
Salvaging Indifferentiability in a Multi-stage Setting

Arno Mittelbach

Darmstadt University of Technology, Germany
www.cryptoplexity.de

arno.mittelbach@ cased.de

Abstract. Ristenpart, Shacham and Shrimpton (Eurocrypt 2011) recently presented schemes which
are provably secure in the random-oracle model (ROM), but easily broken if the random oracle is
replaced by typical indifferentiable hash constructions such as chop-MD or prefix-free-MD. They
found that the indifferentiability framework, due to Maurer, Renner and Holenstein (TCC 2004),
does not necessarily allow composition in multi-stage settings, that is, settings consisting of multiple
disjoint adversarial stages. On the positive side, they prove that the non-adaptive chosen distribution
attack (CDA) game of Bellare et al. (Asiacrypt 2009), a multi-stage game capturing the security of
deterministic encryption schemes, remains secure if the random oracle is implemented by an NMAC-
like hash function.

In this paper we introduce a framework to work with the indifferentiability notion in multi-stage sce-
narios. For this we provide a model for iterative hash functions which is general enough to cover not
only NMAC-like functions, but also functions such as chop-MD or even hash trees. We go on to de-
fine a property on multi-stage games called unsplittability which intuitively captures that adversaries
cannot split the computation of a single hash value over several stages. We present a composition
theorem for unsplittable multi-stage games which generalizes the single-stage composition theorem
for indifferentiable hash functions. We then show that the CDA game (adaptive or non-adaptive) is
unsplittable for any iterative hash function (thereby extending the preliminary results by Ristenpart
et al.). Finally, we prove that the proof-of-storage game presented by Ristenpart et al. as a coun-
terexample to the general applicability of the indifferentiability framework is unsplittable for any
multi-round iterative hash function, such as Liskov’s Zipper Hash (SAC 2006).

Keywords. Hash functions, Random oracle, Indifferentiability, Multi-stage

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Notation . 4
2.2 Indifferentiability . 5
2.3 Game Playing . 6

3 A Model for Iterative Hash Functions 6
3.1 Important h-Queries . 10
3.2 A Missing Link . 10
3.3 Extracting the Execution Graph . 11
3.4 h-Queries during Functionality Respecting Games . 14

4 Unsplittable Multi-stage Games 15
4.1 CDA and CRP are Unsplittable . 16
4.2 A Conjecture on Two-Stage Games . 17

5 Composition for Unsplittable Multi-Stage Games 18

A Formalizing Iterative Hash Functions 23
A.1 Execution Graphs . 23
A.2 Examples: Hash Constructions in Compliance with Definition 3.1 24

A.2.1 Merkle-Damg̊ard-like Functions . 24
A.2.2 NMAC and HMAC . 25
A.2.3 Hash Tree . 25
A.2.4 The Double-Pipe Construction / Extensions to the Model 25

B Game Playing 25

C The Composition Theorem 5.1 27
C.1 Derandomizing Simulators . 27
C.2 A Generic Indifferentiabilitiy Simulator . 28
C.3 Proof of Theorem 5.1 . 34

D The Non-Adaptive CDA Game 38
D.1 Composition for CDA - An Instructive Example . 38
D.2 Reproving the CDA Composition Theorem due to Ristenpart et al. [31] 40

E The Adaptive CDA Game 44

F Public-Key Extractability (PK-EXT) for PKE Schemes 46
F.1 Adaptive IK-CPA . 47
F.2 REwH1 with IK-CPA implies PK-EXT . 49

2

CDAHh,A1,A2

AE (1λ)

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← Ah
1(1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

CRPHh,A1,A2
p,s (1λ)

M ← {0, 1}p

st← Ah
1(M, 1λ)

If |st| > n then return false;
C ← {0, 1}c

Z ← Ah
2(st, C)

return (Z = Hh(M ||C))

Figure 1: Security Games. The chosen distribution attack (CDA) game [6] capturing security in deterministic encryption
schemes [5] and the proof-of-storage challenge-response game (CRP) due to Ristenpart et al. [31].

1 Introduction

The notion of indifferentiability, introduced by Maurer, Renner and Holenstein (MRH) [26] can be
regarded as a generalization of indistinguishability tailored for situations where internal state is publicly
available. It has found wide applicability in the domain of hash functions which are usually built from a
fixed-length compression function together with a scheme that describes how arbitrarily long messages are
to be processed [27, 18, 32, 23, 11]. An honest user would always use such a hash function as specified.
An adversary, on the other hand, might use its knowledge on the internal state (i.e., intermediate
compression-function evaluations) if it gains any advantage. The MRH composition theorem [26] allows
to reduce security in the random oracle model (ROM) [8] to the security of compression functions in
settings where the random oracle is instantiated by a hash function which is indifferentiable from a
random oracle. Several indifferentiable hash constructions have since been presented [16, 23] and also
various finalists of NIST’s SHA-3 competition [29]—including the winner Keccak [12]—enjoy proofs of
indifferentiability [15, 2, 28, 13, 14].

Recently, Ristenpart, Shacham and Shrimpton gave the somewhat surprising result that the MRH
composition theorem only holds in single-stage settings and does not necessarily extend to multi-stage
settings where disjoint adversaries are split over several stages [31]. As counterexample they present a
simple challenge-response game (CRP, depicted in Figure 1): a file server that is given a file M can be
engaged in a simple proof-of-storage protocol. We say the adversary wins if it can successfully complete
the protocol, while only storing a short state st (with |st| � |M |). For the proof-of-storage protocol,
the client prepares a challenge C that it sends to the server which has to respond with hash value
H(M ||C). The protocol can easily be proven secure in the ROM since, without access to file M , it is
highly improbable for the server to correctly guess the hash value H(M ||C). The server can, however,
“cheat” if the random oracle is replaced by the indifferentiable chop-Merkle-Damg̊ard construction (chop-
MD) presented in [16]. Chop-MD is very similar to the original Merkle-Damg̊ard construction1 [27, 18]
with but only outputs the first n − k bits of the final compression function evaluation as hash value.
In this case, a corrupt server can win the CRP game by utilizing the compression function underlying
the hash construction. On receiving file M , the server (adversary A1 in Figure 1) computes hash value
Hh(M) manually (we write Hh instead of H to denote that the hash function is built from an underlying
function h), solely using the underlying compression function h, without chopping off any bits from
the last compression-function output. It throws away file M and only stores the output of the last
compression-function call (i.e., passes on this intermediate value as its state st). On receiving a challenge
C, the server (adversary A2) can then return the first n − k bits of value h(C, st) where h denotes
the underlying compression function. If we ignore padding (assuming a padding function only makes
notation more cumbersome, but does not prevent the attack) it holds that

h(C, st)1,...,n−k = Hh(M ||C)

and the adversary wins with probability 1.
To circumvent the problem of composition in multi-stage settings, Ristenpart et al. [31] propose a

stronger form of indifferentiability called reset indifferentiability, which intuitively states that simulators

1The Merkle-Damg̊ard hash function Hh(m1, . . . ,m`) is computed as Hh(m1, . . . ,m`) := h(m`, x`−1) where x0 := IV is
some initialization vector and xi := h(mi, xi−1) is computed as the compression function evaluated on the current message
block and the last chaining value.

3

(which are used to simulate a compression function for a random oracle) must be stateless. While
this notion would allow composition in any setting, no domain extender can fulfill this stronger form of
indifferentiability [19, 25]. Demay et al. [19] present a second variant of indifferentiability called resource-
restricted indifferentiability which models simulators with explicit memory restrictions and which lies
somewhere in between plain indifferentiability and reset indifferentiability. However, they do not present
any positive results such as constructions that achieve any form of resource-restricted indifferentiability
or security games for which a resource-restricted construction allows composition.

Ristenpart et al. also present a positive result [31] in this direction. They examine the (multi-stage)
non-adaptive chosen-distribution attack (CDA) game [6], depicted in Figure 1, which captures a security
notion for deterministic public-key encryption schemes [5], where the randomness does not have sufficient
min-entropy. In the CDA game, the first-stage adversary A1 outputs two message vectors m0 and m1

together with a randomness vector r which, together, must have sufficient min-entropy independent of
the hash functionality. According to a secret bit b one of the two message vectors is encrypted and
given, together with the public key, to the second-stage adversary A2. The adversary wins if it correctly
guesses b.

For the non-adaptive CDA game, Ristenpart et al. give a direct security proof for the subclass of
indifferentiable hash functions of the NMAC-type[7], i.e., hash functions of the form Hh(M) := g(fh(M))
where functions g and h are independent fixed-length random oracles. Note that, while this covers some
hash functions of interest, it does not, for example, cover chop-MD functions (like SHA-2 for certain
parameter settings) or Keccak (aka. SHA-3).

Contributions. In this paper we build on this last idea and ask for a more general way of working with
indifferentiability in a multi-stage setting. Our first contribution is a model of iterative hash functions
that is general enough to cover many practical functions: for example NMAC-like functions, Merkle-
Damg̊ard variants such as chop-MD, prefix-free MD or even the plain Merkle-Damg̊ard scheme but also
more elaborate schemes such as hash trees (Section 3).

Using our model of iterated hash functions we characterize a property of multi-stage games called
unsplittability (Section 4). If a game is unsplittable for an iterative hash function Hh, this intuitively
says that an adversary does not gain any advantage in splitting up the computation of a hash value
over several distinct stages (as opposed to in the CRP game from the introduction) during the game
when function Hh is used. Formally, we call a game unsplittable for an iterative hash function Hh if
any adversary can be transformed in such a way that certain bad queries to the underlying function h

only occur with small probability while the game’s outcome only changes negligibly. In Section 5 we
then give a composition theorem for games that are unsplittable. Analogously to the MRH-theorem, our
composition theorem intuitively says that if a game is unsplittable for an indifferentiable hash function
Hh, then any adversary against the game with Hh can be transformed into an adversary against the
game with a random oracle R. We stress that the hash function just has to be plain indifferentiable. In
other words, security proofs in the random-oracle model carry over if the random oracle is replaced by
this particular hash construction Hh.

Furthermore, we show that the CDA game (non-adaptive and adaptive) is unsplittable for any iterative
hash function, thereby strengthening the preliminary results by Ristenpart et al. [31] (Section 4.1).
For the adaptive version of the CDA game we introduce a notion of key extractability for public-key
encryption schemes (called PK-EXT), that we believe to be of independent interest (Appendix F).
PK-EXT can be regarded as an adaption of the key indistinguishability notion by Bellare et al. [4] for
the setting of deterministic encryption. Finally, we show that the CRP game discussed in the introduction
is unsplittable for any multi-round iterative hash-function (Section 4.1).

2 Preliminaries

2.1 Notation

If n ∈ N is a natural number then by 1n we denote the unary representation and by 〈n〉` the binary
representation of n (using ` bits). By [n] we denote the set {1, 2, . . . , n}. By {0, 1}n we denote the
set of all bit strings of length n while {0, 1}∗ denotes the set of all finite bit strings. For bit strings
m,m′ ∈ {0, 1}∗ we denote by m||m′ their concatenation. If M is a set then by m←M we denote that

4

m was sampled uniformly from M. If A is an algorithm then by X ← A(m) we denote that X was
output by algorithm A on input m. As usual |M| denotes the cardinality of set M and |m| the length
of bit string m. Logarithms are to base 2. By H∞ (X) we denote the min-entropy of variable X, defined
as

H∞ (X) := min
x∈Supp(X)

log(1/Pr[X = x]) .

We assume that any algorithm, game, etc. is implicitly given a security parameter as input, even if not
explicitly stated. We call an algorithm efficient if its run-time is polynomial in the security parameter.

A hash function is formally defined as a keyed family of functions H(1λ) where each key k defines
a function Hk : {0, 1}∗ → {0, 1}n. “Practical” hash functions are usually built via domain extension
from a fixed-length function h : {0, 1}d×k → {0, 1}s that is iterated through an iteration scheme H to
process arbitrarily long inputs [27, 18, 32, 23, 3, 21, 34, 11, 20], with widely varying specifications. The
underlying function h is often build from block-ciphers (e.g., using the Davies–Meyer construction [33])
and is often compressing. As exception to this rule, the Sponge construction [12] (the design principle
behind SHA-3, aka. Keccak [11]) iterates a permutation instead of a compression function. For the
results in this paper this difference is mostly irrelevant: we model the underlying function h as an
ideal function, that is a function taken uniformly at random from the space of all functions with the
given domain and target space. Our results, thus, hold up-to a distinguishing probability of an ideal
permutation from a random function, in case the iterated function were a permutation. We will simply
speak of the underlying function when talking about h and write h : {0, 1}d×{0, 1}k → {0, 1}s to denote
that h takes two distinct inputs, one usually corresponding to message blocks, the other corresponding
to intermediate values.

2.2 Indifferentiability

A hash function is called indifferentiable from a random oracle if no efficient distinguisher can decide
whether it is talking to the hash function and its ideal compression function (modeled as a fixed-length
random oracle) or to an actual random oracle and a simulator. We now give the definition of indifferen-
tiability from [16]:

Definition 2.1. A hash construction Hh : {0, 1}∗ → {0, 1}n, with black-box access to an ideal function
h : {0, 1}d × {0, 1}k → {0, 1}s, is called (tD, tS , q, ε) indifferentiable from a random oracle R if there
exists an efficient simulator SR such that for any distinguisher D it holds that∣∣∣Pr

[
DH

h,h(1λ) = 1
]
− Pr

[
DR,S

R
(1λ) = 1

]∣∣∣ ≤ ε
where the simulator runs in time at most tS , and the distinguisher runs in time at most tD and makes
at most q queries. We say Hh is (computationally) indifferentiable from R if ε is a negligible function
in the security parameter λ and tD and tS are polynomials (in λ).

We define the advantage of a distinguisher D with respect to a simulator S in the indifferentiability game
as

Advindiff
Hh,R,S(D) =

∣∣∣Pr
[
DH

h,h(1λ) = 1
]
− Pr

[
DR,S

R
(1λ) = 1

]∣∣∣ .
We sometimes speak of the real world when meaning that the distinguisher is connected to hash func-
tion Hh and underlying function h and of the ideal world when it is talking to random oracle R and
simulator SR.

Remark. This notion of indifferentiability is also sometimes called strong indifferentiability. The dif-
ference between strong and weak indifferentiability is the order of quantifiers. For weak indifferentiability
(as originally presented in [26]) the simulator may depend on the distinguisher, which is also sufficient
for composition. In this paper we only consider the strong setting, as to the best of our knowledge, all
hash constructions that have a proof of indifferentiability have been proved in the strong setting.

5

Indifferentiability in Multi-Stage Settings. Intuitively the MRH composition theorem [26, 16]
for indifferentiable hash functions says that a proof given in the ROM can be reduced to the security
of the underlying function when the random oracle is implemented by an indifferentiable hash function.
The idea is that the simulator can simulate ideal function h for an adversary relative to a random oracle.

Thus, from an adversary A against a scheme in the real world, we can build a new adversary B := ASR

which is successful against attacking the scheme in the random oracle model.
In multi-stage settings (such as the proof-of-storage example from the introduction) the difference is

that we deal with multiple disjoint adversaries A1, . . . ,Am that do not share their entire state. When
applying the above idea to this setting we would, hence, need to give each adversary access to its own
instance of simulator S. As these multi-stage adversaries do not share their entire state (and so do the
corresponding simulators) the simulators may not be able to perfectly simulate the underlying function h;
this guarantee given by a proof of indifferentiability only holds if the simulator sees all the queries to the
compression function instead of just a fraction of them.

Reset indifferentiability as introduced by Ristenpart et al. [31] extends Definition 2.1 by allowing the
distinguisher to reset the simulator at arbitrary times, which intuitively means that the simulator must
be stateless [30, 19]. While this allows composition in arbitrary settings (as the simulator is stateless each
adversarial stage Ai can have their own instance of the simulator) no hash construction based on domain
extension can fulfill this stronger notion [19, 25]; thus effectively ruling out every hash construction that
we know of today.

2.3 Game Playing

For the upcoming discussion we use the game-playing technique [9, 31]. We give here a brief overview of
the notation used and present a self-contained introduction in Appendix B.

A game GF,A1,...,Am gets access to adversarial procedures A1, . . . ,Am and to one or more so called
functionalities F which are collections of two procedures F .hon and F .adv, with suggestive names “hon-
est” and “adversarial”. Adversaries (i.e., adversarial procedures) access a functionality F via the interface
exported by F .adv, while all other procedures access the functionality via F .hon. In our case, functional-
ities are exclusively hash functions which will be instantiated with iterative hash constructions Hh. The
adversarial interface exports the underlying function h, while the honest interface exports plain access to
Hh. We thus, instead of writing F .hon and F .adv directly refer to Hh and h, respectively. Adversarial
procedures can only be called by the game’s main procedure.

By GF,A1,...,Am ⇒ y we denote that the game outputs value y. Games are random variables over
the entire random coins of the game and the adversarial procedures. For functionalities F and F ′ and
adversaries A1, . . . ,Am and A′1, . . . ,A′m, we can thus consider the distance between the two random
variables. We say two games are ε-close if for all values y it holds that

Pr
[
GF,A1,...,Am ⇒ y

]
≤ Pr

[
GF

′,A′1,...,A
′
m ⇒ y

]
+ ε

Functionality Respecting Games. Let LG be the set of all functionality-respecting games [31]. A
game is called functionality respecting if only adversarial procedures can call the adversarial interface of
functionalities. Note that this restriction is quite natural if a game is used to specify a security goal in
the random oracle model since random oracles do not provide any adversarial interface.

3 A Model for Iterative Hash Functions

In the following we present a new model for iterated hash functions that is general enough to properly
capture many different types of constructions (ranging from the plain Merkle-Damg̊ard over variants
such as chop-MD or Sponge to more complex constructions such as NMAC, HMAC [7] or even hash
trees; also see Appendix A.2) while, at the same time, allowing to reason about indifferentiability [26]
in multi-stage scenarios. Furthermore, we believe that our characterization may be useful in different
settings as it allows to reason about a large class of hash functions simultaneously.

We model hash functions Hh as directed graphs, where each message M is mapped to a graph. A
generic algorithm EVALh with access to an oracle h and input the execution graph for M can then compute
value Hh(M).

6

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IVkey1

Ckey2 hp Hh(M)

Figure 2: NMAC execution graph for message m1‖ . . . ‖m` := M . Value IVkey1
is an initialization vector representing

the first key in the NMAC-construction. Value Ckey2 is a constant representing the second key. The difference between
initialization vectors and constants is that constants are used within the execution graph, i.e., in conjunction with interim
values, while initialization vectors are used at the beginning of the graph.

Execution Graphs - An Introduction. Figure 2 presents the execution graph for a message
M := m1‖ . . . ‖m` for the NMAC construction [7] (further examples are given in Appendix A.2). The
idea is to capture the evaluation of a hash function Hh as a directed graph. For each input message M
the corresponding execution graph represents how the hash value would be computed relative to some
oracle h. (This execution graph can be constructed without access to the underlying ideal function h.)
Nodes in the graph are either value-nodes or function-nodes. A value node (indicated by dotted boxes)
does not have ingoing edges and the outgoing edge is usually labeled with the node’s label. Function
nodes represent functions and the outgoing edges are labeled with the result of the evaluation of the cor-
responding function taking the labels of the ingoing edges as input. An h-node represents the evaluation
of the underlying ideal function h. The outgoing edges can thus only be labeled relative to h. Nodes
labeled mp, hp or hmp correspond to preprocessing functions (defined by the hash construction) which
ensure that the input to the next h-node is of correct length: mp processes message blocks, hp processes
h-outputs and hmp, likewise, processes the output of h-nodes but such that it can go into the “message
slot” of an h-node (see Figure 2). An execution graph contains exactly one g-node with an unbound
outgoing edge which corresponds to an (efficiently) computable transformation such as the identity or
truncation. Assume that eg is the execution graph for a message M ∈ {0, 1}∗. Then we can formalize
the computation of hash value Hh(M) with underlying function h by a deterministic algorithm EVALh(eg)
which repeats the following steps: search for a node with no input edges or where all input edges are
labeled. Compute the corresponding function (if it is an h-node, call the provided h-oracle), remove the
node and label all outgoing edges with the resulting value. The label of the single unbound outgoing
edge of the g-node is the resulting hash value.

Formalizing Hash Functions as Directed Graphs. We now formalize the above concept. For
this let pad : {0, 1}∗ → ({0, 1}b)+ be padding function (e.g. Merkle-Damg̊ard strengthening [18, 27])
that maps strings to multiples of block size b. Let mp : {0, 1}∗ → {0, 1}d be “preprocessing” function
used to adapt message blocks. Additionally, let hp : {0, 1}∗ → {0, 1}k and hmp : {0, 1}∗ → {0, 1}d be two
“preprocessing” functions that allow to adapt intermediate hash values. We assume that pad, mp, hp, and
hmp are efficiently computable injective and also efficiently invertible. Note that for many schemes these
functions will be the identity function and b = d and s = k. Let g : {0, 1}s → {0, 1}n be an efficiently
computable transformation (such as the identity function, or a truncation function).2 Additionally we
require two dedicated sets IV ⊂ {0, 1}∗ and C ⊂ {0, 1}∗ the first containing initialization vectors and
the second containing constants. Values from the first set allow to specify, what we will later call initial
queries, that is, they can be used at the outset of the execution graph. The latter set C contains constants
that, together with interim values, appear inside an execution graph. A good example where we need
this distinction is the NMAC construction (see Figure 2).

We give a formal definition of the graph structure for execution graphs in Appendix A.1 and give here
only a quick overview. Execution graphs consist of the following node types: IV-nodes, C-nodes, message-
nodes, h-nodes, mp, hp, and hmp-nodes and a single g-node. For each message block m1‖ . . . ‖m` :=
pad(M) the graph contains exactly one message-node. All outgoing edges must again be connected to
a node, except for the single outgoing edge of the single g-node. An h-node always has two incoming
edges one from an hp-node and one from either an mp or an hmp-node. Message nodes can be connected

2We stress that g is efficiently computable and not an independent (ideal) compression function as, for example, in
NMAC-like functions [7].

7

h hmp

h
IV hp

h

IV
mp

h
hp

IV1

mp

h
IV2 hp

m1

mp

h
C hp

C hmp

h
hp

IV hmp

h
hp

m1

mp

h
IV hp

Figure 3: Restrictions on h-nodes as defined in the model. In the first case (left to right, top to bottom) an IV-node
is connected to an h-node during the computation. In the second case an IV node is going into a mp-node while the
corresponding hp-node is not connected to an initialization vector. In the first case of the bottom row a C-node is used
together with a message-block-node. The following two cases use a C-node (resp. an IV-node) as input to a hmp-node.
The two examples on the right show the two possible IV modes: the top showing full-IV-mode the bottom example
single-IV-mode.

to mp-nodes. The outbound edges from h can be connected to either hp or hmp-nodes.3

We distinguish between two types of graphs: single-IV-mode and full-IV-mode. For execution graphs
in single-IV-mode all IV-nodes must be connected to hp-nodes. For graphs in full-IV-mode it must hold
that if an h-node is connected to an IV-node via an hp-node, then it must also be connected to an IV-
node via an mp-node. NMAC (Figure 2) is an example of single-IV-mode. HMAC (Figure 10 on page 25)
is an example of full-IV-mode.

A valid execution graph is a non-empty graph that complies with the above rules. For each message
M ∈ {0, 1}∗ there is exactly one valid execution graph. We also use the concept of partial execution
graphs which are non-empty graphs that comply to the above rules with the only exception that they
do not contain a g-node. Hence, a partial execution graph must contain exactly one unbound outgoing
edge from an h-node.

We define EVAL to be a generic, deterministic algorithm evaluating execution graphs relative to an
oracle h. We here present a slightly simplified version of EVAL and give the complete version along with
its pseudo-code in Appendix A.1. Let eg be a valid execution graph for some message M ∈ {0, 1}∗. To
evaluate eg relative to oracle h, algorithm EVALh(eg) performs the following steps: search for a node that
has no inbound edges or for which all inbound edges are labeled. If the node is a function-node then
evaluate the corresponding function using the labels from the inbound edges as input. If the node is a
value-node, use the corresponding label as result. Remove the node from the graph and label all outgoing
edges with the result. If the last node in the graph was removed stop and return the result. Note that
EVALh(eg) runs in time at most O

(
|V 2|

)
assuming that eg contains |V | many nodes. If pg is a partial

execution graph then EVALh(pg), likewise, computes the partial graph outputting the result of the final
h-node. We denote by g(pg) the corresponding execution graph where the single outbound h-edge of pg
is connected to a g-node. We call this the completed execution graph for pg.

We present examples of several restrictions on how execution graphs can be constructed in Figure 3.

Single-Round Iterative Hash Functions. Given the syntax of execution graphs we can now go
on to define single round iterative hash functions such as Merkle-Damg̊ard-like functions. Informally, an
iterative hash function consists of the definitions of the preprocessing functions, the padding function
and the final transformation g(·). Furthermore, we require (efficient) algorithms that construct execution
graphs as well as parse a (partial) execution graph to recover the corresponding message.

Definition 3.1. Let IV ⊂ {0, 1}∗ be a set of initialization vectors and |IV| be polynomial in the security
parameter λ. Let C ⊂ {0, 1}∗ be a set of named vectors with C ∩ IV = ∅ and with |C| polynomial in the
security parameter λ.4 We say Hh

g,mp,hp,hmp,pad : {0, 1}∗ → {0, 1}n is a (tc, te)-iterative hash function if
there exist deterministic algorithms construct and extract as follows:

3The difference between hp and hmp is that hpoutputs values in {0, 1}k which hmp outputs values in {0, 1}d. Note that
function h is defined as h : {0, 1}d × {0, 1}k → {0, 1}s.

4Sometimes the initialization vector is regarded as part of the key. This we could model such that instead of defining
sets IV and C we define a joint distribution on {0, 1}∗ × {0, 1}∗ and sets IV and C are then sampled together with ideal
function h.

8

construct: On input pad(M) for any M ∈ {0, 1}∗ algorithm construct generates a valid execution
graph eg for which Hh

g,mp,hp,hmp,pad(M) = EVALh(eg). Graph eg as constructed by construct(M)
contains a message-block-node for value m if and only if m is a d-bit block in pad(M). Algorithm
construct runs in time tc. The graph construct(M) is either of type single-IV-mode or of type
multi-IV-mode for all messages M ∈ {0, 1}∗ (cf. description on page 8).

extract: On input a valid execution graph eg, algorithm extract outputs message M ∈ {0, 1}∗ if, and
only if, construct(pad(M)) is isomorphic to eg. On input a partial execution graph pg, algorithm
extract outputs message M ∈ {0, 1}∗ if, and only if, the completed execution graph g(pg) is a valid
execution graph and isomorphic to construct(pad(M)). Otherwise extract outputs ⊥. Algorithm
extract runs in time te.

When functions g, mp, hp, hmp and pad are clear from context we simply write Hh.

We provide several examples of hash constructions that are covered by Definition 3.1 in Appendix A.2.
Note that neither construct nor extract gets access to the underlying function h. Also note that by
definition of algorithm extract there cannot be two distinct valid execution graphs for the same message
M ; if extract(pg) = M then pg or g(pg) is isomorphic to construct(pad(M)).

m1

mp

m`

mp

mp mp

IV hp hp

roundhphpgHh(y)

h h

h h

Figure 4: Zipper Hash in accordance to Definition 3.2

multi-round iterative hash functions.
Most hash functions only make a single pass over
the message to compute the hash value. As we
will see, multiple message-passes (or rounds, as
we call them) can, however, make a hash function
stronger. A good example of such a multi-round
hash function is Liskov’s Zipper Hash [23] and we
have depicted the corresponding execution graph
in Figure 4. Zipper Hash can be regarded as a two
pass Merkle-Damg̊ard construction where message blocks are first processed in natural order and then,
additionally, in reversed order. For such multi-round iterative hash functions we extend our model of
execution graphs to include special round-nodes that partition the computation into multiple rounds. In
each round, each message block mi must be processed by an h-node. Furthermore, the output of roundi
must be processed by an h-node in the next round i+ 1.

round-node There exist r − 1 round-nodes with in-degree 1 taking an h-edge and out-degree 1. The
outgoing edge is of type h-edge copying the label of the ingoing edge to the label of the single
outbound edge. round-nodes partition the graph into distinct subgraphs and edges may not connect
mp-nodes, hp-nodes, hmp-nodes or h-nodes in different subgraphs. We call the subgraph before the
first round-node first round graph, the subgraph between the i-th and i+1-st round-node the i+1-st
round graph and the subgraph after the r − 1-st round-node the r-th round graph.

g-node The single g-node must be in the r-th round graph.

message-node For every message block mi (for 1 ≤ i ≤ `) there exists a node with in-degree 0 and
out-degree at least r. For each message-node and round graph i there must be at least a single
outbound m-edge connecting a mp node in the i-th round graph. Outgoing edges are of type m-edge
and labeled with value 〈j〉dlog re ‖ 〈i〉dlog `e ‖mi assuming the edge goes into the j-th round graph.

With this extended definition of execution graphs we can now define a notion of multi-round iterative
hash functions.

Definition 3.2. Let the setup be as in the previous Definition 3.1. We call iterative hash function
Hh
r,g,mp,hp,hmp,pad : {0, 1}∗ → {0, 1}n an r-round (tc, te)-iterative hash function, if corresponding algorithm

construct generates execution graphs containing r − 1 round-nodes.

When functions g, mp, hp, hmp and pad are clear from context we simply write Hh
r . Note that, this

definition naturally extends the previous definition as the two are equivalent for r = 1.
As we will later see, multi-round iterative hash functions are in some sense stronger than single-round

constructions. The proof-of-storage example discussed in the introduction, for example, can be proven

9

secure for any multi-round indifferentiable hash constructions (such as Zipper Hash) while we have seen
that it is not secure for various single-round hash constructions, even in case they are indifferentiable
from a random oracle.

3.1 Important h-Queries

Considering the execution of hash functions as graphs allows us to identify certain types of “important”
queries by their position in the graph relative to a function h. Assume that Q = (mi, xi)1≤i≤p is an
ordered sequence of h-queries to compression function. If we consider the i-th query qi = (mi, xi) then
only queries appearing before qi in Q are relevant for our upcoming naming conventions. For initial
queries we distinguish between the two IV-modes: single and full (see also description of h-node and
Figure 3). For single-IV-mode, we call qi an initial query if, and only if, hp−1(xi) ∈ IV. For full-
IV-mode, we call qi an initial query if, and only if, in addition to hp−1(xi) ∈ IV it also holds that
mp−1(mi) ∈ IV.

Besides initial queries we are interested in queries that occur “in the execution graph” and we call
these chained queries. We call query qi a chained query if given the queries appearing before qi there
exists a valid (partial) execution graph containing an h-node with inbound edges transporting values mi

and xi. Finally, we call query qi result query for message M , if g(qi) = Hh(M) and qi is a chained query.

Definition 3.3. Let Q = (mi, xi)1≤i≤p be a sequence of queries to h : {0, 1}d × {0, 1}k → {0, 1}s. Let
qi = (mi, xi) be the i-th query in Q. For single-IV-mode let the predicate initQ(qi) := initQ(mi, xi) be
true if, and only if,

hp−1(xi) ∈ IV .
For full-IV-mode let the predicate initQ(qi) be true if, and only if,

hp−1(xi) ∈ IV ∧ mp−1(mi) ∈ IV .

We define the predicate chainedQ(mi, xi) to be true if, and only if,

init(mi, xi) ∨ ∃ j ∈ [i− 1] : (chained(qj) ∧ hp(h(qj)) = xi) .

We define the predicate resultQ,M (mi, xi) to be true if, and only if,

chainedQ(mi, xi) ∧ Hh(M) = g(h(mi, xi)) .

We drop the reference to the query set Q if it is clear from context.

In other words: query qi is a chaind query if either qi is an initial query, or there exists a query qj
that came before qi which was a chained query and for which hp(h(qj)) = hp(h(mj , xj)) = xi. Thus, if
hp(·) is the identity function, as it is for example in chop-MD, or NMAC, we require that value xi was
generated by an h-query. Also, let us stress, that the predicates hold, or do not hold, relative to the
previous queries given by sequence Q and are not affected by later queries. We depict the different query
types in Figure 5.

3.2 A Missing Link

In the following we show that, if for some message M with corresponding execution graph pg ←
construct(M) an adversary does not make all h-queries in EVALh(pg) then the probability of the adver-
sary computing Hh(M) is low. This is formally captured by the following lemma:

Lemma 3.4. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h : {0, 1}d ×
{0, 1}k → {0, 1}s be a fixed-length random oracle. Let Ah be an adversary that makes at most qA many
queries to h. Let Q = (mi, xi)1≤i≤qA denote the queries to h on an Ah(1λ) invocation. Let qryh(Hh(M))
denote the set of h-queries during the computation of Hh(M) for message M ∈ {0, 1}∗. Then it holds
that

Pr
[
(M,y)← Ah(1λ) : Hh(M) = y ∧ ∃(m,x) ∈ qryh(Hh(M)) s.t (m,x) /∈ Q

]
≤ qA

2s
+

1

2H∞(g(Us))

where Us denotes a random variable uniformly distributed in {0, 1}s. The probability is over the choice
of random oracle h and the coins of A.

10

m1

mp

h

init(mp(m1), hp(IV))

hp

m2

mp

h

chained(mp(m2), hp(x2))

hp

m`

mp

h

result(mp(m`), hp(x`))

hp g

m1

mp

h

¬ chained(mp(m1), hp(0x23232323))

hp

IV

0x23232323

Hh(M)

Figure 5: Denoting queries in the Merkle-Damg̊ard construction where we assume that 0x23232323 is not a valid initial-
ization vector. Furthermore: x2 := h(mp(m1), hp(IV)) and value xl is computed recursively as x` := h(mp(m`), hp(x`−1)).

Proof. Assume adversary A succeeds, that is, it outputs a message M and value y such that Hh(M) = y
and there exists an h-query (m,x) which occurs during the evaluation of Hh(M) but which was not
queried by A. We consider the execution graph pg ← construct(M) which induces a partial order on
its nodes. That is, if n1 and n2 are nodes in pg then we write n2 � n1 if, and only if, there exists a
directed path from node n1 to node n2 in pg. Relative to oracle h we can identify an h-node in graph pg
for which the two input edges transport values m and x. We call this node nodem,x and in case there are
multiple choices we simply choose one at random. As A does not query h(m,x) it holds that this value
has min-entropy s-bits, that is, H∞ (h(m,x)) = s. Value h(m,x) is transported on all outgoing edges
from nodem,x. Each of these edges is connected to an hp or an hmp-edge. By definition we have that

H∞ (hp(Us)) = H∞ (hmp(Us)) = s

where Us is a random variable uniformly distributed in Us. In other words, as preprocessing functions
hp and hmp are injective they do not decrease entropy. Thus the sole outgoing edge of the preprocessing
node transports s-bits of min-entropy to an h-node node∗ for which node∗ � nodem,x.

Let noderes denote the final h-node in graph pg. As for any h-node node′ in pg it holds

node′ = noderes ∨ noderes � node′

we get by recursively repeating the above argument that one of the input edges to noderes transports
s bits of min-entropy. Let (mres, xres) be the values transported on the two edges going into the final
h-node noderes. Then, we have that the probability that A queries h on (mres, xres) if it did not query
h(m,x) is upper bounded by qA · 2−s.

By the above discussion we also directly yield that H∞ (h(mres, xres)) = s. Thus the probability of A
guessing value y such that g(h(mres, xres)) = y is upper bounded by 2−H∞(g(Us)) where again Us denotes
a random variable uniformly distributed in {0, 1}s.

3.3 Extracting the Execution Graph

Given a message M ∈ {0, 1}∗ the corresponding execution graph Hh(M) can be (efficiently) generated
given algorithm construct. In the following we show that assuming that h is a fixed length random-
oracle —that is a function chosen uniformly from the space of all functions of the form {0, 1}d×{0, 1}k →
{0, 1}s— then, given a sequence Q = (mi, xi; yi)1≤i≤p of queries (and corresponding answers) to h we
can efficiently construct all possible corresponding valid execution graphs for a given construction Hh.
More formally, we show that there exists an efficient algorithm (called extractor E) that given a sequence
of h-queries and corresponding answers can output a target set of messages M such that no, even
unbounded adversary, that is given query-set Q and corresponding answers can output a tuple M,y such
that Hh(M) = y and M /∈M. This is formally captured by the following lemma.

Lemma 3.5. Let function Hh : {0, 1}∗ → {0, 1}n be a (tc, te)-iterative hash function and let h : {0, 1}d×
{0, 1}k → {0, 1}s be a fixed-length random oracle. Let Ah be an adversary that makes at most qA many
queries to h. Let Q = (mi, xi; yi)1≤i≤qA denote the queries to h together with the corresponding answers

11

yi := h(mi, xi) on an Ah(1λ) invocation. Then there exists an extractor E, running in time at most
O(qA · te) and outputting a set M with |M| ≤ 2qA, such that

Pr
[
(M,y)← Ah(1λ);M← E(Q) : Hh(M) = y ∧M /∈M

]
≤ qA + 3q2

A
2s

+
1

2H∞(g(Us))
.

The probability is over the coins of Ah and the choice of random oracle h. Value Us denotes a random
variable uniformly distributed in {0, 1}s.

Proof. We will first present extractor E (see Figure 6) to then argue that it achieves the claimed bound.
Extractor E will work with partial graphs that we will store in a set PG. Without loss of generalization
we assume that Q does not contain the same query twice, that is A does repeat queries to h.

The extractor will do a single pass over query sequence Q. In each step extractor E initializes new
partial graphs if the current query is an initial query. A freshly initialized graph consists of either an IV-
node connected to a hp-node, a message-block-node (or a second IV-node, depending on the IV-mode)
connected to a mp-node and an h-node which is connected to the mp and hp nodes. The outgoing h-edge
is free. We denote the creation of new partial graphs for query (m,x) by

new PartialGraph(mp−1(m), hp−1(x))

Whenever a new partial graph is constructed (or later extended) we compute the value of the sole outgoing
h-edge and denote it by pg.y← y. Note that, by construction we have that pg.y = y = EVALh(pg).

If query (m,x, y) ∈ Q is not an initial query we try to extend existing partial graphs in PG by this
query. A partial graph pg ∈ PG can be extended if its sole outgoing h-edge which transports value
pg.y can be connected to a new h-node constructed from query (m,x). This is the case, if and only if,
(i) pg.y = hp−1(x) or if (ii) pg.y = hmp−1(m). Note that for the second case, where pg.y = hmp−1(m)
we can only extend the partial graph if there is also pg′ ∈ PG such that pg′.y = hp−1(x) as otherwise
the hp-node would not have all its input edges bound, thus the new partial graph is constructed from
two previously existing graphs.5 If we extend a partial graph, a new partial graph is generated for the
extended graph and the old one is kept in PG. We denote by

pg.extendedBy(m,x, y)

the partial graph generated from pg and extended by query (m,x, y) ∈ Q (corresponding to case (i), see
above) and by

pg.extendedBy(pg′,m, x, y)

the partial graph generated from the two partial graphs pg and pg′ extended by query (m,x, y) ∈ Q
which corresponds to case (ii). Again, after a new graph is constructed we set pg.y← y. Note that also
here, by construction, we have that pg.y = y = EVALh(pg).

After all partial graphs are constructed the extractor then recovers for each partial graph the sequence
of message-blocks using algorithm extract. These, form the set of target messages output by extractor
E . We give the pseudo-code for extractor E in Figure 6.

It remains to argue that extractor E has the claimed runtime, as well as that the target set M as
output by E is sufficient. For the run-time note that the extractor makes a single pass over the query set
Q. If adversary A did not find collisions in h (which only happens with probability less than q2

A ·2−s+1) in
each step at most 2 new partial graphs are generated. Thus, with overwhelming probability the number
of generated partial graphs is at most 2|Q| = 2qA (for the case that more than 2qA partial graphs are
found we assume that E stops and the adversary wins which corresponds to parts of the first term in the
statement of Lemma 3.5). For each of the partial graphs we run extract once, which leaves us with a
runtime of O(2qA · te) where te denotes the run-time of deterministic algorithm extract.

Let us now show thatM is sufficient. By Lemma 3.4 we have that all h-queries occurring during the
computation of Hh(M) must be in Q but for probability

qA
2s

+
1

2H∞(g(Us))

5See the HMAC or NMAC construction (Appendix A.2) for an example, where this case can occur.

12

Extractor: E(Q)
M← {};PG ← {}
for i = 1 . . . |Q| do /* building partial graphs */

(m,x, y)← Q[i]
if init(m,x) then

newG← new PartialGraph(mp−1(m), hp−1(x))
newG.y← y
PG.add(newG)

else
foreach pg ∈ PG : pg.y = hp−1(x) do

newG← pg.extendedBy(m,x, y)
newG.y← y
PG.add(newG)

foreach (pg, pg′) ∈ PG × PG : pg.y = hmp−1(m) ∧ pg′.y = hp−1(x) do
newG← pg.extendedBy(pg′,m, x, y)
newG.y← y
PG.add(newG)

foreach pg ∈ PG do /* building target message set */
M ← extract(pg)
if M 6= ⊥ do
M←M∪M

return M

Figure 6: The extractor for Lemma 3.5.

We now show, that the queries appear in the correct order but for small probability. The execution
graph pg ← construct(M) induces a partial order on its nodes. That is, if n1 and n2 are nodes in pg
we write n2 � n1 if, and only if, there exists a directed path from node n1 to node n2. Relative to h

and message M we can identify each h-node in pg by the values transported on the two ingoing edges m
and x: we write nodem,x. This, identification is unique, unless adversary A finds a collision on h which
happens at most with probability

qA
2s−1

.

Let nodes nodem,x and nodem′,x′ be two neighbored nodes in pg such that nodem′,x′ � nodem,x. By
neighbored we mean that on the path from nodem,x to nodem′,x′ no other h-nodes are passed. Clearly
qA is an upper bound on the number of neighbored pairs. We are interested in the probability, that
although node nodem,x comes before node nodem′,x′ in pg the corresponding queries in Q are in reverse
order, that is, there query (m,x) appears only after query (m′, x′). This probability is upper bounded
by qA · 2−s, since s-bits of min-entropy are transported from node nodem,x to node nodem′,x′ (also see
Lemma 3.4) and the adversary had at most qA tries to guess correctly. Thus, we can upper bound the
probability, that there two queries in Q corresponding to neighboring h-nodes in the execution graph of
pg and are out of order by

q2
A

2s

Putting it all together, we have that if A does not find any collision on h then for any M output by
A all h-queries in Hh(M) must be in Q but for the guessing probability

qA
2s

+
1

2H∞(g(Us))
.

Furthermore, the queries must appear in topologically correct order but for probability q2
A · 2−s. Then,

however, the corresponding message M is reconstructed also by E as by definition it reconstructs partial
graphs if all queries appear in topologically correct order.

13

3.4 h-Queries during Functionality Respecting Games

As Ristenpart et al. [31], we only consider the class of functionality-respecting games (see Section 2.3)
where only adversarial procedures may call the adversarial interface of functionalities (i.e., the underlying
function h in our case). We now define various terms that allow us to talk about specific queries from
adversarial procedures to the underlying function h of iterative hash function Hh during game G.

Definition 3.6. Let GH
h,A1,...,Am be a functionality respecting game with access to hash functionality Hh

and adversarial procedures A1, . . . ,Am. We denote by qryG,h the sequence of queries to the adversarial
interface of Hh (that is, h) during the execution of game G.

Note that qryG,h is a random variable over the random coins of game G. Thus, we can regard the
query sequence as a deterministic function of the random coins. In this light, in the following we define
subsequences of queries belonging to certain adversarial procedures such as the i-th query of the j-th
adversarial procedure.

Game GH
h,A1,...,Am can call adversarial procedures A1, . . . ,Am in any order and multiple times.

That is, the 3rd call by G’s main method might be to procedure A1. Thus, we first define a mapping
from the sequence of adversarial procedure calls by the game’s main procedure to the actual adversarial
procedure Ai. For better readability, we drop the superscript identifying game G in the following
definitions and whenever the game is clear from context. Similarly, we drop the superscript identifying
oracle h exposed by the adversarial interface of functionality Hh if clear from context.

Definition 3.7. We define AdvSeqi (for i ≥ 1) to denote the adversarial procedure corresponding to the
i-th adversarial procedure call by game G. We set |AdvSeq| to denote the total number of adversarial
procedure calls by G.

We now define the sequence of h-queries that occur during the execution of the i-th adversarial
procedure AdvSeqi.

Definition 3.8. By qryi we denote the sequence of queries to h by procedure AdvSeqi during the i-th
adversarial procedure call by the game’s main procedure. By qryi,j we denote the j-th query in this
sequence.

We also need a notion which captures all those queries executed before a specific adversarial procedure
AdvSeqi was called. For this, we will slightly abuse notation and “concatenate” two (or more) sequences,
i.e., if S1 and S2 are two sequences, then by S1||S2 we denote the sequence that contains all elements of
S1 followed by all elements of S2 in their specific order.

Definition 3.9. By qry<i we denote the sequence of queries to procedure h before the execution of
procedure AdvSeqi. By qry<i,j we denote the sequence of queries to procedure h up to the j-th query of
the i-th adversarial procedure call. Formally,

qry<i :=

i−1∣∣∣∣∣∣
k=1

qryk and qry<i,j := qry<i ||
j−1∣∣∣∣∣∣
k=1

qryi,k

Finally, we define the sequence of h-queries by procedure AdvSeqi up-to the i-th adversarial procedure
call by the game’s main procedure. That is, in addition to queries qryi we have all queries from previous
calls to AdvSeqi by the game’s main procedure.

Definition 3.10. By qry<Ai,j we denote the sequence of queries to procedure h by the i-th adversarial
procedure AdvSeqi up-to query qry<i,j. Formally,

qry<Ai,j :=
∣∣∣∣∣∣

0<`<i,
AdvSeq`=AdvSeqi

qry` ‖
j−1∣∣∣∣∣∣
k=1

qryi,k .

14

Bad Queries. Having defined queries to the adversarial interface of the hash functionality (i.e., un-
derlying function h) occurring during a game G allows us to use our notation established in Section 3.1
on h-queries: initial queries, chained queries and result queries, for example, saying query qryi,j is an
initial query. In addition, we now define a bad event corresponding to h-queries.

In multi-stage protocols an adversary can split the computation of a hash value over several adver-
sarial procedures by passing on intermediate values resulting from the h-computations by Hh (think of
Ristenpart et al.’s proof-of storage example in the introduction). Further note that when we try to apply
the idea behind the MRH theorem to multi-stage games, this poses a problem to simulators (also see
Section 2.2). As we will later see this is, in fact, the only problem why the MRH theorem cannot be
applied directly. We will label such queries bad queries.

Informally, we call a query (m,x) to function h(·, ·) bad if it is a chained query with respect to all
previous queries during the game, but it is not a chained query if we restrict the sequence of queries to
that of the current adversarial procedure. Note that, whether or not a query is bad only depends on
queries to h prior to the query and is not changed by any query coming later in the game. (Note the
change in the underlying sequence for the two predicates in the following definition.)

Definition 3.11. Let GH
h,A1,...,Am be any game. Let (m,x) := qryi,j be the j-th query to function h by

adversary AdvSeqi. Then query (m,x) is called badAi(qryi,j) if, and only if:

chainedqry<i,j (m,x) and ¬chainedqry<Ai,j (m,x)

4 Unsplittable Multi-stage Games

We now present Definition 4.1, the main definition of this paper. We call a game G ∈ LG unsplittable
for an iterative hash construction Hh, if two conditions hold:

• For any adversary A1, . . . ,Am there exists adversary A∗1, . . . ,A∗m such that games GH
h,A1,...,Am

and GH
h,A∗1 ,...,A

∗
m change only by a small factor.

• During game GH
h,A∗1 ,...,A

∗
m we have that bad queries only occur with small probability.

Intuitively, this means that it does not help adversaries to split up the computation of hash values over
several distinct adversarial procedures.

In Section 5 we give a composition theorem which informally states that if a game is unsplittable
for an indifferentiable hash construction Hh, then security proofs in the random oracle carry over if the
random oracle is implemented by that particular hash function. We will see, that the examples of the
introduction, the CDA and the CRP game, are unsplittable for any (resp. any two-round) indifferentiable
hash construction, thus, allowing us to use the MRH composition theorem to proof security in the random
oracle model.

Definition 4.1. Let Hh be an iterative hash function and let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal
function. We say a functionality respecting game G ∈ LG is (tA∗ , qA∗ , εG, εbad)-unsplittable for Hh if for
every adversary A1, . . . ,Am there exists algorithm A∗1, . . . ,A∗m such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤ Pr

[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
+ εG .

Adversary A∗i has run-time at most t∗Ai
and makes at most q∗Ai

queries to h. Moreover, it holds for game

GH
h,A∗1 ,...,A

∗
m that:

Pr
[
∃i ∈ {1, . . . , |AdvSeq|},∃j ∈ {1, . . . , q∗Ai

} : badAi(qryi,j)
]
≤ εbad .

The probability is over the coins of game GH
h,A∗1,...,A∗m and the choice of function h.

Unsplittability is defined relative to a game G and a hash function Hh. We say that game G is
unsplittable for Hh if for every adversary A1, . . . ,Am there exist procedures A∗1, . . . ,A∗m such that the

games GH
h,A1,...,Am and GH

h,A∗1 ,...,A
∗
m are εG-close, while during the game with procedures A∗1, . . . ,A∗m

bad queries only occur with probability at most εbad. Intuitively this means that bad queries should

15

not be necessary, or in other words, anything that can be done with bad queries, can also be achieved
without resorting to bad queries.

Assuming that all algorithms run in polynomial time and that all ε-probabilities are negligible this
means, that we can exchange a game GH

h,A1,...,Am for game GH
h,A∗1 ,...,A

∗
m such that no efficient dis-

tinguisher can detect any difference and further that bad queries during GH
h,A∗1 ,...,A

∗
m do only occur

with negligible probability. Together with a composition theorem that we will prove in Section 5 this
yields that security proofs in the random oracle model carry over for games that are unsplittable for an
indifferentiable hash function Hh, if we replace the random oracle by this hash function.

4.1 CDA and CRP are Unsplittable

We now show that chosen distribution attack (CDA) game [6] is unsplittable for any iterative hash
function and the proof-of-storage challenge-response (CRP) game [31] is unsplittable for any 2-round
iterative hash function.

The non-adaptive CDA game (see Figure 1) describes security for deterministic public-key encryption
schemes AE (we give an introduction in Appendix D). To prove that the non-adaptive CDA game is
unsplittable we need three (reasonable) assumptions about the encryption scheme: first, it should be
infeasible to guess the public key as being generated by the corresponding key generation algorithm
KGen. We denote the corresponding probability by maxpkAE . Second, the encryption scheme must be
such that no adversary can distinguish between real and simulated encryptions. This is formally captured
by requiring that the encryption scheme is IND-SIM secure [31] in the ROM against adversaries that
do not query the random oracle (see Appendix D.2). Finally, we assume that the encryption scheme
includes the public key, the to be encrypted message, and the given randomness in the single random
oracle query per E-invocation. Let us note that this setup is equivalent to the setup in [31], where
Ristenpart et al. show that the MRH composition theorem for non-adaptive CDA works for NMAC-
like hash function of the form g(fh(·)) where g and h are two independent ideal functions. The main
difference between their and our proof is our proof holds for any iterative hash function and not just for
NMAC-like functions.

Lemma 4.2. Let AE be a public-key encryption scheme. Let the encryption scheme query its hash
construction Hh on a single message per E invocation, that message including (an encoding of) the public
key and the input to E. Let adversary A1 be a valid (µ, ν)-mmr-source. Then, for any encryption simulator

S there exists IND-SIM-adversary B such that the non-adaptive CDAH
h,A1,A2

AE game (cf. Figure 1) is
(tA∗ , qA∗ , εG, εbad)-unsplittable for any hash construction. Moreover,

εG ≤ 3qA1
·maxpkAE +

3(qA1
+ qA2

) · ν + 2qB + 6q2
B

2s
+

3qA2
· ν

2µ
+

6ν

2H∞(g(Us))
+ 2 ·AdvIND-SIM

AE,R,S (B)

εbad = 0 tA∗i ≤ tAi qA∗i ≤ 2qAi qB ≤ qA1 + qA2 + ν ·max(qE , qS)

Adversary B runs in time of game CDAH
h,A1,A2

AE , makes no random oracle queries and ν many RoS-
queries. Value tAi

(resp. qAi
) denotes the run-time of procedure Ai (resp. the number of oracle queries

by adversary Ai). Value Us denotes a random variable that is uniformly distributed in {0, 1}s. Values

qE , qS are upper bounds on the number of (indirect) h-queries during the computation of EHh

(resp. SHh

).

The main idea behind the proof is to exchange the real encryptions by simulated encryptions, thus
destroying the only means of communication between the two adversaries. We give the full proof in
Appendix D.2. Additionally, in Appendix D.1, we proof a second related Lemma for non-adaptive CDA
under an independent set of assumptions (that is, instead of assuming the encryption scheme to be
IND-SIM-secure we have an additional assumption on the hash function). We believe the proof to be
quite instructive on how to work with the notions of bad queries and unsplittable-games.

The Adaptive CDA Game. In the adaptive case, the first adversary A1 is allowed to base its message
and randomness vectors upon seen encryptions, that is, it is given access to an additional encryption
oracle (see Figure 20 in Appendix E). In this case, we have to ensure that encryptions do not leak too
much information on the public key, which can be regarded as the complement notion to maxpkAE for

16

the non-adaptive case. For this we introduce the notion of PK-EXT (short for public-key extractability)
which we believe to be of independent interest. Intuitively, PK-EXT says that no efficient adversary
that is given access to an encryption oracle can guess the public key used in the encryption with more
than negligible probability. PK-EXT can thus be regarded as an adaption of the key indistinguishability
notion by Bellare et al. [4] for the setting of deterministic encryption. We formally introduce PK-EXT
(and show that it is met by existing constructions) as well as prove that, under this assumption, the
adaptive CDA game is unsplittable for any indifferentiable hash construction in Appendix E.

The CRP Game. With the next lemma we establish that the challenge-response game(cf. Figure 1)
from the introduction is unsplittable for any two-round iterative hash construction.

Lemma 4.3. The challenge-response game CRPHh,A1,A2
p,c (cf. Figure 1) is (tA∗ , qA∗ , εG, εbad)-unsplittable

for any r-round iterative hash construction Hh
r with r ≥ 2. Moreover,

tA∗i ≤ tAi
qA∗i ≤ qAi

εG ≤
qA1

2−c
+

qA2

2p−n
+
qA1

+ qA2

2s
+

1

2H∞(g(Us))
εbad = 0

Value tAi
(resp. qAi

) denotes the run-time (resp. number of h-queries) of adversary Ai.

Proof. We show that no adversary (A1,A2) has noticeable probability in winning the CRP game in case
the hash functionality is instantiated with a two-round indifferentiable hash construction.

To win in the CRP game with a two-round hash function, A2 must compute value Hh
2(M ||C) which,

according to Definition 3.1, can be written as g(h(mres, xres)) where g is some transformation and (m,x)
is the input to the final h-call in the second round of the computation of Hh

2(M ||C). By Lemma 3.4 we
have that if only a single h-query in the evaluation of Hh

2(M ||C) is not queried, then the probability of
outputting Hh

2(M ||C) is at most
qA1 + qA2

2s
+

1

2H∞(g(Us))
.

We now argue that adversary A1 cannot query h-queries in Hh
2(M ||C) that correspond h-nodes

occurring in the second round. Challenge C is of length c bits and, thus, can be guessed by A1 with
probability at most 2−c. As C will be part of one or multiple message-block-nodes in the execution graph
construct(M ||C), we have that A1 is able to make all h-queries in the first round of construct(M ||C)
with probability at most

qA1

2c
.

Similarly, adversary A2 is given only n bits of information from the first round and is, thus, missing at
least p− n bits of message M . Thus, the probability, that it is able to make all h-queries in the second
round is upper bounded by

qA2

2p−n
.

If we set adversary (A∗1,A∗2) as A∗1 = A1 and A∗2 as the procedure that simply outputs a guess for
value Z, then we have that εbad = 0 and

εG ≤
qA1

2−c
+

qA2

2p−n
+
qA1

+ qA2

2s
+

1

2H∞(g(Us))
.

4.2 A Conjecture on Two-Stage Games

In the following we want to present a conjecture on games consisting of exactly two stages. Both the
CDA game and the CRP game are examples of a two stage game.

Conjecture 4.4. Any two-stage functionality-respecting game is unsplittable for any r-round iterative
hash function Hh

r with r ≥ 2.

17

The idea behind Conjecture 4.4 is simple. In a two-stage game, a bad query can only be made by the
second-stage adversary. Let us consider two-round hash functions. Then we can distinguish between two
cases in the event that bad(m,x) occurs for some query (m,x) by A2. Let pg be the partial execution
graph corresponding to query (m,x). Then, either (m,x) corresponds to an h-node in pg in the first, or
in the second round (the probability of it corresponding to two h-nodes can be upper bounded by the
probability of an h-collision).

In the first case, the entire second round is computed by the second stage adversary A2 and thus it
must know the entire message corresponding to the partial graph as all message-block-nodes from round
1 reappear in round 2 (see Definition 3.2). In this case, however, A2 could have simply computed Hh

2(M)
directly. For the second case a similar argument applies. Here the entire first round is computed by
A1 which must hence know the entire message M . As bad queries can only occur with non-negligible
probability if there is sufficient communication between the adversaries, adversary A1 could, thus, have
also passed on Hh(M) instead of some intermediate value.

5 Composition for Unsplittable Multi-Stage Games

In this section we present a composition theorem for unsplittable games. Intuitively, the composition
theorem says that if a game is unsplittable for an indifferentiable hash construction Hh, then security
proofs in the random oracle model carry over if we instantiate the random oracle with hash function Hh.

We here give the composition theorem in an asymptotic setting. The full theorem with concrete
advantages is given together with its proof in Appendix C (the theorem appears on page 35). We here
only present a much shortened proof sketch for the asymptotic version of the theorem.

Theorem 5.1 (Asymptotic Setting). Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function in-
differentiable from a random oracle R. Let game G ∈ LG be any functionality respecting game that is
unsplittable for Hh and let A1, . . . ,Am be an adversary. Then, there exists efficient adversary B1, . . . ,Bm
and negligible function negl such that for all values y∣∣∣Pr

[
GH

h,A1,...,Am ⇒ y
]
− Pr

[
GR,B1,...,Bm ⇒ y

]∣∣∣ ≤ negl(λ) .

Proof Sketch. Since Hh is indifferentiable from a random oracle, there exists an efficient simulator S and
negligible function negl such that for any efficient distinguisher D∣∣∣Pr

[
DH

h,h(1λ) = 1
]
− Pr

[
DR,S

R
(1λ) = 1

]∣∣∣ ≤ negl(λ) .

In a first step, we construct a simulator S∗ from S. Simulator S∗ answers any repeated query with
the same result as the earlier query. For fresh queries it distinguishes between result and non-result
queries (for this, it implements a logic similar to the extractor of Lemma 3.5, see Figure 6). It answers
any non-result query by a randomly chosen value. For result queries it keeps track of the corresponding

partial graph pg and answers result queries as EVALS
R

(pg) where simulator Sis the “good” simulator
from above. After answering a result query, simulator S∗ resets the state of its internal simulator S.

Result queries will, by construction, be answered correctly (as simulator S is by definition “good”).
Non-result queries, on the other hand, do not help the distinguisher to distinguish the real from the ideal
world, that is, a distinguisher here can be reduced to a distinguisher against the underlying simulator S.
Let us note that the actual argument is much more involved and we give the full proof and construction
in the Appendix as Lemma C.4 and Construction C.3. We have thereby established that there exists a
negligible function negl such that, for any efficient distinguisher D, it holds∣∣∣Pr

[
DH

h,h(1λ) = 1
]
− Pr

[
DR,S

R
∗ (1λ) = 1

]∣∣∣ ≤ negl(λ) .

Derandomizing Simulator S∗. In a next step we are going to derandomize simulator S∗. Let
A∗1, . . . ,A∗m be the procedures guaranteed to exist (by Definition 4.1) such that bad queries for hash func-

tion Hh occur only with negligible probability during game GH
h,A∗1 ,...,A

∗
m and that games GH

h,A∗1 ,...,A
∗
m

and GH
h,A1,...,Am are computationally indistinguishable. As adversaries A∗1, . . . ,A∗m are efficient there

exists value pmax (polynomial in the security parameter) denoting the maximum runtime of any of the

18

adversaries. Simulator Sd works exactly as simulator S∗ but whenever it wants to return a random value
in {0, 1}s for some query (m,x), it computes value r ← R(1pmax+1) and returns value R(r||m||x). Note
that Sd is still efficient and indistinguishable from simulator S∗ for any distinguisher running in time
less than pmax and thus, in particular, for adversaries A∗1, . . . ,A∗m. The derandomization is covered by
Lemma C.1 which we believe is of independent interest. Let us not that for result queries the derandom-
ization is a bit more involved as a simulator might have quite some degree of freedom for the choice of
its final answer to query (mres, xres) as it has only to ensure that g(mres, xres) = R(M) for the corre-
sponding message M . If transformation g, for example, compresses, as is the case in chop-MD, then two
different instances of simulator Sd might give different answers to the same query. We elaborate on this
in the full proof in Appendix C and assume for this sketch that result queries are answered independent
of the state of the simulator.

We now construct adversaries B1, . . . ,Bm as Bi := A∗
S(i)
d

i . That is, adversary Bi runs adversary A∗i
with its own instantiation of simulator Sd answering queries by Sd to the random oracle with its own
access to R. A similar way to perceive this is that we only have a single instance of simulator Sd which
is reset whenever game G calls a new adversarial procedure.

As simulator Sd is deterministic, different instantiations will produce the same result on the same
non-result query. For result queries, we have that different instantiations will produce the same result
if all queries in the corresponding execution graph were queried to the simulator instance. Assume that
adversarial procedure AdvSeqi (for i ∈ {1, ..., |AdvSeq|}) makes a result query. Then this query is bad
only with negligible probability. The same holds for all queries in the corresponding partial graph pg and,

thus, all queries have been processed by simulator S(i)
d in correct order with overwhelming probability

and thus all instances of simulator Sd will answer the result query consistently. If by ≈ we denote
negligibly close we, thus, have that

Pr
[
GR,B1,...,Bm ⇒ y

]
≈

Pr

[
GR,A

∗
1
S(1)
d ,...,A∗m

S(m)
d ⇒ y

]
≈ Pr

[
GR,A

∗
1
Sd ,...,A∗m

Sd ⇒ y
]
≈ Pr

[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
≈ Pr

[
GH

h,A1,...,Am ⇒ y
]

which concludes the proof. ♦

Acknowledgments

I thank the anonymous reviewers for valuable comments. This work was supported by CASED (www.cased.de).

19

References

[1] Andreeva, E., Bogdanov, A., Mennink, B., Preneel, B., Rechberger, C.: On security arguments of
the second round SHA-3 candidates. Cryptology ePrint Archive, Report 2012/147 (2012), http:
//eprint.iacr.org/ (Cited on page 24.)

[2] Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash function. In:
Garay, J.A., Prisco, R.D. (eds.) SCN 10: 7th International Conference on Security in Communication
Networks. Lecture Notes in Computer Science, vol. 6280, pp. 88–105. Springer, Berlin, Germany,
Amalfi, Italy (Sep 13–15, 2010) (Cited on page 3.)

[3] Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to
NIST (Round 3) (2010), http://131002.net/blake/blake.pdf (Cited on page 5.)

[4] Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In:
Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001. Lecture Notes in Computer Science,
vol. 2248, pp. 566–582. Springer, Berlin, Germany, Gold Coast, Australia (Dec 9–13, 2001) (Cited

on pages 4, 17, 45, and 46.)

[5] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In:
Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. Lecture Notes in Computer Science,
vol. 4622, pp. 535–552. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 19–23, 2007)
(Cited on pages 3, 4, 38, 39, and 41.)

[6] Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged
public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.) Advances
in Cryptology – ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 232–249.
Springer, Berlin, Germany, Tokyo, Japan (Dec 6–10, 2009) (Cited on pages 3, 4, 16, 38, 41, 44, 45, and 47.)

[7] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In:
Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96. Lecture Notes in Computer Science, vol.
1109, pp. 1–15. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 18–22, 1996) (Cited on

pages 4, 6, and 7.)

[8] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Ashby, V. (ed.) ACM CCS 93: 1st Conference on Computer and Communications Security. pp.
62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5, 1993) (Cited on page 3.)

[9] Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-
playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006. Lecture Notes
in Computer Science, vol. 4004, pp. 409–426. Springer, Berlin, Germany, St. Petersburg, Russia
(May 28 – Jun 1, 2006) (Cited on pages 6 and 25.)

[10] Bennett, C.H., Gill, J.: Relative to a random oracle A, PA 6= NPA 6= coNPA with probability 1.
SIAM Journal on Computing 10(1), 96–113 (1981) (Cited on page 27.)

[11] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak SHA-3 submission. Submission to
NIST (Round 3) (2011), http://keccak.noekeon.org/Keccak-submission-3.pdf (Cited on pages 3

and 5.)

[12] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions (2011) (Cited

on pages 3, 5, and 24.)

[13] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge
construction. In: Smart, N.P. (ed.) Advances in Cryptology – EUROCRYPT 2008. Lecture Notes in
Computer Science, vol. 4965, pp. 181–197. Springer, Berlin, Germany, Istanbul, Turkey (Apr 13–17,
2008) (Cited on page 3.)

20

http://eprint.iacr.org/
http://eprint.iacr.org/
http://131002.net/blake/blake.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf

[14] Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions
and optimal bounds of popular domain extensions. In: Roy, B.K., Sendrier, N. (eds.) Progress in
Cryptology - INDOCRYPT 2009: 10th International Conference in Cryptology in India. Lecture
Notes in Computer Science, vol. 5922, pp. 199–218. Springer, Berlin, Germany, New Delhi, India
(Dec 13–16, 2009) (Cited on page 3.)

[15] Chang, D., Nandi, M., Yung, M.: Indifferentiability of the hash algorithm BLAKE. Cryptology
ePrint Archive, Report 2011/623 (2011), http://eprint.iacr.org/ (Cited on page 3.)

[16] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How to construct
a hash function. In: Shoup, V. (ed.) Advances in Cryptology – CRYPTO 2005. Lecture Notes in
Computer Science, vol. 3621, pp. 430–448. Springer, Berlin, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2005) (Cited on pages 3, 5, 6, and 30.)

[17] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In: Krawczyk, H. (ed.) Advances in Cryptology – CRYPTO’98. Lecture Notes
in Computer Science, vol. 1462, pp. 13–25. Springer, Berlin, Germany, Santa Barbara, CA, USA
(Aug 23–27, 1998) (Cited on page 45.)

[18] Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) Advances in Cryptology –
CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer, Berlin, Germany,
Santa Barbara, CA, USA (Aug 20–24, 1990) (Cited on pages 3, 5, and 7.)

[19] Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability. In: Johansson,
T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013. Lecture Notes in Computer
Science, vol. 7881, pp. 665–684. Springer, Berlin, Germany, Athens, Greece (May 26–30, 2013) (Cited

on pages 4 and 6.)

[20] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.:
The skein hash function family. Submission to NIST (Round 3) (2010), http://www.skein-hash.
info/sites/default/files/skein1.3.pdf (Cited on page 5.)

[21] Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schlffer, M., Thom-
sen, S.S.: Grstl – a SHA-3 candidate. Submission to NIST (Round 3) (2011), http://www.groestl.
info/Groestl.pdf (Cited on page 5.)

[22] Joux, A.: Multicollisions in iterated hash functions. application to cascaded constructions. In:
Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004. Lecture Notes in Computer Science,
vol. 3152, pp. 306–316. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 15–19, 2004)
(Cited on page 25.)

[23] Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham,
E., Youssef, A.M. (eds.) SAC 2006: 13th Annual International Workshop on Selected Areas in Cryp-
tography. Lecture Notes in Computer Science, vol. 4356, pp. 358–375. Springer, Berlin, Germany,
Montreal, Canada (Aug 17–18, 2006) (Cited on pages 3, 5, and 9.)

[24] Lucks, S.: Design principles for iterated hash functions. Cryptology ePrint Archive, Report 2004/253
(2004), http://eprint.iacr.org/ (Cited on pages 24, 25, and 27.)

[25] Luykx, A., Andreeva, E., Mennink, B., Preneel, B.: Impossibility results for indifferentiability with
resets. Cryptology ePrint Archive, Report 2012/644 (2012), http://eprint.iacr.org/ (Cited on

pages 4 and 6.)

[26] Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004: 1st Theory
of Cryptography Conference. Lecture Notes in Computer Science, vol. 2951, pp. 21–39. Springer,
Berlin, Germany, Cambridge, MA, USA (Feb 19–21, 2004) (Cited on pages 3, 5, and 6.)

[27] Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) Advances in Cryptology –
CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 428–446. Springer, Berlin, Germany,
Santa Barbara, CA, USA (Aug 20–24, 1990) (Cited on pages 3, 5, and 7.)

21

http://eprint.iacr.org/
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

[28] Moody, D., Paul, S., Smith-Tone, D.: Improved indifferentiability security bound for the JH mode.
Cryptology ePrint Archive, Report 2012/278 (2012), http://eprint.iacr.org/ (Cited on page 3.)

[29] NIST: NIST SHA-3 Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

(Cited on page 3.)

[30] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of indif-
ferentiability and universal composability. Cryptology ePrint Archive, Report 2011/339 (2011),
http://eprint.iacr.org/ (Cited on pages 6 and 37.)

[31] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indif-
ferentiability framework. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011.
Lecture Notes in Computer Science, vol. 6632, pp. 487–506. Springer, Berlin, Germany, Tallinn,
Estonia (May 15–19, 2011) (Cited on pages 2, 3, 4, 6, 14, 16, 25, 27, 37, 38, 40, 41, and 42.)

[32] Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321 (Informational) (Apr 1992), http:

//www.ietf.org/rfc/rfc1321.txt, updated by RFC 6151 (Cited on pages 3 and 5.)

[33] Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum, D. (ed.) Advances in
Cryptology – CRYPTO’83. pp. 203–207. Plenum Press, New York, USA, Santa Barbara, CA, USA
(1984) (Cited on page 5.)

[34] Wu, H.: The hash function JH. Submission to NIST (round 3) (2011), http://www3.ntu.edu.sg/
home/wuhj/research/jh/jh_round3.pdf (Cited on page 5.)

22

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://eprint.iacr.org/
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

A Formalizing Iterative Hash Functions

A.1 Execution Graphs

In the following section we formally describe execution graphs for iterative hash functions (see Section 3).
We describe the structure of the execution graph for messagem1‖ . . . ‖m` := pad(M). An execution graph
is a directed graph where nodes represent constants or functions while edges define the evaluation path.
An execution graph contains exactly one unbound outgoing edge. The graph consists of the following
node and edge types:

IV-node: For every string iv ∈ IV there can exist an IV-node with in-degree 0. Outgoing edges are of
type h-edge or m-edge labeled with value iv. If the outgoing edge is of type h-edge (resp. m-edge)
it must hold that iv ∈ {0, 1}s (resp. iv ∈ {0, 1}b).

C-node: For every string c ∈ C there can exist a C-node with in-degree 0. Outgoing edges are of type
h-edge or m-edge labeled with value c. If the outgoing edge is of type h-edge (resp. m-edge) it
must hold that c ∈ {0, 1}s (resp. c ∈ {0, 1}b).

message-node: For every message block mi (for 1 ≤ i ≤ `) there exists a node with in-degree 0 and
out-degree at least 1. Outgoing edges are of type m-edge labeled with value 〈i〉dlog `e ‖mi.

mp-node: A mp-node has in-degree 1 which takes an m-edge and out-degree 1. The outgoing edge is of
type mp-edge.

hp-node: A hp-node has in-degree 1 taking an h-edge and out-degree 1. The outgoing edge is of type
hp-edge.

hmp-node: A hmp-node has in-degree 1 taking an h-edge and out-degree 1. The outgoing edge is of type
mp-edge. We add the additional restriction that ingoing h-edges may not come from IV-nodes or
C-nodes.

h-nodes: An h-node has in-degree 2, a mp-edge and a hp-edge, and has out-degree at least 1. Outgoing
edges are of type h-edge. We add the additional restriction that if the corresponding hp-node is
connected to a C-node then the second ingoing edge of type mp must be connected to an hmp-
node. Additionally, if the if the corresponding hp-node is connected to an IV-node then the second
ingoing edge of type mp must be connected to a mp-node.

g-node: There exists a single g-node with in-degree 1, taking an h-edge and out-degree 1. The outgoing
edge is not connected to a node.

We call IV, C, and message-nodes value-nodes and all other node types function-nodes. All outgoing
edges must be connected to a node with the only exception being the outbound edge from the single
g-node. We say that an execution graph uses single-IV-mode if all IV-nodes are connected to hp-nodes.
We say the execution graph is in full-IV-mode, if it holds for all h-nodes that are connected to an IV-node
via a hp-node that also the second ingoing mp-edge comes from a mp-node which in turn is connected to
an IV-node.

A valid execution graph is a graph that is not empty and complies with the above rules. For each
message M ∈ {0, 1}∗ there is exactly one valid execution graph. We will also need the concept of partial
execution graphs which is a non-empty graph that complies to the above specified rules with the only
exception that it does not contain a g-node. However, it must contain exactly one unbound outgoing
h-edge.

We define EVAL to be a generic, deterministic algorithm evaluating execution graphs relative to an
oracle h. Let pg be a an execution graph for some message M ∈ {0, 1}∗. To evaluate pg relative to oracle
h, algorithm EVALh(pg) first verifies the graph structure validating, that pg obeys the rules as specified
by the hash construction and is either a valid execution graph or a partial execution graph. It then
performs the following steps to compute the hash value: search for a node that has no inbound edges or
for which all inbound edges are labeled. If the node is a value node, then remove the node (in this case
the outgoing edges are already labeled). If the node is a function node then evaluate the corresponding
function using the labels from the inbound edges as input. Remove the node from the graph and label

23

Algorithm: EVALh(pg)

y ← ⊥
if (pg is not correct partial graph) then return y
while (pg contains nodes) do

foreach (node in pg) do
if (node is value-node) then remove node from pg
if (node is function-node ∧ all inbound edges are labeled) then

y ← evaluateh(node)
label all outgoing edges of node with y
remove node and inbound edges from pg

return y

Algorithm: evaluateO(node)

if (node is mp-node) then
return mp(node.in-m)

if (node is hp-node) then
return hp(node.in-h)

if (node is hmp-node) then
return hmp(node.in-h)

if (node is h-node) then
m← node.in-mp
x← node.in-hp
return O(m,x)

if (node is g-node) then
return g(node.in-h)

Figure 7: The generic evaluation algorithm EVALh. For the evaluation of function nodes we denote by node.in-T the label
of the ingoing edge of type T.

all outgoing edges with the result. If the last node in the graph was removed stop and return the result.
Note that EVALh(pg) runs in time at most O

(
|V 2|

)
assuming that pg contains |V | many nodes. Note

that if pg is a partial execution graph then EVALh(pg), likewise, computes the partial graph outputting
the result of the final h-node. Further, if pg is a partial execution graph, then we denote by g(pg) the
corresponding execution graph where the single outbound h-edge of pg is connected to a g-node. We call
this the completed execution graph for pg. We give the pseudo-code of algorithm EVAL in Figure 7.

Extensions to the model. In the above model, we have defined the preprocessing nodes to have
in-degree 1. For certain constructions (such as, for example, the double-pipe construction [24], see
Section A.2.4) this requirement needs to be relaxed. Such relaxations slightly complicate the definition
of initial, chained and result queries (see Section 3.1) but do not change the presented results (in an
asymptotic setting).

A.2 Examples: Hash Constructions in Compliance with Definition 3.1

A.2.1 Merkle-Damg̊ard-like Functions

In the following we show that Merkle-Damg̊ard-like functions such as the plain or chop-MD constructions,
but also the Sponge construction [12] used in SHA-3 are covered by Definition 3.1. The difference between
chop-MD and the plain Merkle-Damg̊ard construction only lies in the final transformation g which is
the identity for plain Merkle-Damg̊ard and which truncates the output of the final compression function
call in case of chop-MD. Note that the Sponge construction can be regarded as chop-MD if we restrict
ourselves to a single “squeezing” round [1].

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp gIV Hh(M)

Figure 8: Merkle-Damg̊ard Construction

Merkle-Damg̊ard constructions use single-IV-mode, that is, the IV is only connected to a hp-node
and the corresponding mp-node takes a message block. Given message blocks m1‖ . . . ‖m` = pad(M) for
M ∈ {0, 1}∗ it is easy to see that we can construct the corresponding execution graph in time linear in

the number of message blocks, that is O
(
|M |
d

)
. Extracting the message from a graph, as well as verifying

that a graph is a correct partial execution graph can be done in time linear in the number of nodes.

24

A.2.2 NMAC and HMAC

In the following we show how NMAC and HMAC fit into Definition 3.1. Note that this is the first
construction where we use the hmp preprocessing function as well as constants from set C. The running
times of construct and extract are equivalent to the running times for the basic Merkle-Damg̊ard
constructions. While NMAC again uses single-IV-mode, HMAC uses full-IV-mode, where in the IV-
stage both inputs to the h-node are connected to IV-nodes.

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IVkey1

Ckey2 hp Hh(M)

Figure 9: NMAC: note the use of the hmp node to connect the final h-node to the plain Merkle-Damg̊ard construction. Also
note the use of the C-node instead of an IV-node for the second key. This is necessary such that the final h-query is not
an initial query, which given our definitions would be the case if key2 was part of IV.

IVkey1

mp

h
hp

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IV

h

IVkey2
mp

IV hp

hp Hh(M)

Figure 10: The HMAC construction. Note that HMAC is similar to NMAC except that keys key1 and key2 are no generated
by h-calls.

A.2.3 Hash Tree

In Figure 11 we show how hash trees fit into Definition 3.1. For simplicity we assume that the number
of message blocks ` is a power of 2. Given message blocks m1‖ . . . ‖m` = pad(M) for M ∈ {0, 1}∗ it is
easy to see that we can construct the corresponding execution graph in time log-linear in the number of
message blocks, that is O(` log `). Extracting the message of a given partial graph can be done in time
of a (reverse) breadth first search starting from the final h-node.

A.2.4 The Double-Pipe Construction / Extensions to the Model

Stefan Lucks [24] proposes several tweaks to the design of iterated hash functions to, for example, rule
out generic attacks such as Joux’ multi-collision attack [22]. In Figure 12 we show how the double-pipe
construction fits into Definition 3.1. Note that to support constructions like the double-pipe construction
we must slightly extend our model of iterative hash functions. We must now allow that hp-nodes not
only have in-degree 1 but 2. Besides slightly complicating the definition of initial queries and chained
queries —we now have to split the pre-image of hp−1(x) into multiple values— the proofs and intuition
presented in this paper work analogously.

B Game Playing

For the discussion in this paper we use the game playing technique as described in [9, 31]. Games consist
of procedures which in turn consist of a sequence of statements together with some input and zero or
more outputs. Procedures can call other procedures. If procedures P1 and P2 have inputs and outputs

25

m1

mp

IV1

hp

h

m2

mp

IV2

hp

h

m`−1

mp

IV`−1

hp

h

m`

mp

IV`

hp

h

hmp hp

h

hmp hp

h

hmp hp

h

g

Hh(M)

Figure 11: A hash tree in the formalization of Definition 3.1.

that are identical in number and type, we say that they export the same interface. If a procedure P gets
access to procedure F we denote this by adding it in superscript PF . All variables used by procedures
are assumed to be of local scope. After the execution of a procedure the variable values are left as they
were after the execution of the last statement. If procedures are called multiple times, this allows them
to keep track of their state.

A functionality F is a collection of two procedures F .hon and F .adv, with suggestive names “honest”
and “adversarial”. Adversaries access a functionality F via the interface exported by F .adv, while all
other procedures access the functionality via F .hon. In our case, functionalities are hash functionalities
which will either be instantiated with typical iterative hash constructions or with random oracles. For
iterative hash constructions the adversarial interface accesses the compression function and the honest
interface provides access to the complete hash function as specified, i.e., F .hon := Hh and F .adv := h.
Note that access to the compression function is sufficient to compute Hh. For a random oracle, on the
other hand, there is no distinction between adversary access and honest access and we can assume that
the adversarial interface simply forwards calls to the honest interface. As in this paper we are solely
talking about iterative hash functions we will usually not write F .hon and F .adv, but directly refer to
hash function Hh and underlying function h, respectively.

A game G consists of a distinguished procedure called main (which takes no input) together with a set
of procedures. A game can make use of functionality F and adversarial procedures A1, . . . ,Am (together
called “the adversary”). Adversarial procedures have access to the adversarial interface of functional
procedures and, as any other procedure, can be called multiple times. We, however, restrict access to
adversarial procedures to the game’s main procedure, i.e., only it can call adversarial procedures and,
in particular, adversarial procedures cannot call one another directly.

By GF,A1,...,Am we denote a game using functionality F and adversary A1, . . . ,Am. If F ′ exports
the same interface as F , and for 1 ≤ i ≤ m adversary A′i exports the same interface as Ai, then

GF
′,A′1,...,A

′
m executes the same game G with functional procedure F ′ and adversary A′1, . . . ,A′m. We

denote by GF,A1,...,Am ⇒ y the event that game G produces output y, that is procedure main returns
value y. If game G uses any probabilistic procedure then GF,A1,...,Am is a random variable and by

26

m1

mp

m1

mp

h

h

hp

hp

m2

mp

m2

mp

h

h

hp

hp

m`

mp

m`

mp

h

h

hp

hp

hp

h
g Hh(M)

IV

IV

C

mp

Figure 12: The double-pipe construction from [24]. Note that the message-block-nodes are split for better drawing. They
should, however, be regarded as a single node.

Pr
[
GF,A1,...,Am ⇒ y

]
we denote the probability (over the combined randomness space of the game) that

it takes on value y.
Games are random variables over the entire random coins of the game and the adversarial procedures.

For functionalities F and F ′ and adversaries A1, . . . ,Am and A′1, . . . ,A′m, we can thus consider the
distance between the two random variables. Our security approach is that of concrete security, i.e., we
say two games are ε-close if for all values y it holds that

Pr
[
GF,A1,...,Am ⇒ y

]
≤ Pr

[
GF

′,A′1,...,A
′
m ⇒ y

]
+ ε .

In asymptotic terms this means that if ε is negligible in the security parameter, then it follows that for
all efficient distinguishers the two games are indistinguishable:∣∣∣Pr

[
D(GF,A1,...,Am , 1λ) = 1

]
− Pr

[
D(GF

′,A′1,...,A
′
m , 1λ) = 1

]∣∣∣ ≤ ε(λ) .

Functionality Respecting Games. In this paper we only consider the class of functionality-respecting
games LG as defined by Ristenpart et al. [31]. A game is called functionality respecting if only adversarial
procedures can call the adversarial interface of functionalities. Note that this restriction is quite natural
if a game is used to specify a security goal in the random oracle model since random oracles do not
provide any adversarial interface.

C The Composition Theorem 5.1

C.1 Derandomizing Simulators

Before we can prove Theorem 5.1 we need some additional characterization on strong indifferentiability
for hash constructions which we believe to be of independent interest. With the following lemma we
establish that if Hh is a indifferentiable hash construction then we can derandomize the corresponding
simulator. For this we build on derandomization techniques developed by Bennet and Gill [10].

Lemma C.1. Let Hh be an iterative hash construction and R a random oracle. Let S be a simulator
exporting the same interface as h. Fix tD ∈ N. Then there exists deterministic simulator Sd such that
for any distinguisher D with run-time bounded by tD it holds that

Pr
[
DR,S

R
d (1λ) = 1

]
= Pr

[
DR,S

R
(1λ) = 1

]
.

Simulator Sd runs in time at most tS + tS(tD + tS) and makes at most qS + tS many queries to the
random oracle.

Proof. We construct deterministic simulator Sd as follows. Simulator Sd works exactly as simulator S
except that when S requests a random bit, simulator Sd generates this bit deterministically using its

27

access to the random oracle. For this it generates a bit stream as

R(1tD+1)‖R(1tD+2)‖ . . .

picking the i-th bit of the stream as the i-th random bit. If we denote with R the random variable,
mapping to the random bits used by simulator S and by RRd the random variable, mapping to the coins
used by deterministic simulator Sd (over the choice of random oracle) then their statistical distance
(denoted by δ(·, ·)) is zero, that is:

δ(R,RRd) :=
1

2

∑
x

∣∣Pr[R = x]− PrR
[
RRd = x

]∣∣ = 0

As furthermore the queries to generate the random bits are larger than any queries made by any distin-
guisher with run time bounded by tD it follows that

Pr
[
DR,S

R
d (1λ) = 1

]
= Pr

[
DR,S

R
(1λ) = 1

]
Assuming each call to the random oracle yields only a single random bit for the bit-stream we have

that Sd has a run-time of tS + tS(tD + tS). It runs the same program as the original simulator taking
time at most tS and has to gather at most tS many random bits each needing a single call to the random
oracle on a string of length at most tD + tS .

Note that instead of fixing the runtime of the simulator as tD and querying the random oracle on very
long messages— that is R(1tD+1) —we could also fix a bound qD on the number of random oracle queries
by the distinguisher. The simulator then makes qD + 1 many distinct messages taking the exclusive or
over all results. For any distinguisher that makes at most q many random oracle queries the xor of qD+1
will be uniformly distributed and completely unpredictable. This allows a trade-off between run-time
and the number of queries. We give the statement in the following lemma:

Lemma C.2. Let Hh be an iterative hash construction and R a random oracle. Let S be a simulator
exporting the same interface as h. Fix qD ∈ N. Then there exists deterministic simulator Sd such that
for any distinguisher D which makes at most qD queries to the random oracle, it holds that

Pr
[
DR,S

R
d (1λ) = 1

]
= Pr

[
DR,S

R
(1λ) = 1

]
.

Simulator Sd runs in time O(tS + qD log(qD)).

C.2 A Generic Indifferentiabilitiy Simulator

In the following we show that for any indifferentiable hash construction we can use a generic simulator
which replies with randomly chosen values on any non result query and which uses the underlying
simulator (guaranteed to exist by the fact that the hash function is indifferentiable) to answer result
queries. For this we consider the following simulator S∗ that is built from some underlying simulator
S. Simulator S∗ will be somewhat similar to the extractor of Lemma 3.5 (see Figure 6). We also use a
similar syntax as for the proof of Lemma 3.5.

Construction C.3. Simulator S∗ is build from simulator S. We give the pseudo-code of simulator S∗
when receiving query (m,x) in Figure 13. We assume that it initializes table M← [] and set PG ← {}
before processing the first query.

As in Lemma 3.5 we denote the value of the sole outgoing h-edge of a partial graph pg, relative to an
execution with simulator S∗, by pg.y (which is assigned in line 16). This value is used, as in extractor E
(see Lemma 3.5) to check whether partial graphs can be extended (lines 6 and 9).

Simulator S∗ keeps a tableM for storing queries and a set PG for storing partial graphs. On receiving
a query (m,x) simulator S∗ checks table M whether the query has been queried before. If so it returns
the same result as before: M[m,x]. If it is a new query it takes similar steps as extractor E in Lemma 3.5
to generate a new partial graph. Note that given the code of the simulator it is possible that more than
one new partial graph is generated during the processing of a query (see the foreach loops in lines 6 and

28

Simulator S∗(m,x) :
1 if M[m,x] 6= ⊥ then return M[m,x]
2 newG← ⊥
3 if init(m,x) then
4 newG← new PartialGraph(mp−1(m), hp−1(x))
5 else
6 foreach (pg, pg′) ∈ PG × PG : pg.y = hmp−1(m) ∧ pg′.y = hp−1(x) do
7 newG← pg.extendedBy(pg′,m, x, y))
8 if newG = ⊥ then
9 foreach pg ∈ PG : pg.y = hp−1(x) do
10 newG← pg.extendedBy(m,x, y)
11 if newG 6= ⊥ ∧ extract(newG) 6= ⊥ then

12 M[m,x]← EVALS
R

(newG)
13 else
14 M[m,x]← {0, 1}s
15 if newG 6= ⊥ then
16 newG.y←M[m,x]
17 PG.add(newG)
18 reset simulator S
19 return M[m,x];

Figure 13: Simulator S∗ from Construction C.3 as pseudo-code.

9). We will later show that this only happens with small probability. If a new partial graph was generated
and extract(pg) 6= ⊥, that is the graph can be completed (see description of model in Section 3), it

evaluates the partial graph using M(m,x) ← EVALS
R

(newG) giving the evaluation algorithm oracle
access to the underlying simulator SR. Note that this execution branch corresponds to result queries.
If no partial graph was generated, then S∗ chooses a value M(m,x) ← {0, 1}s uniformly at random.
Finally, if a partial graph newG was generated (independent of wether it can be completed or not) it
sets value newG.y toM(m,x) and adds the newly created partial graph to its set of graphs PG (lines 16
and 17). It then resets the underlying simulator S and returns value M[m,x].

In the following we show, that simulator S∗ as described above is (almost) as good in the indiffer-
entiability game as the underlying simulator S that it is build from. This is captured by the following
lemma, for which we additionally need the distinguishing advantage for the indifferentiability game for
a distinguisher D and simulator S defined as

Advindiff
Hh,R,S(D) =

∣∣∣Pr
[
DH

h,h(1λ) = 1
]
− Pr

[
DR,S

R
(1λ) = 1

]∣∣∣ .
Lemma C.4. Let Hh : {0, 1}∗ → {0, 1}n be a (tc, te)-iterative hash function and R a random oracle.
Let S be a simulator that exports the same interface as h : {0, 1}k × {0, 1}d → {0, 1}s. Let simulator S∗
be constructed as in Construction C.3 from simulator S. Then for any distinguisher D making at most
q oracle queries there exists distinguisher D′ such that

Advindiff
Hh,R,S∗(D) ≤ 23q ·Advindiff

Hh,R,S(D′)+

2 · 6(q2 + (qh + qR · `)2) + (q + qh + qR · `)(|IV|+ |C|)
2H∞(g(Us))

Moreover, simulator S∗ has run time tS∗ ∈ O(q · tS · te) and makes at most qS∗ ∈ O(q · qS) many queries
to the random oracle. Distinguisher D′ runs in time tDtS∗ and makes at most q+1 oracle queries. Value
`·d denotes an upper bound on the length of random oracle queries under function pad by distinguisher D.

Proof. We want to upper bound the indifferentiability advantage of a distinguisher D for simulator S∗:

Advindiff
Hh,R,S∗(D) =

∣∣∣Pr
[
DH

h,h(1λ) = 1
]
− Pr

[
DR,S

R
∗ (1λ) = 1

]∣∣∣ .
29

For the proof we use a game based approach (similar to the the indifferentiability proofs in [16]) starting

from experiment Pr
[
DR,SR∗ (1λ) = 1

]
in GAME1 until we reach the target experiment Pr

[
DHh,h(1λ) = 1

]
in GAME4 summing up the distinguishing probabilities in the individual game hops.

GAME1. We start with the original security game:

Pr[GAME1] = Pr
[
DR,S

R
∗ (1λ) = 1

]
GAME2. This game is as the previous game, but for a slightly changed simulator. The new simulator S0

works as simulator S∗ but looks for conditions that might be exploited by a distinguisher and deliberately
fails in such a situation. That is, S0 fails if one of the following failure conditions occur:

Condition B1: Simulator S∗ generates an output value asM[m,x]← EVALS
R

(newG) such that g(M[m,x]) 6=
R(extract(newG)).

Condition B2: Simulator S∗ generates an output valueM[m,x] such that there exists (m′, x′) 6= (m,x)
for which g(M[m′, x′]) = g(M[m,x]) .

Condition B3: Simulator S∗ generates an output value M[m,x] such that M[m,x] ∈ IV ∪ C.

Condition B4: The simulator keeps an additional list L of all queries to it. When on a new query
(m,x) a new partial graph newG is generated it tests for all earlier queries (m′, x′) ∈ L whether
newG can be extended by (m′, x′). If any query is found, the simulator fails.

Condition B5: The simulator keeps an additional list L of all queries to it. When a new output
M[m,x] is chosen the simulator checks if there has been an earlier query (m′, x′) ∈ L such that
M[m,x] = hp−1(x′) or M[m,x] = hmp−1(m′). If any query is found, the simulator fails.

Let GAME2 be the event that distinguisher D outputs one in this setting, i.e.,

Pr[GAME2] = Pr
[
DR,S

R
0 (1λ) = 1

]
.

The responses between the distinguisher in GAME1 and GAME2 can only differ, if the simulator reaches
one of the failure conditions. For the difference between games GAME1 and GAME2 it holds that

|Pr[GAME2]− Pr[GAME1]| ≤ Pr

[
5⋃
i=1

Bi hold for any of the queries

]
We consider the failure conditions in turn. The first failure condition B1 corresponds to the underlying

simulator SR failing on properly simulating the responses for a query sequence. Simulator S0 only

generates output values as M[m,x] ← EVALS
R

(newG) if for the newly generated partial graph newG
it holds that extract(newG) extracts a message M . The simulator is then called on all queries in the

partial graph in correct order (by executing EVALS
R

(newG)).
Assume that the answer computed using simulator SR is inconsistent with R(M), i.e.,

g(EVALS
R

(newG)) 6= R(M) .

Then we can build distinguisher D′ against the indifferentiability of Hh with simulator S. Distinguisher
D′ guesses index i ∈ {1, . . . q} and runs distinguisher D passing on random oracle queries to its random
oracle. The first i− 1 queries to the simulator distinguisher D′ answers by simulating simulator S∗ and

in particular simulating the execution of EVALS
R

(newG). Here, it runs an internal simulation of S using
its oracle R to answer random oracle queries. On the i-th query D′ distinguishes between a non-result
and a result query. If it is a non-result query, it stops and outputs 1 with probability 1/2. If it is a

result query it computes y ← EVALS
R

(newG), this time using its simulator oracle in the computation.
It then validates that g(y) = R(extract(newG)). If this is the case it outputs 0, else it outputs 1. By
construction we have, that

Pr[B1 holds for any of the queries] ≤ q ·Advindiff
Hh,R,S(D′) .

30

Distinguisher D′ runs in time tDtS∗ and makes at most q + 1 oracle queries.

For event B2 note that if outputs of the simulator are chosen as EVALS
R

(newG) (line 12) then by
failure condition B1 it holds that

g(EVALS
R

(newG)) = R(extract(newG)) .

Now, assume that there exist two partial graphs pg and pg′ in PG such that extract(pg) = extract(pg′).
Then by definition of iterative hash functions it holds that pg and pg′ are isomorphic. We now show that
this cannot be the case. Assume that on a fresh query (m,x) a new partial graph newG is generated
which is isomorphic to an existing graph pg ∈ PG. By construction, the final h-node in newG gets
as input values (m,x) if newG is evaluated as EVALS0(newG). Similarly, pg has, relative to S0, values
(m′, x′) 6= (m,x) as input to its final h-node input. This, however, directly implies that the two graphs
cannot be isomorphic.

This directly yields that, if not B1, then a collision in values generated as g(EVALS
R

(newG)) can
occur with probability at most q2 ·2−n+1 by the birthday bound. If, on the other hand, the output value

is not generated as EVALS
R

(newG) but chosen uniformly at random then the probability of a collision
can be upper bound using the min-entropy of a uniformly random variable under function g. Let Us
denote random variable that is distributed uniformly in {0, 1}s. Then the probability of a collision under
g is upper bound by q2 · 2−H∞(g(Us))+1. As H∞ (g(Us)) ≤ n we have that

Pr[B2 holds for any of the queries|¬B1] ≤ q2

2H∞(g(Us))−1

Failure condition B3 intuitively says that the simulator never generates an output value that is in
set IV of initialization vectors or in set C of constants. The output value M[m,x] is either generated

as EVALS
R

(newG) (line 12) or chosen uniformly at random from {0, 1}s (line 14). If M[m,x] is chosen
uniformly at random the probability is at most (|IV| + |C|) · 2−s that it is in set IV ∪ C. Taking the
union bound over q queries, this yields that the probability is less than q(|IV| + |C|) · 2−s that at least
one output value is in set IV ∪ C (given that all q output values were chosen uniformly at random from
{0, 1}s).

If, on the other hand, for a query (m,x) to simulator S0 a new partial graph newG then the output

is generated as EVALS
R

(newG). Assuming event B1 does not occur, it holds that

g(EVALS
R

(newG)) = R(extract(newG))

and by the previous discussion we have that no two partial graphs pg and pg′ can be in PG such that
extract(pg) = extract(pg′). Thus, we can upper bound the probability that a single ouput value

EVALS
R

(newG) is in IV ∪ C by (|IV|+ |C|) · 2−n, assuming that event B1 does not occur.
Taking a union bound yields

Pr[B3 holds for any of the queries|¬B1] ≤ q(|IV|+ |C|)
2min(s,n)

.

For event B4 consider that, assuming ¬B1, all partial graphs have a different value on their outbound
edge, that is:

∀(pg, pg′) ∈ PG × PG : pg.y 6= pg′.y ∨ pg = pg′

For a partial graph pg to be extendable by an earlier query (m′, x′) ∈ L it must hold that hp−1(x′) =
pg.y.6 As partial graph pg was generated only after query (m′, x′) was queried to the simulator by the
distinguisher we can bound the probability of guessing value x′ such that a later query to the underlying
simulator SR yields value hp−1(x′) with the birthday bound as q2 · 2−n+1, again using the fact that
unless B1 occurs we have that

g(EVALS
R

(newG)) = R(extract(newG)) .

6Note that the condition hmp−1(m′) = pg.y individually is not sufficient to allow for a graph to be extended which is
why we can ignore it here.

31

Thus,

Pr[B4 holds for any of the queries|¬B1] ≤ q2

2n−1

Finally, we can estimate the probability of event B5 similar to the probability of event B3 by noting
that L can at any point hold at most q entries. Thus, instead of factor (|IV|+ |C|) as in B3 we now get
a factor of 2q:

Pr[B5 holds for any of the queries|¬B1] ≤ 2q2

2min(s,n)

Putting it all together (via a union bound) we have that

|Pr[GAME2]− Pr[GAME1]| ≤ Pr

[
5⋃
i=1

Bi hold for any of the queries

]

≤ 5 Pr[B1] + Pr

[
5⋃
i=2

Bi hold for any of the queries|¬B1

]

≤ 5q ·Advindiff
Hh,R,S(D′) +

q2

2H∞(g(Us))−1
+

q(|IV|+ |C|)
2min(s,n)

+
q2

2n−1
+

2q2

2min(s,n)

≤ 5q ·Advindiff
Hh,R,S(D′) +

6q2 + q(|IV|+ |C|)
2H∞(g(Us))

(1)

GAME3. We now change the left oracle (i.e., the random oracle) such that the left oracle is always
consistent with the right oracle. That is, instead of the random oracle we now give the distinguisher
access to HS0 , that is, the iterative hash construction with the simulator S0 as oracle. Let GAME3 be
the event that distinguisher D outputs one in this setting, i.e.,

Pr[GAME3] = Pr
[
DH

S0 ,SR0 (1λ) = 1
]
.

We will show that a distinguisher can only detect a difference in the view of GAME2 and GAME3

if the simulator S0 fails in at least one of the two games. In other words we show that in GAME2 the
responses of the simulator are always consistent with the random oracle, unless it explicitly fails.

If the distinguisher wants to distinguish between games GAME2 and GAME3 it must find a difference
in the responses of the left or right oracle among the two games. The right oracle is the same in both
games. The random oracle in game GAME2 is exchanged for construction HS0 in game GAME3. In a
first step we show that the left oracle individually does not allow a distinguisher to distinguish the two
games.

Simulator S0 generates its output either as a uniformly random string or via a call to EVALS
R

(newG).
By failure condition B1 we have that, unless the simulator fails explicitly, the outputs of the simulator are
unique and moreover distributed as g(Us) where Us is a random variable uniformly distributed in {0, 1}s.
Thus, a distinguisher D distinguishing between construction HS0 and a random oracle can directly be
turned into a distinguisher between Hh and a random oracle (without any loss in run-time nor success
probability). Thus the advantage of D is upper bound by Advindiff

Hh,R,S(D′), that is, the indifferentiability
advantage of a distinguisher D′ which runs D using only its left oracle and outputs whatever D outputs.

It remains to show that the combined view of the distinguisher does not change. For this note, that
in game GAME3 the responses of the left and right oracle are always consistent. Thus, the distinguisher
can only distinguish the two games if it finds inconsistencies between the left and right oracle in game
GAME2. In the following we show that such inconsistencies are only possible if the simulator explicitly
fails.

Let us denote by a triple (m,x, y) a call by the distinguisher D to simulator S0 where y := S0(m,x).
Let Q := (mi, xi, yi)1≤i≤q be a sequence of such triples. Then we denote by PG(Q) the set of potential
partial graphs that can be build from queries (and answers) in Q for iterative hash construction Hh.

32

Note that this set may be potentially of infinite size; if the simulator does, however, not fail it will bet
at most of size q. The following claim captures that a distinguisher cannot find inconsistencies unless
simulator S0 explicitly fails.

Claim C.5. In game GAME2, unless simulator S0 explicitly fails, distinguisher D never queries simu-
lator S0 on a sequence Q := (mi, xi, yi)1≤i≤q such that

|PG(Q)| > q ∨(
∃ pg ∈ PG(Q) : extract(pg) 6= ⊥ ∧ R(extract(pg)) 6= g(EVALM(pg))

)
where M is the internal table kept by simulator S0 after processing all queries in Q. By EVALM(pg) we
denote the execution of algorithm EVAL with table M as oracle. If for a query by EVAL is not in table M
we set the result of computation EVALM(pg) to a value such that

R(extract(pg)) 6= g(EVALM(pg)) .

Proof. Let us prove the first condition, i.e., |PG(Q)| ≤ q. In fact, we will not only prove that |PG(Q)| ≤ q
but that the set PG as maintained by the simulator S0 is equivalent to set PG(Q) unless the simulator
explicitly fails. Assume this is not the case. Then as D makes at most q queries there must exist i ∈
{1, . . . , q} such that before the i-th query |PG(Q|1,...,i−1

)| < i and after the i-th query |PG(Q|1,...,i)| > i,
that is, the i-th query added at least two partial graphs. Let us first show that the simulator will
internally never generate two new partial graphs on any query (that is newG is overwritten at least once
in line 7 or line 10). For simulator S0 to generate two partial graphs on a new query (m,x) it must hold
that

∃pg, pg′ ∈ PG × PG : pg 6= pg′ ∧ pg.y = pg′.y .

By failure condition B3 this cannot happen if the simulator does not fail explicitly.
Clearly, the set of partial graphs constructed by the simulator is only a subset of PG(Q) as the

simulator only generates partial graphs for queries coming in “correct order”. Failure condition B4,
however, directly tells us that earlier queries can never be used to extend later generated partial graphs.
Finally, failure conditions B3 and B5 tell us that no partial graphs can be used to replace initial queries
(B3) nor can a newly generated partial graph be combined with any of the existing partial graphs (B5).
This proves, that unless the simulator fails explicitly, with each new query at most one new graph is
added to PG(Q). Furthermore, this shows that PG(Q) is exactly the same as set PG as constructed by
the simulator. Thus, by failure condition B2 the random oracle must be consistent with answers given
by the simulator. ♦

With this we have shown that unless the simulator explicitly fails the view of the distinguisher is
in both games equivalent. To complete the game hop we assume that the longest random oracle (left
oracle) query by the distinguisher consists of messages such that under pad at most ` d-bit blocks are
generated. Note that in game GAME3 these will result in at most ` simulator S0 queries as the left
oracle is implemented as HS0 . If we denote by qR the number of random oracle (left oracle) queries by
the distinguisher and by qh the number of simulator (right oracle) queries, then we have that

|Pr[GAME3]− Pr[GAME2]| ≤ Advindiff
Hh,R,S(D′) + Pr[S0 fails in GAME2] + Pr[S0 fails in GAME3]

With Equation (1) and noting the difference in the number of h-queries in games GAME2 and GAME3

due to indirect h-evaluations in game GAME3 we have:

|Pr[GAME3]− Pr[GAME2]| = Advindiff
Hh,R,S(D′)+(

5q ·Advindiff
Hh,R,S(D′) +

6q2 + q(|IV|+ |C|)
2H∞(g(Us))

)
+(

5q ·Advindiff
Hh,R,S(D′) +

6(qh + qR · `)2 + (qh + qR · `)(|IV|+ |C|)
2H∞(g(Us))

)
= 11q ·Advindiff

Hh,R,S(D′)+
6(q2 + (qh + qR · `)2) + (q + qh + qR · `)(|IV|+ |C|)

2H∞(g(Us))

33

GAME4. In GAME4 we make the game independent of the random oracle. That is, we now change
the simulator to always choose output values for new queries as a uniformly random string in {0, 1}s.
Furthermore, we remove any failure conditions from the simulator. This yields simulator S1 which
effectively simulates a fixed length random oracle via lazy sampling. Let GAME4 be the event that
distinguisher D outputs one in this setting, i.e.,

Pr[GAME4] = Pr
[
DH

S1 ,S1(1λ) = 1
]
.

It holds that a distinguisher can only differentiate between games GAME3 and GAME4 if

• In game GAME3, simulator S0 explicitly fails

• In game GAME4, simulator S1 reaches a state in which simulator S0 would have explicitly failed.

• Distinguisher D can distinguish between uniformly random values in {0, 1}s and values generated

as EVALS
R

(newG)

For the last condition note that, unless a simulator explicitly fails we have that

g(EVALS
R

(newG)) = R(extract(newG)) .

Assume distinguisher D can distinguish between values generated as g−1(R(extract(newG))) and a
uniform value in {0, 1}s. Then we can build distinguisher D′ against the indifferentiability of Hh with
S. Distinguisher D′ simply runs D only using its right oracle and outputs whatever D outputs. Then
we have that the distinguishing probability of D is upper bound by Advindiff

Hh,R,S(D′).
Putting it all together we have that

|Pr[GAME4]− Pr[GAME3]| ≤ Advindiff
Hh,R,S(D′) + Pr[S0 fails in GAME3] +

Pr[S1 reaches a failure condition]

= Advindiff
Hh,R,S(D′) + 22q ·Advindiff

Hh,R,S(D′)+

2 · 6(q2 + (qh + qR · `)2) + (q + qh + qR · `)(|IV|+ |C|)
2H∞(g(Us))

We can now complete the proof of the theorem as we have reached the target view. Note that
simulator S1 effectively implements a fixed length random oracle. Thus:∣∣∣Pr

[
DH

h,h(1λ) = 1
]
− Pr

[
DH

S1 ,S1(1λ) = 1
]∣∣∣ = 0

and hence

Advindiff
Hh,R,S∗(D) ≤ 23q ·Advindiff

Hh,R,S(D′)+

2 · 6(q2 + (qh + qR · `)2) + (q + qh + qR · `)(|IV|+ |C|)
2H∞(g(Us))

For the run-time of simulator S∗ note that at any time there are at most q graphs in PG. As the
test of whether a partial graph can be extended as well as whether the query is an initial query can be
done in constant time we have that up-to line 11 the run-time is bound by O (q). Algorithm extract

runs in time te. The generation of the output value involves either an evaluation of the graph (which
has at most 3q nodes; per query an h-node and two preprocessing nodes are added) or the generation of
a random value. This can be done in time O(q · tS · te) noting that the evaluation of the graph can be
done in linear time and involves q calls to simulator SR.

C.3 Proof of Theorem 5.1

With Lemma C.1 and C.4 we can now prove Theorem 5.1. A proof sketch for the asymptotic setting can
be found in the main part in Section 5. Let us restate Theorem 5.1 form page 18, this time in a concrete
setting.

34

Theorem 5.1. Let Hh : {0, 1}∗ → {0, 1}n be a (tc, te)-iterative hash function and R a random oracle.
Let game G ∈ LG be any functionality respecting game that is (tA∗ , qA∗ , εG, εbad)-unsplittable for Hh

and let A1, . . . ,Am be an adversary. Then, for any indifferentiability simulator S there exists adversary
B1, . . . ,Bm and distinguisher D such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤Pr

[
GR,B1,...,Bm ⇒ y

]
+ εG + εbad + 23qD ·Advindiff

Hh,R,S(D)+

2 · 6(q2
D + (qD,h + qD,R · `)2) + (qD + qD,h + qD,R · `)(|IV|+ |C|)

2H∞(g(Us))

Moreover,

tBi ≤ O
(
tA∗i + qA∗i · qD · t

∗
G

2
)

tD ≤ O

(
(qD · tS · te)(m+ t∗G +

m∑
i=1

qG,i · tA∗i)

)

qBi
≤ O

(
qA∗i (qD · qS + tS)

)
qD ≤ qG,0 +

m∑
i=1

qG,i · tA∗i + 1

` ≤ tD
d

t∗G ≤ O

(
tG +

m∑
i=1

qG,i · tA∗i · qD · qS

)
where tBi , tD, tS are bounds on the run-times of Bi,D,S and qBi , qS are bounds on the number of oracle
queries by procedures Bi,S. Values tA∗i and qA∗i are the bounds due to game G being unsplittable for
Hh. Values qD,h and qD,R denote upper bounds on the number of h-queries and R-queries by D. Values
qG,0 and qG,i denote upper bounds on the number of queries by game G to the honest interface of the
hash functionality and to the i-th adversarial procedure, respectively. Value tG is an upper bound on the
run-time of game GH

h,A1,...,Am . Value te denotes the runtime of procedure extract for hash function
Hh.

Proof. As game GH
h,A1,...,Am is an (tA∗ , qA∗ , εG, εbad)-unsplittable for hash function Hh there exists, by

definition, adversaries A∗1, . . . ,A∗m such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤ Pr

[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
+ εG

and that during game GH
h
r,A
∗
1 ,...,A

∗
m bad queries occur only with probability less than εbad. In the rest of

the proof we are going to construct adversaries B1, . . . ,Bm such that for all values y

Pr
[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
≤Pr

[
GR,B1,...,Bm ⇒ y

]
+ εbad + 23qD ·Advindiff

Hh,R,S(D′)+

2 · 6(q2
D + (qD,h + qD,R · `)2) + (qD + qD,h + qD,R · `)(|IV|+ |C|)

2H∞(g(Us))

We will set adversaries B1, . . . ,Bi as

Bi := A∗
S(i)
d

i

where S(i)
d will be an instance of a deterministic simulator Sd. Note that, in contrast to adversary A∗i ,

adversary Bi is used in a game with a random oracle instead of an iterative hash function. The simulator
is used to simulate the adversarial interface (i.e., the compression function) which is expected to exist
by procedure A∗i .

Constructing Simulator S(i)
d . We start with a simulator S that exports the same interface as

h : {0, 1}k × {0, 1}d → {0, 1}s and that runs in time tS . From this simulator we are now going to

construct simulator S(i)
d via several intermediate steps that are summarized in Table 1.

In a first step, let S∗ be the simulator constructed from S according to Construction C.3. By
Lemma C.4 we have that for all distinguishers D there exists distinguisher D′ such that

Advindiff
Hh,R,S∗(D) ≤ 23qD ·Advindiff

Hh,R,S(D′)+

2 · 6(q2
D + (qD,h + qR · `)2) + (qD + qD,h + qD,R · `)(|IV|+ |C|)

2H∞(g(Us))

35

Simulator Description

S The basic simulator guaranteed to exist due to hash functionality Hh
r being

indifferentiable from a random oracle.

S∗ The simulator constructed according to Construction C.3 with S as underlying
simulator.

Sd∗
The derandomized version of S∗ with derandomization with respect to adver-
sarial procedures A∗1, . . . ,A∗m.

Sd As Sd∗ but stateless.

Table 1: Simulators used in proof of Theorem 5.1

The run-time of our new simulator S∗ is upper bound by O (qD · tS · te) where qD is an upper bound
on the number of oracle queries by distinguisher D. Values qh,D, qR,D denote an upper bound on the
number of h-queries (resp. R-queries) by D, that is, qD ≥ qh,D + qR,D. Value te denotes the run-time of
algorithm extract and Us is a random variable that is uniformly distributed in {0, 1}s.

In the next step we are going to derandomize this simulator using the techniques developed in
Lemma C.1. We set Sd∗ to be the derandomized simulator constructed from simulator S∗ using Lemma C.1.
For this we choose the bound on the run-time of the distinguisher in Lemma C.1 as t∗G which is an upper

bound on the run-time of game GR,A
∗
1
S∗ ,...,A∗m

S∗
:

t∗G ≤ O

(
tG +

m∑
i=1

qG,i · tA∗i · qD · qS

)
.

Value tG denotes the run-time of the original game GH
h,A1,...,Am with adversarial procedures A1, . . . ,Am.

Value qG,i denotes a bound on the number of calls to the i-th adversarial procedure by game G. Note
that by this choice of run-time bound for the derandomization it holds, in particular, that for any of the
adversarial procedures A∗i it is not detectable whether it is given oracle access to S∗ or Sd∗ .

From simulator Sd∗ we now construct a simulator that is not just deterministic but also stateless

with respect to non-result queries as well as stateless for the evaluation of EVALS
R

(newG). Note that
Sd∗ distinguishes between result and non-result queries (see lines 12 and 14 in Figure 13). Non-result
queries are answered by randomly chosen values (where the randomness now, due to derandomization,
is extracted from the random oracle), while result queries are answered by computing the entire partial
graph with the underlying simulator SR (which also takes extracted randomness from the random oracle
instead of real randomness). We will now change the simulator such that its answers are independent
from the simulator’s internal state.

Simulator Sd works as simulator Sd∗ but generates values for non-result queries in the following way.
To answer non-result query (m,x) simulator Sd computes

y := R(r‖m‖x) with r := R(0tG+1) .

Note that by computing value r via a random oracle query to 0tG+1 we generate a value that is inde-
pendent of the bit stream used to derandomize the simulator (cp. Lemma C.1). Further note that the
probability of any of the adversarial procedures A∗i or game G of guessing value r is upper bounded by
2−n as they cannot have queried the oracle on that message due to the runtime restriction.

For the generation of answers to result queries note that the underlying simulator S is always reset

before the execution of EVALS
R

(newG). To ensure that the result does not depend on state we assume
that EVAL always evaluates the same (or isomorphic) graph in the same order7, and secondly we determin-
istically generate the randomness for simulator S by the same approach as for our other derandomization
steps. We choose the randomness for the simulator from a bit stream generated as

R(01t
∗
G+1)‖R(01t

∗
G+2)‖ . . .

7For example, algorithm EVAL can, whenever it has a choice, choose to process the node with the lexicographically
smallest input first.

36

Note that neither step changes the success probability for a distinguisher D and thus it still holds for
simulator Sd that

Advindiff
Hh,R,Sd(D) ≤ 23qD ·Advindiff

Hh,R,S(D′)+

2 · 6(q2
D + (qD,h + qD,R · `)2) + (qD + qD,h + qD,R · `)(|IV|+ |C|)

2H∞(g(Us))
(2)

Construction Adversary Bi. We can now construct adversary Bi as

Bi := A∗
S(i)
d

i

where S(i)
d denotes an independent copy of simulator Sd. By construction, we know that for all non-result

queries the simulation is guaranteed to be consistent, as independent instances of simulator Sd give the
same answer to the same query. Further, by construction, during game GR,B1,...,Bm bad queries happen
only with probability at most εbad. Thus, for result queries, all queries in the corresponding partial graph
are with probability at least 1− εbad queried by the same adversarial procedure in correct order. As this
allows the procedure’s copy of the simulator Sd to recognize the partial graph, it follows that also result
queries can be answered consistently by the respective copy of simulator Sd. For the asymptotic setting,
where by ≈ we denote negligibly-close, we can complete the proof noting that for all values y it holds

Pr
[
GR,B1,...,Bm ⇒ y

]
≈

Pr

[
GR,A

∗
1
S(1)
d ,...,A∗m

S(m)
d ⇒ y

]
≈ Pr

[
GR,A

∗
1
Sd ,...,A∗m

Sd ⇒ y
]
≈ Pr

[
GH

h,A∗1 ,...,A
∗
m ⇒ y

]
≈ Pr

[
GH

h,A1,...,Am ⇒ y
]

For concrete security, the remainder of the proof is readily established by applying Theorem 6.1 in
[30] (Theorem 4 in the proceedings version [31]), that is, the composition theorem by Ristenpart et al. for
reset indifferentiable hash functions. Note that our simulator is with probability 1− εbad equivalent to a
resettable simulator where a reset call precedes any adversarial procedure call and which is the form of
simulator needed in the proof of Theorem 6.1 [30]. We thus have

Pr
[
GH

h,A∗1 ,...,A
∗
m

]
≤ Pr

[
GR,B1,...,Bm

]
+ Advindiff

Hh,R,Sd(D) + εbad .

with

tBi
≤ tA∗i + qA∗i · tSd qBi

≤ qA∗i · qSd tD ≤ m+ t∗G +

m∑
i=1

qG,i · tA∗i qD ≤ qG,0 +

m∑
i=1

qG,i · tA∗i

where tD is a bound on the run-time of distinguisher D and qD is a bound on the number of oracle
queries by D. Value qG,0 denotes a bound on the number of queries by G to the honest interface of the
functionality and qG,i denotes a bound on the number of calls to the i-th adversarial procedure (see [30]
Theorem 6.1). Value tBi is an upper bound on the run-time of procedure Bi and qBi an upper bound on
the number of random oracle queries by Bi. Value tA∗i denotes the run-time of procedure A∗i and qA∗i a
bound on the number of oracle calls to the adversarial interface of Hh by procedure A∗i . The run-time
of simulator Sd is denoted with tSd and qSd is a bound on the simulators oracle queries.

Plugging in equation (2) we get that

Pr
[
GH

h,A∗1 ,...,A
∗
m

]
≤Pr

[
GR,B1,...,Bm

]
+ εbad + 23qD ·Advindiff

Hh,R,S(D′)+

2 · 6(q2
D + (qD,h + qD,R · `)2) + (qD + qD,h + qD,R · `)(|IV|+ |C|)

2H∞(g(Us))

It remains to estimate the run-time and query complexity of distinguisher D′ and simulator Sd. By
Lemma C.4 we have that tD′ ≤ tDtS∗ ∈ O (tD · qD · tS · te) where tS is the run-time of the original
simulator S. Distinguisher D′ makes qD′ = qD + 1 oracle queries. Simulator Sd runs in time of the
derandomized version of S∗, that is, tSd ∈ O

(
qD · tS · t∗G + qD · t2S

)
) and as t∗G > tS this becomes tSd ∈

O
(
qD · t∗G

2
)
. Simulator S∗ makes O (qD · qS) queries to the random oracle. The derandomized version

thus makes qSd ∈ O (qD · qS + tS). For value ` note that it is an upper bound on the number of d-bit
blocks in pad(M) where M is the longest message by distinguisher D. We can thus bound ` by tD/d.

37

D The Non-Adaptive CDA Game

In this section we prove that the non-adaptive CDA game (Figure 1) is unsplittable for any iterative hash
construction under the same assumptions as Ristenpart et al. [31] showed that for the non-adaptive CDA
game composition works as in the indifferentiability framework for hash functions of the form g(fh(·)).
Note that the difference to our proof is, that in the NMAC-case g is assumed to be an ideal function
independent of h. The version due to Ristenpart et al. is, thus, not applicable, for example, for Chop-MD
functions such as SHA-2 or Keccak.

Furthermore, we give a second and simpler proof and show that under an independent set of assump-
tions —yet to some extend less restrictive assumptions than the assumptions by Ristenpart et al.— the
CDA game is unsplittable for a large class of iterative hash constructions.

We begin by recalling the basic definitions.

Public-Key Encryption. A public-key encryption scheme AE := (KGen, E ,D) consists of three effi-
cient algorithms: a key generation algorithm KGen that given the security parameter generates a keypair
(pk, sk), an encryption algorithm E that, being given a message m, randomness r, and the public key
pk, outputs a ciphertext c, and the decryption algorithm D that, given a ciphertext c and secret key sk,
outputs a plaintext message or a distinguished symbol ⊥.

CDA Security. The CDA game (depicted in Figure 1) captures the security of public-key encryption
schemes where the randomness used to encrypt may not be sufficiently random after all, i.e., it may not
have sufficient min-entropy [6]. For the remainder of this and the next section we denote by ω > 0 the size
of messages and by ρ > 0 the size of randomness for encryption scheme E . In the CDA-game adversary
A1 implements a so called (µ, ν)-mmr-source which is a probabilistic algorithm that outputs a triplet of
vectors (m0,m1, r), each of size ν. Vectors m0 and m1 contain messages, that is, each component is
of size ω and vector r corresponds to randomness, that is each component is of size ρ. Furthermore, to
exclude trivial attacks, we require that (mb[i], r[i]) 6= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}.
Finally, we require that components have sufficient min-entropy µ independent of the random oracle,
that is for all 1 ≤ i ≤ ν, all b ∈ {0, 1}, all r ∈ {0, 1}ρ, and all m ∈ {0, 1}ω it holds that

Pr
[

(mb[i], r[i]) = (m, r)|(m0,m1, r)← AR1 (1λ),R
]
≤ 2−µ .

The advantage of an adversary A := (A1,A2) in the CDA game where adversary A1 is a valid
(µ, ν)-mmr-source is given as

AdvCDA
AE,Hh(A1,A2) := 2 · Pr

[
CDAHh,A1,A2

AE ⇒ true
]
− 1 .

D.1 Composition for CDA - An Instructive Example

In the following we are going to prove that composition works for CDA under three simple assumptions.
As the second assumption will narrow down the class of iterative hash functions for which CDA is
unsplittable, this composition theorem is a bit more restricted than the composition theorem we show
in Section D.2. Nevertheless, the here presented theorem holds, for example, for Merkle-Damg̊ard like
hash functions, and furthermore, makes fewer assumptions on the encryption scheme used in the CDA
game. Moreover, the proof is straightforward and we believe quite instructive on how to work with the
notion of unsplittable-games.

The first assumption is that the the encryption scheme AE queries the random oracle on a single
message m per E invocation such that m is of the form m := pk‖ . . ., that is, m is prepended with the
public key pk. Secondly, we assume that if E is queried on two inputs with the same length, then also
its query to the hash function is of the same length. These two requirements are, for example, met by
the Randomized-Encrypt-with-Hash scheme [6] and the Encrypt-with-Hash scheme [5].

The third and final assumption is on the iterative hash construction Hh. We assume that padding
function pad only adds a postfix to any message, that is, M = pad(M)|0..|M| . Let m1‖ . . . ‖m` = pad(M)

be a padded message consisting of ` blocks of size d. We assume that for function Hh it holds that the
execution graph construct(M) has exactly one h-node connected to an IV-node (via an hp-node, and
assuming |IV| = 1) and that the second input to that h-node is connected to a message-block-node for

38

message-block m1 (via a mp-node). Note that this requirement is met, for example, by Chop-MD or the
sponge construction (see Section A.2).

Finally, we need a notion of the probability of guessing the public key. For this, we define the
maximum public-key collision probability in the style of [5]. This intuitively captures the probability of
guessing a public key as generated by a PKE scheme’s KGen algorithm:

maxpkAE := max
w∈{0,1}∗

Pr
[

(pk, sk)← KGen(1λ) : pk = w
]

(3)

Lemma D.1. Let AE be a public-key encryption scheme. Let the encryption scheme query its hash
functionality Hh on a single message per E invocation, that message being of the form pk‖ Let

adversary A1 be a valid (µ, ν)-mmr-source. Then, the non-adaptive CDAH
h,A1,A2

AE game (cf. Figure 1) is
(tA∗ , qA∗ , εG, εbad)-unsplittable for any iterative hash construction with restrictions as described above.
Moreover

tA∗i = O(tAi + qAi) εbad = 0

qA∗i ≤ 2qAi
εG ≤ maxpkAE +

(qA1
+ qA2

) · ν · qE
2s

+
ν2q2
E

2s−1

Values tAi
, tA∗i denote the run-time of Ai,A∗i ; values qAi

, qA∗i denote the number of oracle queries. Value
qE denotes an upper bound on the number of h evaluations on an Hh-query by E.

To ease on notation we assume in the upcoming proof that |pk| = d as well as k ≤ d, that is, the public
key fits exactly the block-length of scheme Hh and the second input to h : {0, 1}d × {0, 1}k → {0, 1}s is
at most of length d.

Proof. The outline of the proof is best explained with Figure 14. Game G1 is the original CDA game.
The idea is to exchange the oracle that the adversarial procedures are given access to for an oracle hhS
which ensures that no query is bad by slightly changing how queries are forwarded to the actual oracle
h. The key point is, that the first stage adversary can only with probability less than maxpkAE guess
public key pk. Thus, the probability of A1 querying an h-query which is also (indirectly) queried by the
encryption function E is bound by maxpkAE as the very first query in every partial graph will contain
the public-key.

Let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function. Let qA1 be the number of oracle queries by
A1 and let qE (a function of ω and ρ, the message length and randomness length) be a bound on the
number of h-nodes in any partial graph constructed as the result of an Hh-query by E . Note that there
are ν-many entries in vectors mb, rb and thus ν-oracle queries by E . Let iv ∈ IV be the single initial
vector for scheme Hh. For each Hh-query by E the single initial query is (iv, pk). The probability of any
of the qA1 oracle queries by A1 being (iv, pk) is upper bound by qA1 ·maxpkAE . Assuming A1 does not
query (iv, pk) then we can directly upper bound the probability of a collision of a query by A1 with an
indirect query by E (due to calling Hh) by qA1

· ν · qE · 2−s. Thus, we have

Pr[A1 h-collides with E] ≤ maxpkAE +
qA1
· ν · qE
2s

Let us now describe the setup of game G2. For this let hS : {0, 1}d × {0, 1}k be defined as

hS(m,x) := h(x, h(m, iv)) .

Note that function hS queries a Merkle-Damg̊ard chain of length two with the first query being an initial
query. Thus, by only querying hS it is impossible to make bad queries. Further note, that as h is an
ideal function, functions hS and h are indistinguishable.

Let h∗S : {0, 1}d × {0, 1}k be defined as

h∗S(m,x) :=

{
h(m,x) if (m,x) belongs to partial graph which contains initial query (pk, iv)

hS(m,x) else

We have already seen (for example, the extractor in Lemma 3.5 or the simulator in Construction C.3)
that it is easy to keep a list of partial graphs and on a new query (m,x) check if a partial graph can be

39

extended by that query. Function h∗S does exactly this, it keeps a list of all partial graphs that begin
with query (pk, iv) (as h∗S is only used by A2 we can assume that h∗S is initialized with value pk) and on
a new query (m,x) it checks, if any of the partial graphs can be extended by that query. If this is the
case, then it returns h(m,x), else it returns hS(m,x). Note that the function is not well defined, as a
query (m,x) might at an earlier stage not be part of a correct partial graph, but be so at a later point.
If this happens, we let h∗S explicitly fail and say the adversary wins. We will shortly see how to bound
this probability.

We further need to bound the probability of adversary A2 making query (m,x) to its oracle such
that h∗S answers with hS (that is, the second case) and query (m,x) was (indirectly) queried by E during
some Hh evaluation. Let us call this event “A2 h-collides with E”. In this case it holds for query (m,x)
that hp−1(x) is equal to the result of an h-query (m′, x′) by E and A2 did not make query (m′, x′). The
probability of guessing h(m′, x′) is at most 2−s. However, A2 gets as input vector c. In the following
we argue that even given vector c the probability of an h-collision between A2 and E is small, unless A2

queries the messages in the same order as E .
It holds that givenHh(M) any h-query in the corresponding execution graph, except for initial queries,

have min-entropy at least s bits (also see the proof of Lemma 3.4). As E does not make h-queries directly
this, then, also holds given value ci = E(pk,mb[i]; r[i]). Thus, value ci can at most contain information
about the result of the final h-query during the computation of Hh(Mi) as well as information about the
input to E , that is, pk,mb[i]; r[i]). As for i, j ∈ {1, . . . , ν} we have that

|pk|+ |mb[i]|+ |mb[i]| = |pk|+ |mb[j]|+ |mb[j]|

also, by definition, queries Mi and Mj by E are of equal length, that is |Mi| = |Mj |. Thus, the
probability that h(mi

res, x
i
res), where (mi

res, x
i
res) denotes the result query corresponding to Hh(Mi),

appears as second input in any of the h-queries in Hh(Mj) is upper bounded by the probability of having
an h-collision within the qE indirect h-queries by E during the evaluation of Hh(Mj). Thus, we can safely
upper bound the probability that A2 h-collides with E by

ν2q2
E

2s−1
+
qA2
· ν · qE
2s

where the first term corresponds to a collision within the qE×ν indirect queries by E and the second term
corresponds to A2 guessing an h-query by E . Note that if A2 does not h-collide with E then simulator
h∗S never fails.

We are now almost done. We have established that if A2 does not h-collides with E we have that the
view of adversary A2 is consistent with that in game G1. That is, if it queries a partial graph that was
also queried by the encryption scheme, then h is used directly. Furthermore, if in addition A1 does not
h-collides with E , then if A2 makes a query (m,x) to its oracle which was also made by A1 then hS is
used. Thus:

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Pr[A1 h-collides with E] + Pr[A2 h-collides with E]

≤ maxpkAE +
qA1
· ν · qE
2s

+
ν2q2
E

2s−1
+
qA2
· ν · qE
2s

Moreover, bad queries in G2 can, by construction, not occur. Adversary AhS
1 with hS as oracle runs in

time tA1
but now makes two oracle queries per h query by Ah

1. Adversary Ah∗S
2 with h∗S needs to keep

an additional list of partial graphs. There can be at most qA2
partial graphs and the checks if a query

belongs to any one of them can be done in linear time. Thus Ah∗S
2 runs in time O(tA2 + qA2).

D.2 Reproving the CDA Composition Theorem due to Ristenpart et al. [31]

In this section we are reproving the composition result for the CDA game due to Ristenpart et al. [31].
The two key differences between our version and the one due to Ristenpart et al. is that i) our proof is
a bit simpler, and, furthermore it holds for any iterative hash function and not only for functions of the
NMAC type, that is, functions that can be decomposed as g(fh(·)) where g and h are two independent
ideal functions.

40

game G1

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← Ah
1(1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

else return (b = b′)

game G2

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← AhS
1 (1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah∗S
2 (pk, c)

else return (b = b′)

Figure 14: Games for Proof of Lemma D.1

game IND-SIMA,H
h

AE,S

b← {0, 1}
(pk, sk)← KGen(1λ)

b′ ← ARoS,h(pk)
return (b = b′)

procedure RoS(m, r)

If b = 1 then return EH
h

(pk,m; r)

else return SH
h

(pk, |m|)

Figure 15: Game IND-SIM

IND-SIM Security. To prove that CDA is unsplittable for any hash construction (Lemma 4.2) we
need the additional notion of IND-SIM security defined by Ristenpart et al. in [31]. Intuitively IND-SIM
states that an adversary cannot distinguish between real and simulated encryptions, where the simulator
only gets the public key and message length as input: this is captured via the IND-SIM game (Figure 15).
Here, the only limititation is that the adversary may not repeat queries to its RoS oracle. We define the
IND-SIM advantage of an adversary A as

AdvIND-SIM
AE,S (A) := 2 · Pr

[
IND-SIMAAE,S ⇒ true

]
− 1

Do note that the adversary chooses both message and randomness for the encryption and that without
additional randomness this security goal is unachievable. It is, however, achieveable (for example, by the
Randomized-Encrypt-with-Hash scheme [6] and the Encrypt-with-Hash scheme [5]) if the adversary does
not make any random oracle calls [31]. We can, naturally, weaken this restriction to require only that
the adversary does not make any random oracle calls which would also be made by the deterministic
algorithm E for any of the adversaries RoS-queries.

Full Proof of Lemma 4.2. We prove Lemma 4.2 under similar assumptions as do Ristenpart et
al. [31] in their analysis. The first assumption is, that the encryption scheme is IND-SIM secure in
the ROM if the IND-SIM adversary does not make random oracle queries. The second assumption is
that the encryption scheme uses the public key, as well as its input (i.e., the to be encrypted message
and provided randomness) in its single query to the hash oracle per E-invocation. Third, we assume
the probability of guessing the public key as generated by KGen to be small. Finally we assume that
adversary A1 is a valid mmr-source. Let us restate the lemma:

Lemma 4.2 (restated). Let AE be a public-key encryption scheme. Let the encryption scheme query
its hash construction Hh on a single message per E invocation, that message including (an encoding
of) the public key and the input to E. Let adversary A1 be a valid (µ, ν)-mmr-source. Then, for any

encryption simulator S there exists IND-SIM-adversary B such that the non-adaptive CDAH
h,A1,A2

AE
game (cf. Figure 1) is (tA∗ , qA∗ , εG, εbad)-unsplittable for any hash construction. Moreover,

εG ≤ 3qA1
·maxpkAE +

3(qA1 + qA2) · ν + 2qB + 6q2
B

2s
+

3qA2
· ν

2µ
+

6ν

2H∞(g(Us))
+ 2 ·AdvIND-SIM

AE,R,S (B)

εbad = 0 tA∗i ≤ tAi
qA∗i ≤ 2qAi

qB ≤ qA1
+ qA2

+ ν ·max(qE , qS)

41

game G1

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← Ah
1(1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

games G2, G3

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← Ah
1(1λ)

c← EH
h

(pk,mb; r)

c← SH
h

E,ν(pk, ω)

b′ ← Ah
2(pk, c)

return (b = b′)

game G4

b← {0, 1}
(pk, sk)← KGen(1λ)

c← SH
h

E,ν(pk, ω)

b′ ← Ah
2(pk, c)

(m0,m1, r)← Ah
1(1λ)

c← EH
h

(pk,mb; r)
return (b = b′)

game G5

b← {0, 1}
(pk, sk)← KGen(1λ)

c← SH
h

E,ν(pk, ω)

b′ ← AhS
2 (pk, c)

(m0,m1, r)← AhS
1 (1λ)

c← EH
h

(pk,mb; r)
return (b = b′)

adversary B′(pk)

b∗ ← {0, 1}
(m0,m1, r)← Ah

1(1λ)

c← EH
h

(pk,mb∗ ; r)
c← RoS(mb∗ ; r)

b′∗ ← Ah
2(pk, c)

if bad2 then return 1
return 0

adversary B′′(pk)

b∗ ← {0, 1}
(m0,m1, r)← Ah

1(1λ)

c← EH
h

(pk,mb∗ ; r)
c← RoS(mb∗ ; r)

b′∗ ← Ah
2(pk, c)

if b∗ = b′∗ then return 1
return 0

Figure 16: Games for Proof of Lemma 4.2

Adversary B runs in time of game CDAH
h,A1,A2

AE , makes no random oracle queries and ν many RoS-
queries. Value tAi

(resp. qAi
) denotes the run-time of procedure Ai (resp. the number of oracle queries

by adversary Ai). Value Us denotes a random variable that is uniformly distributed in {0, 1}s. Values

qE , qS are upper bounds on the number of (indirect) h-queries during the computation of EHh

(resp. SHh

).

The proof itself is somewhat similar to the proof of Theorem 9.1 by Ristenpart et al. [31]. For easier
notation, we assume that the encryption scheme embeds the public key pk such that during its sole
query to the hash construction Hh there occurs a query h(pk, x), that is, the public key is not spread
over various message blocks.

Proof of Lemma 4.2. The games needed for the proof are depicted in Figure 16. Game G1 (depicted in
Figure 16 is the original CDA game.

Pr
[
CDAH

h,A1,A2

AE ⇒ true
]

= Pr[G1 ⇒ true]

For game G2 (here the boxed statement in Figure 16 is not executed) we fail if one of two conditions
occur. Let QE denote the queries by encryption scheme E to hash functionality Hh. Let bad1 (resp. bad2)
be the event that adversary A1 (resp. A2) in the original CDA game computes value g(h(m,x)) such
that

∃M ∈ QE : Hh(M) = g(h(m,x)) .

As the encryption scheme embeds public key pk in any of its queries and we can bound the probability that
any of the qA1 oracle queries by A1 contains pk by qA1 ·maxpkAE . If a single h-query in the computation
of Hh(M) for some message M is not queried, we can bound the probability that the corresponding
result query is queried by qA1

2−s. For this note that the output of an h-query has min-entropy s bits
and that these s bits are transported through the graph construct(M) up-to the result query (also see
Lemma 3.4). As with probability 1−A1 ·maxpkAE value h(pk, x) not queried we have that

Pr[bad1] ≤ qA1
·maxpkAE +

qA1
· ν

2s
+

ν

2H∞(g(Us))

where by Us we denote a random variable that is uniformly distributed in {0, 1}s. For the difference
between games G1 and G2 then holds.

|Pr[G2 ⇒ true]− Pr[G1 ⇒ true]| ≤ Pr[bad1] + Pr[bad2]

≤ qA1
·maxpkAE +

qA1 · ν
2s

+
ν

2H∞(g(Us))
+ Pr[bad2]

42

Let SHh

E,ν be an algorithm that on input (pk, ω) runs the encryption simulator SE(pk, ω) ν times
outputting the vector of results. Game G3 is exactly as game G2 except that after the generation of the
ciphertext vector c the vector is overwritten with simulated ciphertext via a call to SHh

E,ν .
Now consider adversaries B′ and B′′ depicted in Figure 16 against the IND-SIM-notion. Both adver-

sary perfectly simulate game G2 but for a call to its RoS-oracle, after the generation of the ciphertexts.
The only difference between B′ and B′′ is that B′ returns 1 in case event bad2 occurs while B′′ returns
1 in case A2 guessed correctly. Note that in both adversaries c← EHh

(pk,mb∗ ; r) is executed with the
result value ignored.8 This is done solely to be consistent with games G1 and G2 and to capture event
bad2. Let us by IND-SIM1 denote the game IND-SIM with hidden bit b always set to 1 and where the
game outputs the adversary’s guess directly (Figure 17). Analogously, we define IND-SIM0 as the game
IND-SIM with hidden bit b set to 0 (Figure 18). Then, by construction, we have

Pr
[

IND-SIM1B
′

AE ⇒ true
]

= Pr[bad2 during G2] and Pr
[

IND-SIM0B
′

AE ⇒ true
]

= Pr[bad2 during G3]

and

Pr
[

IND-SIM1B
′′

AE ⇒ true
]

= Pr[G2 ⇒ true] and Pr
[

IND-SIM0B
′′

AE ⇒ true
]

= Pr[G3 ⇒ true]

Let B be whichever of B′ and B′′ achieves a larger advantage. We now further adapt adversary B such
that instead of calling h on result queries it chooses a random value as result. By this we ensure, that
the adversary never queries a complete an Hh execution for any message. In other words, in the random
oracle setting the adversary does not make random oracle queries. For this, we set B∗ := Bh∗ where h∗
tracks partial graphs (this can be done as using the extractor from Lemma 3.5) in and returns random
(but consistent) values on result queries. Result queries are with respect to the view of h∗. We here give
a simplified pseudo-code omitting part of keeping track of partial graphs. For this see the extractor in
Lemma 3.5.

Function h∗(m,x) :
if M[m,x] 6= ⊥ then return M[m,x]
if (m,x) result-query then M[m,x]← {0, 1}s
else (m,x)← h(m,x)
return M[m,x]

By Lemma 3.5 we have that

AdvIND-SIM
AE,R,S (B) ≤ AdvIND-SIM

AE,R,S (B∗) + Pr[bad1] + Pr[bad2] +
qB + 3q2

B
2s

where qB ≤ qA1
+ qA2

+ ν ·max(qE , qSE) denotes the number of oracle queries by B and values qE , qSE
denotes an upper bound on the number of (indirect) h-queries during the computation of E (resp. SE) on
input pk,mb[i]; r[i] (resp. (pk, ω)). Futhermore, adversary B∗ does not make any random oracle queries.

Now we have that

|Pr[G3 ⇒ true]− Pr[G2 ⇒ true]| ≤ 2 ·AdvIND-SIM
AE,R,S (B)

≤ 2

(
AdvIND-SIM

AE,R,S (B∗) + Pr[bad1] + Pr[bad2] +
qB + 3q2

B
2s

)
≤ 2 ·AdvIND-SIM

AE,R,S (B∗) + 2 · Pr[bad2] +
2qB + 6q2

B
2s

+

2 ·
(
qA1
·maxpkAE +

qA1
· ν

2s
+

ν

2H∞(g(Us))

)
Note that in game G3 we have that the outcome is independent of hidden bit b and thus

Pr[G3 ⇒ true] = 1/2 .

8Value b∗ is the bit simulated by adversaries B′ and B′′ and should not be confused with the underlying hidden bit b
by the IND-SIM-game.

43

game IND-SIM1A,H
h

AE,S

(pk, sk)← KGen(1λ)

b′ ← ARoS,h(pk)
return b′

procedure RoS(m, r)

return EH
h

(pk,m; r)

Figure 17: Game IND-SIM1

game IND-SIM0A,H
h

AE,S

(pk, sk)← KGen(1λ)

b′ ← ARoS,h(pk)
return b′

procedure RoS(m, r)

return SH
h

(pk, |m|)

Figure 18: Game IND-SIM0

What is left is to bind the probability of event bad2. For this, we move to another game G4 in
which we change the order of adversaries A1 and A2. As the input to adversary A2 only depends on the
simulator’s output we have that

Pr[G4 ⇒ true] = Pr[G3 ⇒ true] and Pr[bad2 during G4] = Pr[bad2 during G3]

Encryption algorithm E on input (pk,m, r) queries its random oracle on a message containing (an en-
coding of) the public key, message m, and randomness r. Adversary A1 is a valid (µ, ν)-mmr-source and,
thus, the probability of guessing a particular query M to Hh by E is upper-bounded by 2−µ. Thus, for
the computation of Hh(M) for some query M by E the uncertainty about M is mapped to the uncer-
tainty about h-queries. As h is ideal, we can, thus, similarly assume that during the computation of
Hh(M) there occurs an h query (m,x) such that (m,x) has min-entropy µ-bits. If a single query during
the evaluation of graph construct(M) is not made, we can upper bound the probability of making the
corresponding result query by with Lemma 3.4. Thus, we can upper bound the probability of event bad2
by

Pr[bad2 during G4] ≤ qA2
· ν

2µ
+
qA2
· ν

2s
+

ν

2H∞(g(Us))

Finally, to bound the probability of a bad query, we move to game G5. Game G5 is exactly as game
G4 except that we exchange the access to ideal function h for adversaries A1 and A2 by access to a
function hS which is defined as in the proof of Lemma D.1 as

hS(m,x) := h(x, h(m, iv)) .

As hS is indistinguishable from h we have that, unless bad2 occurs

Pr[G5 ⇒ true] = Pr[G4 ⇒ true]

Putting it all together we have that

εG :=
∣∣∣Pr[G5 ⇒ true]− Pr

[
CDAH

h,A1,A2

AE ⇒ true
]∣∣∣ ≤ 3 · bad1 + 3 · bad2 + 2 ·AdvIND-SIM

AE,R,S (B∗) +
2qB + 6q2

B
2s

≤ 3qA1
·maxpkAE +

3(qA1
+ qA2

) · ν + 2qB + 6q2
B

2s
+

3qA2
· ν

2µ
+

6ν

2H∞(g(Us))
+ 2 ·AdvIND-SIM

AE,R,S (B∗)

As with hS it is impossible to make bad queries we have that εbad = 0.

E The Adaptive CDA Game

In the adaptive CDA game [6] (see Figure 20) the first adversary can adaptively generate ciphertexts
before it has to output the two message vectors m0,m1 and the randomness vector r. For this, we

44

game PK-EXTA,H
h

AE

(pk, sk)← KGen(1λ)

pk′ ← AENC,h(1λ)
return (pk = pk′)

procedure ENC(m, r)

return EH
h

(pk,m; r)

Figure 19: Game PK-EXT

give adversary A1 access to an oracle ENC, which allows to encrypt messages under the public key, but
without having to give A1 access to the public key (except, of course, what is revealed by ENC-queries).

PK-EXT Security. In order to prove that the adaptive CDA game is unsplittable we need an extra
assumption on the encryption scheme: namely, given the encryption of a message, it should be infeasible
to extract the public key used in the encryption. Bellare et al. [4] define the notion of key indistin-
guishability (IK-CPA, see Figure 21) for public-key encryption schemes which intuitively captures that
no adversary given an encryption can learn anything about the public key used for the encryption. The
notion is defined as an indistinguishability notion, where a first-stage adversary gets two distinct public
keys and outputs a message. According to some secret bit b this message is encrypted with one of the two
public keys and given to a second stage adversary that has to guess b. Note that this notion cannot be
fulfilled by any PKE scheme if the adversary is allowed to chose the randomness used in the encryption.
Here the second-stage adversary can simply, on its own, recompute the ciphertext for both public keys
and compare the outcome to its input.

We propose a weaker notion that can be met even if the adversary chooses the randomness used by
the encryption scheme. We define the notion of PK-EXT (short for public-key extractability) for public-

key encryption schemes. Game PK-EXTA,H
h

AE is shown in Figure 19. An adversary can make multiple
queries to an encryption oracle and then has to output a guess for the public key that was used for the
encryptions. We define the advantage of an adversary A by

AdvPK-EXT
AE (A) := Pr

[
PK-EXTAAE ⇒ true

]
.

Note that this property is a natural strengthening of the property that public keys output by the
key generation algorithm should not be guesseable. However, it is still quite a weak property as it only
requires that super-logarithmically many bits of the public key have to remain hidden. In Appendix F
we prove that our new notion is met by the REwH1 scheme [6] if the underlying PKE scheme is IK-CPA
secure. Examples of IK-CPA-secure schemes are, for example, the El Gamal or the Cramer-Shoup
schemes [17]. We can further show that in case the adversary cannot specify the randomness, then
PK-EXT is directly implied by IK-CPA.

The adaptive CDA game is unsplittable. The proof in the adaptive setting is essentially equiv-
alent to the proof in the non-adaptive setting (see Appendix D.2) once we have bound the probability
of event bad1, that is, the probability that adversary A1 computes value g(h(m,x)) = Hh(M) for some
message M send to oracle Hh by E . Let us first restate the lemma:

Lemma E.1. Let the setup be as in Lemma 4.2 and let the encryption scheme be PK-EXT-secure. Let
the encoding of the public key in messages of E to the hash functionality be invertible, that is given a
query to the hash functionality the public key can be extracted. Then, for any encryption simulator S
there exists IND-SIM-adversary B and PK-EXT-adversary C such that the adaptive aCDAH

h,A1,A2

AE game
(cf. Figure 20) is (tA∗ , qA∗ , εG, εbad)-unsplittable for any hash construction. Moreover,

εG ≤
3 · qA1,h + 9 · q2

A1,h
+ 3 · qA2

· ν + 2qB + 6q2
B

2s
+

3 · qA2 · ν
2µ

+
3 · ν + 3

2H∞(g(Us))
+

2 ·AdvIND-SIM
AE,R,S (B) + 2qA1,h ·AdvPK-EXT

AE (C)

εbad = 0 tA∗i ≤ tAi qA∗i ≤ 2qAi qB ≤ qA1 + qA2 + ν ·max(qE , qS)

45

game aCDAHh,A1,A2

AE (1λ)

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← AENC,h
1 (1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

procedure ENC(m0,m1, r)

return EH
h

(pk,mb; r)

Figure 20: The adaptive CDA game

Adversary B runs in time of game aCDAH
h,A1,A2

AE , makes no random oracle queries and ν many RoS-
queries. Value tAi

denotes the run-time of procedure Ai. Values qA1,h (resp. qA2
) denotes the number of

h-queries by adversary A1 (resp. A2). Value Us denotes a random variable that is uniformly distributed

in {0, 1}s. Adversary C runs in time of game aCDAH
h,A1,A2

AE and makes at most qA1,h h-queries and at
most qA1,ENC ENC-queries. Values qE , qS are upper bounds on the number of (indirect) h-queries during

the computation of EHh

(resp. SHh

).

Proof. Let QE denote the queries by encryption scheme E to hash functionality Hh. We want to bind
the probability of event bad1, that is the event that adversary A1 computes value g(h(m,x)) such that

∃M ∈ QE : Hh(M) = g(h(m,x)) .

In case bad1 occurs, then we know that as an encoding of pk is embedded into all messages M ∈ QE
also adversary A1 must query its oracle on this encoding of the public key. This allows us to construct
adversary C against the PK-EXT security of the encryption scheme AE . Adversary C chooses a random
bit b∗ and runs adversary A1. It answers queries (m0,m1, r) by adversary A1 to oracle ENC using its
own ENC-oracle as ENC(mb∗ , r). Note that, by construction, C perfectly simulates the first stage of an
adaptive CDA game. Furthermore, as C sees all of A’s queries it can reconstruct possible corresponding
messages M , that is, it reconstructs all possible partial graphs pg and uses extract(pg) to reconstruct
the corresponding messages. By Lemma 3.5 algorithm C fails in reconstructing all possible messages
with probability at most

qA1,h + 3q2
A1,h

2s
+

1

2H∞(g(Us))

where qA1,h denotes the number of h-evaluations by A1 and Us is a random variable uniformly distributed
in {0, 1}s. Adversary C now guesses an index 1 ≤ i ≤ qA1

and extracts a public key from message M
that corresponds to one of the at most 2 partial graphs that are generated on the i-th query by A1

(that is a partial graph was generated; also see Lemma 3.5). By construction, adversary C wins, if the
corresponding message M is also queried to Hh by E .

Thus, we can bound the probability of event bad1 by:

Pr[bad1] ≤
qA1,h + 3q2

A1,h

2s
+

1

2H∞(g(Us))
+ 2qA1 ·AdvPK-EXT

AE (C)

The remainder of the proof follows with the proof for the non-adaptive case.

F Public-Key Extractability (PK-EXT) for PKE Schemes

Bellare et al. [4] define the notion of key indistinguishability (IK-CPA, see Figure 21) for PKE schemes
which intuitively captures that no adversary can tell with which key, out of a known set, a ciphertext was
encrypted. The notion is formalized as an indistinguishability experiment, where two keys are generated
and given to the first-stage adversary A1 which outputs a target message. According to a secret bit b the
message is encrypted with one of the two keys and the ciphertext is given to the second-stage adversary
A2 which has to output a guess for b (note that as there is no restriction on the state shared by the

46

game IK-CPAA1,A2

AE (1λ)

b← {0, 1}
(pk0, sk0)← KGen(1λ)

(pk1, sk1)← KGen(1λ)
m, st← A1(pk0, pk1)

c← EH
h

(pkb,m)

b′ ← Ah
2(c, st)

return (b = b′)

Figure 21: Key Indistinguishability under Chosen-Plaintext Attack

two adversaries this is essentially a single-stage notion). The advantage of an adversary A := (A1,A2)
against IK-CPA is defined as

AdvIK-CPA
AE (A) := 2 · Pr

[
IK-CPAAAE ⇒ true

]
− 1

It is easy to see that if the adversary can additionally choose the randomness of the scheme the notion
cannot be fullfilled, as adversary A2 could then simply recompute the ciphertext for both keys and check
which one it received.

In this section we show that our notion of PK-EXT-secure PKE schemes is fullfilled by the REwH1
scheme [6], if the underlying scheme is IK-CPA secure. Further, if the adversary cannot choose the
randomness then IK-CPA implies PK-EXT for any PKE scheme.

Randomized-Encrypt-with-Hash. The Randomized-Encrypt-with-Hash (REwH1) scheme [6] builds
on a PKE schem AEr := (KGenr, Er,Dr) in the random oracle model. The REwH1 scheme inherits key
generation KGen and decryption D from AEr, while encryption is defined as

ER(pk,m; r) := Er (pk,m;R(pk‖m‖r)) .

F.1 Adaptive IK-CPA

For our result we need to adapt the IK-CPA notion such that the adversary can adaptively generate
ciphertexts. Let us call the adaptive notion aIK-CPA. We depict the corresponding security game in
Figure 22. As is the case for the standard IND-CPA notion for public key encryption, IK-CPA implies
aIK-CPA. The proof follows from a standard hybrid argument.

Proposition F.1. Let A be an aIK-CPA adversary making at most t queries to oracle LoR. Then there
exists adversary B running in time of A, such that

AdvaIK-CPA
AE (A) ≤ t ·AdvIK-CPA

AE (B)

We define IK-CPA0A1,A2

AE exactly as IK-CPAA1,A2

AE except that bit b is set to zero at the beginning of

the game and the game returns the guess of adversary A2. Likewise, we define IK-CPA1A1,A2

AE where bit
b is set to one. This allows us to write the advantage of an adversary A := (A1,A2) against IK-CPA as:

AdvIK-CPA
AE (A) := Pr

[
IK-CPA1A1,A2

AE ⇒ 1
]
− Pr

[
IK-CPA0A1,A2

AE ⇒ 1
]

Similarly, we define games for the adaptive version:

AdvaIK-CPA
AE (A) := Pr

[
aIK-CPA1AAE ⇒ 1

]
− Pr

[
aIK-CPA0AAE ⇒ 1

]
(4)

Proof of Proposition F.1. Let, without loss of generality, adversary A make exactly t queries. We define
a sequence of adversaries Bi := (Bi1,Bi2) (for 0 < i ≤ t) against IK-CPA having access to an adversary
A against aIK-CPA. Adversary Bi1 gets as input two public keys pk0, pk1. It simulates oracle LoR as
follows: for the first i−1 queries m it answers with E(pk0,m). For the i-th query m, adversary Bi1 simply

47

game aIK-CPAAAE(1
λ)

b← {0, 1}
(pk0, sk0)← KGen(1λ)

(pk1, sk1)← KGen(1λ)

b′ ← ALoR(pk1, pk2)
return (b = b′)

procedure LoR(m)

return E(pkb,m)

Figure 22: Adaptive Key Indistinguishability under Chosen-Plaintext Attack

outputs m together with its state. Adversary Bi2 receives as input ciphertext c which is either E(pk0,m)
or E(pk1,m) and the state. It returns c as answer to the LoR-query. Adversary Bi2 answers all further
LoR-queries m from adversary A with E(pk1,m) and outputs as guess for bit b whatever adversary A
outputs.

If b equals zero, then adversary Bt perfectly simulates the LoR oracle and likewise if b equals 1 then
adversary B0 perfectly simulates the LoR oracle. Let B := (B1,B2) be the adversary that chooses 0 < i ≤ t
uniformly at random to then implement adversary Bi. Thus, we have that

Pr[B outputs 0|b = 0] :=

t∑
j=1

Pr
[
Bj outputs 0|b = 0 ∧ i = j

]
· Pr[i = j]

=
1

t

t∑
j=1

Pr
[
Aj outputs 0

]
(5)

where Aj is the adversary in the adaptive aIK-CPA game getting an LoR-oracle that on the first j queries
uses public key pk0 and on the remaining queries uses public key pk1. Likewise, we have that

Pr[B outputs 1|b = 1] :=

t∑
j=1

Pr
[
Bj outputs 1|b = 1 ∧ i = j

]
· Pr[i = j]

=
1

t

t−1∑
j=0

Pr
[
Aj outputs 1

]
(6)

Putting it all together, we have that

AdvIK-CPA
AE (B) = Pr

[
IK-CPA1B1,B2

AE ⇒ 1
]
− Pr

[
IK-CPA0B1,B2

AE ⇒ 1
]

= Pr
[

IK-CPA1B1,B2

AE ⇒ 1
]
− 1 + Pr

[
IK-CPA0B1,B2

AE ⇒ 0
]

With equations (5) and (6) this yields

= Pr[B outputs 1|b = 1] + Pr[B outputs 0|b = 0]− 1

=
1

t

t−1∑
j=0

Pr
[
Aj outputs 1

]
+

t∑
j=1

Pr
[
Aj outputs 0

]− 1

=
1

t

(
Pr
[
A0 outputs 1

]
+ Pr

[
At outputs 0

])
+

1

t

t−1∑
j=1

(
Pr
[
Aj outputs 1

]
+ Pr

[
Aj outputs 0

])
− 1

As (Pr
[
Aj outputs 1

]
+ Pr

[
Aj outputs 0

]
) = 1 for all 1 ≤ j ≤ t− 1 this is

=
1

t
(Pr[aIK-CPA1⇒ 1] + Pr[aIK-CPA0⇒ 0])− 1

t

=
1

t
(Pr[aIK-CPA1⇒ 1]− Pr[aIK-CPA0⇒ 1] + 1)− 1

t

48

Finally, with equation (4) we get the advantage statement of the theorem:

=
1

t
AdvaIK-CPA

AE (A)

which concludes the proof.

F.2 REwH1 with IK-CPA implies PK-EXT

We can now show that the Randomized-Encrypt-with-Hash scheme is PK-EXT-secure if the underlying
PKE scheme is IK-CPA-secure. We only consider the PK-EXT-notion in the random oracle model. Note
that, as it is a single-stage notion this suffices for composition in the MRH theorem. Remember that
maxpkAE denotes the maximum probability of a collision for a public-key as generated by KGen, defined
in equation (3).

Theorem F.2. Let A be a PK-EXT adversary making at most qA random oracle queries. Then there
exists an adversary B running in time of A, such that

AdvPK-EXT
REwH1 (A) ≤ AdvaIK-CPA

AE (B) + (qA + 1) ·maxpkAE .

Proof. We assume, without loss of generality, that adversary A does not repeat queries to its oracles.
We define adversary B against aIK-CPA. Adversary B gets as input two public keys pk0 and pk1 and

runs adversary A against PK-EXT. It simulates A’s queries to the ENC oracle using its LoR-oracle simply
ignoring the randomness. That is, if (m, r) is a query by A to the ENC-oracle, then B answers this as
LoR(m). Let q be a query to the random oracle by A. Before answering, B tests if the first bits of query
q equal one of the public keys, that is, if

q|1,...,|pk0|
= pk0 or if q|1,...,|pk1|

= pk1 .

If this is the case, then B terminates A and outputs 0 if the first bits were equal to pk0 and 1 otherwise.
If the first bits did not equal either of the keys it responds with R(q). If adversary A terminates with
guess pk′ then adversary B outputs 0 if pk′ = pk0, it outputs 1 if pk′ = pk1, and else outputs a random
bit.

Let the event bad1 be defined as A queries its random oracle on message pk1−b‖x where x is a some
bit string, which in turn leads to B outputting a wrong guess for b. As no information about pk1−b is
leaked to adversary A we can bind the probability of bad1 via a union bound with

Pr[bad1] ≤ qA ·maxpkAE

where qA denotes the number of random oracle queries by adversary A.
Let the event bad2 be defined as A outputs guess pk′ = pk1−b. With the same argument this

probability is bound by
Pr[bad2] ≤ maxpkAE

If events bad1 and bad2 do not occur then note that adversary B perfectly simulates the oracles
that are expected by A. Adversary A expects the encryption scheme to use randomness generated as
R(pk‖m‖r). This means that as A never queries the random oracle on pk‖m‖r (this is implied by
¬bad1), it must expect the scheme to use uniformly random coins. This is exactly what is done by the
LoR oracle. In this case adversary B wins whenever A outputs a correct guess (or queries the random
oracle on pkb‖x). This concludes the proof.

A simple corollary of the theorem is, that if the adversary in the PK-EXT game is not allowed to
specify the randomness used by the encryption scheme, then PK-EXT is directly implied by IK-CPA.

Corollary F.3. Let A be a PK-EXT adversary which is not allowed to specify the randomness used by
the encryption scheme. Then there exists an adversary B running in time of A, such that

AdvPK-EXT
AE (A) ≤ AdvaIK-CPA

AE (B) + (qA + 1) ·maxpkAE .

49

	Introduction
	Preliminaries
	Notation
	Indifferentiability
	Game Playing

	A Model for Iterative Hash Functions
	Important h-Queries
	A Missing Link
	Extracting the Execution Graph
	h-Queries during Functionality Respecting Games

	Unsplittable Multi-stage Games
	CDA and CRP are Unsplittable
	A Conjecture on Two-Stage Games

	Composition for Unsplittable Multi-Stage Games
	Formalizing Iterative Hash Functions
	Execution Graphs
	Examples: Hash Constructions in Compliance with Definition 3.1
	Merkle-Damgård-like Functions
	NMAC and HMAC
	Hash Tree
	The Double-Pipe Construction / Extensions to the Model

	Game Playing
	The Composition Theorem 5.1
	Derandomizing Simulators
	A Generic Indifferentiabilitiy Simulator
	Proof of Theorem 5.1

	The Non-Adaptive CDA Game
	Composition for CDA - An Instructive Example
	Reproving the CDA Composition Theorem due to Ristenpart et al. EC:RisShaShr11

	The Adaptive CDA Game
	Public-Key Extractability (PK-EXT) for PKE Schemes
	Adaptive IK-CPA
	REwH1 with IK-CPA implies PK-EXT

