N10, AGV+12, BO12,
GKP+12, GVW12], where we obtain an additional security requirement on such systems. Here, a
functional secret key skf corresponding to a function f enables to compute f(m) given an encryption
c = Encpk(m). Functional encryption systems, however, need not be predicate private and skf may
leak unnecessary information about f . Intuitively, we say that a functional encryption system is
function private if such a functional secret key skf does not reveal information about f beyond
what is already known and what can be obtained by running the decryption algorithm on test
ciphertexts. This can be formalized within a suitable framework for program obfuscation (e.g.,
[Can97, BGI+12, LPS04, GK05, Wee05, CKV+10] and the references therein) by asking, for example,
that any adversary that receives a functional secret key skf learns no more information than a
simulator that has oracle access to the function f .

In this setting, our identity-based encryption schemes provide function privacy for the class of
functions defined as

fid∗(id,m) =

{
m if id = id∗

⊥ otherwise

where id∗ is sampled from an unpredictable distribution. A fascinating direction for future work is
to extend our results to more general classes of functions.

Non-adaptive function privacy and deterministic encryption. The inherent difficulty dis-
cussed above in formalizing function privacy is somewhat similar to the one that arises in the con-
text of deterministic public-key encryption (DPKE), introduced by Bellare, Boldyreva, and O’Neill
[BBO07] (see also [BFO+08a, BFO08b, BBN+09, BS11, FOR12, MPR+12, Wee12, RSV13]). In
that setting one would like to capture as-strong-as-possible notions of security that can be satisfied
by public-key encryption schemes whose encryption algorithms are deterministic. Similarly to our
setting, if an adversary has some a-priori information that a ciphertext c = Encpk(m) corresponds
to a plaintext m that is sampled from a low-entropy source (e.g., m ∈ {m0,m1}), then the plaintext
can be fully recovered: The adversary simply needs to encrypt all “likely” plaintexts and to compare
each of the resulting ciphertexts to c. Therefore, any notion of security for DPKE has to be based on
the assumption that plaintexts are sampled from distributions with a certain amount of min-entropy
(which has to be at least super-logarithmic in the security parameter).

However, unlike in our setting, in the setting of DPKE it is also necessary to limit the dependency
of plaintexts on the public-key of the scheme.4 In our setting, as the key-generation algorithm is
allowed to be randomized, such limitations are not inherent: we allow adversaries to specify identity
distributions in an adaptive manner after seeing the public parameters of the scheme.

This crucial difference between our setting and the setting of DPKE rules out, in particular,
the following natural approach for designing anonymous IBE schemes providing function privacy:
encapsulate all identities with a DPKE scheme, and then use any existing anonymous IBE scheme
treating the ciphertexts of the DPKE scheme as its identities. That is, for encrypting to identity id,
first encrypt id using a DPKE scheme and then treat the resulting ciphertext as an identity for an
anonymous IBE system. This approach clearly preserves the standard security of the underlying IBE
scheme. Moreover, as secret keys are now generated as skc, where c = Encpk(id) is a deterministic
encryption of id, instead of as skid, one could hope that skid does not reveal any unnecessary
information on id as long as id is sufficiently unpredictable.

4Intuitively, the reason is that plaintexts distributions that can depend on the public key can use any deterministic
encryption algorithm as a subliminal channel for leaking information on the plaintexts (consider, for example, sampling
a uniform plaintext m for which the most significant bit of c = Encpk(m) agrees with that of m). We refer the reader
to [BBO07, RSV13] for an in-depth discussion.
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This approach, however, fails to satisfy our notion of function privacy and only satisfies a
weaker,“non-adaptive”, one.5 Specifically, the notion of function privacy that is satisfied by such a
two-tier construction is that secret keys do not reveal any unnecessary information on their corre-
sponding identities as long as the identities are essentially independent of the public parameters of
the scheme. We formalize this non-adaptive notion in Section 3, and present a generic transforma-
tion satisfying it in Section 6 based on any IBE scheme. In fact, observing that the DPKE-based
construction described above never actually uses the decryption algorithm of the DPKE scheme, in
our generic transformation we show that above idea can be realized without using a DPKE scheme.
Instead, we only need to assume the existence of collision-resistant hash functions (and also use any
pairwise independent family of permutations). We refer the reader to Section 6 for more details.

1.1 Our Approach: “Extract-Augment-Combine”

Our approach consists of three main steps: “extract”, “augment”, and “combine”. We begin with
a description of the main ideas underlying each step, and then provide an example using a concrete
IBE scheme.

Given any anonymous IBE scheme Π = (Setup,KeyGen,Enc,Dec), we use the exact same setup
algorithm Setup, and our first step is to modify its key-generation algorithm KeyGen as follows:
Instead of generating a secret key for an identity id, first apply a strong randomness extractor Ext

to id using a randomly chosen seed s, then generate a secret key skids for the identity ids
def
= Ext(id, s),

and output the pair (s, skids) as a secret for id in the new scheme. This steps clearly guarantees
function privacy: As long as the identity id is sampled from a sufficiently unpredictable distribution,6

the distribution (s, ids) is statistically close to uniform, and therefore the pair (s, skids) reveals no
information on the identity id.

This extraction step, however, may hurt the data privacy of the underlying scheme. For example,
since randomness extractors are highly non-injective by definition, an adversary that is given a secret
key (s, skids) may be able to find an identity id′ such that Ext(id, s) = Ext(id′, s). In this case, the
same secret key is valid for both id and id′, contradicting the data privacy of the resulting scheme.
Therefore, for overcoming this problem we make sure that the extractor is at least collision resistant:
although many collisions exist, a computationally-bounded adversary will not be able to find one.
This is somewhat natural to achieve in the random-oracle model [BR93], but significantly more
challenging in the standard model.

An even more challenging problem is that the extraction step hurts the decryption of the under-
lying scheme. Specifically, when encrypting a message m for an identity id, the encryption algorithm
does not know which seed s will be chosen (or was already chosen) when generating a secret key for
id. In other words, the correctness of the decryption algorithm Dec should hold for any choice of seed
s by the key-generation algorithm KeyGen, although s is not known to the encryption algorithm Enc.
One possibility, is to modify the encryption algorithm such that it outputs an encryption of m for
ids for all possible seeds s. This clearly fails, as the number of seeds is inherently super-polynomial
in the security parameter. We overcome this problem by augmenting ciphertexts of the underlying
scheme with various additional pieces of information. These will enable the new decryption algo-
rithm to combine the pieces in a particular way for generating an encryption of m for the identity
ids for any given s, and then simply apply the underlying decryption algorithm using the specific
seed s chosen by the key-generation algorithm.7

5As discussed above, any DPKE becomes insecure once plaintext distributions (which here correspond to identity
distributions) are allowed to depend on the public key of the scheme.

6Note that the new scheme assumes a slightly larger identity space compared to the underlying scheme.
7In fact, in some of our schemes the decryption algorithm combines the pieces to generate an encryption of a related
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Our approach introduces the following two main challenges that we overcome in each of our
constructions:

• Augmenting the ciphertexts of the underlying scheme with additional pieces of information
may hurt the data privacy of the underlying scheme.

• Combining the additional pieces of information for generating an encryption for ids for any
given s requires using an extractor Ext that exhibits a particular interplay with the underlying
encryption and decryption algorithms.

Our constructions in this paper are obtained by applying our “extract-augment-combine” ap-
proach to various known anonymous IBE schemes [BF03, GPV08, ABB10, KP11]. To do so, we
overcome the two main challenges mentioned above in ways that are “tailored” specifically to each
scheme. Using our approach we provide the following constructions (see also Table 1):

• In the random-oracle model [BR93] we give fully-secure constructions from pairings and lattices
by building upon the systems of Boneh and Franklin [BF03] (based on the DBDH assumption)
and of Gentry, Peikert and Vaikuntanathan [GPV08] (based on the LWE assumption).

• In the standard model we give selectively-secure constructions from pairings and lattices based
on the constructions of Agrawal, Boneh and Boyen [ABB10] (based on the LWE assumption)
and of Kurosawa and Phong [KP11] (based on the DLIN assumption), which we then generalize
to a fully-secure construction (based on the DLIN assumption8).

In all instances our constructions are based on the same complexity assumptions as the underlying
systems.

Scheme Model Data Privacy Function Privacy

DBDH (Section 4.1) Random Oracle Full Statistical
LWE1 (Section 4.2) Random Oracle Full Statistical
DLIN1 (Section 5.1) Standard Selective Statistical + Non-adaptive enhanced
LWE2 (Section 5.2) Standard Selective Statistical
DLIN2 (Section 5.3) Standard Full Statistical + Enhanced
CRH (Section 6) Standard Full Non-adaptive statistical enhanced

Table 1: Our IBE schemes.

A concrete example. We conclude this section by exemplifying our approach using our DBDH-
based construction in the random-oracle model (we refer the reader to Section 4.1 for a more formal
description of the scheme and its proofs of data privacy and function privacy). The scheme is
obtained by applying our approach to the anonymous IBE scheme of Boneh and Franklin [BF03].

• The setup algorithm in the scheme of Boneh and Franklin samples α ← Z∗p, and lets h = gα,
where g is a generator of a group G of prime order p. The public parameters are g and h, and
the master secret key is α. Our scheme has exactly the same setup algorithm.

message m′ from which m can be easily recovered (e.g., m′ = 2m).
8We note that a similar generalization can also be applied to our selectively-secure LWE-based scheme in the

standard model.
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• The key-generation algorithm in the scheme of Boneh and Franklin computes a secret key for
an identity id as skid = H(id)α, where H is a random oracle mapping identities into the group
G. As discussed above our first step is to extract from id. First, we use a random oracle
mapping identities into Gℓ for some ℓ > 1. Then, for H(id) = (h1, . . . , hℓ) ∈ Gℓ, we sample
an extractor seed s = (s1, . . . , sℓ) ← Zℓ

p, and output the secret key (s, (Ext(H(id), s)α) where

we use the specific extractor Ext((h1, . . . , hℓ), (s1, . . . , sℓ)) =
∏ℓ

j=1 h
sj
j . Note that Ext is, in

particular, collision resistant based on the discrete logarithm assumption in the group G.

• An encryption of a message m for an identity id in the scheme of Boneh and Franklin is a
pair (c0, c1), defined as c0 = gr and c1 = ê(h,H(id))r · m. In our scheme, an encryption of
a message m for an identity id consists of ℓ + 1 components (c0, . . . , cℓ) defined as c0 = gr,
and ci = ê(h, hi)

r ·m for every i ∈ [ℓ], where H(id) = (h1, . . . , hℓ). This is exactly using the
encryption algorithm of Boneh and Franklin for separately encrypting m for each of the hi’s
while re-using the same randomness r. The main technical challenge that is left is showing
that such augmented ciphertexts still provide data privacy (the reader is referred to Section
4.1.1 for the proof of data privacy).

• Our decryption algorithm on input a ciphertext c = (c0, . . . , cℓ), and a secret key skid =
(s1, . . . , sℓ, z), combines c1, . . . , cℓ by computing

ℓ∏
i=1

csii = ê(h,
ℓ∏

i=1

hsii )
r ·ms1+···+sℓ = ê(h, ids)

r ·ms1+···+sℓ ,

where ids = Ext(H(id), s), as before. Note that the pair (c0,
∏ℓ

i=1 c
si
i ) is exactly an encryption

of the message m′ = ms1+···+sℓ for the identity ids in the scheme of Boneh and Franklin. This
allows to invoke the decryption algorithm of Boneh and Franklin for recovering m′, and then
to easily recover m (as the si’s are given in the clear).

1.2 Related Work

Searchable encryption has been studied in both the symmetric settings [SWP00, CGK+11, SSW09]
and public-key settings [BCO+04, GSW04, ABC+08, BW07, SBC+07, KSW08, BSNS08, CKR+09,
AFV11]. Public-key searching on encrypted data now supports equality testing, disjunctions and
conjunctions, range queries, CNF/DNF formulas, and polynomial evaluation. These schemes, how-
ever, are not function private in that their secret searching keys reveal information about their corre-
sponding predicates. Indeed, until this work, predicate privacy seemed impossible in the public-key
settings.

The impossibility argument does not apply in the symmetric key settings where the encryptor and
decryptor have a shared secret key. In this setting the entity searching over ciphertexts does not have
the secret key and cannot (passively) test the searching key on ciphertexts of its choice. Indeed, in
the symmetric-key setting predicate privacy is possible and a general solution to private searching on
encrypted data was provided by Goldreich and Ostrovsky [GO96] in their construction of an oblivious
RAM. More efficient constructions are known for equality testing [SWP00, CM05, CGK+11, CK10,
vLSD+10, KPR12] and inner product testing [SSW09]. The latter enables CNF/DNF formulas,
polynomial evaluation, and exact thresholds.

A closely related problem called private stream searching asks for the complementary privacy
requirements: the data is available in the clear, but the search predicate must remain hidden.
Constructions in these settings support efficient equality testing [OS07, BSW09] and can be viewed
as a more expressive variant of private information retrieval.
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1.3 Paper Organization

In Section 2 we introduce several standard definitions, computational assumptions, and tools. In
Section 3 we formally define our notion of function privacy for identity-based encryption. In Section 4
we present a fully-secure DBDH-based scheme and a fully-secure LWE-based scheme in the random-
oracle model. In Section 5 we present a selectively-secure DLIN-based scheme, a selectively-secure
LWE-based scheme, and a fully-secure DLIN-based scheme in the standard model. In Section 6 we
present a generic transformation that guarantees non-adaptive enhanced function privacy. Finally,
in Section 7 we discuss several extensions and open problems.

2 Preliminaries

Notation. For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform
distribution over the set {0, 1}n. For a random variable X we denote by x ← X the process of
sampling a value x according to the distribution of X. Similarly, for a finite set S we denote by
x ← S the process of sampling a value x according to the uniform distribution over S. We denote
by x (and sometimes x) a vector (x1, . . . , x|x|). We denote by X = (X1, . . . , XT ) a joint distribution
of T random variables, and by x = (x1, . . . , xT ) a sample drawn from X. For two bit-strings x and y
we denote by x∥y their concatenation. A non-negative function f : N→ R is negligible if it vanishes
faster than any inverse polynomial. For a real number x ∈ R we define ⌊x⌉ = ⌊x + 1/2⌋ (i.e., the
nearest integer to x). For a group G of order p with generator g and any X ∈ Zn×m

p , we denote the

matrix whose (i, j)-th entry is (gxi,j ) by gX.

2.1 Min-Entropy, Universal Hashing, and Randomness Extraction

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]). A k-source is a
random variable X with H∞(X) ≥ k. A (k1, . . . , kT )-source is a random variable X = (X1, . . . , XT )
where each Xi is a ki-source. A (T, k)-block-source is a random variable X = (X1, . . . , XT ) where for
every i ∈ [T ] and x1, . . . , xi−1 it holds thatXi|X1=x1,...,Xi−1=xi−1 is a k-source. The statistical distance
between two random variables X and Y over a finite domain Ω is SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]−

Pr[Y = ω] |.
The following standard lemma states that conditioning on a random variable that obtains at

most 2v values can reduce the min-entropy of any other random variable by essentially at most v.

Lemma 2.1 ([Vad12, Lemma 6.30]). Let (Z,X) be any two jointly distributed random variables
such that |Supp(Z)| ≤ 2v. Then, for any ϵ > 0 it holds that

Pr
z←Z

[H∞(X|Z = z) ≥ H∞(X)− v − log(1/ϵ)] ≥ 1− ϵ.

Definition 2.2. A collection H of functions H : U → V is universal if for any x1, x2 ∈ U such that
x1 ̸= x2 it holds that

Pr
H←H

[H(x1) = H(x2)] =
1

|V |
.

Lemma 2.3. Let H be a universal collection of functions H : U → V , and let X = (X1, . . . , XT ) be
(T, k)-block-source where k ≥ log |V | + 2 log(1/ϵ) + Θ(1). Then, the distribution (H1,H1(X1), . . . ,
HT ,HT (XT )), where (H1, . . . ,HT )← HT , is ϵT -close to the uniform distribution over (H× V )T .

Proof. We prove the lemma via an inductive claim showing that for every i ∈ [T ] the distributions
Di = (X1, . . . , Xi−1,Hi,Hi(Xi), . . . , HT ,HT (XT )) and D′i = (X1, . . . , Xi−1,Hi, Ui, . . . , HT , UT ) are
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ϵ(T − i+1)-close, where (Hi, . . . , HT )← HT−i+1, and (Ui, . . . , UT ) are T − i+1 independent copies
of the uniform distribution over the set V . Starting with i = T , the fact that X is a (T, k)-block-
source guarantees that XT |X1=x1,...,XT−1=xT−1

is a k-source for any x1, . . . , xT−1. An application of
the leftover hash lemma [HIL+99] implies that the distributions DT = (X1, . . . , XT−1, HT ,HT (XT ))
and D′T = (X1, . . . , XT−1,HT , UT ) are ϵ-close.

Now assume that the inductive claim holds for some value i + 1 ≤ T , and we show that it
holds also for i. Again, the fact that X is a (T, k)-block-source guarantees that Xi|X1=x1,...,Xi−1=xi−1

is a k-source for any x1, . . . , xi−1. An application of the leftover hash lemma [HIL+99] implies
that the distributions (X1, . . . , Xi−1,Hi,Hi(Xi)) and (X1, . . . , Xi−1,Hi, Ui) are ϵ-close. In turn,
this implies that the distributions Z = (X1, . . . , Xi−1,Hi,Hi(Xi),Hi+1, Ui+1, . . . , HT , UT ) and D′i =
(X1, . . . , Xi−1,Hi, Ui, Hi+1, Ui+1, . . . , HT , UT ) are also ϵ-close. Note that

SD(Di,Z) ≤ SD(Di+1,D′i+1) ≤ ϵ(T − i),

as applying the function Hi to Xi can only increase the statistical distance. Therefore,

SD(Di,D′i) ≤ SD(Di,Z) + SD(Z,D′i)
≤ ϵ(T − i) + ϵ

= ϵ(T − i+ 1).

Lemma 2.4. Let H be a universal collection of functions H : U → V , and let X = (X1, . . . , XT ) be
(k1, . . . , kT )-source where ki ≥ i · log |V |+3 log(1/ϵ)+Θ(1) for every i ∈ [T ]. Then, the distribution
(H1,H1(X1), . . . , HT ,HT (XT )), where (H1, . . . ,HT )← HT , is 2ϵT -close to the uniform distribution
over (H× V )T .

Proof. We prove the lemma via an inductive claim showing that for every i ∈ [T ] the distributions
D = (H1, H1(X1), . . . , HT ,HT (XT )) and Di = (H1, H1(X1), . . . , Hi−1,Hi−1(Xi−1), Hi, Ui, . . . , HT ,
UT ) are 2ϵ(T − i+ 1)-close, where (H1, . . . ,HT )← HT , and (Ui, . . . , UT ) are T − i+ 1 independent
copies of the uniform distribution over the set V .

Starting with i = T , Lemma 2.1 guarantees that for any h1, . . . , hT−1 ∈ H, with probability at
least 1− ϵ over the choice of (y1, . . . , yT−1)← (h1(X1), . . . , hT−1(XT−1)) it holds that

H∞(XT |H1 = h1, . . . , HT−1 = hT−1, h1(X1) = y1, . . . , hT−1(XT−1) = yT−1)

≥ H∞(XT |H1 = h1, . . . , HT−1 = hT−1)− (T − 1) log |V | − log(1/ϵ)

= H∞(XT )− (T − 1) log |V | − log(1/ϵ)

≥ kT − (T − 1) log |V | − log(1/ϵ)

= log |V |+ 2 log(1/ϵ) + Θ(1).

Therefore, the leftover hash lemma [HIL+99] implies that the two distributions D = (H1,H1(X1),
. . . , HT ,HT (XT )) and DT = (H1,H1(X1), . . . , HT−1,HT−1(XT−1),HT , UT ) are 2ϵ-close.

Now assume that the inductive claim holds for some value i+ 1 ≤ T , and we show that it holds
also for i. Again, Lemma 2.1 guarantees that for any h1, . . . , hi−1 ∈ H, with probability at least
1− ϵ over the choice of (y1, . . . , yi−1)← (h1(X1), . . . , hi−1(Xi−1)) it holds that

H∞(Xi|H1 = h1, . . . , Hi−1 = hi−1, h1(X1) = y1, . . . , hi−1(Xi−1) = yi−1)

≥ H∞(Xi|H1 = h1, . . . , Hi−1 = hi−1)− (i− 1) log |V | − log(1/ϵ)

= H∞(Xi)− (i− 1) log |V | − log(1/ϵ)

≥ ki − (i− 1) log |V | − log(1/ϵ)

= log |V |+ 2 log(1/ϵ) + Θ(1).

8



Therefore, the leftover hash lemma [HIL+99] implies that the distributions (H1,H1(X1), . . . ,Hi,
Hi(Xi)) and (H1,H1(X1), . . . , Hi−1, Hi−1(Xi−1),Hi, Ui) are 2ϵ-close. In turn, this implies that the
distributions Di+1 = (H1,H1(X1), . . . , Hi,Hi(Xi),Hi+1, Ui+1, . . . , HT , UT ) and Di = (H1,H1(X1),
. . . , Hi−1,Hi−1(Xi−1),Hi, Ui, . . . , HT , UT ) are also 2ϵ-close. Therefore,

SD(D,Di) ≤ SD(D,Di+1) + SD(Di+1,Di)

≤ 2ϵ(T − i) + 2ϵ

= 2ϵ(T − i+ 1).

We also recollect the extended leftover hash lemma (cf. [DOR+08] and [ABB10, Lemma 13]) in
closely-related variants.

Lemma 2.5. Let m > (n+1)+ ω(log λ)
log q and let q > 2 be prime. Then, for all v ∈ Zm

q , the distribution

(A,AR,Rᵀv) is statistically close to the distribution (A,B,Rᵀv), where A ← Zn×m
q , B ← Zn×k

q ,

and R← Zm×k
q for k polynomial in λ.

The extended leftover hash lemma also holds with R is drawn uniformly with entries in {−1, 1}
(rather than Zq) at the expense of slightly larger m.

Lemma 2.6. Let m > (n+1) log q+ω(log λ) and let q > 2 be prime. Then for all vectors v ∈ Zm
q , the

distribution (A,AR,Rᵀv) is statistically close to the distribution (A,B,Rᵀv), where A ← Zn×m
q ,

B← Zn×k
q , and R← {−1, 1}m×k for k polynomial in λ.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme [Sha84, BF03] is a quadruple Π = (Setup,KeyGen,
Enc,Dec) of probabilistic polynomial-time algorithms. The setup algorithm, Setup, takes as input
the security parameter 1λ and outputs the public parameters pp of the scheme together with a
corresponding master secret key msk. The encryption algorithm, Enc, takes as input the public
parameters pp, an identity id, and a message m, and outputs a ciphertext c = Enc(pp, id,m). The
key-generation algorithm, KeyGen, takes as input the master secret key msk and an identity id, and
outputs a secret key skid corresponding to id. The decryption algorithm, Dec, takes as input the
public parameters pp, a ciphertext c, and a secret key skid, and outputs either a message m or the
symbol ⊥. For such a scheme we denote by ID = {IDλ}λ∈N andM = {Mλ}λ∈N its identity space
and message space, respectively.

Functionality. In terms of functionality, we require that the decryption algorithm is correct with
all but a negligible probability. Specifically, for any security parameter λ ∈ N, for any identity
id ∈ IDλ, and for any message m ∈Mλ it holds that

Dec(pp,KeyGen(msk, id),Enc(pp, id,m)) = m

with probably at least 1− ν(λ) for a negligible function ν(·), where the probability it taken over the
internal randomness of the algorithm Setup, KeyGen, Enc, and Dec.
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Data privacy. We consider the standard notion of anonymity and message indistinguishability
under an adaptive chosen-identity chosen-plaintext attack (known as anon-IND-ID-CPA and abbre-
viated to DP in the rest of the paper). We also consider its “selective” variant that asks adversaries
to announce ahead of time the challenge identities (known as anon-IND-sID-CPA and abbreviated to
sDP in the rest of the paper).

Definition 2.7 (Data privacy – anon-IND-ID-CPA). An identity-based encryption scheme Π =
(Setup,KeyGen,Enc,Dec) over a identity space ID = {IDλ}λ∈N and a message spaceM = {Mλ}λ∈N
is data private if for any probabilistic polynomial-time adversary A, there exists a negligible function
ν(λ) such that

AdvDP
Π,A(λ)

def
=
∣∣∣Pr[Expt(0)DP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
DP,Π,A(λ) is defined as follows:

1. (msk, pp)← Setup(1λ).

2. ((id∗0,m
∗
0), (id

∗
1,m

∗
1), state)← AKeyGen(msk,·)(1λ, pp), where id∗0, id

∗
1 ∈ IDλ and m∗0,m

∗
1 ∈Mλ.

3. c∗ ← Enc(pp, id∗b ,m
∗
b).

4. b′ ← AKeyGen(msk,·)(c∗, state), where b′ ∈ {0, 1}.
5. Denote by S the set of identities with which A queried KeyGen(msk, ·).
6. If S ∩ {id∗0, id∗1} = ∅ then output b′, and otherwise output ⊥.

Definition 2.8 (Selective data privacy – anon-IND-sID-CPA). An identity-based encryption scheme
Π = (Setup,KeyGen,Enc,Dec) over a identity space ID = {IDλ}λ∈N and a message space M =
{Mλ}λ∈N is selective data private if for any probabilistic polynomial-time adversary A, there exists
a negligible function ν(λ) such that

AdvsDP
Π,A(λ)

def
=
∣∣∣Pr[Expt(0)sDP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
sDP,Π,A(λ) is defined as follows:

1. (id∗0, id
∗
1, state1)← A(1λ), where id∗0, id

∗
1 ∈ IDλ.

2. (msk, pp)← Setup(1λ).

3. (m∗0,m
∗
1, state2)← A(state1), where m∗0,m

∗
1 ∈Mλ.

4. c∗ ← Enc(pp, id∗b ,m
∗
b).

5. b′ ← AKeyGen(msk,·)(c∗, state2), where b′ ∈ {0, 1}.
6. Denote by S the set of identities with which A queried KeyGen(msk, ·).
7. If S ∩ {id∗0, id∗1} = ∅ then output b′, and otherwise output ⊥.

2.3 Computational Assumptions in Bilinear Groups

Our constructions in bilinear groups are based on the following computational assumptions.

The decisional bilinear Diffie-Hellman assumption (DBDH). Let GroupGen be a probabilis-
tic polynomial-time algorithm that takes as input a security parameter 1λ, and outputs (G,GT, p, g,
ê) where G and GT are groups of prime order p, G is generated by g, p is a λ-bit prime num-
ber, and e : G × G → GT is a non-degenerate efficiently computable bilinear map. The deci-
sional bilinear Diffie-Hellman assumption is that the distributions

{(
g, ga, gb, gc, ê(g, g)abc

)}
a,b,c←Z∗p

and
{(

g, ga, gb, gc, ê(g, g)d
)}

a,b,c,d←Z∗p
are computationally indistinguishable, where (G,GT, p, g, ê)←

GroupGen(1λ).
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The decisional linear assumption (DLIN). We rely on the matrix form of the decisional
linear assumption, which is implied by the decisional linear assumption, as shown by Boneh, Halevi,
Hamburg and Ostrovsky [BHH+08], and generalized by Naor and Segev [NS12]. Let GroupGen be a
probabilistic polynomial-time algorithm that takes as input a security parameter 1λ, and outputs a
triplet (G, p, g) where G is a group of prime order p that is generated by g ∈ G, and p is a λ-bit prime
number. We denote by Rki(Za×b

p ) the set of all a×bmatrices over Zp of rank i. The matrix form of the
decisional linear assumption is that for any integers a and b, and for any 2 ≤ i < j ≤ min{a, b} the
distributions {(G, p, g, gX)}X←Rki(Za×b

p ),λ∈N and {(G, p, g, gY)}Y←Rkj(Za×b
p ),λ∈N are computationally

indistinguishable, where (G, p, g)← GroupGen(1λ).

2.4 Lattices

Probability distributions. The Gaussian distribution with mean 0 and variance σ2 is the dis-
tribution on R having a density function 1

σ
√
2π
· exp(−x2/2σ2).

For α ∈ R+ and (implicit) q ∈ Z, the distribution Ψα is defined to be the discretized Gaussian
distribution ⌊qXα⌉ (mod q) where Xα is a Gaussian with mean 0 and variance α2/2π reduced
modulo 1.

For a matrix S = (s1, . . . , sm) ∈ Zk×m
q of m vectors in Zk

q , ∥S∥
def
= maxi∈[m] (∥si∥) and S̃ =

(s̃1, . . . , s̃m) denotes the Gram-Schmidt orthogonalization of S.

Integer lattices. For q prime, A ∈ Zn×m
q and u ∈ Zn

q define

Λq(A)
def
=
{
e ∈ Zm ∃ s ∈ Zn

q where Aᵀs = e(mod q)
}

Λ⊥q (A)
def
= {e ∈ Zm Ae = 0(mod q)}

Λu
q (A)

def
= {e ∈ Zm Ae = u(mod q)} .

For a lattice Λ, let the Discrete Gaussian distribution over a lattice DΛ,σ,c denote the Gaussian

distribution with probability mass ρσ,c(x)
def
= exp

(
−π ∥x−c∥

2

σ2

)
restricted to x ∈ Λ.

Sampling algorithms. We state the following relevant facts about lattices (see, for example,
[ABB10] and references therein).

Lemma 2.9. Let q ≥ 2 and m > n log q be parameters that are polynomial in the security parameter,
then:

1. There is an efficient algorithm TrapGen that outputs a pair A and TA ∈ Zm×m such that
A is statistically close to uniform over Zn×m

q and TA is a basis for Λ⊥q (A) satisfying ∥S̃∥ ≤
O(
√
n log q) and ∥S∥ ≤ O(n log q) with all but negligible probability.

2. For any m1,m2 ∈ Z≥0 and any A ∈ Zn×m1
q ,C ∈ Zn×m2

q there is an efficient algorithm

ExtendBasis given a basis TB for Λ⊥q (B) produces a basis T for Λ⊥q (A|B|C) such that ∥T̃∥ =
∥T̃B∥.

3. Pr
[
∥x∥ >

√
mσ x← DΛu

q (A),σ,c

]
≤ negl(n) for any c ∈ Rm.

4. For any u ∈ Zn
q and any σ > ∥T̃A∥ ·ω(

√
logm), there is an efficient algorithm SamplePre that

returns x sampled statistically close to DΛu
q ,σ. Additionally, the same algorithm SamplePre

efficiently samples (given TA) from the distribution DΛ⊥q (A),σ,c for any c ∈ Rm.
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The learning with errors assumption (LWE). For a prime q, parameters m = m(λ) and
n = n(λ), and any α = α(λ) such that αq > 2

√
n, it is hard for any polynomial time algorithm to dis-

tinguish between the distributions {(A,Aᵀs+ x)}A←Zn×m
q , s←Zn

q , x←Ψ
m
α
and {(A,b)}A←Zn×m

q , b←Zm
q
.

The problem of distinguishing the two distributions described above is the LWEq,Ψα
problem.

Regev in [Reg05] showed that any efficient adversary that solves the LWEq,Ψα
problem can be

used to construct an efficient quantum algorithm for approximating SIVP and GapSVP in lattices
to within Õ(n/α) factors. This is believed to be hard for appropriate polynomial choices of m(λ)
and n(λ).

The following lemma [ABB10, Lemma 12] is used to bound the error term in the statement of
the LWE assumption.

Lemma 2.10. Let e ∈ Zm be a vector and let χ ← Ψ
m
α . Then the quantity |χᵀe| treated as an

integer between [0, q − 1] satisfies:

|χᵀe| ≤ ∥e∥2 · qαω(
√

logm) + ∥e∥2
√
m/2

with an overwhelming probability in m.

2.5 Programmable Hash Functions

We describe the following family of hash functions introduced by Hofheinz and Kiltz [HK12] (hence-
forth denoted HHK). For every λ ∈ N, prime p = p(λ) and a parameter n = n(λ), define the family
(for implicit λ) HHK : {Hh : {0, 1}n → Zp}h∈Zn

p
as:

Hh(x)
def
= 1−

n∑
i=1

xihi (mod p) for x = (x1, . . . , xn) ∈ {0, 1}n and h = (h1, . . . , hn) ∈ Zn
p . (2.1)

For a parameter Q = Q(λ) that is poylnomial in λ (which will refer to the number of queries when
the hash functions are used in proofs) we consider a sub-family of hash functions HHK,Q. To sample
Hh ← HHK,Q proceed as follows: set J = Θ(Q2) and sample ηi,j for i ∈ [n] and j ∈ [J ] uniformly and
independently from {−1, 0, 1}. Set hi =

∑
j∈[J ] ηi,j to define the hash function Hh = 1−

∑n
i=1 hixi

as in Equation (2.1). Such a hash function family is (1, Q)-programmable in the terminology of
Hofheinz and Kiltz which implies the following lemma (implicit in the proof of [HK12, Theorem 6]).

Lemma 2.11. For any polynomial Q = Q(λ), polynomial n = n(λ), and any p = p(λ), for any
(Q+ 1)-tuple of inputs x∗, x(1), . . . , x(Q) ∈ {0, 1}n, we have

Pr
[
H(x∗) = 0 ∧H

(
x(1)

)
̸= 0 ∧ · · · ∧H

(
x(Q)

)
̸= 0
]
≥ αHK = Θ

(
1

Q
√
n

)
,

where the probability is taken over the choice of H ← HHK,Q.

2.6 Two Simple Linear Algebra Facts

The following two simple facts are used in our proofs. For completeness we include their proofs,
although they are standard.

Lemma 2.12. Let n, m, and q be integers such that m ≥ n and q is prime. Then the probability
that a uniformly chosen matrix A← Zn×m

q has rank less than n is at most 2/qm−n+1.
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Proof. We view A as a set of n uniformly and independently sampled vectors ai ← Zm
q . The

probability that A has rank less than m is bounded above by:

n−1∑
i=0

Pr[ai+1 ∈ span(a1, . . . ,ai)] =

n−1∑
i=0

1

qm−i
<

1

qm−n+1
·

(
1

1− 1
q

)
<

2

qm−n+1
.

Lemma 2.13. Let m, n, k, and q be integers such that m ≥ n and q is prime and let B ∈ Zn×m
q be

a full-rank matrix. Then, for uniform S← Zm×k
q , BS is distributed uniformly over Zn×k

q .

Proof. Let B be viewed as B = [b1 · · · bm] for column vectors bi ∈ Zn
q . As Rk(B) = n, there are

n columns that are linearly independent. Let B∗ ∈ Zn×n
q denote the submatrix of these n linearly

independent columns. Consider fixingm−n rows of S corresponding to the remainingm−n columns
and only consider a n×m submatrix S∗ that correspond to B∗. The matrix S∗ has column vectors
s∗1, . . . , s

∗
k ∈ Zn

q .
Then BS = [B∗s∗1 + u1 · · · B∗s∗k + uk] where u1, . . . ,uk are arbitrary vectors that depend on

the values of the fixed rows. For any i ∈ [k], as B∗ is full-rank, there is a bijection between vectors
s∗i and B∗s∗i . As s

∗
i is distributed uniformly over Zn

q , so is B∗s∗i and B∗s∗i +ui. This in turn implies
that BS is distributed uniformly over all possible n× k matrices.

The above result holds true for every possible fixing of the m − n rows corresponding to the
columns not in B∗ and therefore holds true for the uniform distribution over these values as well.

3 Modeling Function Privacy for IBE

In this section we introduce our notions of function privacy for anonymous IBE schemes.9 Recall
that the standard notion of security for anonymous IBE schemes, anon-IND-ID-CPA, asks that a
ciphertext c = Enc(pp, id,m) reveals essentially no information on the pair (id,m) as long as a secret
key skid corresponding to the identity id is not explicitly provided (but secret keys corresponding to
other identities may be provided). We refer to this notion of security as data privacy, and refer the
reader to Section 2.2 for the formal definition. As discussed in Section 1, we put forward two main
notions of function privacy: A basic notion that is formalized in Section 3.1, and an “enhanced”
notion that is formalized in Section 3.2. We then also formalize non-adaptive relaxations of these
two notions in Section 3.3.

Throughout this section we let T , k, and k1, . . . , kT be functions of the security parameter
λ ∈ N. In addition, we note that in the random-oracle model, all algorithms, adversaries, oracles,
and distributions are given access to the random oracle.

3.1 Function Privacy

Our basic notion of function privacy asks that it should not be possible to learn any information,
beyond the absolute minimum necessary, on the identity id corresponding to a given secret key
skid. Specifically, our notion considers adversaries that are given the public parameters of the
scheme, and can interact with a “real-or-random” function-privacy oracle RoRFP. This oracle takes as
input any adversarially-chosen distribution over vectors of identities, and outputs secret keys either
for identities sampled from the given distribution or for independently and uniformly distributed

9We focus on anonymous IBE schemes as our motivating application is public-key searchable encryption, to which
anonymity is crucial [ABC+08].
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identities10. We allow adversaries to adaptively interact with the real-or-random oracle, for any
polynomial number of queries, as long as the distributions have a certain amount of min-entropy. At
the end of the interaction, we ask that adversaries have only a negligible probability of distinguishing
between the “real” and “random” modes of the oracle. The following definitions formally capture
our basic notion of function privacy.

Definition 3.1 (Real-or-random function-privacy oracle). The real-or-random function-privacy or-
acle RoRFP takes as input triplets of the form (mode,msk, ID), where mode ∈ {real, rand}, msk is
a master secret key, and ID = (ID1, . . . , IDT ) ∈ IDT is a circuit representing a joint distribution
over IDT . If mode = real then the oracle samples (id1, . . . , idT ) ← ID and if mode = rand then
the oracle samples (id1, . . . , idT ) ← IDT uniformly. It then invokes the algorithm KeyGen(msk, ·)
on each of id1, . . . , idT and outputs a vector of secret keys (skid1 , . . . , skidT ).

Definition 3.2 (Function-privacy adversary). Let X ∈ {(T, k)-block, (k1, . . . , kT )}. An X-source
function-privacy adversary A is an algorithm that is given as input a pair (1λ, pp) and oracle access
to RoRFP(mode,msk, ·) for some mode ∈ {real, rand}, and to KeyGen(msk, ·), and each of its queries
to RoRFP is an X-source.

Definition 3.3 (Function privacy). Let X ∈ {(T, k)-block, (k1, . . . , kT )}. An identity-based en-
cryption scheme Π = (Setup,KeyGen,Enc,Dec) is X-source function private if for any probabilistic
polynomial-time X-source function-privacy adversary A, there exists a negligible function ν(λ) such
that

AdvFP
Π,A(λ)

def
=
∣∣∣Pr[ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
FP,Π,A(λ) is defined as follows:

1. (pp,msk)← Setup(1λ).

2. b← ARoRFP(mode,msk,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

In addition, such a scheme is statistically X-source function private if the above holds for any
computationally-unbounded X-source enhanced function-privacy adversary making a polynomial
number of queries to the RoRFP oracle.

Multi-shot vs. single-shot adversaries. Note that Definition 3.3 considers adversaries that
query the function-privacy oracle for any polynomial number of times. In fact, as adversaries are
also given access to the key-generation oracle, this “multi-shot” definition is polynomially equivalent
to its “single-shot” variant in which adversaries query the real-or-random function-privacy oracle
RoRFP at most once. This is proved via a straightforward hybrid argument, where the hybrids
are constructed such that only one query is forwarded to the function-privacy oracle, and all other
queries are answered using the key-generation oracle.

Known schemes that are not function private. To exercise our notion of function privacy
we demonstrate that the anonymous IBE schemes of Boneh and Frankin [BF03], Gentry, Peikert
and Vaikuntanathan [GPV08], Agrawal, Boneh and Boyen [ABB10], and Kurosawa and Phong
[KP11] are not function private. We present simple and efficient attacks showing that the schemes

10We note that the resulting notion of security is polynomially equivalent to the one obtained by using a “left-
or-right” oracle instead of a “real-or-random” oracle, as for example, in the case of semantic security for public-key
encryption schemes.
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[BF03, GPV08] do not satisfy Definition 3.3, and note that almost identical attacks can be carried on
[ABB10, KP11]. As discussed in Section 1, other anonymous IBE schemes such as [Gen06, BW06]
for which we were not able to find such simple attacks, can always be assumed to be function private
based on somewhat non-standard entropy-based assumptions (such assumptions would essentially
state that the schemes satisfy our definition). In this paper we are interested in schemes whose
function privacy can be based on standard assumptions.

The Boneh-Franklin scheme uses a random oracle H : ID → G and the secret key for id is
skid = H(id)α where α← Zp is the master secret. The public parameters are g and h = gα for some
generator g of G. Consider an adversary that queries the real-or-random oracle with the circuit
of the distribution that samples a uniformly distributed id for which the most significant bit of
ê(gα,H(id)) is 0. Clearly, this distribution has almost full entropy, and can be described by a circuit
of polynomial size given the public parameters.11 Then, given skid = H(id)α the adversary outputs
0 if the most significant bit of ê(g, skid) is 0 and outputs 1 otherwise. Since ê(g, skid) = ê(gα,H(id))
it is easy to see that the adversary has advantage 1/2 in distinguishing the real mode from the rand
mode, thereby breaking function privacy. In Section 4.1 we present a modification of this scheme
which is function private.

In the scheme of Gentry, Peikert and Vaikuntanathan, the public parameters consist of a matrix
A ← Zn×m

q and the master secret key is a short basis for the lattice Λ⊥q (A). A secret key corre-
sponding to an identity id is a short vector e ∈ Zm such that Ae = H(id) ∈ Zn

q , where H : ID → Zn
q

is a random oracle. Consider an adversary that queries the real-or-random oracle with the circuit of
the distribution that samples a uniformly distributed id for which the most significant bit of H(id) is
0. Then, given skid = e the adversary outputs 0 if the most significant bit of Ae is 0 and outputs 1
otherwise. Since Ae = H(id) it is easy to see that the adversary has advantage 1/2 in distinguishing
the real mode from the rand mode, thereby breaking function privacy. In Section 4.2 we present a
modification of this scheme which is function private.

3.2 Enhanced Function Privacy

We now put forward a stronger notion of function privacy, to which we refer as enhanced function
privacy. Recall that our basic notion of function privacy asks that it should not be possible to
learn any information, beyond the absolute minimum necessary, on the identity id corresponding
to a given secret key skid. However, in various applications (such as searching on encrypted data),
an adversary may obtain not only a secret key skid, but also an encryption Enc(pp, id,m) of some
message m. Our notion of enhanced function privacy asks that even in such a scenario, it should
not be possible to learn any unnecessary information on the identity id.

It is easy to observe that not any function-private IBE scheme is also enhanced function private.
For example, given any function-private anonymous IBE scheme Π consider the scheme Π̃ that is
obtained by modifying Π’s encryption algorithm as follows: In order to encrypt a message m for
id, use Π’s encryption algorithm for encrypting the pair (m, id) for id. The scheme Π̃ preserves the
function privacy and anonymity of Π, but it is clearly not enhanced function private.

We formalize the notion of enhanced function privacy by considering adversaries that interact not
only with the key-generation and the real-or-random function-privacy oracles (as in Definition 3.3),
but also with a function-privacy encryption oracle. This oracle, denoted EncFP, shares a state with
the real-or-random function-privacy oracle RoRFP and takes as inputs queries of the form (i, j,m)
where i and j are integers, and m is a message. On input such a query, denote by (idi,1, . . . , idi,T )
the vector of identities that was sampled by the real-or-random function-privacy oracle RoRFP when

11More specifically, rejection sampling can be used to obtain a sufficiently good approximation.
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answering the adversary’s ith real-or-random query.12 The function-privacy encryption oracle EncFP

then responds with c← Enc(pp, idi,j ,m).

Definition 3.4 (Enhanced function privacy). Let X ∈ {(T, k)-block, (k1, . . . , kT )}. An identity-
based encryption scheme Π = (Setup,KeyGen,Enc,Dec) is X-source enhanced function private if for
any probabilistic polynomial-time X-source function-privacy adversary A there exists a negligible
function ν(λ) such that

AdvEFP
Π,A(λ)

def
=
∣∣∣Pr[ExptrealEFP,Π,A(λ) = 1

]
− Pr

[
ExptrandEFP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
EFP,Π,A(λ) is defined as follows:

1. (pp,msk)← Setup(1λ).

2. b← ARoRFP(mode,msk,·,·),EncFP(pp,·,·,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

Multi-shot vs. single-shot adversaries. We note that Definition 3.4 is polynomially equivalent
to its “single-shot” variant in which adversaries query the real-or-random function-privacy oracle
RoRFP at most once (see the discussion following Definition 3.3). In this case the function-privacy
encryption oracle EncFP can be simplified to take as inputs queries of the form (j,m) instead of
queries of the form (i, j,m) (since only the case i = 1 is possible).

3.3 Non-Adaptive Function Privacy

We now put forward non-adaptive relaxations of our notions of functions privacy. These relaxations
ask that it should not be possible to learn any unnecessary information on the identity id corre-
sponding to a given secret key skid, as long as id is not allowed to depend on the public parameters
of the IBE scheme. As discussed in Section 3.1, such a non-adaptive notion is inspired by the notions
of security for deterministic public-key encryption (DPKE) [BBO07].

On one hand, this definition is weaker than those presented in Sections 3.1 and 3.2. However,
on the other, it may still suffice for various applications (see [BBO07]), and in Section 6 we show
that it can be obtained generically from any anonymous IBE scheme and any family of collision-
resistant hash functions (this is a more refined variant of the simple DPKE-based construction
described in Section 3.1). In fact, this generic construction satisfies the non-adaptive relaxation of
enhanced function privacy. For simplicity, in what follows we present the definition of non-adaptive
enhanced function privacy, and note that the non-enhanced definition follows easily by not providing
adversaries with access to the function-privacy encryption oracle EncFP.

Definition 3.5 (Non-adaptive enhanced function privacy). LetX ∈ {(T, k)-block, (k1, . . . , kT )}. An
identity-based encryption scheme Π = (Setup,KeyGen,Enc,Dec) is X-source non-adaptive enhanced
function private if for any probabilistic polynomial-time X-source function-privacy adversary A,
there exists a negligible function ν(λ) such that

AdvNA-EFP
Π,A (λ)

def
=
∣∣∣Pr[ExptrealNA-EFP,Π,A(λ) = 1

]
− Pr

[
ExptrandNA-EFP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
NA-EFP,Π,A(λ) is defined as follows:

12If the adversary made less than i real-or-random queries then the function-privacy encryption oracle EncFP responds
with ⊥.
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1. (ID, state)← A(1λ).
2. (pp,msk)← Setup(1λ).

3. (skid1 , . . . , skidT )← RoRFP (mode,msk, ID).

4. b← AEncFP(pp,·,·,·),KeyGen(msk,·) (state, (skid1 , . . . , skidT )).

5. Output b.

4 Function-Private Schemes in the Random-Oracle Model

4.1 A DBDH-Based Scheme

In this section we present an IBE scheme based on the DBDH assumption in the random-oracle
model. The scheme is based on the IBE of Boneh and Franklin [BF03] by applying our “extract-
augment-combine” approach, as discussed and exemplified in Section 1.1. The scheme is described
below, and its proofs of data privacy and function privacy are presented in Sections 4.1.1 and 4.1.2,
respectively.

The scheme. Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a
security parameter 1λ, and outputs (G,GT, p, g, ê) where G and GT are groups of prime order p, G
is generated by g, p is a λ-bit prime number, and ê : G × G → GT is a non-degenerate efficiently
computable bilinear map. The scheme IBEDBDH = (Setup,KeyGen,Enc,Dec) is parameterized by
the security parameter λ ∈ N. For any such λ ∈ N we denote by IDλ and Mλ the identity space
and the message space, respectively.

• Setup: On input 1λ the setup algorithm samples (G,GT, p, g, ê)← GroupGen(1λ) and α← Z∗p,
and lets h = gα. It outputs the public parameters pp = (H, g, h) and the master secret
key msk = α, where H : IDλ → Gℓ is a hash function (modeled as a random oracle) for

ℓ ≥ 2 log |IDλ|+ω(log λ)
log p .

• Key generation: On input the master secret key msk = α and a identity id ∈ IDλ, the
key-generation algorithm computes H(id) = (h1, . . . , hℓ) and samples s1, . . . , sℓ ← Zp. It then

outputs the secret key skid =
(
s1, . . . , sℓ,

(∏ℓ
j=1 h

sj
j

)α)
.

• Encryption: On input the public parameters pp = (H, g, h), an identity id ∈ IDλ, and
a message m ∈ GT, the encryption algorithm computes H(id) = (h1, . . . , hℓ) and samples
r ← Zp. It then outputs the ciphertext c = (c0, . . . , cℓ), where c0 = gr and ci = ê(h, hi)

r · m
for every i ∈ [ℓ].

• Decryption: On input the public parameters pp = (H, g, h), a ciphertext c = (c0, . . . , cℓ), and

a secret key sk = (s1, . . . , sℓ, z), the decryption algorithm computes d =
(∏

i∈[ℓ] c
si
i

)
/ê(c0, z),

and outputs m = d(s1+···+sℓ)
−1
.
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Correctness. Consider a message m, an encryption (c0, . . . , cℓ) of m under identity id, and a secret
key (s1, . . . , sℓ, z) corresponding to id. Then, we have

d =

∏
i∈[ℓ] c

si
i

ê(c0, z)
=

∏
i∈[ℓ] ê(h, hi)

r·si ·msi

ê
(
c0,
∏

i∈[ℓ] h
α·si
i

)
=

∏
i∈[ℓ] ê(g

α, hi)
r·si

ê
(
gr,
∏

i∈[ℓ] h
α·si
i

) ·ms1+···+sℓ =

∏
i∈[ℓ] ê(g, hi)

rα·si∏
i∈[ℓ] ê(g

r, hi)α·si
·ms1+···+sℓ

= ms1+···+sℓ .

Therefore, as long as s1+· · ·+sℓ ̸= 0(mod p) (an event which occurs with probability 1−1/p over the
randomness of KeyGen), the message is indeed correctly reconstructed by computing d(s1+···+sℓ)

−1
.

Security. In Sections 4.1.1 and 4.1.2 we prove the following theorem:

Theorem 4.1. In the random-oracle model the scheme IBEDBDH is data private based on the DBDH
assumption, and is statistically function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ λ+ ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ i · λ + ω(log λ) for
every i ∈ [T ].

4.1.1 Proof of Data Privacy

Lemma 4.2. The scheme IBEDBDH is data private based on the DBDH assumption in the random-
oracle model.

Proof. Let A be a probabilistic polynomial time adversary. For each b ∈ {0, 1}, we consider

experiment Expt
(b)
0 that is identical to Expt

(b)
DP,IBEDBDH,A in Definition 2.7. Then, for each i ∈ [ℓ], we

define experiment Expt
(b)
i (for 1 ≤ i ≤ ℓ) is identical to Expt0 except in step (3) where the challenge

ciphertext c∗ is now (c∗0, u1, . . . , ui, c
∗
i+1, . . . , c

∗
ℓ) for independently and uniformly sampled elements

u1, . . . , ui. In particular, we note that in Expt
(0)
ℓ and Expt

(1)
ℓ , c0 is chosen uniformly from G (and

independent of (id∗0,m
∗
0) and (id∗1,m

∗
1)) and the adversary’s view is independent of b. Therefore

Expt
(0)
ℓ = Expt

(1)
ℓ .

Claim 4.3. Based on the DBDH assumption, for any 0 ≤ i ≤ ℓ− 1 and b ∈ {0, 1}, it holds that∣∣∣Pr[Expt(b)i (λ) = 1
]
− Pr

[
Expt

(b)
i+1(λ) = 1

]∣∣∣ ≤ negl(λ).

Proof. Assume the contrary. Denote by QT and QH the number of secret key and random oracle

queries of a probabilistic polynomial time adversary A in experiment Expt
(b)
j for j ∈ {i, i+ 1} such

that ∣∣∣Pr[Expt(b)i (λ) = 1
]
− Pr

[
Expt

(b)
i+1(λ) = 1

]∣∣∣ > ϵ(λ),

for some non-negligible ϵ(λ). We construct an algorithm B that solves the DBDH problem with
advantage at least ϵ′ = ϵ/e(QT + 1). The algorithm B is given (g, ga = ga, gb = gb, gc = gc, v) and
interacts with A as follows:
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• Setup: Algorithm B sets up pp = (g, ga).

• H-queries: Algorithm B maintains a list of tuples L = (idj ,hj ,αj , γj) for j ∈ {1, . . . , QH}
where hj =

(
h
(j)
1 , . . . , h

(j)
ℓ

)
is a vector of elements in G and αj =

(
α
(j)
1 , . . . , α

(j)
ℓ

)
is a vector

of Zp elements. For each query id ∈ ID, B responds as follows:

1. If id = idj ∈ L already for some idj , algorithm B returns H(id) = hj .

2. Otherwise, B generates a random coin γj such that Pr[γj = 0] = 1/(QT + 1).

3. Algorithm B picks a random αj ∈ Zn
p .

If γj = 0, B computes h
(j)
i+1 ← gb · gα

(j)
i+1

If γj = 1, B computes h
(j)
i+1 ← gα

(j)
i+1

Algorithm B sets the rest of the components of the hj vector as follows: h
(j)
ζ = gα

(j)
ζ for

ζ ∈ [ℓ]\{i+ 1}.
4. Algorithm B adds the tuple (idj ,hj ,αj , γj) to the list L at position j.

• Secret key queries: When A issues a query for identity id ∈ ID, algorithm B responds as
follows:
1. Algorithm B computes H(id) as above to obtain (w,h,α, γ). If γ = 0, algorithm B aborts

and outputs a uniform bit.

2. Else, we have γ = 1 and therefore hi = gαi for each i ∈ [n]. Algorithm B chooses random
values s1, . . . , sℓ ← Zp, computes z =

∏n
i=1 g

siαi
a , and outputs skid = (s1, . . . , sℓ, z).

Observe that ga = ga and z is well-formed for the public parameters pp.

• Challenge: When A outputs two identities and two messages (id∗0,m
∗
0) and (id∗1,m

∗
1) on which

to be challenged, B does the following:
1. Depending on the bit b, it computes H(id∗b) = h as above and retrieves (id∗b ,h,α, γ) from

table L. If γ = 1, the algorithm B aborts and outputs a uniform bit.

2. If γ = 0, it proceeds to set c0 = gc, and (c∗1, . . . , c
∗
i ) = (u1, . . . , ui) to uniform and

independently chosen elements in GT. Next, it sets c∗i+1 = v · ê(ga, gc)αi+1 · m∗b . Finally,
it sets c∗ζ to ê(ga, gc)

αζ ·m∗b , for i+ 2 ≤ ζ ≤ ℓ.

3. It returns c∗ = (c∗0, c
∗
1, . . . , c

∗
ℓ) as the challenge ciphertext.

• Output: At the end of the experiment on receiving the bit b′ as output, the adversary B
outputs the bit b′

It is easy to see from the construction that in the challenge phase, if B is given a DBDH tuple,
i.e., v = ê(g, g)abc, then

c∗i+1 = ê (g, g)abc · ê (g, g)acαi+1 ·m∗b = ê (ga, g)c(b+αi+1) ·m∗b
= ê

(
ga, g(b+αi+1)

)c
·m∗b = ê (ga, hi+1)

c ·m∗b

is well-formed and therefore, the challenge (c∗0, c
∗
1, . . . , c

∗
ℓ) is identically distributed to the challenge

in Expt
(b)
i . If B is given a random tuple, i.e., v is uniform over GT, then in addition to c∗1, . . . , c

∗
i , we

have c∗i+1 is also distributed uniformly over GT and thus, (c∗0, c
∗
1, . . . , c

∗
ℓ) is identically distributed to

the challenge in Expt
(b)
i+1.

To complete the proof, it suffices to bound the probability of B aborting the simulation (denoted
by Abort). We define two events: AbortT the event that B aborts in one of the secret key queries,
and AbortC the event that B aborts during the challenge phase.
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Without loss of generality, we assume that A does not ask for the secret key of the same identity
twice. The probability that a secret key query causes B to abort is 1/(QT + 1). To see this, note
that γi is independent of A’s view and B only aborts when γi = 0. As A makes at most QT secret
key queries, the probability that B does not abort as a result of all secret key queries is at least
(1− 1/(QT + 1))QT ≥ 1/e. Thus, Pr[AbortT] ≤ 1− 1/e.

The algorithm B will abort during the challenge phase if A is able to produce id∗b with the
property that γ = 1 for that corresponding entry in L. Since A cannot query for a secret key of id∗b ,
γ is set independently of A’s view. With probability Pr[γ = 0] = 1/(QT + 1), algorithm B does not
abort and therefore, Pr[AbortC] ≤ 1− 1/(QT + 1).

The two events AbortC and AbortT are independent because A cannot ask for secret key queries
corresponding to id∗b . Thus the probability of abort is at most 1 − Pr

[
AbortT ∧ AbortC

]
≤ 1 −

1/e(QT + 1).

Therefore, the advantage of B (where the probability is taken over choices of uniform a, b, c← G
and v ← GT) is:

ϵ′ =
∣∣∣Pr[B (g, ga, gb, gc, ê(g, g)abc) = 1

]
− Pr

[
B
(
g, ga, gb, gc, v

)
= 1
]∣∣∣

=

∣∣∣∣Pr[B (g, ga, gb, gc, ê(g, g)abc) = 1 Abort
]
· Pr
[
Abort

]
+

1

2
· Pr[Abort]

−
(
Pr
[
B
(
g, ga, gb, gc, v

)
= 1 Abort

]
· Pr
[
Abort

]
+

1

2
· Pr[Abort]

)∣∣∣∣
=
∣∣∣Pr[Expt(b)i (A) = 1 Abort

]
· Pr
[
Abort

]
− Pr

[
Expt

(b)
i+1(A) = 1 Abort

]
· Pr
[
Abort

]∣∣∣
=
∣∣∣Pr[Expt(b)i (A) = 1

]
· Pr
[
Abort

]
− Pr

[
Expt

(b)
i+1(A) = 1

]
· Pr
[
Abort

]∣∣∣
≥ ϵ · 1

e(QT + 1)
,

as required. The derivation uses the fact that the abort condition is independent of the view of
the adversary. To see this, we can consider an identical simulation without an embedded DBDH
challenge that does not abort until the entire interaction is done with the adversary, then chooses
bits γi and decides to abort aposteriori. The two simulations are identical as far as the adversary is
concerned.

To conclude the proof of Lemma 4.2, we compute:

AdvDP
IBEDBDH,A(λ) =

∣∣∣Pr[Expt(0)DP,IBE,A(λ) = 1
]
− Pr

[
Expt

(1)
DP,IBE,A(λ) = 1

]∣∣∣
=
∣∣∣Pr[Expt(0)0 (A) = 1

]
− Pr

[
Expt

(1)
0 (A) = 1

]∣∣∣ (4.1)

≤
ℓ∑

i=1

∣∣∣Pr[Expt(0)i−1(A) = 1
]
− Pr

[
Expt

(0)
i (A) = 1

]∣∣∣
+

ℓ∑
i=1

∣∣∣Pr[Expt(1)i−1(A) = 1
]
− Pr

[
Expt

(1)
i (A) = 1

]∣∣∣
+
∣∣∣Pr[Expt(0)ℓ (A) = 1

]
− Pr

[
Expt

(1)
ℓ (A) = 1

]∣∣∣ (4.2)

≤ 2ne(QT + 1) · ϵ′ + 0 (4.3)

≤ negl(λ), (4.4)
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where (4.1) follows from the definition of the experiments, (4.2) follows from the triangle inequality,
(4.3) follows from Claim 4.3, and (4.4) follows from the hardness of DBDH and the fact that QT is
polynomial in n.

4.1.2 Proof of Function Privacy

Lemma 4.4. The scheme IBEDBDH is statistically function private in the random-oracle model for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ λ+ ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ i · λ + ω(log λ) for
every i ∈ [T ].

Proof. Let X ∈ {(T, k)-block, (k1, . . . , kT )}, and let A be a computationally unbounded X-source
function-privacy adversary that makes a polynomial number QRoR = QRoR(λ) of queries to the
RoRFP oracle. We prove that the distribution of A’s view in the experiment ExptrealFP,IBEDBDH,A is

statistically close to the distribution of A’s view in the experiment ExptrandFP,IBEDBDH,A (we refer the
reader to Definition 3.3 for the descriptions of these experiments). We denote these two distributions
by Viewreal and Viewrand, respectively.

We first observe that since the hash function H : IDλ → Gℓ is modeled as a random oracle, we
can restrict ourselves to the above distributions conditioned on the event in which H is injective on
the identity space IDλ. Indeed, since G is a group of order p where p is a λ-bit prime number, our
choice of ℓ = ℓ(λ) ≥ 2 log |IDλ|+ω(log λ)

log p implies that

Pr
H
[H is injective on IDλ] ≥ 1− |IDλ|2

pℓ

= 1− 2−ω(log λ).

Assuming that H is injective guarantees that for any X-source ID = (ID1, . . . , IDT ) over (IDλ)
T

it holds that H(ID)
def
= (H(ID1), . . . , H(IDT )) is an X-source over (Gℓ)T . From this point on

we fix a function H which is injective over IDλ, and show that the two distributions Viewreal and
Viewrand are statistically close for any such function H.

Next, as the adversary A is computationally unbounded, we assume without loss of generality
that A public parameters in our scheme uniquely determine the master secret key msk = α, such
queries can be internally simulated by A. Moreover, as discussed in Section 3.1, it suffices to focus
on adversaries A that query the RoRFP oracle exactly once. From this point on we fix the value of
α ∈ Zp chosen by the setup algorithm, and show that the two distributions Viewreal and Viewrand

are statistically close for any such α.
Denote by ID = (ID1, . . . , IDT ) the random variable corresponding to the X-source with which

A queries the RoRFP oracle. Having already fixed H and α, we can assume that

Viewmode =

s1,1, . . . , s1,ℓ,

ℓ∏
j=1

h
s1,j
1,j

 , . . . ,

sT,1, . . . , sT,ℓ,

ℓ∏
j=1

h
sT,j

T,j


for mode ∈ {real, rand}, where (id1, . . . , idT ) ← (ID1, . . . , IDT ) for mode = real, (id1, . . . , idT ) is
uniformly distributed over (IDλ)

T for mode = rand, H(idi) = (hi,1, . . . , hi,ℓ) for every i ∈ [T ], and
si,j ← Zp for every i ∈ [T ] and j ∈ [ℓ]. For mode ∈ {real, rand} we prove that the distribution
Viewmode is statistically-close to uniform.
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Note that the collection of functions {fs1,...,sℓ : Gℓ → G}s1,...,sℓ∈Zp defined by fs1,...,sℓ(h1, . . . , hℓ) =∏ℓ
j=1 h

sj
j is universal. This enables us to directly apply Lemma 2.3 (in case ID is a (T, k)-block-

source) and Lemma 2.4 (in case ID is a (k1, . . . , kT )-source), implying that the statistical distance
between Viewreal and the uniform distribution is negligible in λ. The same clearly holds also for
Viewrand, as the uniform distribution over (IDλ)

T is, in particular, a (T, k)-block-source and a
(k1, . . . , kT )-source.

4.2 An LWE-Based Scheme

In this section we present an IBE scheme based on the LWE assumption in the random-oracle model.
The scheme is based the IBE scheme of Gentry, Peikert, and Vaikuntanathan [GPV08] by applying
our “extract-augment-combine” approach described in Section 1.1. In what follows, before formally
describing our scheme, we discuss the main challenges in applying our approach to the IBE scheme
of Gentry et al. (we refer to their scheme as the GPV scheme).

In the GPV scheme, the public parameters consist of a matrix A← Zn×m
q and the master secret

key is a short basis TA for the lattice Λ⊥q (A). A secret key corresponding to an identity id is a
short vector e ∈ Zm such that Ae = H(id) ∈ Zn

q . Thus, a natural application of our “extract” step
for generating a secret key corresponding to an identity id, would be to view H(id) as a matrix over
Zn×ℓ
q , sample a uniform vector s ∈ Zℓ

q, and output a short vector e such that Ae = H(id)·s ∈ Zn
q . As

long as the matrix H(id)−H(id′) is of full rank for all identities id and id′, the map H(id) 7→ H(id)·s
is a collection of universal functions over the choice of uniform s ∈ Zℓ

q. Therefore, in particular, such
a short vector e reveals essentially no information on id so long as id is sufficiently unpredictable.

The main difficulty, however, is to guarantee the correctness of decryption in the “augment” and
“combine” steps. In the GPV scheme, ciphertexts are decrypted by computing an inner-product
with the vector e, while carefully making sure (during encryption) that the added noise term (which
guarantees data privacy) does not overwhelm the rest of the ciphertext. Applying a similar idea in
our scheme runs into trouble because the entries of the vector s are not small and the therefore the
noise term grows too large.

We overcome this difficulty by augmenting the public parameters with matrices B1, . . . ,Bd

(where d is chosen such that q is a d-bit prime) that allow us to compute inner products with
low-norm vectors over Zℓ

q that correspond to the bit representation of a uniform s. Using such
low-norm vectors ensures that the noise terms do not overwhelm the message, and our “combine”

step then produces an encryption of m ·
(∑

i∈[d] ∥si∥1
)
.13 By choosing our parameters appropriately,

we can guarantee that this remains an encryption of the original m and thus enables decryption.
We note that the idea of representing s as its bit-vectors is inspired by that of Agrawal, Freeman,
and Vaikuntanathan [AFV11].

The scheme. The scheme IBELWE1 = (Setup,KeyGen,Enc,Dec) is parameterized by the security
parameter λ ∈ N. Let IDλ denote the identity space. The scheme additionally has lattice parameters
m,n and q, a parameter ℓ ∈ N related to randomness extraction, and d ∈ N such that q is a d-bit
prime.

• Setup: On input 1λ the setup algorithm picks parameters m,n, q and α as stated in the
formulation of the LWEq,Ψα

assumption (see Section 2.4). The algorithm samples A← Zn×m
q

with a trapdoor TA ∈ Zm×m for Λ⊥q (A) by using the algorithm TrapGen (as described in

Section 2.4). In addition, it samples B1, . . . ,Bd ← Zn×ℓ
q and a hash function H : IDλ → Zn×ℓ

q

13Here ∥ · ∥1 denotes the ℓ1-norm of a vector.
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(modeled as a random oracle). It outputs the public parameters pp = (A,B1, . . . ,Bd) and
the master secret key msk = TA.

• Key generation: On input the public parameters pp and an identity id ∈ IDλ the algorithm
samples s ← Zℓ

q and parses H(id) as a matrix H ∈ Zn×ℓ
q . It represents s =

∑
i∈[d] 2

i−1 · si
(mod q) where the si’s are vectors over {0, 1}ℓ. Running algorithm SamplePre with the lattice

trapdoor TA it samples e ∈ Zm such that Ae =
(
Hs+

∑
i∈[d]Bisi

)
(mod q). It outputs

skid = (s, e) ∈ Zℓ
q × Zm.

• Encryption: On input the the public parameters pp, an identity id ∈ IDλ, and a message
m ∈ {0, 1}, the algorithm samples r← Zn

q and computes H(id) = H ∈ Zn×ℓ
q . Next, it chooses

(low-norm) error vectors χ0 ← Ψ
m
α and χ1, . . . ,χd ← Ψ

ℓ
α. Let 1 denote the all-ones vector

over Zℓ
q. It outputs

Enc(pp, id,m) =

(
Aᵀr+ χ0,

{(
2i−1 ·H+Bi

)ᵀ
r+ χi +m · q

2ℓd
· 1
}
i∈[d]

)
∈ Zm

q × (Zℓ
q)

d.

• Decryption: On input the public parameters pp, a ciphertext (c0, c1, . . . , cd), and a secret key
(s, e), the algorithm represents s =

∑
i∈[d] 2

i−1 ·si (mod q) and outputs 0 if |(cᵀ0e−
∑

i∈[d] ci
ᵀsi)

(mod q)| < q
10 and 1 otherwise.

Parameter selection. For the scheme, n is polynomial in the security parameter λ, and we set
m = n · ω(log n), q = m2.5 · ω(

√
log n), α = 1

m2·ω(
√
logn)

, and ℓ ≥ n+ 2 log |IDλ|+logn+ω(log λ)
log q .

Correctness. Consider a ciphertext (c0, . . . , cd) and the corresponding secret key (s, e) generated
by running algorithms for encryption and secret key generation for the same identity. To see cor-
rectness of the decryption algorithm, observe that

∑
i∈[d] c

ᵀsi =
∑

i∈[d] r
ᵀ (2i−1 ·H+Bi + χi

ᵀ) si +∑
i∈[d]m ·

q
2n log q ·1

ᵀsi which equals rᵀ
(
Hs+

∑
i∈[d]Bisi

)
plus error term

∑
i∈[d]χi

ᵀsi plus message

term m · q
2ℓd ·

(∑
i∈[d] 1

ᵀsi
)
. Note that e is constructed such that c0

ᵀe = rᵀAe + χ0
ᵀe and rᵀAe

cancels the corresponding term with rᵀ from earlier. To bound the error terms, we have that with
overwhelming probability∣∣∣∣∣∣ χ0

ᵀe−
∑
i∈[d]

χi
ᵀsi

∣∣∣∣∣∣ ≤
(√

m/2 + qαω(
√

logm)
)∥e∥2 +∑

i∈[d]

∥si∥2

 (4.5)

≤
(√

m/2 + qαω(
√

logm)
)(√

m · d
√
m+

√
m · ∥T̃A∥ · ω(

√
logm)

)
(4.6)

≤
√
m(1/2 + 1) ·

(
md+m1.5

)
ω(
√

logm) (4.7)

≤ Õ(m2) < q4/5. (4.8)

Equation (4.5) follows from Lemma 2.10, Equation (4.6) follows from the bound on ∥e∥2 in Lemma

2.9, Equation (4.7) follows from the quality of ∥T̃A∥ from Lemma 2.9, and Equation (4.8) follows
from collecting terms and observing that d ≈ log q.

1. If m = 0, the message term is 0 and from Equation (4.8), Dec successfully decrypts the message.
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2. If m = 1, then the message term q
2ℓd ·

(∑
i∈[d] ∥si∥1

)
where ∥ · ∥1 denotes the ℓ1 norm of a

vector. Observe that for a majority of the lower-order bits of s ← Zℓ
q, the corresponding

vectors si are drawn uniformly from {0, 1}ℓ. Applying a standard Chernoff bound implies that
Pr[∥si∥1 < ℓ/2− Γ] is negligible in n for any Γ ≥ ω(log n)

√
ℓ. Thus, setting Γ = 3ℓ/10 and ob-

serving that this bound holds for at least d/2 of the si’s implies that the term q
2ℓd

(∑
i∈[d] ∥si∥1

)
is bounded below by q/5 with overwhelming probability. Therefore, Dec successfully decrypts
the message with overwhelming probability.

Security. In Sections 4.2.1 and 4.2.2 we prove the following theorem:

Theorem 4.5. In the random-oracle model the scheme IBELWE1 is data private based on the LWE
assumption, and is statistically function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ n log q + ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ i · n log q + ω(log λ)
for every i ∈ [T ].

Proof overview. The function privacy of the scheme follows quite naturally from our “extract”
step, as discussed in Section 1.1. The proof of data privacy is inspired by the proof of the GPV
scheme [GPV08], extended to deal with the extraction and bit-representation issues discussed above.
Briefly, the proof of the GPV scheme uses the fact that to answer a key-generation query, without
actually knowing a short basis for Λ⊥q (A), it is possible to construct an appropriate short vector e
by programming the random oracle at H(id).

We use a similar approach that is adapted to deal with the augmented ciphertext that includes
additional information using the public parameters B1, . . . ,Bd. To do so, we consider a larger
LWE challenge (A |H1 | · · · |Hd) and we construct the augmented public parameters B1, . . . ,Bd

appropriately for a programmed output H∗ of the random oracle on the challenge identity id∗

(specifically, we set Bi = Hi− 2i−1 ·H∗). This allows us to map the LWE challenge vector to either
a well-formed ciphertext or a random ciphertext.

4.2.1 Proof of Data Privacy

Lemma 4.6. The scheme IBELWE1 is data private based on the LWE assumption in the random-
oracle model.

Proof. Let A be a probabilistic polynomial time adversary. Experiment Expt0 is identical to

Expt
(0)
DP,IBELWE1,A in Definition 2.7. Experiment Expt1 is identical to Expt0 except in step (3). The

challenger replaces a well-constructed challenge ciphertext with independently and uniformly sam-

pled (u0,u1, . . . ,ud)← Zm
q × (Zℓ

q)
d. Experiment Expt2 is identical to Expt

(1)
DP,IBEDLIN1,A in Definition

2.7. Now we can state the following claim.

Claim 4.7. Based on the LWE assumption, it holds that |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| ≤
negl(λ).

Proof. Denote by QT and QH the number of secret key and random oracle queries of a probabilistic
polynomial time adversary A in experiment Expt0 and Expt1 such that

|Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| > ϵ(λ),
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for some non-negligible ϵ(λ). We construct an algorithm B that solves the LWE problem with

advantage at least ϵ′ = ϵ/(QH + 1). The algorithm B is given (E, f) ∈ Zn×(m+ℓd)
q × Z(m+ℓd)

q and
interacts with A to decide whether f comes from the uniform distribution or from the distribution
Eᵀs+χ for s← Zn

q and χ← Ψ
m+ℓd
α . In the proof that follows we assume without loss of generality

that all QH random oracle queries are distinct. The algorithm B chooses a random integer i∗ ∈
[1, QH ] and proceeds as follows:

• Setup: The algorithm B parses the matrix E as d + 1 matrices (A |H1 | · · · |Hd) ∈ Zn×m
q ×

(Zn×ℓ
q )d. Next, it chooses a random H∗ ∈ Zn×ℓ

q and sets Bi = Hi − 2i−1 ·H∗. It publishes
pp = (A,B1, . . . ,Bd).

As the matrix E is drawn uniformly from Zn×(m+ℓd)
q , the public parameters are distributed

uniformly as in the real scheme.

• H-queries: The algorithm B maintains a list of tuples L = (idj ,Hj , sj , ej) (for j ∈ [QH ]) to
answer hash queries. Here Hj ∈ Zn×ℓ

q and s ∈ Zℓ
p. For each distinct query id ∈ ID, algorithm

B responds as follows:

1. If id is the i∗-th query, add (idi∗ ,H
∗,×,×), where × denotes any junk/random value.

2. Otherwise, to create entry j, B samples a discrete Gaussian vector ej ← DZm,
√
m. Next,

it samples uniform sj ← Zℓ
p (split into bit-vectors {s(j)i }i∈[d]) and solves for Hj ∈ Zn×ℓ

q

such that Hjsj = Aej −
∑

i∈[d]Bis
(j)
i (mod q).

3. The algorithm B adds the tuple (idj ,Hj , sj , ej) to the list L and returns Hj .

We need to argue that the random oracle output Hj sampled above is distributed as in the
real scheme. To see that, we skip ahead to the proof of function privacy (see Section 4.2.2).
We show that in the real scheme for random s ← Zℓ

p and random H ∈ Zn×ℓ
q , Hs (and

therefore Hs +
∑

i∈[d]Bisi) is statistically close to a uniform vector v ∈ Zn
q . Additionally,

from [GPV08, Corollary 5.4], with overwhelming probability over the choice of A, for e ←
DZm,

√
m, the syndrome Ae (mod q) is statistically close to uniform over Zn

q . Now, we look
at two distributions Dreal = (s,H,Hs +

∑
i∈[d]Bisi) and Dsim = (s,Hj ,v). Observe that s is

distributed identically in both distributions, and v is statistically close to Hs. Therefore, it
suffices to show that we can sample Hj uniformly from Zn×ℓ

q conditioned on Hjs = v. This
is easily done by observing that the rows of Hj can be sampled independently and uniformly
over the (ℓ− 1)-dimensional subspace derived from the above constraint.

• Secret key queries: When A issues a query for skid, the algorithm B responds as follows
(without loss of generality we can assume that id was one of the H-queries):

1. If id = idi∗ , then abort, algorithm B aborts and outputs a uniform bit.

2. Otherwise, algorithm B finds entry j in L such that id = idj and return skid = (sj , ej).

Along the lines of the proof in [GPV08, Lemma 5.2], the distribution of ej in Dsim (which is
ej ← DZm,

√
m conditioned on Aej = Hjsj +

∑
i∈[d]Bisi (mod q)) is statistically close to the

distribution of ej in Dreal (output by the algorithm SamplePre). Also note that si is sampled
identically in both distributions.

• Challenge: Eventually A returns two tuples of identities and messages (id0,m0) and (id1,m1)
on which to be challenged, and B does the following:

1. It computes H(id0) = H as above. If this is not the i∗-th entry query to the random
oracle, B aborts and outputs a uniform bit.
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2. If B does not abort, observe that H(id0) = H∗. The algorithm B parses f from the LWE
challenge as (f0, f1, . . . , fd) ∈ Zm

q × (Zℓ
q)

d and outputs (f0, f1+m0
q

2ℓd ·1, . . . , fd+m0
q

2ℓd ·1)
as the challenge ciphertext.

• Output: If A at the end of the simulation outputs a bit b, B outputs the same bit b.

It is easy to see from the construction that in the challenge phase, if B is given an LWE instance,

i.e., f = Eᵀr+ χ for some random r ∈ Zn
q and error term χ← Ψ

m+ℓd
α , then

(f0, f1, . . . , fd) =

(
Aᵀr+ χ1,

{(
2i−1 ·H∗ +Bi

)ᵀ
r+ χi +m0 ·

q

2ℓd
· 1
}
i∈[d]

)
,

(where χ = (χ0,χ1, . . . ,χd)) is a well-formed ciphertext corresponding to id0 and therefore, the
challenge is distributed as in Expt0.

Also, in a rather straightforward manner, if B is given a random tuple, i.e., f is uniformly chosen
from Zm+ℓd

q , then the challenge ciphertext (f0, f1, . . . , fd) is identically distributed to the challenge
in Expt1.

Thus, to complete the proof of Claim 4.7, it suffices to bound the probability of B aborting the
simulation. It follows in a straightforward manner that the probability that B does not abort during
the simulation is at least 1/(QH + 1) if the view of the adversary is independent of i∗. To see this,
consider an identical game where B does not choose an index i∗ and hence does not embed the LWE
challenge. Such a game can can answer all hash and secret key queries correctly. It is easy to see
that as far as the adversary is concerned, the two simulations are identical (so long as it does not
abort). Therefore, the index i∗ is hidden perfectly from the adversary A.

Finally, note that as the challenge ciphertext is distributed correctly in each of Exptb, b ∈ {0, 1},
the advantage of B is identical to that of A conditioned on B not aborting. As the view of A is
independent of the abort condition, this completes the proof.

Claim 4.8. Based on the LWE assumption, it holds that |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| ≤
negl(λ).

The proof of the above claim is identical to the proof of Claim 4.7 except that the challenger
uses (id1,m1) to embed the LWE challenge. To complete the proof of the theorem,

AdvDP
IBELWE1,A(λ)

=
∣∣∣Pr[Expt(0)DP,IBELWE1,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,IBELWE1,A(λ) = 1

]∣∣∣
= |Pr[Expt0(λ) = 1]− Pr[Expt2(λ) = 1]|
= |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]|+ |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]|
≤ negl(λ), (from Claims 4.7 and 4.8)

as required.

4.2.2 Proof of Function Privacy

Lemma 4.9. The scheme IBELWE1 is statistically function private in the random-oracle model for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ n log q + ω(log λ).
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2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ i · n log q + ω(log λ)
for every i ∈ [T ].

Proof. Let X ∈ {(T, k)-block, (k1, . . . , kT )}, and let A be a computationally unbounded X-source
function-privacy adversary that makes a polynomial number QRoR = QRoR(λ) of queries to the
RoRFP oracle. We prove that the distribution of A’s view in the experiment ExptrealFP,IBELWE1,A is

statistically close to the distribution of A’s view in the experiment ExptrandFP,IBELWE1,A (we refer the
reader to Definition 3.3 for the descriptions of these experiments). We denote these two distributions
by Viewreal and Viewrand, respectively.

We first observe that since the hash function H : IDλ → Zn×ℓ
q is modeled a a random oracle,

we can restrict ourselves to the above distributions conditioned on the event in which for any two
distinct identities id1, id2 ∈ IDλ the matrix H(id1)−H(id2) is of rank n. Specifically, we show that
this event (denote FullRankDiff) occurs with an overwhelming probability over the uniform choice
of the function H. Indeed, for a uniformly sampled matrix A ←∈ Zn×ℓ

q Lemma 2.12 states that

Pr[Rk(A) = n] > 1− 2/qℓ−n+1. Therefore, our choice of ℓ ≥ n+ 2 log |IDλ|+logn+ω(log λ)
log q implies that

Pr
H
[∃ id1 ̸= id2 : rank(H(id1)−H(id2)) < n] ≤ |IDλ|2 · 2

qℓ−n+1

≤ 2−ω(log λ).

The event FullRankDiff guarantees, in particular, that H is injective on the identity space. Thus,

for anyX-source ID = (ID1, . . . , IDT ) over (IDλ)
T it holds thatH(ID)

def
= (H(ID1), . . . ,H(IDT ))

is an X-source over (Zn×ℓ
q )T . In addition, the event FullRankDiff implies that the collection of

functions {fs : Zn×ℓ
q → Zn

q }s∈Zℓ
q
defined by fs(A) = As is universal over the set {H(id) : id ∈

IDλ}.14
From this point on we fix a function H such that the event FullRankDiff occurs. In addition, we

also fix the public parameters pp, and the master secret key msk, of the scheme, and show that the
two distributions Viewreal and Viewrand are statistically close for any such H, pp, and msk. Next, as
the adversary A is computationally unbounded, we assume without loss of generality that A does
not query the KeyGen(msk, ·) oracle. In addition, as discussed in Section 3.1, we can assume that
A queries the RoRFP oracle exactly once.

Denote by ID = (ID1, . . . , IDT ) the random variable corresponding to the X-source with which
A queries the RoRFP oracle. Having already fixed H, pp, and msk, we can assume that

Viewmode = ((s1,H1s1) , . . . , (sT ,HT sT ))

for mode ∈ {real, rand}, where (id1, . . . , idT ) ← (ID1, . . . , IDT ) for mode = real, (id1, . . . , idT ) is
uniformly distributed over (IDλ)

T for mode = rand, Hi = H(idi) for every i ∈ [T ], and si ← Zℓ
q for

every i ∈ [T ]. For mode ∈ {real, rand} we prove that the distribution Viewmode is statistically-close
to uniform.

As discussed above, (H(ID1), . . . , H(IDT )) is an X-source, and the collection of functions {fs :
Zn×ℓ
q → Zn

q }s∈Zℓ
q
defined by fs(A) = As is universal over the set {H(id) : id ∈ IDλ}. This enables

us to directly apply Lemma 2.3 (in case ID is a (T, k)-block-source) and Lemma 2.4 (in case ID
is a (k1, . . . , kT )-source), implying that the statistical distance between Viewreal and the uniform
distribution is negligible in λ. The same clearly holds also for Viewrand, as the uniform distribution
over (IDλ)

T is, in particular, a (T, k)-block-source and a (k1, . . . , kT )-source.

14For any distinct id1 and id2, the fact that the matrix H(id1) − H(id2) is of rank n implies that the kernel of

H(id1)−H(id2) is of dimension ℓ− n. Therefore, Prs←Zℓ
q
[H(id1)s = H(id2)s] =

qℓ−n

qℓ
= 1

qn
.
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5 Function-Private Schemes in the Standard Model

5.1 A Selectively-Secure DLIN-Based Scheme

In this section we present an IBE scheme based on the DLIN assumption in the standard model.
For emphasizing the main ideas underlying our approach, we present here a selectively data private
scheme, and refer the reader to Section 5.3 for its extension to full data privacy. The scheme is based
on the DLIN-based IBE of Kurosawa and Phong [KP11], which is an adaptation of the LWE-based
IBE of Agrawal, Boneh and Boyen [ABB10] to bilinear groups. The scheme is obtained by applying
our “extract-augment-combine” approach, as discussed in Section 1.1. The scheme is described
below, and its proofs of data privacy and function privacy are presented in Sections 5.1.1 and 5.1.2,
respectively.

The scheme. Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a
security parameter 1λ, and outputs (G,GT, p, g, ê) where G and GT are groups of prime order p, G
is generated by g, p is a λ-bit prime number, and ê : G × G → GT is a non-degenerate efficiently
computable bilinear map. The scheme IBEDLIN1 = (Setup,KeyGen,Enc,Dec) is parameterized by
the security parameter λ ∈ N. For any such λ ∈ N, the scheme has parameters m ≥ 3 and ℓ ≥ 2,
identity space IDλ = Zℓ

p, and message spaceMλ = GT.

• Setup: On input 1λ the setup algorithm samples (G,GT, p, g, ê)← GroupGen(1λ), A0,A1, . . . ,
Aℓ,B ← Z2×m

p , and u ← Z2
p. It outputs pp =

(
g, gA0 , gA1 , . . . , gAℓ ,B, gu

)
and msk =

(A0,A1, . . . ,Aℓ,u).

• Key generation: On input the master secret key msk and an identity id = (id1, . . . , idℓ) ∈ Zℓ
p,

the algorithm samples s1, . . . , sℓ ← Zp and computes

Fid,(s1,...,sℓ) =

A0

∑
i∈[ℓ]

siAi

+

∑
i∈[ℓ]

si · idi

B

 ∈ Z2×2m
p .

Then, it samples v ← Z2m
p such that Fid,(s1,...,sℓ) · v = u (mod p) and sets z = gv ∈ G2m. It

outputs skid = (s1, . . . , sℓ, z).

• Encryption: On input the public parameters pp, an identity id = (id1, . . . , idℓ) ∈ Zℓ
p, and

a message m ∈ GT, the algorithm samples r ← Z2
p. It sets cᵀ0 = gr

ᵀA0 ∈ G1×m, cᵀi =

gr
ᵀ[Ai+idiB] ∈ G1×m for all i ∈ [ℓ], cℓ+1 = ê(g, g)r

ᵀu ·m ∈ GT, and outputs (c0, c1, . . . , cℓ, cℓ+1)
∈ G(ℓ+1)m ×GT.

• Decryption: On input a ciphertext c = (c0, c1, . . . , cℓ, cℓ+1) and a secret key sk = (s1, . . . , sℓ,
z), the decryption algorithm outputs

m = cℓ+1 · ê

[ c0∏
i∈[ℓ] c

si
i

]
,
|
z
|

−1 .
Correctness. Note that

dᵀ =

cᵀ0 ∏
i∈[ℓ]

(cᵀi )
si

 = gr
ᵀ[A0

∑
i∈[ℓ] siAi+(

∑
i∈[ℓ] si·idi)B] = gr

ᵀFid,(s1,...,sℓ) .

We have ê(d, z) = ê(g, g)r
ᵀFid,(s1,...,sℓ)

·v = ê(g, g)r
ᵀu. Therefore, dividing cℓ+1 by ê(d, z) eliminates

the term ê(g, g)r
ᵀu which recovers m correctly.
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Security. In Sections 5.1.1 and 5.1.2 we prove the following theorem:

Theorem 5.1. The scheme IBEDLIN1 is selectively data private based on the DLIN assumption, and
is function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ λ+ ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ i · λ + ω(log λ) for
every i ∈ [T ].

Proof overview. The function privacy of the scheme follows quite naturally from our “extract”
step, as discussed in Section 1.1. To prove selective data privacy under the DLIN assumption,
given the challenge identity id∗, we set up the public parameters {gAi}i∈[ℓ], B, and gu such that

the matrix Gid,s
def
=
[(∑

i∈[ℓ] siAi

)
+
(∑

i∈[ℓ] si · idi
)
B
]
is equipped with a ‘punctured’ trapdoor.

This trapdoor allows us to sample a vector such that Fid,s · v = u whenever Gid,s contains a non-
zero scalar multiple of B. This occurs whenever

∑
i∈[ℓ] si(idi − id∗i ) ̸= 0. Thus, with a negligible

probability of abort for our choice of parameters, we can simulate the adversary’s key-generation
queries with specially chosen matrices as above.

To embed the DLIN challenge, the first two rows of the DLIN challenge is used to constitute
the public parameter gA0 . The third row is either linearly dependent on the first two rows or
chosen uniformly at random and independently. This third row of the challenge is embedded into
the augmented challenge ciphertext that is either well-formed or uniform and independent of the
adversary’s view depending on the DLIN challenge. This is done by choosing secret matrices R∗i
and having Ai = A0R

∗
i − id∗iB. This generalizes the ideas of [ABB10, KP11] to fit our “extract-

augment-combine” approach and provide function privacy.

5.1.1 Proof of (Selective) Data Privacy

Lemma 5.2. The scheme IBEDLIN1 is selectively-secure data private based on the DLIN assumption
in the standard model.

Proof. LetA be a probabilistic polynomial-time adversary. We consider a series of experiments that

interacts with the adversary as follows. Experiment Expt0 is identical to Expt
(0)
sDP,IBEDLIN1,A in Defi-

nition 2.8. Experiment Expt1 is identical to Expt0 except in step (3). The experiment replaces a well-
constructed challenge ciphertext with independently and uniformly sampled (c0, c1, . . . , cℓ, cℓ+1)←
G(ℓ+1)m × GT. Experiment Expt2 is identical to Expt

(1)
sDP,IBEDLIN1,A in Definition 2.8. Now we can

state the following claim.

Claim 5.3. Based on the DLIN assumption, it holds that |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| ≤
negl(λ).

Proof. Consider a probabilistic polynomial time adversary A in experiment Exptj for j ∈ {0, 1}
such that

|Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| > ϵ(λ),

for some non-negligible ϵ(λ). We construct an algorithm B that given a DLIN challenge
(
g, gA

)
where A ← Z3×m

p , algorithm B simulates the distinguisher A to output 0 if Rk(A) = 2 and 1 if
Rk(A) = 3 with non-negligible advantage ϵ′(λ) ≥ ϵ(λ)− negl(λ).
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• Key generation: Given two challenge identities (id∗0, id
∗
1) from the adversary A, the algo-

rithm B sets id∗ = id∗0 parsed as (id∗1, . . . , id
∗
ℓ). Next, given the DLIN challenge (g, gA), B sets

up pp as follows. A0 is the first two rows of A. Algorithm B samples a full-rank B ← Z2×m
p

and R∗i ← Zm×m
p for i ∈ [ℓ]. It sets

Ai = A0R
∗
i − id∗iB.

Observe that gAi can be computed from gA0 givenR∗i , id
∗
i , andB. Finally, B chooses a random

v∗ ← Z2m
p and sets u =

[
A0

∑
i∈[ℓ]A0R

∗
i

]
v∗ ∈ Z2

p. Observe that gu can be computed from

gA0 and R∗i .

• Secret key queries: On query id = (id1, . . . , idℓ), it samples random s1, . . . , sℓ ← Zp. Let

δ =
∑
i∈[ℓ]

si(idi − id∗i ).

If δ = 0, B aborts and outputs a uniform bit. Otherwise, it chooses random w ← Zm
p and a

random x in Zm
p such that

δBx = −A0w + u.

It is easy to compute gx given gA, gu, and B.

Let

v =

[
w −

(∑
i∈[ℓ] siR

∗
i

)
x

x

]
. (5.1)

It is easy to compute gv given {si}i∈[ℓ], R∗i , gw, and gx. Observe that:

Fid,(s1,...,sℓ) · v =

A0

∑
i∈[ℓ]

siAi

+

∑
i∈[ℓ]

siidi

B

v

=

A0

∑
i∈[ℓ]

siA0R
∗
i

−
∑

i∈[ℓ]

siid
∗
i

B+

∑
i∈[ℓ]

siidi

B

v

=

A0 A0

∑
i∈[ℓ]

siR
∗
i

+ δB

[ w −
(∑

i∈[ℓ] siR
∗
i

)
x

x

]

= A0w −A0

∑
i∈[ℓ]

siR
∗
i

x+A0

∑
i∈[ℓ]

siR
∗
i

x+ δBx = u.

To answer the secret key query, B outputs (s1, . . . , sℓ, z = gv).

• Challenge query: On query id∗ = (id∗1, . . . , id
∗
ℓ), given the message m∗0, the algorithm B

proceeds as follows. Let [−yᵀ−] ∈ Z1×m
p denote the third row of A. The challenge encryption

is constructed as follows:(
(c∗0)

ᵀ, (c∗1)
ᵀ, . . . , (c∗ℓ)

ᵀ, c∗ℓ+1

)
=
(
gy

ᵀ
, gy

ᵀR∗1 , . . . , gy
ᵀR∗ℓ , ê(g, g)[y

ᵀ ∑
i∈[ℓ] y

ᵀR∗i ]v∗ ·m∗0
)
.
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We argue that the public parameters are distributed statistically close to the real distribution.
We note that the matrices R∗i for i ∈ [ℓ] are used to construct the public parameters, answer secret
key queries, and construct the challenge ciphertext. Below we show how the secret key queries are
distributed identically to the real scheme, and therefore independent of R∗i . Next, form the extended
leftover hash lemma (cf. Lemma 2.5) by setting k = ℓm we observe that the two distributions

(A0,A0 · [R∗1 · · · R∗ℓ ] , [R∗1 · · · R∗ℓ ]
ᵀy) and

(
A0,

[
Ã1 · · · Ãℓ

]
, [R∗1 · · · R∗ℓ ]

ᵀy
)

are statistically close, where Ãi for i ∈ [ℓ] are matrices chosen independently and uniformly from
Z2×m
p . Observe that the third component is the challenge ciphertext. Thus, even given the (spe-

cially constructed) challenge ciphertext, the second component is statistically close to uniform
matrices over Z2×m

p . Subtracting [id∗1B · · · id∗ℓB] still keeps it uniform. Thus, the parameters(
A, {Ai}i∈[ℓ],B

)
are distributed statistically close to the correpsonding parameters in the real dis-

tribution.
Next, we argue that the answers to secret key queries are distributed correctly. If the simluation

doesn’t abort, observe that s1, . . . , sℓ are distributed as in the real scheme. We show that v (and
hence z) is distributed identically to the real scheme. Observe that v in the real scheme satisfies
Fid,(s1,...,sℓ)v = u (mod q). Therefore v is chosen from a subspace of dimension 2m − 2 from the
constraints of the above equation. In the simulation, ID is chosen uniformly from Zm

p and x comes
from a subspace of dimension m−2 from the constraints in equation (5.1). Therefore, v comes from
a subspace of dimension m+ (m− 2) = 2m− 2 as required.

And finally, we argue that if Rk(A) = 2, then the challenge ciphertext is well-formed and if
Rk(A) = 3, then the challenge ciphertext is distributed uniformly over G(ℓ+1)m ×GT and indepen-
dently of A’s view.

• Case 1: Rk(A) = 2. We have that yᵀ = rᵀA0 for some r ∈ Z2
p. Therefore, we have the

following:
gy

ᵀ
= gr

ᵀA0

gy
ᵀR∗i = gr

ᵀA0R∗i = gr
ᵀ[Ai+id∗iB] for i ∈ [ℓ]

ê(g, g)[y
ᵀ ∑

i∈[ℓ] y
ᵀR∗i ]v∗ = ê(g, g)r

ᵀ[A0
∑

i∈[ℓ] A0R∗i ]v∗ = ê(g, g)r
ᵀu.

Note that r is distributed uniformly in Z2
p by definition. Thus, the ciphertext is well-formed.

• Case 2: Rk(A) = 3. We have that y is uniform in Zm
p and independent of A0. We consider

A’s view and argue that the challenge ciphertext is distributed uniformly over (Gm)ℓ+1 ×GT

and independent of A’s view. It suffices to argue the distribution of the ciphertext in an
information-theoretic sense (against a computationally unbounded adversary). A’s view in the
simulation comprises the public parameters (A0,A1, . . . ,Aℓ,B,u) and the challenge ciphertext(
c∗0, c

∗
1, . . . , c

∗
ℓ , c
∗
ℓ+1

)
. As A is unbounded, the secret key queries do not reveal any extra

information and can be simulated by an unbounded adversary itself. Let U∗i = A0R
∗
i . First

note that as y is uniform over Zp, so is c∗0. Observe that for every i ∈ [ℓ], and for every possible
c∗i = gd

∗
i where d∗i ∈ Zm

p the number of solutions R∗i such that[
A0

yᵀ

]
·R∗i =

[
A0R

∗
i

yᵀR∗i

]
=

[
U∗i
d∗i

ᵀ

]
is the same. Thus, even given U∗i (which can be computed from Ai, B, and id∗) as R∗i is
chosen uniformly from Zm×m

p each c∗i is distributed uniformly over Gm for every i ∈ [ℓ].
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Next, observe that v∗ has min-entropy 2m log p and given u, from Lemma 2.1 with probability
at least 1 − ϵ over choices of u, v∗ still has min-entropy (2m − 2) log p − log (1/ϵ) for any

negligible ϵ = ϵ(λ). Next, we consider dℓ+1 =
[
yᵀ ∑

i∈[ℓ] d
∗
i
ᵀ
]
v∗ which can be written as

fᵀv∗ for a uniformly distributed vector f in Zm
p . As dℓ+1 is of length log p bits, the vector

v∗ has sufficient min-entropy (more precisely, at least log p + ω(log λ) bits) so that f when
applied extracts from it. Therefore, we have (fᵀ, fᵀv∗) ≈ (fᵀ, r) where f is uniform in Z2m

p

and r is uniform in Zp. This implies, in particular, that the last component of the ciphertext,
ê(g, g)dℓ+1 ·m∗0, is distributed uniformly over GT.

To complete the proof of Claim 5.3, it suffices to bound the probability of B aborting during the
simulation. The probability that B aborts during the simulation is the probability of the following

event: given fixed values ∆id1, . . . ,∆idℓ ∈ Zp, over random choices of si ← Zp, δ
def
=
∑

i∈[ℓ] si ·∆idi =
0 (mod p). This is exactly 1/p as we can fix all si except sℓ and observe that there is exactly one
choice of sℓ such that δ = 0.

Therefore, the advantage of B is:

ϵ′ =
∣∣Pr[B ((g, gA)|Rk(A)=2

)
= 1
]
− Pr

[
B
(
(g, gA)|Rk(A)=3

)
= 1
]∣∣

=

∣∣∣∣Pr[B ((g, gA)|Rk(A)=2

)
= 1 Abort

]
· Pr
[
Abort

]
+

1

2
· Pr[Abort]

−
(
Pr
[
B
(
(g, gA)|Rk(A)=3

)
= 1 Abort

]
· Pr
[
Abort

]
+

1

2
· Pr[Abort]

)∣∣∣∣
=
∣∣Pr[Expt0(λ) = 1 Abort

]
· Pr
[
Abort

]
− Pr

[
Expt1(λ) = 1 Abort

]
· Pr
[
Abort

]∣∣
= |Pr[Expt0(λ) = 1]− Pr[Expt0 = 1 Abort] · Pr[Abort]

− (Pr[Expt1(λ) = 1]− Pr[Expt1(λ) = 1 Abort] · Pr[Abort])|
= |(Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1])− (Pr[Expt0(λ) = 1 Abort] · Pr[Abort]

− Pr[Expt1(λ) = 1 Abort] · Pr[Abort])|
≥ |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]|

− Pr[Abort] · |Pr[Expt0(λ) = 1 Abort]− Pr[Expt1(λ) = 1 Abort]|
≥ ϵ− 1/p.

Under the DLIN assumption, ϵ′ is negligible, which implies that ϵ is negligible completing the proof
of Claim 5.3.

Claim 5.4. Based on the DLIN assumption, |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| ≤ negl(λ).

The proof of Claim 5.4 is identical to the proof of Claim 5.3. With the above two claims, we
now proceed to prove Lemma 5.2.

AdvsDP
IBEDLIN1,A(λ)

=
∣∣∣Pr[Expt(0)sDP,IBEDLIN1,A(λ) = 1

]
− Pr

[
Expt

(1)
sDP,IBEDLIN1,A(λ) = 1

]∣∣∣
= |Pr[Expt0(λ) = 1]− Pr[Expt2(λ) = 1]|
= |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]|+ |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]|
≤ negl(λ), (from Claims 5.3 and 5.4)

as required.
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5.1.2 Proof of Function Privacy

Lemma 5.5. The scheme IBEDLIN1 is statistically function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ λ+ ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ i · λ + ω(log λ) for
every i ∈ [T ].

Proof. Let X ∈ {(T, k)-block, (k1, . . . , kT )}, and let A be a computationally unbounded X-source
function-privacy adversary that makes a polynomial number Q = Q(λ) of queries to the RoRFP

oracle. We prove that the distribution of A’s view in the experiment ExptrealFP,IBEDLIN1,A is statistically

close to the distribution of A’s view in the experiment ExptrandFP,IBEDLIN1,A (we refer the reader to
Definition 3.3 for the descriptions of these experiments). We denote these two distributions by
Viewreal and Viewrand, respectively.

As the adversary A is computationally unbounded, we assume without loss of generality that A
does not query the KeyGen(msk, ·) oracle. Indeed, as the public parameters in our scheme uniquely
determine the secret key, such queries can be internally simulated by A. Moreover, as discussed in
Section 3.1, it suffices to focus on adversaries A that query the RoRFP oracle exactly once. From
this point on we fix the public parameters pp chosen by the setup algorithm, and show that the two
distributions Viewreal and Viewrand are statistically close for any such pp.

Denote by ID = (ID1, . . . , IDT ) the random variable corresponding to the X-source with
which A queries the RoRFP oracle. As A is computationally unbounded, and having fixed the public
parameters, we can in fact assume that

Viewmode =

s1,1, . . . , s1,ℓ,

ℓ∑
j=1

s1,j · id1,j

 , . . . ,

sT,1, . . . , sT,ℓ,

ℓ∑
j=1

sT,j · idT,j


for mode ∈ {real, rand}, where (id1, . . . , idT ) ← (ID1, . . . , IDT ) for mode = real, (id1, . . . , idT ) is
uniformly distributed over (IDλ)

T for mode = rand, idi = (idi,1, . . . , idi,ℓ) ∈ Zℓ
p for every i ∈ [T ],

and si,j ← Zp for every i ∈ [T ] and j ∈ [ℓ]. For mode ∈ {real, rand} we prove that the distribution
Viewmode is statistically-close to uniform.

Note that the collection of functions {fs1,...,sℓ : Zℓ
p → Zp}s1,...,sℓ∈Zp defined by fs1,...,sℓ(id1, . . . , idℓ)

=
∑ℓ

j=1 sj · idj is universal. This enables us to directly apply Lemma 2.3 (in case ID is a (T, k)-
block-source) and Lemma 2.4 (in case ID is a (k1, . . . , kT )-source), implying that the statistical
distance between Viewreal and the uniform distribution is negligible in λ. The same clearly holds
also for Viewrand, as the uniform distribution over (IDλ)

T is, in particular, a (T, k)-block-source and
a (k1, . . . , kT )-source.

5.2 A Selectively-Secure LWE-Based Scheme

In this section we present an IBE scheme based on the LWE assumption in the standard model.
For emphasizing the main ideas underlying our approach, we present here a selectively data private
scheme (as in Section 5.1), and note that it can be extended to a fully data private one using
essentially the same approach as in Section 5.3. The scheme is based on the LWE-based IBE of
Agrawal, Boneh and Boyen [ABB10] (referred to as the ABB scheme) by applying our “extract-
augment-combine” approach, as discussed in Section 1.1.

Specifically, in the ABB scheme, identities are mapped to matrices, and secret keys are short
vectors in the corresponding lattice. In our construction, we use a larger identity space (vectors
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of ABB identities), and we use elements in Zq to extract identities. As in the scheme IBELWE1

presented in Section 4.2, we use the bit-splitting approach to ensure that the amount of noise that
is added in the “combine” step will allow correct decryption.

However, unlike the scheme IBEDLIN1 described in Section 5.1, this scheme additionally requires
parallel repetition. The field size q in lattice-based constructions is allowed to be a small polynomial
in the security parameter, which in our case may lead to a non-negligible probability of one secret
key being able to decrypt ciphertexts encrypted for other identities. To fix this, one approach is
to make q super-polynomial, but this will require a seemingly stronger LWE assumption. Instead,
we do a parallel repetition of µ copies of the ciphertext, which are “bound together” using a public
lattice. The scheme is described below, and its proofs of data privacy and function privacy are
presented in Sections 5.2.1 and 5.2.2, respectively.

The scheme. The scheme IBELWE2 = (Setup,KeyGen,Enc,Dec) is parameterized by the security
parameter λ ∈ N, by lattice parameters m,n and q, a parameter ℓ ∈ N for randomness extraction,
and a parameter µ ∈ N such that qµ is super-polynomial in λ. We let ID = Zℓ

q denote the identity
space, and let d ∈ N be an integer such that q is a d-bit prime.

• Setup: The algorithm Setup on input 1λ, samplesA0, {Ai,j,k}(i,j,k)∈[ℓ]×[µ]×[d] ,B← Zn×m
q with

a trapdoor TA ∈ Zm×m for the lattice Λ⊥q (A0) using the algorithm TrapGen, and u← Zn
q . It

outputs pp = (A0, {Ai,j,k}(i,j,k)∈[ℓ]×[µ]×[d] ,B,u) and msk = TA.

• Key generation: On input the master secret key msk and a identity id = (id1, . . . , idℓ) ∈ Zℓ
q,

the algorithm KeyGen chooses a vector s ∈ Zℓµ
q of ℓµ elements s1,1, . . . , sℓ,µ ← Zq represented

as bits si,j,k where si,j =
∑

k∈[d] si,j,k2
k−1 for all i ∈ [ℓ], j ∈ [µ], and computes Fid,s defined as

Fid,s
def
=

A0

∑
i∈[ℓ]
k∈[d]

si,1,kAi,1,k +

∑
i∈[ℓ]

si,1idi

B · · ·

· · ·
∑
i∈[ℓ]
k∈[d]

si,µ,kAi,µ,k +

∑
i∈[ℓ]

si,µidi

B

 ∈ Zn×m(µ+1)
q . (5.2)

Using the algorithm ExtendBasis and the trapdoor TA, it constructs a basis TF for the lattice

Λ⊥q (Fid,s) and uses TF in algorithm SamplePre to sample a vector e ∈ Zm(µ+1)
q such that

Fid,s · e = u (mod q). It publishes skid = (s, e).

• Encryption: On input the public parameters pp, identity id = (id1, . . . , idℓ) ∈ Zℓ
p, and a

message m ∈ {0, 1}, the algorithm samples r ← Zn
q , χ0 ← Ψ

m
α , and {Ri,j,k}(i,j,k)∈[ℓ]×[µ]×[d] ∈

{−1, 1}m×m and computes χi,j,k = Ri,j,k
ᵀχ0 ∈ Zm

q . Finally, it samples ξ ← Ψα and outputs(
c0, {ci,j,k}i∈[ℓ],j∈[µ],k∈[d], cℓµd+1

)
=(

A0
ᵀr+ χ0,

{[
Ai,j,k + 2k−1idiB

]ᵀ
r+ χi,j,k

}
i∈[ℓ],j∈[µ],k∈[d]

,

uᵀr+ ξ +m · q
2

)
∈ (Zm

q )(ℓµd+1) × Zq.
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• Decryption: On input the public parameters pp, a ciphertext (c0, c1,1,1, . . . , cℓ,µ,d, cℓµd+1) ∈
(Zm

q )(ℓµd+1) × Zq and a secret key (s, e), the algorithm Dec splits s = (s1,1, . . . , sℓ,µ) into bits

such that si,j =
∑

k∈[d] si,j,k · 2k−1 for all (i, j) ∈ [ℓ]× [µ]. It outputs 0 if∣∣∣∣∣∣∣ eᵀ ·
c0 ∑

i∈[ℓ]
k∈[d]

si,1,kci,1,k · · ·
∑
i∈[ℓ]
k∈[d]

si,µ,kci,µ,k

− cℓµd+1 (mod q)

∣∣∣∣∣∣∣ < q/4,

and 1 otherwise.

Parameter selection. For the scheme, for n polynomial in the security parameter λ, we let
m = n ·Ω(log n), q = m2.5 ·ω(

√
logn), ρ = ω(log n), α = 1/(m2 ·ω(

√
log n)), µ = ω(1) and ℓ = ω(µ).

Correctness. We show that if e is well-formed then by combining the ciphertext components ci,j,k
with si,j,k as in the test algorithm, we can recover cℓµd+1 with error-terms and the message (encoded
in the most significant bit) left over. In the second half of the proof of correctness, we show that
a simple Lemma suffices to bound the error term away from q/4 and therefore show correctness of
the test algorithm.

eᵀ ·

c0 ∑
i∈[ℓ]

∑
k∈[d]

si,1,kci,1,k · · ·
∑
i∈[ℓ]

∑
k∈[d]

si,µ,kci,µ,k


= eᵀ ·

A0
ᵀr+ χ0

∑
i∈[ℓ]

∑
k∈[d]

si,1,k

[
Ai,1,k + 2k−1idiB

]ᵀ
r+ si,1,kχi,1,k · · ·

∑
i∈[ℓ]

∑
k∈[d]

si,d,k

[
Ai,d,k + 2k−1idiB

]ᵀ
r+ si,d,kχi,d,k


= eᵀ ·

A0
ᵀr

∑
i∈[ℓ]

∑
k∈[d]

si,1,kAi,1,k
ᵀr+

∑
i∈[ℓ]

si,1idiB
ᵀr · · ·

∑
i∈[ℓ]

∑
k∈[d]

si,d,kAi,d,k
ᵀr+

∑
i∈[ℓ]

si,didiB
ᵀr

+ eᵀ

χ0

 ∑
i∈[ℓ],k∈[d]

si,j,kχi,j,k


j∈[µ]


= eᵀ · Fid,s

ᵀr+ eᵀχ

= uᵀr+ eᵀχ,

where χ =

[
χ0

{∑
i∈[ℓ],k∈[d] si,j,kχi,j,k

}
j∈[µ]

]
and Fid,s is as defined in Equation (5.2). Observe

that excluding the message q
2m, the ciphertext component cℓµd+1 is exactly uᵀr + ξ. The term

uᵀr cancels, and to prove correctness, we need to show that the noise term (eᵀχ− ξ) is low-norm.
Observe that χi,j,k = Ri,j,k

ᵀχ0 and let e = [ e0 e1 · · · eµ ], then we can re-write the noise term ase0 +
∑

i∈[ℓ],j∈[µ]
k∈[d]

si,j,kRi,j,kej


ᵀ

χ0 − ξ.
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Observing that ∥e∥2 ≤ m ·ω(
√
logm) (as in Section 4.2), we can now apply the following lemma

to bound the size of the error term.

Lemma 5.6 ([ABB10, Lemma 15]). For parameters m,n ∈ N, let R be a k × m matrix chosen
uniformly at random from {−1, 1}k×m. Then, for all v ∈ Zm, Pr

[
∥Rv∥2 > 12

√
k +m · ∥v∥2

]
<

e−(k+m).

As the si,j,k’s are binary, we have∥∥∥∥∥∥ e0 +
∑
i∈[ℓ]

∑
j∈[µ]

∑
k∈[d]

si,j,kRi,j,kej

∥∥∥∥∥∥
2

≤
(
1 + 12ℓµd

√
2m
)
·m = Õ(ℓµdm3/2).

Therefore, applying Lemma 2.10, the noise term is bounded by(√
m/2 + qαω(

√
logm)

)
· Õ(ℓµdm3/2) < q/10,

(from our choice of parameters) which completes the proof of correctness.

Extension to multi-bit encryption. We note that as in the lattice-based IBE schemes of
[GPV08, ABB10], it is possible to encrypt N bits simultaneously at the expense of N − 1 addi-
tional Zn

q vectors in the public parameters, and N − 1 additional Zq elements in the ciphertexts in
our scheme. We refer the reader to [ABB10, Section 6.5] for more details.

Security. In Sections 5.2.1 and 5.2.2 we prove the following theorem:

Theorem 5.7. In the standard model the scheme IBELWE2 is selectively-secure data private based
on the LWE assumption, and is statistically functional private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ µ · Ω(log λ) + ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ iµ·Ω(log λ)+ω(log λ)
for every i ∈ [T ].

5.2.1 Proof of (Selective) Data Privacy

Lemma 5.8. The scheme IBELWE2 is selectively-secure data private based on the LWE assumption
in the standard model.

Proof. Let A be a probabilistic polynomial time adversary. We consider a series of experiments

that interact with the adversary. Experiment Expt0 is identical to Expt
(0)
sDP,IBELWE2,A in Definition 2.7.

Experiment Expt1 is identical to Expt0 except in step (3). The challenger replaces a well-constructed
challenge ciphertext with independently and uniformly sampled

(
u0, {ui,j,k}i∈[ℓ],j∈[µ],k∈[d], uℓµd+1

)
←

(Zm
q )(ℓµd+1)×Zq. Experiment Expt2 is identical to Expt

(1)
sDP,IBEDLIN1,A in Definition 2.7. Now we can

state the following claim.

Claim 5.9. Based on the LWE assumption, it holds that |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| ≤
negl(λ).
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Proof. Denote by QT the number of secret key queries of the probabilistic polynomial-time adver-
sary A in experiment Expt0 and Expt1 such that

|Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]| > ϵ(λ),

for some non-negligible ϵ(λ). We construct an algorithm B that solves the LWE problem with

advantage ϵ′(λ) ≥ ϵ(λ)− negl(λ). The algorithm B is given (E, f) ∈ Zn×(m+1)
q ×Zm+1

q and interacts
with A to decide whether f comes from the uniform distribution or from the distribution Eᵀs + χ

for s← Zn
q and χ← Ψ

m+1
α as follows.

• Setup: The algorithm B parses the matrix E as (A0 |u) ∈ Zn×m
q × Zn

q . It samples a random
matrix B← Zn×m

q with trapdoor TB using algorithm TrapGen. It receives the challenge iden-
tities id∗0 and id∗1 from the selective-security adversary A and sets id∗ = id∗0 which is encoded
as (id∗1, . . . , id

∗
ℓ ) ∈ Zℓ

q . It chooses random matrices {Ri,j,k}i∈[ℓ],j∈[µ],k∈[d] ∈ {−1, 1}m×m and

computes Ai,j,k = A0Ri,j,k − 2k−1 · id∗iB. It publishes pp = (A0, {Ai,j,k}i∈[ℓ],Jj∈[µ],k∈[d],B,u).

• Key generation: On input id = (id1, . . . , idℓ) ∈ Zℓ
q the algorithm B first samples a random

vector s ∈ Zℓµ
q of ℓµ elements s1,1, . . . , sℓ,µ ← Zq and computes

δ1 =
∑
i∈[ℓ]

si,1(idi − id∗i ), . . . , δµ =
∑
i∈[ℓ]

si,µ(idi − id∗i ).

If for all j ∈ [µ], δj = 0, abort the simulation and output a uniform bit b′ ← {0, 1}. Otherwise,
let j∗ be an index such that δj∗ ̸= 0. Consider the matrix

F′ =

A0

∑
i∈[ℓ]

∑
k∈[d]

si,j∗,kAi,j∗,k +

∑
i∈[ℓ]

si,j∗ idi

B


=

A0 A

∑
i∈[ℓ]

∑
k∈[d]

si,j∗,kRi,j∗,k

−
∑

i∈[ℓ]

∑
k∈[d]

si,j∗,k2
k−1 · id∗i

B+

∑
i∈[ℓ]

si,j∗ idi

B



=

A0 A

∑
i∈[ℓ]

∑
k∈[d]

si,j∗,kRi,j∗,k


︸ ︷︷ ︸

R∗

−

∑
i∈[ℓ]

si,j∗ (idi − id∗i )


︸ ︷︷ ︸

δj∗

B

 .

We use ExtendBasis to compute a trapdoor TF′ for the lattice Λ⊥q (F
′) given trapdoor TB for

lattice Λ⊥q (B). This requires δj∗ ̸= 0 and low-norm R∗ (which follows from the fact that

Ri,j∗,k are {−1, 1} matrices, and si,j∗,k ∈ {0, 1}). Given a trapdoor for Λ⊥q (F
′), we can use

ExtendBasis once again, in a straightforward manner to sample a short vector e ∈ Zm(µ+1)
q

such that Fid,s · e = u (mod q) (where Fid,s is as defined in Eq (5.2)). It outputs the secret
key (s, e).

• Challenge: Eventually A requests the challenge ciphertext corresponding to (id∗0,m
∗
0) or

(id∗1,m
∗
1) for the adversary’s choice of m∗0 and m∗1 upon which B does the following. First, it

sets m = m∗0 and parses f = [fᵀ0 | f1]
ᵀ ∈ Zm

q × Zq from the LWE challenge. Next, for all i ∈ [ℓ],
j ∈ [µ] and k ∈ [d], B computes c∗i,j,k = Ri,j,k

ᵀf0, c∗0 = f0, and c∗ℓµd+1 = f1 +
q
2m. It outputs

the challenge ciphertext
(
c∗0, {c∗i,j,k}(i,j,k)∈[ℓ]×[µ]×[d], c∗ℓµd+1

)
.
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• Output: If A at the end of the simulation outputs a bit b guessing Exptb, B outputs the same
bit b.

It is easy to see from the construction that in the challenge phase, if B is given an LWE instance,

i.e., f = Eᵀr+ χ, for some random r ∈ Zn
q and low-norm error term χ← Ψ

m+1
α , then(

c∗0, {c∗i,j,k}, c∗ℓµd+1

)
=
(
Aᵀ

0r+ χ0, {[A0Ri,j,k]
ᵀr+Ri,j,k

ᵀχ0}i∈[ℓ],j∈[µ],k∈[d] ,u
ᵀr+ ξ +

q

2
m
)

=

(
Aᵀ

0r+ χ0,
{[

Ai,j,k + 2k−1id∗iBi

]ᵀ
r+ χi,j,k

}
i∈[ℓ],j∈[µ],k∈[d]

,uᵀr+ ξ +
q

2
m

)
(where χ = [χ0

ᵀ | ξ]ᵀ ∈ Zm
q × Zq) is a well-formed ciphertext corresponding to id∗0 and m∗0 and

therefore, the challenge is distributed as in Expt0.
Next, we need to argue that if f is random in Zm+1

q , then the challenge ciphertext is distributed
as in Expt1. This requires the use of the leftover hash lemma (cf. [DOR+08]) as in [ABB10].

The challenge ciphertext is distributed as
(
f0, R̃

ᵀf0, f1 +
q
2m
)
for R̃ =

[
{Ri,j,k}i∈[ℓ],j∈[µ],k∈[d]

]
∈

{±1}m×m(ℓµd). Note that f1 is uniform over Zq independent of the rest of the components, and
can therefore be ignored as f1 +

q
2m is distributed correctly. A direct application of the leftover

hash lemma (cf. Lemma 2.6) with (A0
ᵀ | f0) as the hash function implies that A0R̃ (from the

public parameters) and R̃ᵀf0 (from the ciphertext) are statistically close to uniform and independent
quantities (given A0 and f0). Therefore, the simulation simulates a ciphertext that is statistically
close to the real distribution.

Additionally, in both simulations, it follows once again from the application of the leftover hash
lemma that pp generated by B is statistically close to the real distribution.

Thus, to complete the proof of Claim 5.9, it suffices to bound the probability of B aborting the
simulation. Recollect that B aborts depending on the values of δi’s defind earlier. As calculated in
a similar case in Section 5.1, the probability that any particular δi = 0 is 1/q. As si,j ’s are chosen
uniformly and independently at random, for all i ̸= j, δi and δj are independent events. Therefore,
the probability that B aborts is 1/qµ.

As argued in the proof of Lemma 5.2, we can calculate that ϵ′ is at least ϵ − 1/qµ. Based on
the LWE assumption, ϵ′ is negligible, and with our choice of parameters for µ, ϵ is also negligible
thereby completing the proof.

Claim 5.10. Based on the LWE assumption, it holds that |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]| ≤
negl(λ).

The proof of the above claim is identical to the proof of Claim 5.9 except in the simulation, we
use id∗1 when simulating Expt2. To complete the proof of the theorem,

AdvDP
IBE,A(λ)

=
∣∣∣Pr[Expt(0)DP,IBE,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,IBE,A(λ) = 1

]∣∣∣
= |Pr[Expt0(λ) = 1]− Pr[Expt2(λ) = 1]|
= |Pr[Expt0(λ) = 1]− Pr[Expt1(λ) = 1]|+ |Pr[Expt1(λ) = 1]− Pr[Expt2(λ) = 1]|
≤ negl(λ), (from Claims 5.9 and 5.10)

as required.
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5.2.2 Proof of Function Privacy

Lemma 5.11. The scheme IBELWE2 is statistically function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ µ · Ω(log λ) + ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ iµ·Ω(log λ)+ω(log λ)
for every i ∈ [T ].

Proof. Let X ∈ {(T, k)-block, (k1, . . . , kT )}, and let A be a computationally unbounded X-source
function-privacy adversary that makes a polynomial number QRoR = QRoR(λ) of queries to the
RoRFP oracle. We prove that the distribution of A’s view in the experiment ExptrealFP,IBELWE2,A is

statistically close to the distribution of A’s view in the experiment ExptrandFP,IBELWE2,A (we refer the
reader to Definition 3.3 for the descriptions of these experiments). We denote these two distributions
by Viewreal and Viewrand, respectively.

The collection of functions {gs1,...,sℓ : Zℓ
q → Zq}s1,...,sℓ∈Zq defined by gs1,...,sℓ(id1, . . . , idℓ) =∑

i∈[ℓ] siidi is universal. Observe that trapdoor generation uses µ independent universal functions
g1, . . . , gµ defined as above. Thus, we define a collection of functions

F def
= {fs1,1,...,sℓ,µ : Zℓµ

q → Zµ
q } as fs1,1,...,sℓ,µ(id1, . . . , idℓ) =

∑
i∈[ℓ]

si,1idi, . . . ,
∑
i∈[ℓ]

si,µsi,µidi

 (5.3)

which is also universal.
We fix the public parameters, pp, and master secret key, msk, of the scheme, and show that

the two distributions Viewreal and Viewrand are statistically close for any such pp and msk. As the
adversary A is computationally unbounded, we assume without loss of generality that A does not
query the KeyGen(msk, ·) oracle. In addition, as discussed in Section 3.1, we can assume that A
queries the RoRFP oracle exactly once.

Denote by ID =
(
ID(1), . . . , ID(T )

)
the random variable corresponding to the X-source with

which A queries the RoRFP oracle. Having already fixed pp and msk, observing that B and Ai,j,k’s
are fixed for any keyword id(i) ← ID(i), it suffices to consider the view of the adversary

Viewmode =

s
(1)
1,1, . . . , s

(1)
ℓ,1 ,
∑
i∈[ℓ]

s
(1)
i,1 id

(1)
i

 , . . . ,

s
(1)
1,µ, . . . , s

(1)
ℓ,µ,
∑
i∈[ℓ]

s
(1)
i,µ id

(1)
i


...

. . .
...s

(T )
1,1 , . . . , s

(T )
ℓ,1 ,

∑
i∈[ℓ]

s
(T )
i,1 id

(T )
i

 , . . . ,

s
(T )
1,µ , . . . , s

(T )
ℓ,µ ,

∑
i∈[ℓ]

s
(T )
i,µ id

(T )
i



for mode ∈ {real, rand}, where
(
id(1), . . . , id(T )

)
←
(
ID(1), . . . , ID(T )

)
for mode = real,

(
id(1), . . . ,

id(T )
)
is uniformly distributed over (IDλ)

T for mode = rand, s
(i)
j,k ← Zq for every i ∈ [T ] and

(j, k) ∈ [ℓ] × [µ]. For mode ∈ {real, rand} we prove that the distribution Viewmode is statistically-
close to uniform.

We know that
(
ID(1), . . . , ID(T )

)
is an X-source, and the collection of functions F (defined in

Equation (5.3) is universal. This enables us to directly apply Lemma 2.3 (in case ID is a (T, k)-
block-source) and Lemma 2.4 (in case ID is a (k1, . . . , kT )-source), implying that the statistical
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distance between Viewreal and the uniform distribution is negligible in λ. The same clearly holds
also for Viewrand, as the uniform distribution over (IDλ)

T is, in particular, a (T, k)-block-source and
a (k1, . . . , kT )-source.

5.3 A Fully-Secure DLIN-Based Scheme

In this section we present an IBE scheme based on the DLIN assumption in the standard model.
The scheme is a fully secure variant of the one described in Section 5.1. The scheme is described
below, and its proofs of data privacy and function privacy are presented in Sections 5.3.1 and 5.3.2,
respectively.

The scheme. Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a
security parameter 1λ, and outputs (G,GT, p, g, ê) where G and GT are groups of prime order p, G
is generated by g, p is a λ-bit prime number, and ê : G × G → GT is a non-degenerate efficiently
computable bilinear map. The scheme IBEDLIN2 = (Setup,KeyGen,Enc,Dec) is parameterized by
the security parameter λ ∈ N. For any such λ ∈ N, the scheme has parameters m > 3, n = ω(log λ),
identity space IDλ = {0, 1}n, and message spaceM = GT.

• Setup: On input 1λ the setup algorithm Setup samples (G,GT, p, g, ê)← GroupGen(1λ). Next,
the algorithm samples A0,B, {Aj}j∈[n] ← Z2×m

p and u ← Z2
p. It outputs the master secret

key msk =
(
A0,B, {Aj}j∈[n],u

)
and the public parameters pp =

(
gA0 ,B, {gAj}j∈[n], gu

)
.

• Key generation: On input a master secret key msk and identity id = (id1, . . . , idn) ∈ {0, 1}n.
Next, it samples S← Zm×2

p and computes

Fid,S =

A0 BS+

∑
j∈[n]

idjAj

S

 ∈ Z2×(m+2)
p

It samples uniformly at random a vector v ∈ Zm+2
p such that Fid,S · v = u (mod p) and sets

z = gv ∈ Gm+2. It outputs skid = (S, z).

• Encryption: On input the public parameters pp, an identity id = (id1, . . . , idn) ∈ {0, 1}n,
and a message m ∈ GT, the algorithm samples r← Z2

p. It computes D(id)
def
=
∑

j∈[n] idjAj . It

sets cᵀ0 = gr
ᵀA0 ∈ G1×m, cᵀ1 = gr

ᵀ[B+D(id)] ∈ G1×m, and c2 = ê(g, g)r
ᵀu ·m ∈ GT and outputs

(c0, c1, c2) ∈ G2m ×GT.

• Decryption: On input a ciphertext (c0, c1, c2) ∈ G2m ×GT and a secret key skid = (S, z) ∈
Zm×2
p ×Gm+2, the algorithm outputs

c2 · ê

[ c0
cS1

]
,
|
z
|

−1 .
Correctness. Consider the vector

dᵀ =
[
cᵀ0 (cᵀi )

Si
]
= gr

ᵀ[A0 BS+(
∑

j∈[n] idjAj)S] = gr
ᵀFid,S .

We have ê(d, z) = ê(g, g)r
ᵀFid,S·v = ê(g, g)r

ᵀu. Therefore, dividing c2 by ê(d, z) eliminates the term
ê(g, g)r

ᵀu which recovers m correctly.
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Security. In Sections 5.3.1 and 5.3.2 we prove the following theorem:

Theorem 5.12. The scheme IBEDLIN2 is data private based on the DLIN assumption, and is sta-
tistically function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ 4 log p+ ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ 4i log p+ω(log λ) for
every i ∈ [T ].

5.3.1 Proof of Data Privacy

Lemma 5.13. The scheme IBEDLIN2 is data private based on the DLIN assumption in the standard
model.

Proof. Let A be a probabilistic polynomial time adversary for the scheme IBEDLIN2. We denote

by id(1), . . . , id(Q) (bits of which are denoted id
(i)
j for j ∈ [n]) the Q secret key queries generated by

the adversary A. The challenge identities are denoted
(
id∗(0), id∗(1)

)
. We define a (non-negligible)

function of the security parameter α = α(λ) ∈ [0, 1] to denote a lower bound of the probability of
a particular event relating to the simulation (see the description of Expt2 and Lemma 5.14 below).
We consider the following experiments for each b ∈ {0, 1}.

• Experiment Expt
(b)
0 is identical to Expt

(b)
DP,IBEDLIN2,A as in Definition 2.7.

• Experiment Expt
(b)
1 is obtained from Expt

(b)
0 by outputting the output of Expt

(b)
0 with proba-

bility α and a random bit with probability 1− α (denoted by Abort).

• Experiment Expt
(b)
2 is obtained from Expt

(b)
0 by introducing an “artificial” abort event indepen-

dent of the adversary’s view. We use the programmable family of hash functions introduced

by Hofheinz and Kiltz [HK12] denoted HHK,Q (see Section 2.5). At the end of Expt
(b)
2 , we

sample a hash function H ← HHK,Q. When Expt
(b)
2 receives the guess b′ from A, it does the

following:

1. Abort check: For each query id(i) for i ∈ [Q], let S(i) ∈ Zm×2
p denote the uniform matrix

chosen during secret key generation. The challenger checks the following conditions:
(a) For each i ∈ [Q], if H

(
id(i)

)
·BS(i) ∈ Z2×2

p is full-rank.

(b) For bit b ∈ {0, 1}, H
(
id∗(b)

)
= 0.

If either (or both) these conditions are not satisfied, the experiment outputs a random
bit instead of b′. Let α denote the probability over choices of the hash function H (for

any particular set of distinct queries
(
id∗(b), id(1), . . . , id(Q)

)
) that both conditions above

are true. Lemma 5.14 derives a bound for α.

2. Artificial abort: Following the approach of Cash et al. [CHK+10] (generalizing that of

Waters [Wat05]) approximate ϱ(b) = Pr
[
Abort

(
id∗(b), id(1), . . . , id(Q)

)]
by sampling suf-

ficiently many independent hash functions. For any polynomial S = S(λ), Hoeffding’s
inequality yields that with ⌈λS/α⌉ samples, we can obtain an approximation ϱ̃(b) ≥ α of
ϱ(b) such that:

Pr
[∣∣∣ϱ(b) − ϱ̃(b)

∣∣∣ ≥ α

S

]
≤ 1

2λ
, (5.4)
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for security parameter λ. The challenger samples a random bit b̃ ∈ {0, 1} such that

Pr
[
b̃ = 1

]
= 1 − α/ϱ̃(b) ∈ [0, 1]. If b̃ = 1 then the adversary outputs a random bit

(artificial abort). Else, it outputs the bit b′ from the challenger.

• Experiment Expt
(b)
3 is obtained from Expt

(b)
2 by replacing the challenge ciphertext with uniform

(c0, c1, c2)← G2m ×GT that is sampled independently of the view of A.

Observe that the bit b is only used in the challenge phase and in experiments Expt
(0)
3 and Expt

(1)
3

the challenge phase is independent of the bit b. Additionally, whenever experiments Expt
(0)
3 and

Expt
(1)
3 abort, they output a uniform bit. From this, we conclude that Expt

(0)
3 = Expt

(1)
3 . We will

argue through a series of claims that
∣∣∣Pr[Expt(0)0 (λ) = 1

]
− Pr

[
Expt

(1)
0 (λ) = 1

]∣∣∣ is negligible, thus

completing the proof. First we derive a bound for α.

Lemma 5.14. For distinct (Q+1)-tuple of queries id∗, id(1), . . . , id(Q) ∈ {0, 1}n define the following
events:

• EventT (secret key queries) is the event in which for each i ∈ [Q], H
(
id(i)

)
·BS(i) is a full-rank

matrix in Z2×2
p .

• EventC (challenge query) is the event in which H (id∗) = 0.

Then, for every distinct (Q+1)-tuple of queries id∗, id(1), . . . , id(Q), and any set of full rank B1, . . . ,
Bℓ, we have:

Pr[EventT ∧ EventC] ≥ α =

(
1− 2Q

p

)
·Θ
(

1

Q
√
n

)
,

where the probability is taken over choices of H ∈ HHK and uniformly distributed matrices S(i) ∈
Zm×2
p for i ∈ [Q].

Proof. We defer the proof to the end of the section for readability.

Next, we derive a series of claims relating the experiments described above.

Claim 5.15. It holds that∣∣∣Pr[Expt(0)1 (λ) = 1
]
− Pr

[
Expt

(1)
1 (λ) = 1

]∣∣∣ = α ·
∣∣∣Pr[Expt(0)0 (λ) = 1

]
− Pr

[
Expt

(1)
0 (λ) = 1

]∣∣∣
Proof. For each b ∈ {0, 1}, Pr

[
Expt

(b)
2 (λ) = 1

]
= α · Pr

[
Expt

(b)
1 (λ) = 1

]
+ 1

2(1− α).

Claim 5.16. For each b ∈ {0, 1} and for any polynomial S = S(λ), it holds that∣∣∣Pr[Expt(b)2 (λ) = 1
]
− Pr

[
Expt

(b)
1 (λ) = 1

]∣∣∣ ≤ α

S
+

1

2λ
.

Proof. Let Abort
(b)
2 and Abort

(b)
1 denote the events in which experiments Expt

(b)
2 and Expt

(b)
1 abort

respectively. Then,

Pr
[
Abort

(b)
1

]
= α and Pr

[
Abort

(b)
2

]
= ϱ(b) · α

ϱ̃(b)
= α · ϱ

(b)

ϱ̃(b)
.
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Equation (5.4) implies that with probability at least 1− 2−λ it holds that

∣∣∣Pr[Abort(b)1

]
− Pr

[
Abort

(b)
2

]∣∣∣ = α ·

∣∣∣∣∣ ϱ̃(b) − ϱ(b)

ϱ̃(b)

∣∣∣∣∣ ≤ α2

Sϱ̃(b)
≤ α

S
. (5.5)

As Equation (5.4) holds for any tuple
(
id∗(b), id(1), . . . , id(Q)

)
with probability at least 1− 2−λ, we

obtain that the statistical distance between the outputs of the experiments Expt
(b)
1 and Expt

(b)
2 is at

most α/S + 2−λ.

As a corollary, using the triangle inequality, we get

Corollary 5.17. For any polynomial S = S(λ), it holds that∣∣∣Pr[Expt(0)1 (λ) = 1
]
− Pr

[
Expt

(1)
1 (λ) = 1

]∣∣∣
≤ 2 ·

(
α

S
+

1

2λ

)
+
∣∣∣Pr[Expt(0)2 (λ) = 1

]
− Pr

[
Expt

(1)
2 (λ) = 1

]∣∣∣ .
To analyze experiments Expt

(b)
2 and Expt

(b)
3 , we need a computational assumption.

Claim 5.18. Based on DLIN assumption, for each b ∈ {0, 1}, it holds that∣∣∣Pr[Expt(b)2 (λ) = 1
]
− Pr

[
Expt

(b)
3 (λ) = 1

]∣∣∣ ≤ negl(λ).

Proof. Given a DLIN challenge
(
g, gA

)
where A ← Z3×m

p , algorithm B simulates a distinguisher

A between experiments Expt
(b)
2 and Expt

(b)
3 to output 0 if Rk(A) = 2 and 1 if Rk(A) = 3.

• Key generation: Given the DLIN challenge (g, gA), B sets up pp as follows. A0 is the first
two rows of A. B chooses random B← Z2×m

p and R∗j ← Zm×m
p for j ∈ [n]. Next, it chooses a

hash function H ← HHK,Q which define elements hj ∈ Zp for j ∈ [n] in the following manner:
H(·) = H(h1,...,hn)(·) (see Section 2.5). Using these values, the algorithm sets matrices

Aj = A0R
∗
j − hjB. (5.6)

Observe that gAj can be computed from gA0 given R∗j , hj , and B. Finally, B chooses a random

v∗ ← Z2m
p and sets u =

[
A0

∑
j∈[n]A0R

∗
j

]
v∗ ∈ Z2

p. Observe that gu can be computed from

gA0 and R∗j . It publishes parameters pp =
(
gA0 ,B, {gAj}j∈[n], gu

)
• Secret key queries: On query id = (id1, . . . , idn) ∈ {0, 1}n, the algorithm samples a uniform

matrix S← Zm×2
p . Let ∆

def
= H (id) ·BS ∈ Z2×2

p If ∆ is not full-rank, B aborts and outputs a
random bit. Otherwise, it chooses random w← Zm

p and a random vector x in Zm
p such that

∆x = −A0w + u.

It is easy to compute gx given gA, gu, and ∆. Let

R∗id,S
def
=

∑
j∈[n]

idjR
∗
j

S.
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The secret key component v is set as follows.

v =

[
w −R∗id,S · x

x

]
. (5.7)

It is easy to compute gv given S, {R∗j}j∈[n], gw, and gx. Observe that:

Fid,S · v =

A0 BS+

∑
j∈[n]

idjAj

S

v

=

A0 BS+

∑
j∈[n]

idj
(
A0R

∗
j − hjB

)S

v

=

A0 A0 ·

∑
j∈[n]

idjR
∗
jS

+H(id) ·BS

v

=
[
A0 A0R

∗
id,S +∆

] [ w −R∗id,S · x
x

]
= A0w −A0R

∗
id,S · x+A0R

∗
id,S · x+∆x

= u.

To answer the secret key query, B outputs skid = (S, gv).

• Challenge query: On challenge query
(
id∗(0),m∗0

)
and

(
id∗(1),m∗1

)
the algorithm B proceeds

as follows. It sets id∗ = id∗(b) and m∗ = m∗b depending on the bit b. If H(id∗) ̸= 0, abort
and output a uniform bit. Otherwise, let [−yᵀ−] ∈ Z1×m

p denote the third row of A. Let

R∗
def
=
∑

j∈[n] id
∗
jR
∗
j . The challenge encryption is constructed by B as follows:

((c∗0)
ᵀ, (c∗1)

ᵀ, c∗2) =
(
gy

ᵀ
, gy

ᵀR∗ , ê(g, g)[y
ᵀ yᵀR∗]v∗ ·m∗

)
.

• Output: The simulator B receives b′ from A and proceeds as follows. It first does the abort

check and artificial abort as in experiment Expt
(b)
2 and outputs either b′ or a random bit.

We argue next that the adversary’s view in the simulation is statistically close to its view in the
real scheme.

(a) Public parameters: We argue that the public parameters are distributed statistically close to
the real distribution. We note that the matrices R∗j for j ∈ [n] are used to construct the public
parameters, answer secret key queries, and construct the challenge ciphertext. Below we show
how the secret key queries are distributed identically to the real scheme, so they are independent
of R∗j . Next, from the extended leftover hash lemma (cf. Lemma 2.5) setting k = nm, we observe
that the two distributions

(A0,A0 · [R∗1 · · · R∗n] , [R∗1 · · · R∗n]
ᵀy) and

(
A0,

[
Ã1 · · · Ãn

]
, [R∗1 · · · R∗n]

ᵀy
)

are statistically close under our choice of parameters,15 where Ãj for j ∈ [n] are matrices
chosen independently and uniformly from Z2×m

p . Observe that the challenge ciphertext is a

15Recollect that we require m ≥ 3 + ω(log λ)
log p

and as p is a λ-bit prime, setting m > 3 suffices for sufficiently large λ.
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deterministic function of the third component. Thus, even given the (specially constructed)
challenge ciphertext, the second component is statistically close to uniform matrices over Z2×m

p .
The public parameters are simply the matrices in the second component with [h1B · · · hnB]

added to them. And finally, consider u =
[
A0

∑
j∈[n]A0R

∗
j

]
v∗. As v is sampled uniformly

from Z2m
p and with overwhelming probability,

[
A0

∑
j∈[n]A0R

∗
j

]
is full-rank, in the simulation,

u is distributed identically to its distribution in the real scheme. Thus, we conclude that the
distribution of parameters

(
A, {Aj}j∈[n],B,u

)
is statistically close to the real distribution.

(b) Secret keys: Next, we argue that the answers to secret key queries are distributed correctly.
If the simluation doesn’t abort, observe that S is distributed as in the real scheme. We show
that v (and hence z) is distributed identically to the real scheme. Observe that v in the real
scheme satisfies Fid,S · v = u (mod q). Therefore v is chosen from a subspace of dimension m
from the constraints of the above equation. In the simulation, w is chosen uniformly from Zm

p

and x is uniquely determined by the constraints in equation (5.7). Therefore, v comes from a
subspace of dimension m as required.

(c) Challenge ciphertext: And finally, we argue that if Rk(A) = 2, then the challenge ciphertext
is well-formed and if Rk(A) = 3, then the challenge ciphertext is distributed statistically close
to uniform over G2m ×GT and independently of A’s view.

• Case 1, Rk(A) = 2: We have that yᵀ = rᵀA0 for some r ∈ Z2
p. Therefore, we have the

following: gy
ᵀ
= gr

ᵀA0 ,

gy
ᵀR∗ = gr

ᵀA0R∗ ê(g, g)[y
ᵀ yᵀR∗]v∗

= gr
ᵀ[
∑

j∈[n] A0id
∗
jR
∗
j ] = ê(g, g)r

ᵀ[A0
∑

j∈[n] A0R∗j ]v∗

= gr
ᵀ[
∑

j∈[n] id
∗
jAj+B−H(id)B] = ê(g, g)r

ᵀu.

= gr
ᵀ[B+D(id)]

Note that r is distributed uniformly in Z2
p by definition. Thus, the ciphertext is well-formed.

• Case 2, Rk(A) = 3: We have that y is uniform in Zm
p and independent ofA0. We consider

A’s view and argue that the challenge ciphertext is distributed uniformly over (Gm)2m×GT

and independent of A’s view. It suffices to argue the distribution of the ciphertext in an
information-theoretic sense (against a computationally unbounded adversary). A’s view in
the simulation comprises the public parameters (A0,A1, . . . ,An,B,u) and the challenge
ciphertext ((c∗0), (c

∗
1), c

∗
2). As A is unbounded, the secret key queries do not reveal any extra

information and can be simulated by an unbounded adversary itself. LetU∗j = A0R
∗
j . First

note that as y is uniform over Zp, so is c∗0. Observe that for every j ∈ [n] and for every
possible d∗j ∈ Zm

p the number of solutions R∗j such that[
A0

yᵀ

]
·R∗j =

[
A0R

∗
j

yᵀR∗j

]
=

[
U∗j
d∗j

ᵀ

]
is the same. Thus, even given U∗j (which can be computed from Aj , B) as R∗j is chosen
uniformly from Zm×m

p each d∗j is distributed uniformly over Gm for every j ∈ [n]. As p is
prime, for any id∗,

∑
j∈[n] id

∗
jR
∗
j and hence c∗1 is uniform.
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Next, observe that v∗ has min-entropy 2m log p and given u, from Lemma 2.1 with proba-
bility at least 1− ϵ over choices of u, v∗ still has min-entropy (2m− 2) log p− log (1/ϵ) for

every negligible ϵ = ϵ(λ). Next, we consider d2 =
[
yᵀ ∑

j∈[n] d
∗
j
ᵀ
]
v∗ which can be written

as fᵀv∗ for a uniformly distributed vector f in Zm
p . As d2 is of length log p bits, the vector

v∗ has sufficient min-entropy (more precisely, at least log p + ω(log λ) bits) so that f acts
as an ‘inner-product’ extractor when applied to it. Therefore, we have (fᵀ, fᵀv∗) ≈ (fᵀ, r)
where f is uniform in Z2m

p and r is uniform in Zp. This implies, in particular, that the last

component of the ciphertext, ê(g, g)d2 ·m∗ is distributed uniformly over GT.

This concludes the proof that the challenge ciphertext ((c∗0)
ᵀ, (c∗1)

ᵀ, c∗2) is distributed uniformly
over G2m ×GT.

To complete the proof of Claim 5.18, observe that the hash function H is independent of the view
of the adversary as the public parameters are distributed statistically close to the real distribution.
Additionally, the challenger B aborts only in the following cases:

1. If on input a secret key query for id, for matrices S sampled in the secret key query, the matrix
∆ = H(id) ·BS is not full rank. In this case, the challenger cannot simulate a secret key.

2. If for the challenge identity id∗, H(id∗) ̸= 0. In this case, the challenger ciphertext cannot be
constructed from R∗j ’s alone.

3. The artificial abort bit b̃ is set to true.

Each of the three cases above are identical to the abort conditions in Expt
(b)
2 (and hence, Expt

(b)
3 ).

Thus, B simulates an experiment statistically close to Expt2 if the DLIN challenge matrix A is of
rank 2 and an experiment statistically close to Expt3 if the DLIN challenge matrix A is of rank 3
which completes the proof of Claim 5.18.

With Claims 5.15 and 5.18, and Corollary 5.17 derived above, we can complete the proof of
Lemma 5.13.

AdvDP
IBEDLIN2,A(λ)

=
∣∣∣Pr[Expt(0)DP,IBE,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,IBE,A(λ) = 1

]∣∣∣
=
∣∣∣Pr[Expt(0)0 (λ) = 1

]
− Pr

[
Expt

(1)
0 (λ) = 1

]∣∣∣
=

1

α
·
∣∣∣Pr[Expt(0)1 (λ) = 1

]
− Pr

[
Expt

(1)
1 (λ) = 1

]∣∣∣ (Claim 5.15)

≤ 2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
·
∣∣∣Pr[Expt(0)2 (λ) = 1

]
− Pr

[
Expt

(1)
2 (λ) = 1

]∣∣∣ (Cor. 5.17)

≤ 2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
·
(∣∣∣Pr[Expt(0)3 (λ) = 1

]
− Pr

[
Expt

(1)
3 (λ) = 1

]∣∣∣+ negl(λ)
)

(Claim 5.18)

≤ 2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
· (0 + negl(λ))

As α is at least 1/P (λ) for some fixed polynomial P (λ) and the above result holds for every
polynomial S = S(λ), the advantage of A remains negligible which completes the proof of Lemma
5.13.

46



Proof of Lemma 5.14. Fix a tuple of queries id∗, id(1), . . . , id(Q) ∈ {0, 1} and full rankB ∈ Z2×m
p .

We let Good denote the event

Good
def
=
{
H (id∗) = 0 ∧H

(
id(1)

)
̸= 0 ∧ · · · ∧H

(
id(Q)

)
̸= 0
}

over the choice of H ← HHK,Q. For brevity, let S⃗ =
{
S(j)

}
j∈[Q]

denote all the choices of the matrices.

We have,

Pr
H,S⃗

[EventT ∧ EventC] ≥ Pr
H,S⃗

[EventT ∧ EventC Good] · Pr[Good]

≥ Pr
H,S⃗

[EventT Good] · (αHK) (5.8)

where Equation (5.8) follows from the definition of αHK (see Section 2.5) and the fact that the
event Good implies the event EventC. Thus, it suffices to lower bound the probability of the event
EventT|Good.

To do so, fix any H such that Good occurs. This implies, in particular, that H
(
id(i)

)
̸= 0 for

all i ∈ [Q].
Consider a particular i. From Lemma 2.13 we have that if S is distributed uniformly over Zm×2

p

matrices then for any fixed full-rank B ∈ Z2×m
p , BS is also distributed uniformly over Z2×2

p matrices.

As H
(
id(i)

)
̸= 0 and B is of full rank, then the matrix H

(
id(i)

)
·BS(i) is uniformly distributed in

Z2×2
p over uniform choices of S(i). Therefore, the probability that H

(
id(i)

)
·BS(i) is of full rank is the

probability that a uniform matrix is at least 1− 2/p (from Lemma 2.12). A straightforward union
bound implies that Pr[EventT Good] is at least 1 − 2Q/p. As this is true for every H (conditioned
on Good), substituting in Equation (5.8), we get

Pr
H,S⃗

[EventT ∧ EventC] ≥
(
1− 2Q

p

)
· (αHK)

≥
(
1− 2Q

p

)
Θ

(
1

Q
√
n

)
(from Lemma 2.11)

as required.

5.3.2 Proof of Function Privacy

Lemma 5.19. The scheme IBEDLIN2 is statistically function private for:

1. (T, k)-block-sources for any T = poly(λ) and k ≥ 4 log p+ ω(log λ).

2. (k1, . . . , kT )-sources for any T = poly(λ) and (k1, . . . , kT ) such that ki ≥ 4i log p+ω(log λ) for
every i ∈ [T ].

Proof. Let X ∈ {(T, k)-block, (k1, . . . , kT )}, and let A be a computationally unbounded X-source
function-privacy adversary that makes a polynomial number Q = Q(λ) of queries to the RoRFP

oracle. We prove that the distribution of A’s view in the experiment ExptrealFP,IBEDLIN2,A is statistically

close to the distribution of A’s view in the experiment ExptrandFP,IBEDLIN2,A (we refer the reader to
Definition 3.3 for the descriptions of these experiments). We denote these two distributions by
Viewreal and Viewrand, respectively.
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Let A⃗ denote all the matrices Aj ∈ Z2×m
p for j ∈ [n]. We define the function family

F def
=
{
f
(A⃗)
S : {0, 1}n → Z2×2

p

}
S∈Z2×2

p

as f
(A⃗)
S (id)

def
=

∑
j∈[n]

idjAj

S. (5.9)

We argue that such a function family is universal with an overwhelmingly high probability over the
choice of Aj ’s. We start off with the following lemma.

Claim 5.20. Let LowRank denote the event (over the choices of A⃗) that there is a not-all-zero sum
of A1, . . . ,An with coefficients in {−1, 0, 1} that is of rank less than 2. Then we have

Pr
Aj←Z2×m

p

[LowRank] ≤ 2 · 3n

pm−1
. (5.10)

Proof. Fix α1, . . . , αn ∈ {−1, 0, 1} such that not all αj = 0. Observe that over choices of Aj ,∑
j∈[n] αjAj is uniformly distributed over Z2×m

p . Therefore, applying Lemma 2.12, we have that

Pr
[
Rk
(∑

j∈[n] αjAj

)
< 2
]
≤ 2/pm−1. A straightforward union bound over all choices of αj ’s gives

us that

Pr

∃α1, . . . , αn ∈ {−1, 0, 1} such that Rk

∑
j∈[n]

αjAj

 < 2

 ≤ 3n · 2

pm−1
.

Claim 5.21. With all but a negligible probability over the choice of A⃗, the function family F defined
in Equation (5.9) is universal.

Proof. In Claim 5.20 we showed that the event LowRank occurs with only a negligible probability.
Thus, it suffices to show that for any fixing of the Aj ’s such that LowRank does not occur, the
function family F is universal. From this point on we fix the Aj ’s such that LowRank does not
occur. We need to prove that for any two distinct identities id, id′ ∈ {0, 1}n it holds that

Pr
S←Zm×2

p

∑
j∈[n]

(idj − id′j)Aj

S = 0

 ≤ 1

p4
. (5.11)

As id ̸= id′ there exists an index j∗ ∈ [n] such that idj∗ ̸= id′j∗ . The fact that the event LowRank

does not occur, guarantees that the matrix V
def
=
(∑

j∈[n](idj − id′j)Aj

)
is of rank 2, and therefore

the matrix V · S is uniformly distributed (according to Lemma 2.13) Therefore,

Pr
S←Zm×2

p

∑
j∈[n]

(idj − id′j)Aj

S = 0

 ≤ Pr
S←Zm×2

p

[VS = 0]

≤ Pr
U←Z2×2

p

[U = 0]

≤ 1

p4
,

as required.
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Thus, the function family in Equation (5.9) is universal conditioned on the event LowRank. Now,
as before, we fix the public parameters pp and the master secret key msk of the scheme to show that
the two distributions Viewreal and Viewrand are statistically close for any such pp and msk. Next, as
the adversary A is computationally unbounded, we assume without loss of generality that A does
not query the KeyGen(msk, ·) oracle. In addition, as discussed in Section 3.1, we can assume that
A queries the RoRFP oracle exactly once.

Denote by ID =
(
ID(1), . . . , ID(T )

)
the random variable corresponding to the X-source with

which A queries the RoRFP oracle. Having already fixed pp and msk, observing that Bi’s are
independent of the identity id, we can assume that

Viewmode =

S(1),

∑
j∈[n]

id
(1)
j Aj

S(1), . . . ,S(T ),

∑
j∈[n]

id
(T )
j Aj

S(T )


=
(
S(1), fS(1)

(
id(1)

)
, . . . ,S(T ), fS(T )

(
id(T )

))
for mode ∈ {real, rand}, where

(
id(1), . . . , id(T )

)
←
(
ID(1), . . . , ID(T )

)
for mode = real,

(
id(1), . . . ,

id(T )
)
is uniformly distributed over (IDλ)

T for mode = rand, S(i) ← Zm×2
q for every i ∈ [T ]. For

mode ∈ {real, rand} we prove that the distribution Viewmode is statistically-close to uniform.
We know that

(
ID(1), . . . , ID(T )

)
is an X-source, and the collection of functions defined in

Equation (5.10) is universal. This enables us to directly apply Lemma 2.3 (in case ID is a (T, k)-
block-source) and Lemma 2.4 (in case ID is a (k1, . . . , kT )-source) with the function family F ,
implying that the statistical distance between Viewreal and the uniform distribution is negligible in
λ. The same clearly holds also for Viewrand, as the uniform distribution over (IDλ)

T is, in particular,
a (T, k)-block-source and a (k1, . . . , kT )-source. From our choice of parameters, LowRank occurs with
negligible probability which concludes the proof.

5.4 Enhanced Function Privacy of the Fully-Secure DLIN-Based Scheme

In this section we prove the following theorem:

Theorem 5.22. The scheme IBEDLIN2 is enhanced function private for:

1. (T, k)-block-sources for any constant T and k ≥ 4 log p+ ω(log λ).

2. (k1, . . . , kT )-sources for any constant T and (k1, . . . , kT ) such that ki ≥ 4i log p+ ω(log λ) for
every i ∈ [T ].

Proof outline. To prove the enhanced function privacy of the scheme IBEDLIN2 we consider
the following hybrids. In the first hybrid, the oracles RoRFP and EncFP are as in Definition 3.4
with mode = real. In the second hybrid, the oracle EncFP is modified to output ciphertexts that
are generated uniformly at random and independent of id, subject to decrypting correctly for the
corresponding key skid generated by RoRFP. To show that the two hybrids are computationally
indistinguishable, we follow the proof of data privacy (see Section 5.3.1) where a DLIN challenge is
embedded to produce either well-formed or ill-formed ciphertexts.

A statistical argument nearly identical to the proof of function privacy of the scheme (see Section
5.3.2) shows that the view of the adversary in the second hybrid is statistically close to the view of
the adversary in a third hybrid where ciphertexts remain ill-formed, but RoRFP outputs secret keys
with mode = rand. Finally, as in moving from the first hybrid to the second hybrid, we consider
a fourth hybrid indistinguishable (under the DLIN assumption) from the third one in which the
oracles RoRFP and EncFP are as in Definition 3.4 with mode = rand.
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Proof of Theorem 5.22. Let X ∈ {(T, k)-block, (k1, . . . , kT )}, and let A be a probabilistic
polynomial-time X-source enhanced function-privacy adversary. As discussed in Section 3.2, we
can assume that A queries the RoRFP oracle exactly once16. We prove that the distribution of
A’s view in the experiment ExptrealEFP,IBEDLIN2,A is statistically close to the distribution of A’s view in

the experiment ExptrandEFP,IBEDLIN2,A (we refer the reader to Definition 3.4 for the descriptions of these
experiments). We denote these two distributions by Viewreal and Viewrand, respectively.

Denote by id(1), . . . , id(T ) the T identities sampled from either the adversary’s query ID or
sampled uniformly from IDT by RoRFP. Additionally, let id(T+1), . . . , id(T+Q) denote the Q queries
generated by A to the oracle KeyGen(msk, ·).

Let α = α(λ) ∈ [0, 1] be a non-negligible function of the security parameter that will be de-

termined later on (see the description of Expt
(j)
2 and Lemma 5.14). We consider the following

experiments for each j ∈ [T ].

• Experiment Expt
(1)
0 is identical to ExptrealEFP,IBEDLIN2,A as in Definition 3.4.

• Experiment Expt
(1)
1 is obtained from Expt

(1)
0 by outputting the output of Expt

(1)
0 with proba-

bility α and a random bit with probability 1− α (denoted by Abort).

• Experiment Expt
(1)
2 is obtained from Expt

(1)
0 by introducing an “artificial” abort event indepen-

dent of the adversary’s view. We use the programmable family of hash functions introduced

by Hofheinz and Kiltz [HK12] denoted HHK,Q+T (see Section 2.5). At the end of Expt
(1)
2 , we

sample a hash function H ← HHK,Q+T . When Expt
(1)
2 receives the guess b′ from A, it does the

following:

1. Abort check: For each query id(i) for i ∈ [Q], let S(i) ∈ Zm×2
p denote the uniform matrix

chosen during secret key generation. The challenger checks the following conditions:
(a) For each i ∈ [Q+ T ]\{1}, if H

(
id(i)

)
·BS(i) ∈ Z2×2

p is full-rank.

(b) H
(
id∗(1)

)
= 0.

If either (or both) these conditions are not satisfied, the experiment outputs a random bit
instead of b′. Let α denote the probability over choices of the hash function H (for any
particular set of distinct queries

(
id(1), id(2), . . . , id(Q+T )

)
) that both conditions above

are true. Recollect that Lemma 5.14 derives a bound for α.

2. Artificial abort: Following the approach of Cash et al. [CHK+10] (generalizing that of

Waters [Wat05]) approximate ϱ(1) = Pr
[
Abort

(
id(1), id(2), . . . , id(Q+T )

)]
by sampling

sufficiently many independent hash functions. For any polynomial S = S(λ), Hoeffding’s
inequality yields that with ⌈λS/α⌉ samples, we can obtain an approximation ϱ̃(1) ≥ α of
ϱ(1) such that:

Pr
[∣∣∣ϱ(1) − ϱ̃(1)

∣∣∣ ≥ α

S

]
≤ 1

2λ
, (5.12)

for security parameter λ. The challenger samples a random bit b̃ ∈ {0, 1} such that

Pr
[
b̃ = 1

]
= 1 − α/ϱ̃(1) ∈ [0, 1]. If b̃ = 1 then the adversary outputs a random bit

(artificial abort). Else, it outputs the bit b′ from the challenger.

16Given that A queries the RoRFP oracle exactly once, recall that EncFP now takes as input queries of the form (j,m)
for j ∈ [T ], and outputs an encryption of m under the identity idj , where (id1, . . . , idT ) is the vector of identities that
was sampled by the real-or-random function-privacy oracle RoRFP.
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• Experiment Expt
(1)
3 is obtained from Expt

(1)
2 as follows. Let

(
S(1), z1

)
denote skid(1) , and replace

the outputs of the oracle EncFP on query (1,m) with uniform (c0, c1, c2)← G2m×GT sampled
independent of the view of A subject to

m = c2 · ê

[ c0

cS
(1)

1

]
,
|
z1
|

−1 .
We refer to these ciphertexts as ill-formed ciphertexts as they are generated independently of
id(1) and depend only on skid(1)

• For 2 ≤ j ≤ T , experiment Expt
(j)
0 is identical to Expt

(j−1)
3 .

• For 2 ≤ j ≤ T , experiments Expt
(j)
1 through Expt

(j)
3 are derived starting from Expt

(j)
0 in a

manner identical to how experiments Expt
(1)
1 through Expt

(1)
3 are derived above, starting from

Expt
(1)
0 . The abort check and artificial aborts concentrate on id(j) in place of id(1).

Additionally, we define the corresponding experiments Ẽxpt
(j)

0 , . . . , Ẽxpt
(j)

3 that are derived start-

ing from ExptrandEFP,IBEDLIN2,A (see Definition 3.4). Also, let P
(j)
i and P̃

(j)
i denote respectively the

probabilities Pr
[
Expt

(j)
i = 1

]
and Pr

[
Ẽxpt

(j)

i = 1

]
. It immediately follows that for all 1 ≤ j ≤ T −1,

P
(i+1)
0 = P

(i)
3 and P̃

(i+1)
0 = P̃

(i)
3 (5.13)

Observe that in Expt
(T )
3 and Ẽxpt

(T )

3 , the adversary’s view comprises secret keys skid1 , . . . , skidT

and ill-formed ciphertexts that are independent of the identities. Following the proof of Lemma
5.19, it holds that the distributions

(pp,msk, skid(1) , . . . , skid(T )) (5.14)

are statistically close where the identities are sampled as in mode real and rand respectively. The

experiments Expt
(T )
3 and Ẽxpt

(T )

3 have identical abort conditions and the rest of the adversary’s view
in each of these experiment is a function of the distribution in Equation (5.14). Thus, it holds that∣∣∣P (T )

3 − P̃
(T )
3

∣∣∣ ≤ negl(λ). (5.15)

In what follows, we show that
∣∣∣P (1)

0 − P̃
(1)
0

∣∣∣ is negligible (following the lines of the proof of

Lemma 5.13). Additionally, we require a lower bound for α for which we can apply Lemma 5.14 (as
in the proof of Lemma 5.13 with Q+ T − 1 instead of Q).

Observe that experiments Expt
(j)
0 , Expt

(j)
1 , and Expt

(j)
2 only involve the artificial abort and the

programmable hash function family. Therefore, following the proofs of Claims 5.15 and 5.16 and
Corollary 5.17, we can state the following corresponding claim and corollary.

Claim 5.23. It holds that ∣∣∣P (0)
1 − P̃

(1)
1

∣∣∣ = α ·
∣∣∣P (0)

0 − P̃
(1)
0

∣∣∣ .
Claim 5.24. For any polynomial S = S(λ), for every j ∈ [T ], it holds that∣∣∣P (j)

1 − P̃
(j)
1

∣∣∣ ≤ 2 ·
(
α

S
+

1

2λ

)
+
∣∣∣P (j)

2 − P̃
(j)
2

∣∣∣ .
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Next, we state the following claim that analyzes the experiments Expt
(j)
2 and Expt

(j)
3 . The

structure of the DLIN assumption allows us to use the simulation in the proof of Claim 5.18 with some
small modifications to simulate the adversary’s view in the enhanced function privacy experiment.

An identical argument holds for the experiments Ẽxpt
(j)

2 and Ẽxpt
(j)

3 .

Claim 5.25. Based on the DLIN assumption, it holds that∣∣∣P (j)
2 − P

(j)
3

∣∣∣ ≤ negl(λ) and
∣∣∣P̃ (j)

2 − P̃
(j)
3

∣∣∣ ≤ negl(λ).

Proof. We fix j for the rest of the proof. As stated above, we only consider experiments Expt
(j)
2

and Expt
(j)
3 and note that an identical proof works for Ẽxpt

(j)

2 and Ẽxpt
(j)

3 .
For simplicity, in the proof we focus on adversaries A that query the EncFP oracle only once.17

Let id1, . . . , idT be the T identities sampled from ID. Given a DLIN challenge
(
g, gA

)
where

A ← Z3×m
p , we construct an algorithm B that simulates a distinguisher A between experiments

Expt
(j)
2 and Expt

(j)
3 to output 0 if Rk(A) = 2 and 1 if Rk(A) = 3. Let A0 denote the first two rows

of A.

• Key generation: The key generation algorithm sets up matrices A0, B, and Ai for i ∈ [n]
as in the proof of Claim 5.18 (see Equation (5.6)). Additionally, the algorithm samples S(j) ←
Zm×2
p and a random vj ← Zm+2

p and sets (implicitly) u =
[
A0

∑
i∈[n]A0R

∗
iS

(j)
]
· vj ∈ Z2

p.

The public parameters are setup such that if H(idj) = 0, then

sk =
(
S(j), gvj

)
(5.16)

is a valid secret key for the identity idj . Observe that gu can be computed given gA0 and
matrices R∗i .

• Secret key queries: Secret key queries on identities {idT+1, . . . , idT+Q} are answered iden-
tically (including the abort condition) to secret key queries in the proof of Claim 5.18. Ad-
ditionally, B runs the secret key algorithm on queries {id1, . . . , idT }\{idj}. The secret key
skidj

is constructed during key generation (see Equation (5.16)). In the rest of the proof, for

all i ∈ [Q+ T ] we let
(
S(i), zi

)
denote secret keys skidi

.

• Encryption oracle query: On input (i,m), the algorithm considers the following cases:

1. i < j. The algorithm outputs ill-formed ciphertexts as follows: it samples uniform
(c0, c1, c2)← G2m ×GT independently of the view of A subject to

m = c2 · ê

[ c0

cS
(i)

1

]
,
|
zj
|

−1 .
2. i > j. The algorithm outputs well-formed ciphertexts by running Enc(pp, idi,m).

17In fact, it is easily observed that the DLIN challenge can be embedded as the output of any particular EncFP query,
and therefore a straightforward hybrid argument across the EncFP queries can be applied to the proof to extend it to
multiple EncFP queries.
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3. i = j. Recollect that it suffices to consider a single EncFP oracle query. In this case,
the algorithm B embeds the DLIN challenge. If H(idj) ̸= 0, the algorithm aborts and
output a uniform bit. Otherwise, let [−yᵀ−] ∈ Z1×m

p denote the third row of A. Let

R∗
def
=
∑

i∈[n] idiR
∗
i . The encryption is constructed by B as follows:

((c∗0)
ᵀ, (c∗1)

ᵀ, c∗2) =
(
gy

ᵀ
, gy

ᵀR∗ , ê(g, g)[y
ᵀ yᵀR∗S(j)]·vj ·m∗

)
.

• Output: The simulator B receives b′ from A and proceeds as follows. It first does the abort

check and artificial abort as in experiment Expt
(j)
2 and outputs either b′ or a random bit.

To complete the proof of Claim 5.25 it suffices to show the following:

(a) The public parameters pp are distributed as in the real scheme.

(b) The secret key queries on identities
(
skid1 , . . . , skidT+Q

)
are distributed as in the real scheme.

(c) As in the experiments Expt
(j)
2 and Expt

(j)
3 , the ciphertexts output by EncFP are ill-formed for

identities 1, . . . j − 1 and well-formed for identities j + 1, . . . , T .

(d) The DLIN challenge: If Rk(A) = 2, then the output of EncFP(pp, j,m) is a well-formed ciphertext

as in Expt
(j)
2 . If Rk(A) = 3, then the output of EncFP(pp, j,m) is an ill-formed ciphertext as in

Expt
(j)
3 .

To show item (a) consider the adversary’s view that depends on the matrices R∗i for i ∈ [n]. For
simplicity, we consider the following components.18A0, A0 · [R∗1 · · · R∗n] , [R∗1 · · · R∗n]

ᵀy,

A0

∑
i∈[n]

A0R
∗
iS

(j)

 · vj , S(j), vj

 . (5.17)

The last three components correspond to u in the public key and the secret key skidj
=
(
S(j),vj

)
. In

an argument identical to the one that secret keys are distributed correctly in the proof of Claim 5.18
(see item (b) in the corresponding part of the proof) the distribution of (u, skidj

) in the simulation
above is identical to the distribution of (u, skidj

) in the real scheme. Therefore, the distributions
of u and skidj

are independent of the matrices R∗i ’s used as the simulation trapdoor by B. To
show (a), it suffices to show that the following components out of Equation (5.17) are distributed
appropriately:

(A0,A0 · [R∗1 · · · R∗n] , [R∗1 · · · R∗n]
ᵀy) .

This follows, applying the extended Leftover Hash Lemma (cf. Lemma 2.5) along the lines of the
proof of the corresponding item (a) in Claim 5.18.

Items (b) and (d) follow from arguments identical to those used in the proof of Claim 5.18 (see
items (b) and (c) in the corresponding part of the proof). Note that for showing item (c), whenever

i ̸= j, the ciphertexts output by EncFP are generated honestly as in experiments Expt
(j)
2 and Expt

(j)
3 .

The simulation of these ciphertexts, even given pp, do not depend on the DLIN challenge and are
always honest. Therefore (c) follows immediately.

Finally, as in the proof of Claim 5.18, we can complete the rest of the proof observing that

the abort condition is identical to the abort conditions in Expt
(j)
2 (and hence in Expt

(j)
3 ). Thus, B

simulates an experiment that is distributed statistically close to the experiment Expt
(j)
2 if the DLIN

18The argument showing that the public parameters are distributed correctly is statistical; therefore it suffices to
discard the exponentation.
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challenge matrix A is of rank 2 and Expt
(j)
3 if the DLIN challenge matrix A is of rank 3 which

completes the proof of Claim 5.25.
We complete the proof of Theorem 5.22 as follows.

AdvEFP
IBEDLIN2,A(λ)

=
∣∣∣Pr[ExptrealEFP,IBE,A(λ) = 1

]
− Pr

[
ExptrandEFP,IBE,A(λ) = 1

]∣∣∣
=

∣∣∣∣Pr[Expt(1)0 (λ) = 1
]
− Pr

[
Ẽxpt

(1)

0 (λ) = 1

]∣∣∣∣
=
∣∣∣P (1)

0 − P̃
(1)
0

∣∣∣
≤ 2 ·

(
1

S
+

1

α · 2λ

)
+

1

α
·
∣∣∣P (1)

2 − P̃
(1)
2

∣∣∣ (Claims 5.23 and 5.24)

≤ 2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
·
(∣∣∣P (1)

3 − P̃
(1)
3

∣∣∣+ 2 · negl(λ)
)

(Claim 5.25)

≤ 2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
·
(∣∣∣P (2)

0 − P̃
(2)
0

∣∣∣+ negl(λ)
)
. (Equation (5.13))

Applying the same argument to |P (2)
0 − P̃

(2)
0 | implies

AdvEFP
IBEDLIN2,A(λ)

≤ 2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
·
(
2 ·
(
1

S
+

1

α · 2λ

)
+

1

α
·
(∣∣∣P (3)

0 − P̃
(3)
0

∣∣∣+ negl(λ)
)
+ negl(λ)

)
.

If we let Γ denote the sum
(
1/α+ 1/α2 + · · ·+ 1/αT

)
, recursively applying the argument and

collecting terms implies

AdvEFP
IBEDLIN2,A(λ) ≤ 2Γ ·

(
1

S
+

1

α · 2λ

)
+ Γ · negl(λ) + 1

αT
·
∣∣∣P (T )

3 − P̃
(T )
3

∣∣∣
≤ 2Γ ·

(
1

S
+

1

α · 2λ

)
+ Γ · negl(λ) + 1

αT
· negl(λ). (from Eq. (5.15))

As α is at least 1/P (λ) for some fixed polynomial P (λ) (applying Lemma 5.14 with Q+ T − 1
instead of Q), the above result holds for every polynomial S = S(λ), and T is a constant, the
advantage of A is therefore negligible. This completes the proof of Theorem 5.22.

6 Non-Adaptive Enhanced Function Privacy via Collision Resistance

In this section we present a generic method for transforming any IBE scheme into a non-adaptive
enhanced function-private IBE scheme. Given an IBE scheme with an identity space ID, the new
scheme uses a slightly larger identity space ID′, and a mapping from ID′ to ID which enables
to use the key-generation, encryption, and decryption algorithms of the underlying scheme. The
mapping uses a pairwise independent permutation π over ID′, and a collision-resistant function
h : ID′ → ID, and maps any id′ ∈ ID′ to h(π(id′)) ∈ ID. The descriptions of π and h are provided
as part of the public parameters of the new scheme.

Such a transformation clearly preserves the data privacy of the underlying scheme due to the fact
that the mapping h◦π : ID′ → ID is collision resistant. In addition, in terms of function privacy, the
crooked leftover hash lemma [DS05, BFO08b] guarantees that when sampling (id′1, . . . , id

′
T ) from any

(T, k)-block-source ID′, for k ≥ log |ID|+ω(log λ), the distribution of (h(π(id′1)), . . . , h(π(id
′
T ))) is

statistically-close to being independent of ID′.
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The scheme. Let IBE = (Setup,KeyGen,Enc,Dec) be a anon-IND-ID-CPA secure identity-based
encryption scheme with an identity space ID = {IDλ}λ∈N and a message space M = {Mλ}λ∈N.
Given an identity space ID′ = {IDλ}λ∈N, let H = {Hλ}λ∈N be family of collision-resistant functions
h : ID′λ → IDλ, and let Π = {Πλ}λ∈N be a pairwise-independent collection of permutations π over
ID′λ. We construct an IBE scheme IBECRH = (Setup′,KeyGen′,Enc′,Dec′) with an identity space
ID′ and message spaceM as follows.

• Setup: On input 1λ the setup algorithm Setup′ first samples (pp,msk) ← Setup(1λ). Next,
it samples a permutation π ← Πλ and a collision-resistant function h ← Hλ. It outputs
pp′ = (pp, π, h) and sets msk′ = msk.

• Key generation: On input the master secret key msk′ and an identity id′ ∈ ID′λ, the
key-generation algorithm KeyGen′ computes id = h(π(id′)) ∈ IDλ, and outputs a secret key
sk′id′ ← KeyGen (msk, id)).

• Encryption: On input the public parameters pp′ = (pp, h, π), an identity id′ ∈ ID′λ, and
a message m ∈ Mλ, the encryption algorithm computes id = h(π(id′)) ∈ IDλ and outputs
c← Enc (pp, id,m).

• Decryption: On input the public parameters pp′ = (pp, h, π), a ciphertext c, and a secret
key sk, the decryption algorithm outputs Dec (pp, c, sk).

Theorem 6.1. The scheme IBECRH is non-adaptive statistical enhanced function private for (T, k)-
block-sources, for any T = poly(λ) and k ≥ log |IDλ| + ω(log λ). In addition, assuming that H
is a family of collision-resistant functions, the scheme IBECRH preserves the data privacy of the
underlying scheme IBE.

Proof. We begin by proving the function privacy of the scheme, and then prove its data privacy.

Non-adaptive enhanced function privacy. Let A be a computationally unbounded (T, k)-
block-source function-privacy adversary. We prove that the distribution of A’s view in the exper-
iment ExptrealNA-EFP,IBECRH,A is statistically close to the distribution of A’s view in the experiment

ExptrandNA-EFP,IBECRH,A (we refer the reader to Definition 3.5 for the descriptions of these experiments).
We denote these two distributions by Viewreal and Viewrand, respectively.

As the adversary A is computationally unbounded, we assume without loss of generality that
A does not query the KeyGen′(msk′, ·) oracle. Additionally, we include in the adversary’s view not
only sk′id′1

, . . . , sk′id′T
from the RoRFP oracle but even h(π(id′1)), . . . , h(π(id

′
T )). Therefore, given pp′

and msk′, A can simulate the output of the EncFP oracle on messages of his choice. Thus, it suffices
to show that the distributions (pp′,msk′, h(π(id′1)), . . . , h(π(id

′
T )) where the identities are sampled

as in mode real and mode rand, respectively, are statistically close in the two experiments (all other
components in the adversary’s view are randomized functions of the distribution above and therefore
cannot increase the statistical distance). This follows directly from the crooked leftover hash lemma
[DS05, BFO08b].

Data privacy. The proof of data privacy of IBECRH from the data privacy of the underlying
scheme IBE is rather straightforward. We only give a brief outline of the proof here and note that
the details are fairly straightforward.

Given a challenger for the data privacy security game (see Definitions 2.7 and 2.8) we can easily
simulate a challenger for the data privacy security game with IBECRH as follows: We first sample h
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and π as in the scheme and use pp generated by the IBE challenger to construct pp′ = (pp, h, π).
Upon KeyGen′ query id′, the simulator computes id = h(π(id′)) and forwards it to the IBE key-
generation oracle to receive sk′id′ = skid. When A issues a challenge query, the simulator forwards
the challenge query after applying h(π(·)) to identities in the challenge. If h(π(id∗)) collides with a
previous id′ query, the simulator aborts. Finally, the simulator outputs the bit b that the IBECRH
challenger outputs.

We claim that if the simulator does not abort, then it faithfully simulates a IBECRH challenger for
the corresponding data privacy security game. Thus, an adversary breaking the data privacy of the
scheme breaks the data privacy of the underlying scheme with the same advantage. The probability
of the simulator aborting against computationally bounded adversaries is negligible from the collision
resistance of the hash function family.

7 Extensions and Open Problems

Our framework for function privacy yields a variety of extensions and open problems, both conceptual
ones regarding our new notions, and technical ones regarding our specific approach and its resulting
constructions. We now discuss several such extensions and open problems.

Chosen-ciphertext security. In terms of data privacy, in this paper we considered the standard
notion of anonymity and message indistinguishability under an adaptive chosen-identity chosen-
plaintext attack (known as anon-IND-ID-CPA). A natural extension of our results is to guarantee
data privacy even against chosen-ciphertext attacks (known as anon-IND-ID-CCA). We note that our
IBE schemes can be extended, using standard techniques, into two-level hierarchical IBE schemes
that are anon-IND-ID-CPA-secure and their first level is function private. Then, by applying the
generic transformation of Boneh, Canetti, Halevi and Katz [BCH+07], any such scheme can be used
to construct an IBE scheme that is anon-IND-ID-CCA-secure and function private.

Applying our approach to other IBE schemes. In Section 3 we presented simple attacks
exemplifying that the anonymous IBE schemes presented in [BF03, GPV08, ABB10, KP11] are
not function private. Nevertheless, we were able to rely on these schemes for designing new ones
that are function private using our “extract-augment-combine” approach. For other anonymous
IBE schemes, such as [Gen06, BW06, BKP+12], we were not able to find attacks against their
function privacy. An interesting open problem is to explore whether these schemes can be modified
(possibly by applying our “extract-augment-combine” approach) to be function private based on
standard assumptions. More generally, a natural open problem is to identify a specific property
of identity-based encryption schemes that make them amenable to our “extract-augment-combine”
approach.

Extension to other classes of functions. As discussed in Section 1, in the general setting of
functional encryption our schemes provide function privacy for the class of functions fid∗ defined
as fid∗(id,m) = m if id = id∗, and fid∗(id,m) = ⊥ otherwise. A fascinating open problem is
to construct schemes that are function private for other classes of functions. A possible starting
point is to consider function privacy for other, rather simple, functionalities, such as inner-product
testing [KSW08].

Robustness of our schemes. As pointed out by Abdalla, Bellare, and Neven [ABN10], when
using an anonymous IBE scheme as a public-key searchable encryption scheme [BCO+04, ABC+08],
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it is often desirable to use a “robust” IBE scheme: It should be difficult to produce a ciphertext
that is valid for more than one identity. We note that our schemes do not satisfy such a notion of
robustness. However, Abdalla et al. showed two generic transformations that transform any given
IBE scheme into a robust one. In particular, these transformations can be applied to each of our
schemes to make them robust (these transformations do not change the decryption keys, and thus
function privacy is preserved). We leave it as an open problem to directly design function-private
IBE schemes that are robust.
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