
Salvaging Indifferentiability in a Multi-stage Setting

Arno Mittelbach

Darmstadt University of Technology, Germany
www.cryptoplexity.de

arno.mittelbach@cased.de

January 24, 2014

Abstract. The indifferentiability framework by Maurer, Renner and Holenstein (MRH; TCC 2004) formal-
izes a sufficient condition to safely replace a random oracle by a construction based on a (hopefully) weaker
assumption such as an ideal cipher. Indeed, many indifferentiable hash functions have been constructed and
could since be used in place of random oracles. Unfortunately, Ristenpart, Shacham, and Shrimpton (RSS;
Eurocrypt 2011) discovered that for a large class of security notions, the MRH composition theorem actu-
ally does not apply. To bridge the gap they suggested a stronger notion called reset indifferentiability and
established a generalized version of the MRH composition theorem. However, as recent works by Demay
et al. (Eurocrypt 2013) and Baecher et al. (Asiacrypt 2013) brought to light, reset indifferentiability is not
achievable thereby re-opening the quest for a notion that is sufficient for multi-stage games and achievable
at the same time.

We present a condition on multi-stage games that we call unsplittability. We show that if a game is un-
splittable for a hash construction then the MRH composition theorem can be salvaged. Unsplittability
captures a restricted yet broad class of games together with a set of practical hash constructions including
HMAC, NMAC and several Merkle-Damgård variants. We show unsplittability for the chosen distribution
attack (CDA) game of Bellare et al. (Asiacrypt 2009), a multi-stage game capturing the security of de-
terministic encryption schemes; for message-locked encryption (Bellare et al.; Eurocrypt 2013) a related
primitive that allows for secure deduplication; for universal computational extractors (UCE) (Bellare et al.,
Crypto 2013), a recently introduced standard model assumption to replace random oracles; as well as for
the proof-of-storage game given by Ristenpart et al. as a counterexample to the general applicability of the
indifferentiability framework.

1

Contents

1 Introduction 3

2 Preliminaries 5

3 A Model for Iterative Hash Functions 6
3.1 Important h-Queries . 9
3.2 Message Extractors and Missing Links . 9
3.3 h-Queries during Functionality Respecting Games . 10

4 Unsplittable Multi-stage Games 11
4.1 Composition for Unsplittable Multi-Stage Games . 12

5 Applications 13
5.1 Unsplittability of Keyed-hash Games . 13
5.2 The Chosen Distribution Attack Game . 17
5.3 The Adaptive Chosen Distribution Attack Game . 18
5.4 Message Locked Encryption . 19
5.5 Universal Computational Extractors . 20
5.6 The Proof-Of-Storage Game and Multi-Round Hash Functions 21
5.7 A Conjecture on Two-Stage Games and Future Work . 22

A Game Playing 26

B Formalizing Iterative Hash Functions 27
B.1 Execution Graphs . 27
B.2 Keyed Hash Constructions . 28
B.3 Multi-Round Iterative Hash Functions . 28
B.4 Properties of Iterative Hash Functions . 29

B.4.1 A Missing Link in Hh . 29
B.4.2 Extractor for Hash Function Hh . 32

B.5 Examples: Hash Constructions in Compliance with Definition 3.1 34
B.5.1 Merkle-Damgård-like Functions . 34
B.5.2 NMAC and HMAC . 34
B.5.3 Hash Tree . 34
B.5.4 The Double-Pipe Construction / Extensions to the Model 35

B.6 The Sponge Construction . 36

C The Composition Theorem 4.2 38
C.1 A Generic Indifferentiabilitiy Simulator . 38
C.2 Derandomizing the Generic Simulator . 41
C.3 Proof of the Composition Theorem for UNSPLITTABLE Games: Theorem 4.2 42

D Public-Key Extractability (PK-EXT) for PKE Schemes 44
D.1 Adaptive IK-CPA . 44
D.2 REwH1 with IK-CPA implies PK-EXT . 46

E The Ideal Cipher Model vs. the Ideal Compression Function model 48

2

CDAH
h,A1,A2

AE (1λ)

b← {0, 1}
(pk, sk)← KGen(1λ)
(m0,m1, r)← Ah

1(1
λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

CRPH
h,A1,A2

p,s (1λ)

M ← {0, 1}p

st← Ah
1(M, 1λ)

if |st| > n then
return false

C ← {0, 1}c

Z ← Ah
2(st, C)

return (Z = Hh(M ||C))

PRV-CDAH
h,A1,A2

MLE (1λ)

P ← P
b← {0, 1}
(m0,m1, Z)← Ah

1(1
λ)

c← EH
h

P (KP (mb),mb)

b′ ← Ah
2(P, c, Z)

return (b = b′)

UCES,DHh (1λ)

b← {0, 1}; k← K
L← SHASH(1λ); b′ ← D(1λ, k, L)
return (b = b′)

HASH(x)

if T [x] = ⊥ then
if b = 1 then T [x]← Hh(k, x)
else T [x]← {0, 1}`

return T [x]

Figure 1: Security Games. From left to right: the chosen distribution attack (CDA) game [BBN+09] capturing security in deterministic
encryption schemes [BBO07], the proof-of-storage challenge-response game (CRP) due to Ristenpart et al. [RSS11b] given as counter-
example of the general applicability of the indifferentiability composition theorem, message locked encryption (MLE) [BKR13], and
universal computational extractors (UCE) [BHK13] a standard model security assumption on hash-functions.

1 Introduction

The notion of indifferentiability, introduced by Maurer, Renner and Holenstein (MRH) [MRH04] can be re-
garded as a generalization of indistinguishability tailored to situations where internal state is publicly available.
It has found wide applicability in the domain of iterative hash functions which are usually built from a fixed-
length compression function together with a scheme that describes how arbitrarily long messages are to be
processed [Mer89, Dam89, Riv92, Lis06, BDPA11a]. The MRH composition theorem formalizes a sufficient
condition under which such a construction can safely instantiate a random oracle: namely indifferentiability
of a random oracle. A different view on this is that with indifferentiability one can transfer proofs of security
from one idealized setting into a different (and hopefully simpler) idealized setting. For example, proofs in the
random oracle model (ROM) [BR93] imply proofs in the ideal cipher model if a construction from an ideal
cipher that is indifferentiable from a random oracle exists.

Ristenpart, Shacham and Shrimpton (RSS) [RSS11b] gave the somewhat surprising result that the MRH
composition theorem only holds in single-stage settings and does not necessarily extend to multi-stage settings
where disjoint adversaries are split over several stages. As counterexample they present a simple challenge-
response game (CRP, depicted in Figure 1): a file server that is given a file M can be engaged in a simple
proof-of-storage protocol where it has to respond with a hash valueH(M‖C) for a random challenge C while
only being able to store a short state st (with |st| � |M |). The protocol can easily be proven secure in the
ROM since, without access to file M , it is highly improbable for the server to correctly guess the hash value
H(M ||C). The server can, however, “cheat” if the random oracle is replaced by one of several indifferentiable
constructions. Here the server exploits the internal structure by computing an intermediate chaining value
which allows it to later compute extended hash values of the form Hh(M‖·). We refer to [RSS11b] for a
detailed discussion.

To circumvent the problem of composition in multi-stage settings, RSS propose a stronger form of indif-
ferentiability called reset indifferentiability [RSS11b], which intuitively states that simulators must be stateless
and pseudo-deterministic [BBM13]. While this notion allows composition in any setting, no domain extender
can fulfill this stronger form of indifferentiability [DGHM13, LAMP12, BBM13]. Demay et al. [DGHM13]
present a second variant of indifferentiability called resource-restricted indifferentiability which models simu-
lators with explicit memory restrictions and which lies somewhere in between plain indifferentiability and reset
indifferentiability. However, they do not present any positive results such as constructions that achieve any form
of resource-restricted indifferentiability or security games for which a resource-restricted construction allows
composition.

The only positive results, we are aware of, is the analysis of RSS of the non-adaptive chosen-distribution
attack (CDA) game [BBN+09], depicted in Figure 1. CDA captures a security notion for deterministic public-
key encryption schemes [BBO07], where the randomness does not have sufficient min-entropy. In the CDA
game, the first-stage adversaryA1 outputs two message vectors m0 and m1 together with a randomness vector
r which, together, must have sufficient min-entropy independent of the hash functionality. According to a secret

3

m1

h

m2

h

m`

h
gIV Hh(M)

Figure 2: Merkle-Damgård Construction

bit b one of the two message vectors is encrypted and given, together with the public key, to the second-stage
adversary A2. The adversary wins if it correctly guesses b. For the non-adaptive CDA game, RSS give a
direct security proof for the subclass of indifferentiable hash functions of the NMAC-type [DRS09], i.e., hash
functions of the form Hh(M) := g(fh(M)) where function g is a fixed-length random oracle independent of
fh which is assumed to be preimage aware. Note, while this covers some hash functions of interest, it does
not, for example, cover chop-MD functions [CDMP05] (like SHA-2 for certain parameter settings) or Keccak
(aka. SHA-3).

In the lights of the negative results on stronger notions of indifferentiability, we aim at salvaging the current
notion; that is, we present tools and techniques to work with plain in differentiability in multi-stage settings.
For this, let us have a closer look at what goes wrong when directly applying the MRH composition theorem
in a multi-stage setting.

PLAIN INDIFFERENTIABILITY IN MULTI-STAGE SETTINGS. Consider the schematic of a Merkle-Damgård
construction in Figure 2 (the final g-node is an efficient transformation such as the projection to the first half
of the state bits, as in chop-MD) and consider a two stage game with adversaries A1 and A2. If adversary A1

makes an h-query y1 ← h(m1, IV) and passes on this value to adversary A2, then A2 can compute arbitrary
hash values of the form m1‖ . . . without having to know m1. The trick in the MRH composition theorem is
to exchange access to h with access to a simulator S when placing the adversary in a setting where it plays
against the game with random oracleR. If we apply this trick to our two-stage game we need two independent
instances of this simulator, one forA1 and one forA2. Let’s call these S(1) and S(2). The problem is now, that
if A1 and A2 do not share sufficient state the same applies to the two simulator instances: they share exactly
the same state that is shared between the two adversaries. Thus, if adversary A2 makes the query (y,m2)
simulator S(2) does not know that y corresponds to query (m1, IV) from A1 and it will thus not be able to
answer with a value y′ such that g(y′) = R(m1‖m2). This is, however, expected by A2 and would be the case
if A1 and A2 had had access to the deterministic compression function h.

CONTRIBUTIONS. Our first contribution (Section 3) is to develop a model of hash functions based on di-
rected, acyclic graphs that is rich enough to pinpoint and argue about such problematic adversarial h-queries
while at the same time allowing us to consider many different constructions simultaneously. Given this frame-
work we define a property on games and hash functions called UNSPLITTABLE (Definition 4.1). If a game is
UNSPLITTABILITY for a hash construction, this basically means that problematic queries as the one from the
above example do not occur.

In Section 4 we then give a composition theorem for UNSPLITTABLE games which intuitively says that if
a game is UNSPLITTABLE for an indifferentiable hash construction, then security proofs in the random oracle
model carry over if the random oracle is implemented by that particular hash function. Assuming UNSPLITTA-
BILITY, the main technical difficulty in proving composition is to properly derandomize the various simulator
instances and make them (nearly) stateless. Note that simulators for indifferentiable hash constructions in the
literature are mostly probabilistic and highly stateful. In a multi-stage setting the various instances of the sim-
ulator must, however, answer queries consistently, that is, in particular the same query by different adversaries
must always be answered with the same answer independent of the order of queries. For this, we heavily rely
on a derandomization technique developed by Bennet and Gill to show that the complexity classes BPP and
P are identical relative to a random oracle [BG81]. One interesting intermediary result is that of a generic
indifferentiability simulator that answers queries in a very restricted way.

In Section 5 we show how to prove UNSPLITTABILITY for all multi-stage security games depicted in
Figure 1. We show that the CDA game (both, the non-adaptive and adaptive) is UNSPLITTABLE for Merkle-

4

Damgård-like functions as well as for HMAC and NMAC (in the formulation of [BCK96]) thereby comple-
menting the results by RSS. Let us note that, that our results on CDA require less restrictions on the public-key
encryption scheme (that is, the encryption scheme does not need to be IND-SIM [RSS11b]). Similarly, we
show UNSPLITTABILITY for message locked encryption (MLE), a security definition for primitives that allow
for secure deduplication [BKR13]. MLE is closely related to CDA with the additional complication that the
two adversaries here can communicate “in the clear” via state value Z (see Figure 1). For the RSS proof-of-
storage (CRP) game given as counter-example for the general applicability of the MRH composition theorem,
we show that it is UNSPLITTABLE for any so-called 2-round hash function. These are hash functions, such as
Liskov’s Zipper Hash [Lis06] that process the input message twice for computing the final hash value. Finally,
we resolve an open problem from [BHK13]. Bellare, Hoang and Keelveedhi (BHK) introduce UCE a standard
model assumption for hash constructions which is sufficient to replace a random oracle in a large number of
applications [BHK13]. At present the only instantiation of a UCE-secure function is given in the random oracle
model and BHK left as open problem whether HMAC can be shown to meet UCE-security assuming an ideal
compression function. We show that this is not just the case for HMAC but also for many Merkle-Damgård
variants.

Finally, we want to note that we give the results for CDA, MLE and UCE via a meta-result that considers
security games for keyed hash functions where the hash function key is only revealed at the very last stage. We
show that all three security games can be subsumed under this class and we show that games from this class
are UNSPLITTABLE for a large class of practical hash constructions including HMAC and NMAC and several
Merkle-Damgård-like functions such as prefix-free or chop-MD [CDMP05]. This is particularly interesting as
CDA and MLE are per se not using keyed hash functions, but can be reformulated in this setting and it seems
that with keyed hash functions it is simpler to work with indifferentiability in a multi-stage scenario.

2 Preliminaries

If n ∈ N is a natural number then by 1n we denote the unary representation and by 〈n〉` the binary representa-
tion of n (using ` bits). By [n] we denote the set {1, 2, . . . , n}. By {0, 1}n we denote the set of all bit strings
of length n while {0, 1}∗ denotes the set of all finite bit strings. For bit strings m,m′ ∈ {0, 1}∗ we denote by
m||m′ their concatenation. IfM is a set then by m←M we denote that m was sampled uniformly fromM.
If A is an algorithm then by X ← A(m) we denote that X was output by algorithm A on input m. As usual
|M| denotes the cardinality of setM and |m| the length of bit string m. Logarithms are to base 2. By H∞ (X)
we denote the min-entropy of variable X , defined as

H∞ (X) := min
x

log(1/Pr[X = x]) .

We assume that any algorithm, game, etc. is implicitly given a security parameter as input, even if not explicitly
stated. We call an algorithm efficient if its run-time is polynomial in the security parameter. Probability
statements of the form Pr[step1; step2 : condition] should be read as the probability that condition holds after
the steps are executed in consecutive order. We use standard boolean notation and denote by ∧ the AND by ∨
the OR of two values.

In this paper we consider random oracles or ideal functions by which we mean functions that provide a
uniformly chosen random output (within the specified range) on every new query.

HASH FUNCTIONS. A hash function is formally defined as a keyed family of functionsH(1λ) where each key
k defines a function Hk : {0, 1}∗ → {0, 1}n. “Practical” hash functions are usually built via domain extension
from an underlying function h : {0, 1}d × {0, 1}k → {0, 1}s that is iterated through an iteration scheme
H to process arbitrarily long inputs [Mer89, Dam89, Riv92, Lis06, AHMP10, GKM+11, Wu11, BDPA11a,
FLS+10], with widely varying specifications. The underlying function h usually is a compression function—
the first input taking message blocks and the second an intermediate chaining value—and we will state our
results relative to compression functions. As an exception to this rule, the Sponge construction [BDPA11b]
(the design principle behind SHA-3, aka. Keccak [BDPA11a]) iterates a permutation instead of a compression
function. We discuss, how this fits into our model in Appendix B.6.

5

Compression functions in practical constructions are often built from keyed permutations, for example, via
the Davies-Meyer (DM) construction [Win83]. We chose to state our results in the ideal compression function
model— where function h is assumed to be a fixed-length random oracle—, instead of the ideal cipher model
together with a construction such as DM, as we believe it greatly improves readability as only one instead of
two constructions needs to be analyzed. We note that we expect our results to hold if the compression function
is instantiated via DM and an ideal cipher. We give a brief discussion in Appendix E.

INDIFFERENTIABILITY. A hash function is called indifferentiable from a random oracle if no distinguisher
can decide whether it is talking to the hash function and its ideal compression function or to an actual random
oracle and a simulator. We here give the definition of indifferentiability from [CDMP05].

Definition 2.1. A hash construction Hh : {0, 1}∗ → {0, 1}n, with black-box access to an ideal function
h : {0, 1}d × {0, 1}k → {0, 1}s, is called (tD, tS , q, ε) indifferentiable from a random oracle R if there exists
an efficient simulator SR such that for any distinguisher D it holds that∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ ≤ ε
where the simulator runs in time at most tS , and the distinguisher runs in time at most tD and makes at most
q queries. We say Hh is (computationally) indifferentiable from R if ε is a negligible function in the security
parameter λ (for polynomially bounded tD and tS).

The advantage of a distinguisher D with respect to a simulator S in the indifferentiability game is defined as

Advindiff
Hh,R,S(D) =

∣∣∣Pr[DHh,h(1λ) = 1
]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ .
We sometimes speak of the real world when meaning that the distinguisher is connected to hash function Hh

and underlying function h and of the ideal world when it is talking to random oracleR and simulator SR.

GAME PLAYING. We use the game-playing technique [BR06, RSS11b] and present here a brief overview of
the notation used. A self-contained introduction is given in Appendix A.

A game GF ,A1,...,Am gets access to adversarial procedures A1, . . . ,Am and to one or more so called func-
tionalities F which are collections of two procedures F .hon and F .adv, with suggestive names “honest” and
“adversarial”. Adversaries (i.e., adversarial procedures) access a functionality F via the interface exported by
F .adv, while all other procedures access the functionality via F .hon. In our case, functionalities are exclu-
sively hash functions which will be instantiated with iterative hash constructions Hh. The adversarial interface
exports the underlying function h, while the honest interface exports plain access to Hh. We thus, instead of
writing F .hon and F .adv usually directly refer to Hh and h, respectively. Adversarial procedures can only be
called by the game’s main procedure.

By GF ,A1,...,Am ⇒ y we denote that the game outputs value y. If the game is probabilistic or any adver-
sarial procedure is probabilistic then GF ,A1,...,Am is a random variable and Pr

[
GF ,A1,...,Am ⇒ y

]
denotes the

probability that the game outputs y. By GF ,A1,...,Am(r) we denote that the game is run on random coins r.
For this paper we only consider the sub-class of functionality-respecting games as defined in [RSS11b].

A game is called functionality respecting if only adversarial procedures can call the adversarial interface of
functionalities. We define LG to be the set of all functionality-respecting games. Note that this restriction is a
natural restriction if a game is used to specify a security goal in the random oracle model since random oracles
do not provide any adversarial interface.

3 A Model for Iterative Hash Functions

In the following we present a new model for iterated hash functions that allows to argue about many func-
tions at the same time. A similar endeavor has been made by Bhattacharyya et al. [BMN09] who introduce
generalized domain extension. For our purpose, we need a more explicit model that allows us to talk about
the execution of hash functions in great detail. Still, our model is general enough to capture many different

6

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IVkey1

IVkey2 hp Hh(M)

Figure 3: Execution graph for NMAC for message m1‖ . . . ‖m` := M . Value IVkey1 is an initialization vector representing the first
key in the NMAC-construction. Value IVkey2 is a constant representing the second key. The difference between initialization vectors
and constants is that constants are used within the execution graph, i.e., in conjunction with interim values, while initialization vectors
are used at the beginning of the graph.

types of constructions, ranging from the plain Merkle-Damgård over variants such as chop-MD or Sponge to
more complex constructions such as NMAC, HMAC [BCK96] or even hash trees. In Appendix B.5 we give an
overview over several hash constructions that are captured by our model.

EXECUTION GRAPHS - AN INTRODUCTION. We model iterative hash functions Hh as directed graphs
where each message M is mapped to an execution graph which is constructed independently of a particu-
lar choice of function h. Figure 3 presents the execution graph for a message M := m1‖ . . . ‖m` for the
NMAC construction [BCK96] (further examples are given in Appendix B.5). For each input message M the
corresponding execution graph represents how the hash value would be computed relative to some oracle h,
that is, we require that, relative to an oracle h, a generic algorithm EVALh on input the execution graph for M
can then compute value Hh(M). Nodes in the execution graph are either value-nodes or function-nodes. A
value node (indicated by dotted boxes) does not have ingoing edges and the outgoing edge is always labeled
with the node’s label (possibly prefixed by a constant). Function nodes represent functions and the outgoing
edges are labeled with the result of the evaluation of the corresponding function taking the labels of the ingoing
edges as input. An h-node represents the evaluation of the underlying function h. Outgoing edges can, thus,
only be labeled relative to h. Nodes labeled mp, hp or hmp correspond to preprocessing functions (defined by
the hash construction) which ensure that the input to the next h-node is of correct length: mp processes mes-
sage blocks, hp processes h-outputs and hmp, likewise, processes the output of h-nodes but such that it can go
into the “message slot” of an h-node (see Figure 3). An execution graph contains exactly one g-node with an
unbound outgoing edge which corresponds to an (efficiently) computable transformation such as the identity
or truncation. Assume that eg is the execution graph for a message M ∈ {0, 1}∗. Then we can formalize the
computation of hash value Hh(M) with underlying function h by a deterministic algorithm EVALh(eg) which
repeats the following steps: search for a node with no input edges or where all input edges are labeled. Com-
pute the corresponding function (if it is an h-node, call the provided h-oracle), remove the node and label all
outgoing edges with the resulting value. The label of the single unbound outgoing edge of the g-node is the
resulting hash value.

FORMALIZING HASH FUNCTIONS AS DIRECTED GRAPHS. We now formalize the above concept to model
an iterative hash construction Hh : {0, 1}∗ → {0, 1}n with a compression function of the form h : {0, 1}d ×
{0, 1}k → {0, 1}s. For this let pad : {0, 1}∗ → ({0, 1}b)+ be a padding function (e.g. Merkle-Damgård
strengthening [Dam89, Mer89]) that maps strings to multiples of block size b. Let mp : {0, 1}∗ → {0, 1}d,
hp : {0, 1}∗ → {0, 1}k and hmp : {0, 1}∗ → {0, 1}d be “preprocessing” functions that allow to adapt message
blocks and intermediate hash values, respectively. We assume that pad, mp, hp, and hmp are efficiently com-
putable, injective, and efficiently invertible. Note that for many schemes these functions will be the identity
function and b = d and s = k. Let g : {0, 1}s → {0, 1}n be an efficiently computable transformation (such as
the identity function, or a truncation function).1 Additionally we allow for a dedicated set IV ⊂ {0, 1}∗ and
containing initialization vectors and constants.

We give a formal definition of the graph structure for execution graphs in Appendix B.1 and give here only
a quick overview. Execution graphs consist of the following node types: IV-nodes, message-nodes, h-nodes,
mp, hp, and hmp-nodes and a single g-node. For each message block m1‖ . . . ‖m` := pad(M) the graph

1We stress that g is efficiently computable and not an independent (ideal) compression function.

7

contains exactly one message-node. All outgoing edges must again be connected to a node, except for the
single outgoing edge of the single g-node. An h-node always has two incoming edges one from an hp-node
and one from either an mp or an hmp-node. Message nodes can be connected to mp-nodes. The outbound
edges from h can be connected to either hp or hmp-nodes.2 A valid execution graph is a non-empty graph
that complies with the above rules. We require that for each message M ∈ {0, 1}∗ there is exactly one valid
execution graph and that there is an efficient algorithm that given M constructs the execution graph.

Besides valid execution graphs we introduce the concept of partial execution graphs which are non-empty
graphs that comply to the above rules with the only exception that they do not contain a g-node. Hence, they
contain exactly one unbound outgoing edge from an h-node. A partial execution graph is always a sub-graph
of potentially many valid execution graphs. Given a valid execution graph a partial execution graph can be
constructed by choosing an h-node and removing every node that can be reached via directed path from that
h-node and then remove all unconnected components that do not have a directed path to the chosen h-node.

We define EVAL to be a generic, deterministic algorithm evaluating execution graphs relative to an oracle h.
We here present a slightly simplified, intuitive version of EVAL and give the complete version along with its
pseudo-code in Appendix B.1. Let eg be a valid execution graph for some message M ∈ {0, 1}∗. To evaluate
eg relative to oracle h, algorithm EVALh(eg) recursively performs the following steps: search for a node that
has no inbound edges or for which all inbound edges are labeled. If the node is a function-node then evaluate
the corresponding function using the labels from the inbound edges as input. If the node is a value-node,
use the corresponding label as result. Remove the node from the graph and label all outgoing edges with
the result. If the last node in the graph was removed stop and return the result. Note that EVALh(eg) runs
in time at most O

(
|V 2|

)
assuming that eg contains |V | many nodes. If pg is a partial execution graph then

EVALh(pg), likewise, computes the partial graph outputting the result of the final h-node. We denote by g(pg)
the corresponding execution graph where the single outbound h-edge of pg is connected to a g-node. We call
this the completed execution graph for pg.

We can now go on to define iterative hash functions such as Merkle-Damgård-like functions. Informally,
an iterative hash function consists of the definitions of the preprocessing functions, the padding function and
the final transformation g(·). Furthermore, we require (efficient) algorithms that construct execution graphs as
well as parse an execution graph to recover the corresponding message.

Definition 3.1. Let IV ⊂ {0, 1}∗ be a set of named initialization vectors and |IV| be polynomial in the
security parameter λ. We say Hh

g,mp,hp,hmp,pad : {0, 1}∗ → {0, 1}n is an iterative hash function if there exist
deterministic and efficient algorithms construct and extract as follows:

construct: On input M ∈ {0, 1}∗ deterministic algorithm construct outputs a valid execution graph
containing one message-node for every block in m1‖ . . . ‖m` := pad(M). For all messages M ∈
{0, 1}∗ it holds thatHh

g,mp,hp,hmp,pad(M) = EVALh(construct(M)). For any twoM,M ′ ∈ {0, 1}∗ with
|M | = |M ′| it holds that graphs construct(M) and construct(M ′) are identical but for labels of
message-nodes.3

extract: On input a valid execution graph eg, deterministic algorithm extract outputs message M ∈
{0, 1}∗ if, and only if, construct(M) is identical to eg. On input a partial execution graph pg, al-
gorithm extract outputs message M ∈ {0, 1}∗ if, and only if, the completed execution graph g(pg) is
identical to construct(M). Otherwise extract outputs ⊥.

When functions g, mp, hp, hmp and pad are clear from context we simply write Hh.

We provide a detailed description of valid execution graphs, extensions to the model to, for example, cover
keyed hash constructions, as well as several examples of hash constructions that are covered by Definition 3.1
in Appendix B. Note that neither construct nor extract gets access to the underlying function h. Also
note that by definition of algorithm extract there cannot be two distinct valid execution graphs for the same
message M ; if extract(pg) =M then pg or g(pg) is identical to construct(M).

2The difference between hp and hmp is that hp outputs values in {0, 1}k which hmp outputs values in {0, 1}d. Note that function h

is defined as h : {0, 1}d × {0, 1}k → {0, 1}s.
3This condition ensures that the graph structure does not depend on the content of messages but only on its length.

8

3.1 Important h-Queries

Considering the execution of hash functions as graphs allows us to identify certain types of “important” queries
by their position in the graph relative to a function h. Assume that Q = (mi, xi)1≤i≤p is an ordered sequence
of h-queries to compression function h. If we consider the i-th query qi = (mi, xi) then only queries appearing
before qi in Q are relevant for our upcoming naming conventions. We call qi an initial query if, and only
if, hp−1(xi) ∈ IV . Besides initial queries we are interested in queries that occur “in the execution graph”
and we call these chained queries. We call query qi a chained query if given the queries appearing before qi
there exists a valid (partial) execution graph containing an h-node with its unbound edge labeled with value
hp−1(xi). Finally, we call query qi result query for message M , if g(qi) = Hh(M) and qi is a chained query.
We define result queries in a broader sense and independent of a specific message by considering all possible
partial graphs induced by query set Q and say that a query is a result query if it is a chained query and if its
induced partial graph pg can be completed to a valid execution graph, that is, g(pg) is a valid execution graph.
For a visualization of the query types see Figure 4.

Definition 3.2. Let Q = (mi, xi)1≤i≤p be a sequence of queries to h : {0, 1}d × {0, 1}k → {0, 1}s. Let
qi = (mi, xi) be the i-th query in Q and let Q|1,...,i denote the sequence Q up to and including the i-th query.
Let the predicate init(qi) := init(mi, xi) be true if, and only if,

hp−1(xi) ∈ IV .

We define the predicate chainedQ(mi, xi) to be true if, and only if,

init(mi, xi) ∨ ∃ j ∈ [i− 1] :
(
chainedQ(mj , xj) ∧ hp(h(mj , xj)) = xi

)
.

Let pg[h, Q|1,...,i , qi] denote the set of partial graphs such that for all pg ∈ pg[h, Q|1,...,i , qi] it holds that all h
queries occurring during the computation of EVALh(pg) are in Q|1,...,i and that the final h-query equals qi.4 We
define the predicate resultQ(mi, xi) to be true if, and only if,

chainedQ(mi, xi) ∧ ∃pg ∈ pg[h, Q|1,...,i , qi] : g(pg) is a valid execution graph .

We drop the reference to the query set Q if it is clear from context.

Let us rephrase the concept of chained queries. Query qi is a chained query if either qi is an initial
query, or there exists a query qj that came before qi which was a chained query and for which hp(h(qj)) =
hp(h(mj , xj)) = xi. Thus, if hp(·) is the identity function, as it is for example in chop-MD, or NMAC, we
require that value xi was generated by an h-query. When later considering keyed hash functions we also need
to relax the requirements of initial queries as depending on the construction any query can be an initial query
(it is just a matter of how the key is chosen). We elaborate on keyed hash constructions in Appendix B.2. Also,
let us stress, that the predicates hold, or do not hold, relative to the previous queries given by sequence Q and
are not affected by later queries.

m1

mp

h

init(mp(m1), hp(IV))

hp

m2

mp

h

chained(mp(m2), hp(x2))

hp

m`

mp

h

result(mp(m`), hp(x`))

hp gIV Hh(M)

Figure 4: Denoting queries in
the Merkle-Damgård construction
where value x2 is computed as
x2 := h(mp(m1), hp(IV)) and
value xl is computed recursively
as x` := h(mp(m`), hp(x`−1)).

3.2 Message Extractors and Missing Links

We now give two important lemmas concerning iterative hash functions. The first argues that if an adversary
does not make all h-queries in the computation of Hh(M) for some message M , then its probability of com-
puting the corresponding hash value is small. To get an intuition note that each h-node has a directed path to

4If h is modeled as an ideal function then set pg[h, Q|1,...,i , qi] contains with very high probability at most one partial graph as
multiple graphs induce collisions on h.

9

the final g-node. As we model the underlying function as ideal, an h-evaluation has s bits of min-entropy which
are, so to speak, send down the network to the final g-node. We give the proof in Appendix B.4.1 together with
a strengthened version of this lemma and a variant which considers the case where the adversary in addition
gets access to Hh.

Lemma 3.3. Let functionHh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h : {0, 1}d×{0, 1}k →
{0, 1}s be a fixed-length random oracle. LetAh be an adversary that makes at most qA many queries to h. Let
qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h when algorithm A runs on randomness r and by
qryh(Hh(M)) denote the h-queries during the evaluation of Hh(M). Then it holds that

Prr,h

[
(M,y)← Ah(1λ; r) : Hh(M) = y ∧

(
qryh(Hh(M)) \ qryh(Ah(1λ; r))

)
6= ∅

]
≤ qA

2s
+

1

2H∞(g(Us))

where \ denotes the simple complement of sets and Us denotes a random variable uniformly distributed in
{0, 1}s. The probability is over the choice of random oracle h and the coins of A.

Next, we show that given the sequence of h-queries and corresponding answers of an adversary, there
exists an efficient and deterministic extractor E that can reconstruct precisely the set of messages for which the
adversary “knows” the corresponding hash value. We give the proof in Appendix B.4.2.

Lemma 3.4. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and h : {0, 1}d × {0, 1}k →
{0, 1}s a fixed-length random oracle. LetAh be an adversary making at most qA queries to h. Let qryh(Ah(1λ; r))
denote the adversary’s queries to oracle h (together with the corresponding oracle answer) when algorithm A
runs on randomness r. Then there exists an efficient deterministic extractor E outputting setsM and Y with
|M| = |Y| ≤ 3qA, such that

Prr,h

[
(M,y)← Ah(1λ; r);

(M,Y)← E(qryh(Ah(1λ; r))
:
∃ X ∈M : Hh(X) /∈ Y ∨(
Hh(M) = y ∧M /∈M

)]
≤

3q2A
2H∞(g(Us))

.

Value Us denotes a random variable uniformly distributed in {0, 1}s. The probability is over the coins r of Ah

and the choice of random oracle h.

3.3 h-Queries during Functionality Respecting Games

We now define various terms that allow us to talk about specific queries from adversarial procedures to the un-
derlying function h of iterative hash function Hh during game G. Recall that, as do Ristenpart et al. [RSS11b],
we only consider the class of functionality-respecting games (see Section 2) where only adversarial procedures
may call the adversarial interface of functionalities (i.e., the underlying function h in our case).

Definition 3.5. Let GH
h,A1,...,Am be a functionality respecting game with access to hash functionality Hh and

adversarial procedures A1, . . . ,Am. We denote by qryG,h the sequence of queries to the adversarial interface
of Hh (that is, h) during the execution of game G.

Note that qryG,h is a random variable over the random coins of game G. Thus, we can regard the query
sequence as a deterministic function of the random coins. In this light, in the following we define subsequences
of queries belonging to certain adversarial procedures such as the i-th query of the j-th adversarial procedure.

Game GH
h,A1,...,Am can call adversarial procedures A1, . . . ,Am in any order and multiple times. Thus,

we first define a mapping from the sequence of adversarial procedure calls by the game’s main procedure to
the actual adversarial procedure Ai. For better readability, we drop the superscript identifying game G in
the following definitions and whenever the game is clear from context. Similarly, we drop the superscript
identifying oracle h exposed by the adversarial interface of functionality Hh if clear from context.

Definition 3.6. We define AdvSeqi (for i ≥ 1) to denote the adversarial procedure corresponding to the i-th
adversarial procedure call by game G. We set |AdvSeq| to denote the total number of adversarial procedure
calls by G.

The sequence of h-queries made by the i-th adversarial procedure AdvSeqi is defined as:

10

Definition 3.7. By qryi we denote the sequence of queries to h by procedure AdvSeqi during the i-th adver-
sarial procedure call by the game’s main procedure. By qryi,j we denote the j-th query in this sequence.

We also need a notion which captures all those queries executed before a specific adversarial procedure
AdvSeqi was called. For this, we will slightly abuse notation and “concatenate” two (or more) sequences,
i.e., if S1 and S2 are two sequences, then by S1||S2 we denote the sequence that contains all elements of S1
followed by all elements of S2 in their specific order.

Definition 3.8. By qry<i we denote the sequence of queries to h before the execution of procedure AdvSeqi.
By qry<i,j we denote the sequence of queries to h up to the j-th query of the i-th adversarial procedure call.
Formally,

qry<i :=

i−1∣∣∣∣∣∣
k=1

qryk and qry<i,j := qry<i ||
j−1∣∣∣∣∣∣
k=1

qryi,k

Finally, we define the sequence of h-queries by procedure AdvSeqi up-to the i-th adversarial procedure call
by the game’s main procedure. That is, in addition to queries qryi we have all queries from previous calls to
AdvSeqi by the game’s main procedure.

Definition 3.9. By qry<Ai,j we denote the sequence of queries to procedure h by the i-th adversarial procedure
AdvSeqi up-to query qry<i,j . Formally,

qry<Ai,j :=
∣∣∣∣∣∣

0<`<i,
AdvSeq`=AdvSeqi

qry` ‖
j−1∣∣∣∣∣∣
k=1

qryi,k .

BAD RESULT QUERIES. Having defined queries to the adversarial interface of the hash functionality (i.e.,
underlying function h) occurring during a game G allows us to use our notation established in Section 3.1 on
h-queries: initial queries, chained queries and result queries. For example, we can say that query qryi,j is an
initial query. With this, we now define a bad event corresponding to splitting up the evaluation of hash values
via several adversarial stages (also refer to the introduction).

Informally, we call a query (m,x) to function h(·, ·) badResult if it is a result query (cp. Definition 3.2)
with respect to all previous queries during the game, but it is not a chained query (and thus not a result query)
if we restrict the sequence of queries to that of the current adversarial procedure. Note that, whether or not
a query is bad only depends on queries to h prior to the query in question and is not changed by any query
coming later in the game. (Note the change in the underlying sequence for the two predicates in the following
definition.)

Definition 3.10. Let GH
h,A1,...,Am be any game. Let (m,x) := qryi,j be the j-th query to function h by

adversary AdvSeqi. Then query (m,x) is called badResultAi(qryi,j) if, and only if:

resultqry<i,j (m,x) and ¬chainedqry<Ai,j (m,x)

4 Unsplittable Multi-stage Games

The formalization of iterative hash functions together with the various definitions on particular queries during
a game allows us to define a property on games that will be sufficient to argue composition similar to that of
the MRH composition theorem for indifferentiability. We call a game G ∈ LG UNSPLITTABLE for an iter-
ative hash construction Hh, if two conditions hold: 1) For any adversary A1, . . . ,Am there exists adversary
A∗1, . . . ,A∗m such that games GH

h,A1,...,Am and GH
h,A∗1,...,A∗m change only by a small factor, and 2) During

game GH
h,A∗1,...,A∗m we have that bad result queries (cp. Definition 3.10) only occur with small probability.

Intuitively, this means that it does not help adversaries to split up the computation of hash values over several
distinct adversarial procedures. After formally defining unsplittability we will then in Section 4.1 give the
accompanying composition theorem. This informally states that if a game is UNSPLITTABLE for an indiffer-
entiable hash construction Hh, then security proofs in the random oracle carry over if the random oracle is
implemented by that particular hash function.

11

Definition 4.1. Let Hh be an iterative hash function and let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal
function. We say a functionality respecting game G ∈ LG is (tA∗ , qA∗ , εG, εbad)-UNSPLITTABLE for Hh if for
every adversary A1, . . . ,Am there exists algorithm A∗1, . . . ,A∗m such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤ Pr

[
GH

h,A∗1,...,A∗m ⇒ y
]
+ εG .

Adversary A∗i has run-time at most t∗Ai and makes at most q∗Ai queries to h. Moreover, it holds for game
GH

h,A∗1,...,A∗m that:

Pr
[
∃i ∈ [|AdvSeq|], ∃j ∈ [q∗Ai] : badResultAi(qryi,j)

]
≤ εbad .

The probability is over the coins of game GH
h,A∗1,...,A∗m and the choice of function h.

4.1 Composition for Unsplittable Multi-Stage Games

We here give the composition theorem for UNSPLITTABLE games in the asymptotic setting. The full theorem
with concrete advantages is given together with its proof in Appendix C (the theorem appears on page 42). We
here only present a much shortened proof sketch.

Theorem 4.2 (Asymptotic Setting). Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function indifferentiable
from a random oracle R and let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function. Let game G ∈ LG be
any functionality respecting game that is UNSPLITTABLE for Hh and let A1, . . . ,Am be an adversary. Then,
there exists efficient adversary B1, . . . ,Bm and negligible function negl such that for all values y∣∣∣Pr[GHh,A1,...,Am ⇒ y

]
− Pr

[
GR,B1,...,Bm ⇒ y

]∣∣∣ ≤ negl(λ) .

Proof Sketch. The proof consists of two steps. In a first step we are going to take the indifferentiability simula-
tor for Hh and transform it into a simulator with a special structure that we call Sd. Secondly, we take the UN-
SPLITTABILITY-property of gameG to get a set of adversariesA∗1, . . . ,A∗m such that during gameGF ,A

∗
1,...,A∗m

bad result queries (cp. Definition 3.10) occur only with negligible probability. This property, together, with the
structure of simulator Sd then allows to argue composition, similarly to RSS in their composition theorem for
reset-indifferentiability: Theorem 6.1 in [RSS11a] (Theorem 4 in the proceedings version [RSS11b]).

CONSTRUCTION OF Sd. We begin with the construction of simulator Sd. Since Hh is indifferentiable from
a random oracle there exists a simulator S such that for any efficient distinguisher D∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ ≤ negl .

From this simulator we are going to construct a generic simulator S∗ which keeps track of all queries internally
constructing any potential partial graph for the query-sequence. We give a shortened description of simulator
S∗ in Figure 5. If a query corresponds to a result query (cp. Definition 3.2) it ensures to be compatible with
the random oracle by picking a value from the preimage of g−1(R(extract(pg))) uniformly at random (see
line 7), where pg is the corresponding partial graph. Note that this ensures consistency with the answers of the
random oracle. Otherwise, if the query is not a result query, it simply responds with a random value (line 8).
The full construction is given as Construction C.1 in Appendix C.1. One of the challenges is to argue that the
so constructed simulator is indeed a good indifferentiability simulator. Lemma C.2 establishes that, indeed, if
the hash construction is indifferentiable, then simulator S∗ is a good indifferentiability simulator, and, thus∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,SR∗ (1λ) = 1

]∣∣∣ ≤ negl .

In a next step we derandomize simulator S∗ using the random oracle and a derandomization technique by
Bennet and Gill [BG81]. This is covered in detail in Lemma C.3 and yields simulator Sd. The derandomization
ensures that ∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,SRd (1λ) = 1

]∣∣∣ ≤ negl .

12

Simulator S∗(m,x) :
1 ifM[m,x] 6= ⊥ then returnM[m,x]
2 T ← {}
3 if init(m,x) then create new partial graph from (m,x) and add to T
4 test all existing partial graphs, if any can be extended
5 by query(m,x). If so, add result to T
6 if ∃pg ∈ T : extract(pg) 6= ⊥ then
7 M[m,x]←$ g−1(R(extract(pg)))
8 elseM[m,x]← {0, 1}s
9 if |T | > 0 then
10 label output edge of any graph in T withM[m,x]
11 add all graphs in T to a list of partial graphs
12 returnM[m,x];

Figure 5: Simulator S∗ for proof of Theorem 4.2. For a de-
tailed description see Appendix C.1 and Construction C.1.
The simulator maintains a list of partial graphs that can
be constructed from the sequence of queries. On a new
query (m,x) the simulator creates a temporary set T . If
the query is an initial query it constructs the corresponding
partial graph for it and adds it to T . Furthermore, it tries
all existing partial graphs, if they can be extended by the
current query. A query is answered either by a randomly
chosen value, or in case a valid execution graph was con-
structed for it by sampling a value uniformly at random from
g−1(R(extract(pg)).

USING Sd WITH UNSPLITTABLE GAMES. Let A∗1, . . . ,A∗m be such that during game GF ,A
∗
1,...,A∗m bad re-

sult queries occur only with negligible probability. We now set Bi := A∗i
S(i)d where every S(i)d denotes an

independent copy of Sd. The structure of Sd ensures that non-result queries (cp. Definition 3.2) are answered
consistently over the several independent copies. Furthermore, the fact that result queries are with overwhelm-
ing probability not bad ensures that also these are answered consistently. We, thus, get that

Pr
[
GH

h,A1,...,Am ⇒ y
]
≈

Pr
[
GH

h,A∗1,...,A∗m ⇒ y
]
≈ Pr

[
GR,A

∗
1
S(1)
d

R
,...,A∗m

S(m)
d

R

⇒ y

]
≈ Pr

[
GR,B1,...,Bm ⇒ y

]
♦

5 Applications

In the following we turn to the task of proving UNSPLITTABILITY for the various multi-stage games from
the introduction: the chosen distribution attack (CDA) game (Section 5.2), the message-locked encryption
(MLE) game (Section 5.4), the universal computational extractor (UCE) (Section 5.5) as well as the RSS
proof-of-storage game (Section 5.6). While for the RSS proof-of-storage game we will give a direct proof
(see Section 5.6) we prove the results for CDA, MLE and UCE via a meta result on games using keyed hash
functions.

5.1 Unsplittability of Keyed-hash Games

Let qryH
h
[
GH

h,A1,...,Am(r)
]

be the list of queries by game G (running on random coins r) to the honest

interface of the functionality (i.e., Hh) and let

qryh
[
GH

h,A1,...,Am(r)
]
:=
{
(m,x) : ∃M ∈ qryH

h
[
GH

h,A1,...,Am(r)
]
, (m,x) ∈ qryh(Hh(M))

}
be the list of queries by game G, when run on random coins r, to h triggered by queries to the honest interface
of the functionality. (Note that the adversarial procedures A1, . . . ,Am never query the honest interface.) For
fixed random coins r and an adversarial h-query qryi,j during game GH

h,A1,...,Am(r) we set

G-relevant(qryi,j ; r) ⇐⇒ qryi,j ∈ qryh
[
GH

h,A1,...,Am(r)
]

That is, we call an adversarial query G-relevant if the same query occurs during the honest computation of an
Hh query by game G.

The next lemma captures that we can replace the adversarial interface h given to an adversarial procedure
by one that differs from h on all points except for points that are also queried indirectly by the game, without
changing the outcome of the game (or rather its distribution over the choice of ideal functionality h).

13

Lemma 5.1. Let game G ∈ LG be any functionality respecting game and Hh an iterative hash function with
ideal function h : {0, 1}d × {0, 1}k → {0, 1}s. Fix random coins r and adversary A1, . . . ,Am. Then it holds
for every value y that

Prh

[
GH

h,A1,...,Am(r)⇒ y
]
= Prh,g

[
GH

h,Ah′
1 ,...,Ah′

m(r)⇒ y
]

where the adversaries on the right side get access to function h′ instead of function h where h′ is defined as

h′(m,x) :=

{
h(m,x) if (m,x) ∈ qryh

[
GH

h,A1,...,Am(r)
]

g(m,x) else

for an independent fixed-length random oracle g and the probability is over the choice of h in the first case and
h and g in the second.

Proof. The proof is readily established by noting that if h is not queried on a value (m,x) then it has min-
entropy s bits and the simulation by h′ is perfect.

In other words, if h-queries that are notG-relevant are answered not by h but with an independently chosen
random function it is sufficient that they are answered consistently over the various adversarial procedures for
the game not to change.

KEYED-HASH GAMES. Hash functions can be considered in a keyed setting, where a key is included in the
computation of every hash value. HMAC or NMAC were designed as keyed functions, other hash functions
like Merkle-Damgård variants can be adapted to the keyed setting, for example, by requiring that the key is
prepended to the message. In the following we write Hh(κ,M) to denote an iterative hash construction with
an explicit key input (see Appendix B.2 for how keyed hash constructions are captured by our framework for
iterative hash functions).

Many keyed constructions are designed such that the key is used in all initial queries. HMAC and NMAC
are of that type, and also the adapted Merkle-Damgård variants such as chop-MD or prefix-free-MD [CDMP05]
can be regarded of that type, if the key is always prepended to the message. We call such hash functions key-
prefixed hash functions.

Definition 5.2. A keyed iterative hash function Hh is called key-prefixed, if for all κ ∈ K and all M ∈ {0, 1}∗

∀(m,x) ∈ qryh(Hh(κ,M)) : ¬init(m,x) ∨ mp−1(m) = κ ∨ hp−1(x) = κ

where K denotes the key-space of function Hh.

Now, consider games that only make keyed hash queries. By this we mean that either the game is defined
using keyed hash functions directly (such as the UCE game; see Figure 1), or it can be restated as such by
identifying a part of each query as key, for example, because some parameter is prepended to every hash query.
We see that we can recast the CDA and the MLE game in this way.

Definition 5.3. We call a game G ∈ LG a keyed-hash game, if G only makes keyed hash queries. We denote
by KG[Hh, r] the set of keys used by G when run on coins r and with hash function Hh, and require that
KG[Hh, r] is polynomially bounded and chosen independently of the adversarial procedures.

We now show that an interesting sub-class of keyed-hash games are UNSPLITTABLE for key-prefixed hash
functions. We consider keyed-hash-games where only the last stage adversary gets to see the hash key (or
keys) used by the game while all previous adversarial stages do not. As we will see this exactly matches the
setup of the chosen distribution attack (CDA) game (Section 5.2), the message-locked encryption (MLE) game
(Section 5.4) as well as the universal computational extractor (UCE) (Section 5.5). The result is given by the
following theorem.

14

Theorem 5.4. LetG ∈ LG be a keyed-hash game where adversarial proceduresA1, . . . ,Am are called exactly
once and in this order. Let Hh be a key-prefixed iterative hash-function, that is indifferentiable from a random
oracle. Let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function. Denote by View[Ai;Hh, r] the view of
adversaryAi, i.e., the random coins ofAi together with its input and answers to any of its oracle queries when
game G is run with coins r and function Hh.

If for every efficient extractor E and for every efficient adversary Ai (for i = 1, . . . ,m − 1) there exists
negligible function negl such that

Prr
[
k ← E(View[Ai;Hh, r]) : k ∈ KG[Hh, r]

]
≤ negl(λ)

and adversary Am gets KG[Hh, r] as part of its input then G is UNSPLITTABLE for Hh.

In a first step to prove Theorem 5.4 we give a simplified version of it. Here the setup is a two-staged
keyed-hash game but it is established that the first stage adversary does not make G-relevant queries with
overwhelming probability. In this case, we show that game G is UNSPLITTABLE for any key-prefixed iterative
hash-function (see Definition 5.2).

Lemma 5.5. LetG ∈ LG be a two-stage keyed-hash game where adversarial proceduresA1 andA2 are called
exactly once and in this order. Let Hh be a key-prefixed iterative hash-function and let h : {0, 1}d×{0, 1}k →
{0, 1}s be an ideal function. If for every efficient adversary A1 the probability of making G-relevant queries
during GH

h,A1,A2 is negligible and adversaryA2 gets KG[Hh, r] as part of its input then G is UNSPLITTABLE

for Hh.

Proof. We construct adversary A∗1 to run A1 and answer any h-query with a value drawn uniformly at random
from {0, 1}s. Adversary A∗1 outputs whatever A1 outputs. Note that A∗1 does not use its h-oracle. Similarly,
we construct adversary A∗2 to run A2 and output whatever A2 outputs. Adversary A∗2 keeps an internal list of
all h-queries byA2 and constructs potential partial graphs (this can for example be done similar to the extractor
from Lemma 3.4). On receiving query (m,x) it checks if all initial queries in the corresponding partial graph
are correctly keyed with a key in K (note that A∗2 gets set K as input). If this is the case, it forwards the query
to its h oracle. Otherwise it simply returns a random value in {0, 1}s.

By construction, it follows that any G-relevant query made by A2 is forwarded to h by A∗2. Furthermore,
since adversary A1 does not make G-relevant queries (with overwhelming probability) we have that shared
queries by A1 and A2 will not be G-relevant and will be answered by A∗1 (resp. A∗2) with a randomly chosen
value in {0, 1}s.

It remains to ensure that shared queries by A1 and A2 are answered consistently. For this we derandomize
the adversaries using a similar approach as in Lemma C.2. Let qh denote an upper bound on the number of h
queries by adversaries A1 and A2. To answer query (m,x) adversary A∗i will compute

r ← h(〈1〉 , 0k)⊕ . . .⊕ h(〈2qh + 1〉 , 0k)

y ← h(m,x)⊕ r

and return y. Because of the restrictions on the number of queries, this is a perfect simulation of generating
uniformly random values for A1 and A2. Now, the same query by A1 and A2 to their oracles is answered
consistently by A∗1 and A∗2. This is true unless A∗2 answers the query using its h oracle since the correspond-
ing partial graph has correct initial queries (correct relative to K). By the strengthened missing link lemma
(Lemma B.2) the probability that A1 makes such a query is, however, negligible.

The proof follows with Lemma 5.1.

Remark. Note that the lemma can be straightforwardly adapted to m adversaries A1, . . . ,Am that are each
called once and in this order and where the restrictions for A1 apply to all adversaries except for the last stage
Am which takes the role of A2 in the lemma. In the proof simply apply the same steps as for adversary A1 to
all but the last adversary which also here plays the role ofA2. In the upcoming discussion we stick to the level
of only two adversaries to simplify notation.

To make use of the just proven lemma, we need to give sufficient conditions under which an adversarial
procedure does not make any G-relevant queries. In the following lemma we consider games where the first

15

adversarial procedure is not given access to the key used by the game to make keyed hash queries. This,
we formalize by requiring that no extractor, given the view of A1 can output a key κ ∈ KG[Hh, r] where
KG[Hh, r] (see Definition 5.3 of keyed hash games) denotes the hash keys used by game G with hash function
Hh when run on random coins r. The view of adversary A1 is denoted by View[A1;H

h, r] and contains the
random coins of A1 together with its input and answers to any of its oracle queries when game G is run with
coins r and function Hh.

Lemma 5.6. Let G ∈ LG be a keyed-hash game such that adversarial procedure A1 is the first adversarial
procedure called by G and is called only once. Let Hh be a key-prefixed iterative hash-function that is in-
differentiable from a random oracle. Let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function. Denote by
View[A1;H

h, r] the view of adversary A1, i.e., the random coins of A1 together with its input and answers to
any of its oracle queries.

If for every efficient extractor E and for every efficient adversary A1 there exists negligible function negl

such that
Prr
[
k ← E(View[Ai;Hh, r]) : k ∈ KG[Hh, r]

]
≤ negl

then A1 does not make G-relevant queries with overwhelming probability.

Proof. We show that if adversaryA1 makesG-relevant queries, that we can then build a distinguisher that wins
in the indifferentiability game. For this let S∗ be the simulator constructed from S according to construction
C.1. Then by Lemma C.2 and the fact that Hh is indifferentiable, we have that∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DR,SR∗ (1λ) = 1

]∣∣∣ ≤ negl . (1)

We will later use the special structure from simulator S∗ to argue that G-relevant queries only occur with
negligible probability. For this we assume that the simulator aborts if one of the failure conditions B1 to
B3 occurs (see pseudo-code of simulator on page 38 and second game hop in proof of Lemma C.2). By the
second game hop in the proof of Lemma C.2 we know that these failure conditions only occur with negligible
probability.

We construct a distinguisher D for the indifferentiability game as follows. Distinguisher D gets access to a
functionality F := (F .hon,F .adv) which is either (Hh, h) or (R,SR∗) and has to distinguish between the two
settings. Distinguisher D runs game GF .hon,AF.adv

1 ,...AF.adv
m . Let QG denote the set of queries by G to F .hon

and let QA denote the queries by adversary A1 to F .adv. After executing game G, distinguisher D tests if A1

made a G-relevant query. For this it computes for all messages (κ,M) ∈ QG hash value HF .adv(κ,M) and
records the occurring F .adv-queries in set Qτ . Distinguisher D outputs 0 if the intersection is empty and 1
otherwise (in this case adversary A1 succeeded in making a G-relevant query).

Let us assume that the lemma does not hold and that adversaryA1 makesG-relevant queries with noticeable
probability ε. Then, when (F .hon,F .adv) = (Hh, h) distinguisher D will always notice when A1 makes a
G-relevant query and will, thus, with probability ε output 1 and 0 otherwise. Let us now consider setting
(F .hon,F .adv) = (R,SR∗). By equation (1) we have that the output distribution of D must be negligibly
close to outputting 1 with probability ε. Thus, for equation (1) to hold it must be that also in this setting the
intersection QA ∩Qτ is not empty with probability ε.

Consider the state of simulator S∗ after the execution ofAS
R
∗

1 . By construction, for each query (m,x) ∈ QA
the simulator maintains at most three partial graphs such that the sole unbound edge is labeled with x (or rather
hp−1(x) but for simplicity we here simply assume that hp is the identity function). In the following we argue
that neither type of query (queries for which the simulator maintains partial graphs and those for which it does
not maintain partial graphs) can lead to a G-relevant query.

First we consider queries (m,x) ∈ QA for which the simulator maintains a partial graph such that the sole
unbound edge is labeled with x. That the simulator contains such a partial graph means that the query is a
chained query (or an initial query). However, with overwhelming probability it is chained with respect to a key
not in KG[Hh, r] (that is a key, that is not used by the game), as otherwise we can build an extractor to extract
the key. On the other hand, by construction, all queries in Qτ are chained with respect to a key in KG[Hh, r].
This means that the corresponding partial graph is different from any of the partial graphs maintained for
queries in QA. If two such partial graphs now have their sole unbound edges labeled with the same value, this

16

implies that a collision occurred on a query to S∗. This, however violates failure condition B1 and, thus, by the
second game hop in the proof of Lemma C.2 this happens only with negligible probability.

It remains to consider queries (m,x) ∈ QA for which the simulator S∗ does not maintain a partial graph
after the execution of AS

R
∗

1 . For this, assume that there is (κ,M) ∈ QG such that query (m,x) occurs during
the computation of HS

R
∗ (κ,M) (and, thus, (m,x) ∈ Qτ). During the computation of HS

R
∗ (κ,M) query

(m,x) is a chained query and thus simulator S∗ will maintain a partial graph such that the sole unbound edge
is labeled with value x. This, however, directly violates failure condition B3 as here a query that appeared
earlier in the computation could be used to extend a new partial graph. Again, by the second game hop in the
proof of Lemma C.2 this happens only with negligible probability.

Remark. Note that, again, the lemma can be straightforwardly adapted to m adversaries A1, . . . ,Am where
all adversaries up to the last one share the restrictions of adversaryA1. In this case the argument simply iterates
over the adversaries proving at the i-th step that the i-th adversary cannot make G-relevant queries conditioned
on that all previous adversaries do not make G-relevant queries.

We can now prove Theorem 5.4 which establishes UNSPLITTABILITY for any keyed-hash game by com-
bining Lemmas 5.6 and 5.5.

Proof of Theorem 5.4. With Lemma 5.6 we have that adversaries A1 to Am−1 do not make any G-relevant
queries. The result then follows with Lemma 5.5. Also see remarks after Lemmas for how to extend them to
m adversaries.

5.2 The Chosen Distribution Attack Game

In the following section we show UNSPLITTABILITY for the chosen distribution attack (CDA) security game.
The CDA captures a security notion of deterministic public key encryption schemes [BBN+09]. We begin by
recalling the basic definitions for the non-adaptive CDA game.

PUBLIC-KEY ENCRYPTION. A public-key encryption scheme AE := (KGen, E ,D) consists of three ef-
ficient algorithms: a key generation algorithm KGen that given the security parameter generates a keypair
(pk, sk), an encryption algorithm E that, being given a message m, randomness r, and the public key pk, out-
puts a ciphertext c, and the decryption algorithm D that, given a ciphertext c and secret key sk, outputs a
plaintext message or a distinguished symbol ⊥.

CDA SECURITY. The CDA game (depicted in Figure 1) captures the security of public-key encryption
schemes where the randomness used to encrypt may not be sufficiently random after all, i.e., it may not have
sufficient min-entropy [BBN+09]. For the remainder of this and the next section we denote by ω > 0 the size
of messages and by ρ > 0 the size of randomness for encryption scheme E . In the CDA-game adversary A1

implements a so called (µ, ν)-mmr-source which is a probabilistic algorithm that outputs a triplet of vectors
(m0,m1, r), each of size ν. Vectors m0 and m1 contain messages, that is, each component is of size ω and
vector r corresponds to randomness, that is each component is of size ρ. Furthermore, to exclude trivial attacks,
it is required that (mb[i], r[i]) 6= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}. Finally, one requires
that components have sufficient min-entropy µ independent of the random oracle, that is for all 1 ≤ i ≤ ν, all
b ∈ {0, 1}, all r ∈ {0, 1}ρ, and all m ∈ {0, 1}ω it holds that

Pr
[
(mb[i], r[i]) = (m, r)|(m0,m1, r)← AR1 (1λ),R

]
≤ 2−µ .

The advantage of an adversaryA := (A1,A2) in the CDA game where adversaryA1 is a valid (µ, ν)-mmr-
source is given as

AdvCDA
AE,Hh(A1,A2) := 2 · Pr

[
CDAHh,A1,A2

AE ⇒ true
]
− 1 .

17

CDA IS UNSPLITTABLE. To show that CDA is UNSPLITTABLE we use Therom 5.4 and show that the CDA
game fulfills the requirements stated therein. The CDA game is a two-stage game. In order to meet the require-
ments of Theorem 5.4 we need to ensure that the game is keyed. For this, we need two things. 1) we require
that all hash queries by the encryption scheme are keyed. For this we require that the encryption scheme’s pub-
lic key is used as hash key. 2) we need that the probability of guessing the public key for encryption scheme
AE is negligible for adversary A1. We define the maximum public-key collision probability in the style of
[BBO07]. This intuitively captures the probability of guessing a public key as generated by a PKE scheme’s
KGen algorithm:

maxpkAE := max
w∈{0,1}∗

Pr
[
(pk, sk)← KGen(1λ) : pk = w

]
(2)

Restricting CDA as described above and applying Theorem 5.4 we get:

Lemma 5.7. Let AE be a public-key encryption scheme with negligible maxpkAE . Let the encryption scheme
query its hash functionality Hh using key pk as hash key. Then, the non-adaptive CDAH

h,A1,A2

AE game (cf.
Figure 1) is UNSPLITTABLE for any key-prefixed iterative hash function.

We note that many encryption schemes proposed for deterministic encryption are of the form that they
prepend the public-key to all their hash function queries. Examples include the Encrypt-And-Hash scheme as
well as the Encrypt-With-Hash scheme from [BBO07] and the Randomized-Encrypt-With-Hash scheme from
[BBN+09]. Thus, if the hash function is instantiated with, for example, Merkle-Damgård variants such as
chop-MD or prefix-free-MD or with HMAC or NMAC the above lemma applies.

5.3 The Adaptive Chosen Distribution Attack Game

In the adaptive CDA game [BBN+09] (also see Figure 7) the first adversary can adaptively generate ciphertexts
before it has to output the two message vectors m0,m1 and the randomness vector r. For this, we give
adversary A1 access to an oracle ENC, which allows to encrypt messages under the public key, but without
having to give A1 access to the public key (except, of course, what is revealed by ENC-queries).

PK-EXT SECURITY. In order to prove that the adaptive CDA game is UNSPLITTABLE we need an extra
assumption on the encryption scheme: namely, given the encryption of a message, it should be infeasible to
extract the public key used in the encryption. Bellare et al. [BBDP01] define the notion of key indistinguisha-
bility (IK-CPA, see Figure 20) for public-key encryption schemes which intuitively captures that no adversary
given an encryption can learn anything about the public key used for the encryption. The notion is defined as an
indistinguishability notion, where a first-stage adversary gets two distinct public keys and outputs a message.
According to some secret bit b this message is encrypted with one of the two public keys and given to a second
stage adversary that has to guess b. Note that this notion cannot be fulfilled by any PKE scheme if the adversary
is allowed to chose the randomness used in the encryption. Here the second-stage adversary can simply, on its
own, recompute the ciphertext for both public keys and compare the outcome to its input.

We propose a weaker notion that can be met even if the adversary chooses the randomness used by the
encryption scheme. We define the notion of PK-EXT (short for public-key extractability) for public-key en-
cryption schemes. Game PK-EXTA,H

h

AE is shown in Figure 6. An adversary can make multiple queries to an
encryption oracle and then has to output a guess for the public key that was used for the encryptions. We define
the advantage of an adversary A by

AdvPK-EXT
AE (A) := Pr

[
PK-EXTAAE ⇒ true

]
.

Note that this property is a natural strengthening of the property that public keys output by the key gen-
eration algorithm should not be guesseable. However, it is still quite a weak property as it only requires that
super-logarithmically many bits of the public key have to remain hidden. In Appendix D we prove that our new
notion is met by the REwH1 scheme [BBN+09] if the underlying PKE scheme is IK-CPA secure. Examples of
IK-CPA-secure schemes are, for example, the El Gamal or the Cramer-Shoup schemes [CS98]. We can further
show that in case the adversary cannot specify the randomness, then PK-EXT is directly implied by IK-CPA.

18

PK-EXTA,H
h

AE

(pk, sk)← KGen(1λ)
pk′ ← AENC,h(1λ)
return (pk = pk′)

procedure ENC(m, r)

return EH
h

(pk,m; r)

Figure 6: Game PK-EXT

aCDAHh,A1,A2

AE (1λ)

b← {0, 1}
(pk, sk)← KGen(1λ)
(m0,m1, r)← AENC,h

1 (1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

procedure ENC(m0,m1, r)

return EH
h

(pk,mb; r)

Figure 7: The adaptive CDA game

THE ADAPTIVE CDA GAME IS UNSPLITTABLE. The proof in the adaptive setting is essentially equivalent
to the proof in the non-adaptive setting: it follows with Theorem 5.4.

Lemma 5.8. Let AE be a public-key encryption scheme such that for any efficient adversary A the advantage
against public-key extractibility is negligible:

AdvPK-EXT
AE (A) ≤ negl

Let the encryption scheme query its hash functionality Hh using key pk as hash key. Then, the adaptive
CDAH

h,A1,A2

AE game (cf. Figure 1) i is UNSPLITTABLE for any key-prefixed iterative hash function.

5.4 Message Locked Encryption

Message locked encryption [BKR13] is a notion very similar to CDA, yet for the symmetric setting. It is a
security notion for symmetric encryption schemes where the encryption key is derived from the to-be encrypted
message. This allows for secure deduplication of data, a property useful, for example, in the cloud storage
setting. Here, a storage provider wants to save storage capacity by not storing equivalent files multiple times
(encrypted under different keys). If the encryption key only depends on the message (and possible public
parameters), then the cloud provider can detect multiple copies of the same file and store it only once.

An MLE scheme consists of five algorithms MLE := (P,K, E ,D, T) where K, E ,D is a symmetric-
encryption scheme,P is a probabilistic algorithm to generate a public parameter P and T is a tagging algorithm
(which is used for deduplication and not important for our discussion).

In Figure 8 we give the IND-CDAMLE and IND$-CDAMLE security games on the left and the popular
convergent encryption (CE) scheme [BKR13, DAB+02] on the right. In the IND-CDAMLE security game a
public parameter P is generated in the first step. Then the first adversarial stage A1 is run (without having
access to parameter P) and outputs two message vectors m0,m1 as well as some state Z. Similarly to CDA it
is required that all entries in mi are of the same length for i ∈ {0, 1} and vectors m0 and m1 have the same
length. Further, mji1 6= mji2j for any two distinct i1, i2 ∈ [|m0|] and j ∈ {0, 1}, that is, all values in each
vector are distinct. Finally, both vectors should be unpredictable given state Z, that is each entry needs to have
sufficient min-entropy conditioned on Z. According to a secret bit b every entry in b is then encrypted using
a key constructed by algorithm KP that gets public parameter P and the message to be encrypted. Then the
second stage adversary gets ciphertext vector c and state Z and has to guess hidden bit b.

Variant IND$-CDAMLE captures a stronger property demanding that encryptions of unpredictable messages
are indistinguishable from random strings of the same length.

19

PRV-CDAHh,A1,A2

MLE (1λ)

P ← P
b← {0, 1}
(m0,m1, Z)← Ah

1(1
λ)

for i = 1 . . . |m| do
c[i]← EH

h

P (KP (mb[i]),mb[i])

b′ ← Ah
2(P, c, Z)

return (b = b′)

PRV$-CDAHh,A1,A2

MLE (1λ)

P ← P
b← {0, 1}
(m, Z)← Ah

1(1
λ)

for i = 1 . . . |m| do
c1[i]← EH

h

P (KP (m[i]),m[i])

c0[i]← {0, 1}|c1[i]|

b′ ← Ah
2(P, cb, Z)

return (b = b′)

CE.KGen(M)

K ← Hh(P,M)

return K

CE.Enc(K,M)

C ← SE(K,M)

return C

CE.TGen(C)

T ← Hh(P,C)

return T

CE.Dec(K,C)

M ← SD(P,C)

return M

Figure 8: The PRV-CDA and PRV$-CDA MLE-security games from [BKR13] on the left. On the right the convergent encryption
(CE) using a symmetric encryption scheme SE = (SK,SE ,SD). Note that the tag generation algorithm TGen is not relevant for the
security games.

Both security games are closely related to the CDA security game. One crucial difference, however, is
that the two adversarial stages are able to communicate almost in the clear via state Z. In their CDA security
proof for NMAC, Ristenpart et al. [RSS11b] use a strong property on the encryption scheme to make the two
adversarial stages completely independent. This technique will not work for MLE, since via Z the two stages
are always dependent on one another.

Using Theorem 5.4 it is, however, easily seen that both security games IND-CDAMLE and IND$-CDAMLE
are UNSPLITTABLE for key-prefixed hash functions as long as the probability of guessing public parameter P
is negligible:

Lemma 5.9. Let MLE := (P,K, E ,D, T) be an MLE scheme scheme that only makes keyed queries to hash
function Hh using parameter P as generated by algorithm P . Then, the IND-CDAMLE and IND$-CDAMLE
games are UNSPLITTABLE for any key-prefixed iterative hash function.

5.5 Universal Computational Extractors

Universal computational extractors (UCE) are a recently introduced standard model assumption by Bellare,
Hoang and Keelveedhi [BHK13] that aims at replacing random oracles for a large class of applications. The
idea is to have constructions proven as UCE-secure possibly in an idealized model (so far only random oracle
constructions are known) and then to base the security of applications on the UCE assumption rather than the
random oracle assumption directly.

Bellare et al. showed that the hash constructionHR(κ,m) := R(k‖m) is UCE secure in the random oracle
model, whereR is a random oracle. They conjectured, that also HMAC is UCE secure in the idealized model,
where the iterated compression function is assumed to be ideal: that is, exactly the model we are studying in
this paper.

In the following we show that their conjecture was correct, that is, HMAC is UCE secure (UCE2, to be
precise [BHK13]). In fact, we show a stronger statement, namely that the UCE security game depicted in
Figure 9 is UNSPLITTABLE for any key-prefixed iterative hash function that is indifferentiable from a random
oracle.

The UCE game (see Figure 9) is a two-stage keyed-hash game. Initially, the game chooses a hash key κ
from the key space. Then the first adversary, the so-called source S is run and outputs some leakage L. The
source has access to an oracle Hash which, according to hidden bit b returns either real hash values (under
key κ) or uniformly random values. The leakage L is then given to a distinguisher D together with the hash
key κ (note that the source did not get the hash key) and has to guess whether the source was talking to the
actual hash function or not. The rule out trivial attacks, it is required that the source is unpredictable, that is,
for all efficient predictors it holds that the probability of finding a HASH query by the source given leakage L
is negligible.

Applying Theorem 5.4 we get:

Lemma 5.10. Let Hh be a key-prefixed iterative hash-function with fixed message-rate, that is indifferentiable
from a random oracle, then Hh is UCE2-secure.

20

UCES,DHh (1λ)

b← {0, 1}; κ← K
L← Sh,HASH(1λ); b′ ← Dh(1λ, k, L)
return (b = b′)

HASH(x)

if T [x] = ⊥ then
if b = 1 then T [x]← Hh(κ, x)

else T [x]← {0, 1}`

return T [x]

Figure 9: The UCE-security game from [BHK13].

5.6 The Proof-Of-Storage Game and Multi-Round Hash Functions

With the next lemma we establish that the challenge-response game (cf. Figure 1) from the introduction is
UNSPLITTABLE for any two-round iterative hash construction. Liskov’s Zipper Hash construction [Lis06] is
an example of a two-round hash function. In an r-round hash construction the entire message is processed
r-times. We give an introduction to multi-round iterative hash constructions and how they are captured in our
framework in Appendix B.3.

Lemma 5.11. The proof-of-storage game CRPH
h,A1,A2

p,c (cf. Figure 1) is UNSPLITTABLE for any r-round
iterative hash construction Hh

r with r ≥ 2.

Proof. We show that no adversary (A1,A2) has noticeable probability in winning the CRP game in case the
hash functionality is instantiated with a two-round indifferentiable hash construction.

To win in the CRP game with a two-round hash function, A2 must compute value Hh
2 (M ||C) which,

according to Definition 3.1, can be written as g(h(m,x)) where g is some transformation and (m,x) is the
input to the final h-call in the second round of the computation of Hh

2 (M ||C). By Lemma 3.3 we have that
if only a single h-query in the evaluation of Hh

2 (M ||C) is not queried, then the probability of outputting
Hh

2 (M ||C) is at most
qA1 + qA2

2s
+

1

2H∞(g(Us))
.

We now argue that adversaryA1 cannot query h-queries inHh
2 (M ||C) that correspond to h-nodes occurring

in the second round. Challenge C is of length c bits and, thus, can be guessed by A1 with probability at most
2−c. As C will be part of one or multiple message-block-nodes in the execution graph construct(M ||C), we
have that A1 is able to make all h-queries in the first round of construct(M ||C) with probability at most

qA1

2c
.

Similarly, adversary A2 is given only n bits of information from the first round and is, thus, missing at least
p−n bits of messageM . Thus, the probability, that it is able to make all h-queries in the second round is upper
bounded by

qA2

2p−n
.

If we set adversary (A∗1,A∗2) asA∗1 = A1 andA∗2 as the procedure that simply outputs a guess for value Z,
then we have that bad result queries do not occur and we have that for all values y

Pr
[

CRPH
h,A1,A2

p,c ⇒ y
]
≤ Pr

[
CRPH

h,A∗1,A∗2
p,c ⇒ y

]
+
qA1

2−c
+

qA2

2p−n
+
qA1 + qA2

2s
+

1

2H∞(g(Us))
.

21

5.7 A Conjecture on Two-Stage Games and Future Work

Finally we want to present a conjecture on games consisting of exactly two stages (note that all security games
in this paper are examples of a two stage game). We include this conjecture, since we believe it provides some
insights into the nature of multi-stage games and multi-round hash constructions. Furthermore, proving such a
result would be a huge step forward, as this would be the first truly generic positive result on indifferentiability
in a multi-stage setting.

Conjecture 5.12. Any two-stage functionality-respecting game is UNSPLITTABLE for any r-round iterative
hash function Hh

r with r ≥ 2.

The idea behind Conjecture 5.12 is simple. In a two-stage game, a bad query can only be made by the
second-stage adversary. Let us consider two-round hash functions. Then we can distinguish between two
cases in the event that bad(m,x) occurs for some query (m,x) by A2. Let pg be the partial execution graph
corresponding to query (m,x). Then, either (m,x) corresponds to an h-node in pg in the first, or in the
second round (the probability of it corresponding to two h-nodes can be upper bounded by the probability of
an h-collision).

In the first case, the entire second round is computed by the second stage adversary A2 and thus it must
know the entire message corresponding to the partial graph as all message-block-nodes from round 1 reappear
in round 2 (see Definition B.1). In this case, however,A2 could have simply computedHh

2 (M) directly. For the
second case a similar argument applies. Here the entire first round is computed byA1 which must hence know
the entire message M . As bad queries can only occur with non-negligible probability if there is sufficient
communication between the adversaries, adversary A1 could, thus, have also passed on Hh(M) instead of
some intermediate value.

Acknowledgments

I thank the anonymous reviewers for valuable comments. Furthermore, I would like to thank my group mem-
bers at cryptoplexity (www.cryptoplexity.de) for many fruitful discussions. This work was supported
by CASED (www.cased.de).

22

www.cryptoplexity.de
www.cased.de

References

[AHMP10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3 proposal
BLAKE. Submission to NIST (Round 3), 2010. (Cited on page 5.)

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582.
Springer, December 2001. (Cited on pages 18 and 44.)

[BBM13] Paul Baecher, Christina Brzuska, and Arno Mittelbach. Reset indifferentiability and its conse-
quences. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 154–173. Springer, December 2013. (Cited on page 3.)

[BBN+09] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and
Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 232–249. Springer, December
2009. (Cited on pages 3, 17, 18, and 44.)

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552.
Springer, August 2007. (Cited on pages 3 and 18.)

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentica-
tion. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, August
1996. (Cited on pages 5, 7, and 34.)

[BDPA11a] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak SHA-3 submission. Submis-
sion to NIST (Round 3), 2011. (Cited on pages 3 and 5.)

[BDPA11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge
functions, 2011. (Cited on pages 5 and 36.)

[BG81] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= coNPA with probability
1. SIAM Journal on Computing, 10(1):96–113, 1981. (Cited on pages 4, 12, and 41.)

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
398–415. Springer, August 2013. (Cited on pages 3, 5, 20, and 21.)

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure
deduplication. In Johansson and Nguyen [JN13], pages 296–312. (Cited on pages 3, 5, 19, and 20.)

[BMN09] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Indifferentiability characterization
of hash functions and optimal bounds of popular domain extensions. In Bimal K. Roy and Nicolas
Sendrier, editors, INDOCRYPT 2009, volume 5922 of LNCS, pages 199–218. Springer, December
2009. (Cited on page 6.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November 1993.
(Cited on page 3.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, May / June 2006. (Cited on pages 6 and 26.)

[Bra89] Gilles Brassard, editor. CRYPTO’89, volume 435 of LNCS. Springer, August 1989. (Cited on

page 24.)

23

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård
revisited: How to construct a hash function. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 430–448. Springer, August 2005. (Cited on pages 4, 5, 6, 14, 28, 39, and 48.)

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 13–25. Springer, August 1998. (Cited on page 18.)

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In ICDCS, pages 617–624, 2002.
(Cited on page 19.)

[Dam89] Ivan Damgård. A design principle for hash functions. In Brassard [Bra89], pages 416–427. (Cited

on pages 3, 5, and 7.)

[DGHM13] Gregory Demay, Peter Gazi, Martin Hirt, and Ueli Maurer. Resource-restricted indifferentiability.
In Johansson and Nguyen [JN13], pages 664–683. (Cited on page 3.)

[DRS09] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damgård for
practical applications. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
371–388. Springer, April 2009. (Cited on pages 4 and 48.)

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno,
Jon Callas, and Jesse Walker. The skein hash function family. Submission to NIST (Round 3),
2010. (Cited on page 5.)

[GKM+11] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rech-
berger, Martin Schlffer, and Sren S. Thomsen. Grstl – a SHA-3 candidate. Submission to NIST
(Round 3), 2011. (Cited on page 5.)

[JN13] Thomas Johansson and Phong Q. Nguyen, editors. EUROCRYPT 2013, volume 7881 of LNCS.
Springer, May 2013. (Cited on pages 23 and 24.)

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded constructions.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 306–316. Springer,
August 2004. (Cited on page 35.)

[LAMP12] Atul Luykx, Elena Andreeva, Bart Mennink, and Bart Preneel. Impossibility results for in-
differentiability with resets. Cryptology ePrint Archive, Report 2012/644, 2012. http:
//eprint.iacr.org/2012/644. (Cited on page 3.)

[Lis06] Moses Liskov. Constructing an ideal hash function from weak ideal compression functions. In Eli
Biham and Amr M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 358–375. Springer,
August 2006. (Cited on pages 3, 5, 21, and 28.)

[Luc04] Stefan Lucks. Design principles for iterated hash functions. Cryptology ePrint Archive, Report
2004/253, 2004. http://eprint.iacr.org/2004/253. (Cited on pages 27, 35, and 36.)

[Mer89] Ralph C. Merkle. One way hash functions and DES. In Brassard [Bra89], pages 428–446. (Cited

on pages 3, 5, and 7.)

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility re-
sults on reductions, and applications to the random oracle methodology. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, February 2004. (Cited on page 3.)

[Riv92] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April 1992. Updated
by RFC 6151. (Cited on pages 3 and 5.)

24

http://eprint.iacr.org/2012/644
http://eprint.iacr.org/2012/644
http://eprint.iacr.org/2004/253

[RSS11a] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Lim-
itations of indifferentiability and universal composability. Cryptology ePrint Archive, Report
2011/339, 2011. http://eprint.iacr.org/2011/339. (Cited on pages 12 and 42.)

[RSS11b] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limi-
tations of the indifferentiability framework. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 487–506. Springer, May 2011. (Cited on pages 3, 5, 6, 10, 12, 20, 26, 42,

and 43.)

[Win83] Robert S. Winternitz. Producing a one-way hash function from DES. In David Chaum, editor,
CRYPTO’83, pages 203–207. Plenum Press, New York, USA, 1983. (Cited on pages 6 and 48.)

[Wu11] Hongjun Wu. The hash function JH. Submission to NIST (round 3), 2011. (Cited on page 5.)

25

http://eprint.iacr.org/2011/339

A Game Playing

For the discussion in this paper we use the game playing technique as described in [BR06, RSS11b]. Games
consist of procedures which in turn consist of a sequence of statements together with some input and zero or
more outputs. Procedures can call other procedures. If procedures P1 and P2 have inputs and outputs that
are identical in number and type, we say that they export the same interface. If a procedure P gets access to
procedure F we denote this by adding it in superscript PF . All variables used by procedures are assumed to be
of local scope. After the execution of a procedure the variable values are left as they were after the execution
of the last statement. If procedures are called multiple times, this allows them to keep track of their state.

A functionality F is a collection of two procedures F .hon and F .adv, with suggestive names “honest” and
“adversarial”. Adversaries access a functionality F via the interface exported by F .adv, while all other proce-
dures access the functionality via F .hon. In our case, functionalities are hash functionalities which will either
be instantiated with typical iterative hash constructions or with random oracles. For iterative hash construc-
tions the adversarial interface accesses the compression function and the honest interface provides access to the
complete hash function as specified, i.e., F .hon := Hh and F .adv := h. Note that access to the compression
function is sufficient to compute Hh. For a random oracle, on the other hand, there is no distinction between
adversary access and honest access and we can assume that the adversarial interface simply forwards calls to
the honest interface. As in this paper we are solely talking about iterative hash functions we will usually not
write F .hon and F .adv, but directly refer to hash function Hh and underlying function h, respectively.

A game G consists of a distinguished procedure called main (which takes no input) together with a set of
procedures. A game can make use of functionality F and adversarial procedures A1, . . . ,Am (together called
“the adversary”). Adversarial procedures have access to the adversarial interface of functional procedures and,
as any other procedure, can be called multiple times. We, however, restrict access to adversarial procedures to
the game’s main procedure, i.e., only it can call adversarial procedures and, in particular, adversarial proce-
dures cannot call one another directly.

ByGF ,A1,...,Am we denote a game using functionalityF and adversaryA1, . . . ,Am. IfF ′ exports the same
interface as F , and for 1 ≤ i ≤ m adversary A′i exports the same interface as Ai, then GF

′,A′1,...,A′m executes
the same gameGwith functional procedureF ′ and adversaryA′1, . . . ,A′m. We denote byGF ,A1,...,Am ⇒ y the
event that game G produces output y, that is procedure main returns value y. If game G uses any probabilistic
procedure then GF ,A1,...,Am is a random variable and by Pr

[
GF ,A1,...,Am ⇒ y

]
we denote the probability

(over the combined randomness space of the game) that it takes on value y. Sometimes we need to make the
random coins r explicit and write GF ,A1,...,Am(r) to denote that the game is run on random coins r.

Games are random variables over the entire random coins of the game and the adversarial procedures.
For functionalities F and F ′ and adversaries A1, . . . ,Am and A′1, . . . ,A′m, we can thus consider the distance
between the two random variables. Our security approach is that of concrete security, i.e., we say two games
are ε-close if for all values y it holds that

Pr
[
GF ,A1,...,Am ⇒ y

]
≤ Pr

[
GF

′,A′1,...,A′m ⇒ y
]
+ ε .

In asymptotic terms this means that if ε is negligible in the security parameter, then it follows that for all
efficient distinguishers the two games are indistinguishable:∣∣∣Pr[D(GF ,A1,...,Am , 1λ) = 1

]
− Pr

[
D(GF ′,A′1,...,A′m , 1λ) = 1

]∣∣∣ ≤ ε(λ) .
FUNCTIONALITY RESPECTING GAMES. In this paper we only consider the class of functionality-respecting
gamesLG as defined by Ristenpart et al. [RSS11b]. A game is called functionality respecting if only adversarial
procedures can call the adversarial interface of functionalities. Note that this restriction is quite natural if a
game is used to specify a security goal in the random oracle model since random oracles do not provide any
adversarial interface.

26

B Formalizing Iterative Hash Functions

B.1 Execution Graphs

In the following section we formally describe execution graphs for iterative hash functions (see Section 3).
We describe the structure of the execution graph for message m1‖ . . . ‖m` := pad(M). An execution graph
is a directed graph where nodes represent constants or functions while edges define the evaluation path. An
execution graph contains exactly one unbound outgoing edge. The graph consists of the following node and
edge types:

IV-node: For every string iv ∈ IV there can exist an IV-node with in-degree 0. Outgoing edges are of type
h-edge or m-edge labeled with value iv. If the outgoing edge is of type h-edge (resp. m-edge) it must
hold that iv ∈ {0, 1}s (resp. iv ∈ {0, 1}b).

message-node: For every message block mi (for 1 ≤ i ≤ `) there exists a node with in-degree 0 and out-
degree at least 1. Outgoing edges are of type m-edge labeled with value mi (possibly prefixed or post-
fixed with the message block counter).

mp-node: A mp-node has in-degree 1 which takes an m-edge and out-degree 1. The outgoing edge is of type
mp-edge.

hp-node: A hp-node has in-degree 1 taking an h-edge and out-degree 1. The outgoing edge is of type hp-edge.

hmp-node: A hmp-node has in-degree 1 taking an h-edge and out-degree 1. The outgoing edge is of type
mp-edge. We add the additional restriction that ingoing h-edges may not come from IV-nodes.

h-nodes: An h-node has in-degree 2, an mp-edge and a hp-edge, and has out-degree at least 1. Outgoing edges
are of type h-edge.

g-node: There exists a single g-node with in-degree 1, taking an h-edge and out-degree 1. The outgoing edge
is not connected to a node.

We call IV and message-nodes value-nodes and all other node types function-nodes. All outgoing edges must
be connected to a node with the only exception being the outbound edge from the single g-node.

A valid execution graph is a graph that is not empty and complies with the above rules. For each message
M ∈ {0, 1}∗ there is exactly one valid execution graph.

We will also need the concept of partial execution graphs which is a non-empty graph that complies to
the above specified rules with the only exception that it does not contain a g-node. However, it must contain
exactly one unbound outgoing h-edge.

We define EVAL to be a generic, deterministic algorithm evaluating execution graphs relative to an oracle h.
Let pg be a an execution graph for some message M ∈ {0, 1}∗. To evaluate pg relative to oracle h, algorithm
EVALh(pg) first verifies the graph structure validating ensuring it is either a valid execution graph or a partial
execution graph (note that this is independent of additional restrictions put due to a concrete construction). It
then performs the following steps to compute the hash value: search for a node that has no inbound edges or
for which all inbound edges are labeled. If the node is a value node, then remove the node (in this case the
outgoing edges are already labeled). If the node is a function node then evaluate the corresponding function
using the labels from the inbound edges as input. Remove the node from the graph and label all outgoing edges
with the result. If the last node in the graph was removed stop and return the result. Note that EVALh(pg) runs
in time at most O

(
|V 2|

)
assuming that pg contains |V | many nodes. Note that if pg is a partial execution

graph then EVALh(pg), likewise, computes the partial graph outputting the result of the final h-node. Further,
if pg is a partial execution graph, then we denote by g(pg) the corresponding execution graph where the single
outbound h-edge of pg is connected to a g-node. We call this the completed execution graph for pg. We give
the pseudo-code of algorithm EVAL in Figure 10.

Remark. In the above model, we have defined the preprocessing nodes to have in-degree 1. For certain
constructions (such as, for example, the double-pipe construction [Luc04], see Section B.5.4) this requirement
needs to be relaxed. Such relaxations slightly complicate the definition of initial, chained and result queries
(see Section 3.1) but do not change the presented results (in an asymptotic setting).

27

Algorithm: EVALh(pg)

y ← ⊥
if (pg is not correct partial graph) then return y
while (pg contains nodes) do

foreach (node in pg) do
if (node is value-node) then remove node from pg
if (node is function-node ∧ all inbound edges are labeled) then

y ← evaluateh(node)
label all outgoing edges of node with y
remove node and inbound edges from pg

return y

Algorithm: evaluateO(node)

if (node is mp-node) then
return mp(node.in-m)

if (node is hp-node) then
return hp(node.in-h)

if (node is hmp-node) then
return hmp(node.in-h)

if (node is h-node) then
m← node.in-mp
x← node.in-hp
return O(m,x)

if (node is g-node) then
return g(node.in-h)

Figure 10: The generic evaluation algorithm EVALh. For the evaluation of function nodes we denote by node.in-T the label of the
ingoing edge of type T.

B.2 Keyed Hash Constructions

Hash functions can be keyed, that is, hash values are computed relative to a key. Keying of hash functions can be
done either by design (which we refer to as explicit) or implicitly by embedding the key in the message before
computing the hash value. Example of explicitly keyed hash functions are HMAC and NMAC. Examples
of implicitly keyed hash functions would be the plain Merkle-Damgård function where the key is always
prepended to the message before hashing it. That is, for example, for chop-MD [CDMP05] we could have the
following keyed construction.

keyed-chopMD(κ,M) := chopMD(κ‖M)

To capture keyed hash constructions Hh : K × {0, 1}∗ → {0, 1}n in our framework we need to extend
Definition 3.1 and additionally define the key-space K and specify how keys are included in the execution
graph. Algorithm construct then takes as input a message M ∈ {0, 1}∗ and key κ ∈ K. In execution graphs
we introduce a special node type for keys called κ-node. For easier notation we reuse preprocessing functions
hp and mp but we note that also new functions could be introduced.

κ-node κ-nodes have in-degree and out-degree 1. The outgoing edges are of type m-edge or h-edge and the
i-th κ-node is labeled by κ.

Furthermore, we require that algorithm extract has to extract not only the message but also the corresponding
key(s).

INITIAL QUERIES. Depending on the iterative hash construction we also have to adapt the definition of initial
queries; Definition 3.2. So far, we defined initial queries with respect to set IV . In keyed hash constructions
a κ-node might be used instead of an IV-node (this is, for example, the case with NMAC). For such hash
constructions we relax the definition of initial queries and simply assume that any query is potentially an initial
query. Note that for NMAC this is indeed the case and that it is just a matter of key choice.

B.3 Multi-Round Iterative Hash Functions m1

mp

m`

mp

mp mp

IV hp hp

roundhphpgHh(y)

h h

h h

Figure 11: Zipper Hash in accordance to Definition B.1

Most hash functions only make a single pass over
the message to compute the hash value. Multi-
ple message-passes (or rounds, as we call them)
may, however, lead to a stronger hash function. A
good example of such a multi-round hash function is
Liskov’s Zipper Hash [Lis06] and we have depicted
the corresponding execution graph in Figure 11. Zipper Hash can be regarded as a two pass Merkle-Damgård

28

construction where message blocks are first processed in natural order and then, additionally, in reversed or-
der. For such multi-round iterative hash functions we extend our model of execution graphs to include special
round-nodes that partition the computation into multiple rounds. In each round, each message block mi must
be processed by an h-node. Furthermore, the output of roundi must be processed by an h-node in the next
round i+ 1.

round-node There exist r− 1 round-nodes with in-degree 1 taking an h-edge and out-degree 1. The outgoing
edge is of type h-edge copying the label of the ingoing edge to the label of the single outbound edge.
round-nodes partition the graph into distinct subgraphs and edges may not connect mp-nodes, hp-nodes,
hmp-nodes or h-nodes in different subgraphs. We call the subgraph before the first round-node first round
graph, the subgraph between the i-th and i+ 1-st round-node the i+ 1-st round graph and the subgraph
after the r − 1-st round-node the r-th round graph.

g-node The single g-node must be in the r-th round graph.

message-node For every message blockmi (for 1 ≤ i ≤ `) there exists a node with in-degree 0 and out-degree
at least r. For each message-node and round graph i there must be at least a single outbound m-edge
connecting a mp node in the i-th round graph. Outgoing edges are of type m-edge and labeled with value
mi (possibly post- or prefixed with the message block counter or round counter) assuming the edge goes
into the j-th round graph.

With this extended definition of execution graphs we can now define a notion of multi-round iterative hash
functions.

Definition B.1. Let the setup be as in the previous Definition 3.1. We call iterative hash functionHh
r,g,mp,hp,hmp,pad :

{0, 1}∗ → {0, 1}n an r-round iterative hash function, if corresponding algorithm construct generates exe-
cution graphs containing r − 1 round-nodes.

When functions g, mp, hp, hmp and pad are clear from context we simply writeHh
r . Note that, this definition

naturally extends the previous definition as the two are equivalent for r = 1.

B.4 Properties of Iterative Hash Functions

B.4.1 A Missing Link in Hh

In the following we prove the missing link lemma from Section 3 which intuitively states, that if an adversary
does not make all queries in the chain of a correct hash computation for some message M , then it has only
negligible chance of learning the hash value of M .

Lemma 3.3 (restated). Let functionHh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h : {0, 1}d×
{0, 1}k → {0, 1}s be a fixed-length random oracle. LetAh be an adversary that makes at most qA many queries
to h. Let qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h when algorithm A runs on randomness r
and by qryh(Hh(M)) denote the h-queries during the evaluation of Hh(M). Then it holds that

Prr,h

[
(M,y)← Ah(1λ; r) : Hh(M) = y ∧

(
qryh(Hh(M)) \ qryh(Ah(1λ; r))

)
6= ∅

]
≤ qA

2s
+

1

2H∞(g(Us))

where \ denotes the simple complement of sets and Us denotes a random variable uniformly distributed in
{0, 1}s. The probability is over the choice of random oracle h and the coins of A.

Proof. Assume adversary A succeeds, that is, it outputs a message M and value y such that Hh(M) = y and
there exists an h-query (m,x) which occurs during the evaluation of Hh(M) but which was not queried by A.
We consider the execution graph pg← construct(M) which induces a partial order on its nodes. That is, if
n1 and n2 are nodes in pg then we write n2 � n1 if, and only if, there exists a directed path from node n1 to node
n2 in pg. Relative to oracle h we can identify an h-node in graph pg for which the two input edges transport
values m and x (that is, the edges will be labeled with values m and x when applying the generic algorithm
EVALh(pg)). We call this node nodem,x and in case there are multiple choices we simply choose one at random.
As A does not query h(m,x) it holds that this value has min-entropy s-bits, that is, H∞ (h(m,x)) = s. Value

29

h(m,x) is transported on all outgoing edges from nodem,x. Each of these edges is connected to an hp or an
hmp-edge. By definition we have that

H∞ (hp(Us)) = H∞ (hmp(Us)) = s

where Us is a random variable uniformly distributed in Us. In other words, as preprocessing functions hp

and hmp are injective they do not decrease entropy. Thus the sole outgoing edge of the preprocessing node
transports s-bits of min-entropy to an h-node node∗ for which node∗ � nodem,x.

Let noderes denote the final h-node in graph pg. As for any h-node node′ in pg it holds

node′ = noderes ∨ noderes � node′

we get by recursively repeating the above argument that one of the input edges to noderes transports s bits of
min-entropy. Let (mres, xres) be the values transported on the two edges going into the final h-node noderes.
Then, we have that the probability thatA queries h on (mres, xres) if it did not query h(m,x) is upper bounded
by qA · 2−s.

By the above discussion we also directly yield that H∞ (h(mres, xres)) = s. Thus the probability of A
guessing value y such that g(h(mres, xres)) = y is upper bounded by 2−H∞(g(Us)) where again Us denotes a
random variable uniformly distributed in {0, 1}s.

The last lemma can be strengthened by showing that if an adversary does not make query (m,x) ∈
qryh(Hh(M)) for some message M then it will not be able to make any query (m′, x′) for which nodem′,x′ �
nodem,x. Here we denote by nodem,x the set of h-nodes in the execution graph construct(M), for which
the two input edges are labeled with values m and x relative to function h. By � we denote a partial order
function and write

nodem′,x′ � nodem,x

if there exists n′ ∈ nodem′,x′ and n ∈ nodem,x such that there is a directed path from n′ to n in graph
construct(M). Note that this is all relative to a function h.

Lemma B.2. Let functionHh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h : {0, 1}d×{0, 1}k →
{0, 1}s be a fixed-length random oracle. LetAh be an adversary that makes at most qA many queries to h. Let
qryh(Ah(1λ; r)) denote the the adversary’s queries to oracle h when algorithm A runs on randomness r and
qryh(Hh(M)) the h-queries during the evaluation of Hh(M). Then it holds that

Prr,h

 (M,m, x)← Ah(1λ; r) :

(m,x) ∈ qryh(Hh(M)) ∧

∃(m′, x′) ∈ qryh(Hh(M)) :
(
(m′, x′) /∈ qryh(Ah(1λ; r)) ∧

nodem,x � nodem′,x′

)
 ≤ qA

2s

The probability is over the choice of random oracle h and the coins r of A.

Proof. The proof follows with the same argument as in the proof of Lemma 3.3. Let for a message M and
graph construct(M) and fixed-length random oracle h

nodem,x � nodem′,x′

that is, there exists a path from a node n′ ∈ nodem′,x′ to a node n ∈ nodem,x in graph construct(M)
relative to function h (note that we defined nodem,x as sets). If (m′, x′) is not queried by A to h, that is
(m′, x′) /∈ qryh(Ah(1λ; r)) then we have that value h(m′, x′) is a random variable with s bits of min-entropy.
Furthermore, since this value is “passed down the graph” we have, by a recursive argument, that the input-
edge-labels (relative to h) for any h-node n for which n � n′ is again a random variable with at least s bits
min-entropy. Thus, the probability of an adversary A querying h on (m,x) such that (m,x) are the labels on
the input edges of node n (relative to h) is upper bounded by qA · 2−s.

Next, we give a second version of the missing link lemma where we now let the adversary also gets access
to the actual hash construction Hh. In this case we can give a reduction to an indifferentiability simulator. In
other words, if the hash construction is indifferentiable from a random oracle, no such adversary exists.

30

Lemma B.3. Let functionHh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h : {0, 1}d×{0, 1}k →
{0, 1}s be a fixed-length random oracle. Let AHh,h be an adversary that makes at most qA many queries to
h and Hh, respectively. Let qryh(AHh,h(1λ; r)) denote the adversary’s queries to oracle h when algorithm A
runs on randomness r, let qryH

h
(AHh,h(1λ; r)) denote the adversary’s queries to Hh and let qryh(Hh(M))

denote the h-queries during the evaluation of Hh(M). Then for any indifferentiability simulator S there exists
a distinguisher D such that

Prr,h

[
(M,y)← AHh,h(1λ; r) :

Hh(M) = y ∧M /∈ qryH
h

(AH
h,h(1λ; r))∧(

qryh(Hh(M)) \ qryh(AH
h,h(1λ; r))

)
6= ∅

]
≤Advindiff

Hh,R,S(D) +
4q2A

2H∞(g(Us))

where \ denotes the simple complement of sets and Us denotes a random variable uniformly distributed in
{0, 1}s. The probability is over the choice of random oracle h and the coins of A.

Proof. Assume the adversary succeeds and let (M,y) be its output. Then the result query (m,x) for the
corresponding execution graph construct(M) must have been asked byA to h but for a guessing probability
of 2−H∞(g(Us)). For this note that h is ideal and g(h(m,x)) has min-entropy H∞ (g(Us)), where Us denotes
a random variable uniformly distributed in {0, 1}s. This, however, means that the result of at least one of the
left out queries can be reconstructed from the queries of A to h. Let us by QA denote the queries of A to h.
Then the result of the missing query must be hp−1(x) or hmp−1(m) for some (m,x) ∈ QA. As h is ideal, the
probability of guessing this value is 2−s.

From anHh(M ′) for some messageM ′ the adversary learns the outcome of the corresponding result query
(m,x), that is it learns g(h(m,x)). If this value corresponds to the result of the missing query in M , then we
have that, unless the adversary found a collision on h (which happens at most with probability q2A · 2−s+1) that
the execution graph pg′ ← construct(M ′) (without the final g-node) is a subgraph of the execution graph of
pg ← construct(M). Note that this is a property of the hash construction H and independent of the ideal
function h that it is used with. That is, for Hh the execution graph of M ′ is always a subgraph of the execution
graph ofM . This we will later exploit to construct an indifferentiability distinguisher. Furthermore, note that if
the adversary is able to recover the result of the result query from g(h(m,x)) this means that the preimage space
g−1(g(h(m,x))) must be at most polynomial in size since any preimage has the same probability of being the
correct one. Note that this is the reason why, for example, chop-MD is indifferentiable. Here function g only
outputs the first half of the bits and thus the preimage space g−1(g(h(m,x))) is exponential.

We now build a distinguisherD in the indifferentiability game. DistinguisherD gets access to functionality
F := (F .hon,F .adv) which is either (Hh, h) in the real world, or (R,SR) in the ideal world and where S is
some indifferentiability simulator and R is a random oracle. Distinguisher D lazily samples an ideal function
h′. It runs adversary A giving it access to Hh′ and h′. Note that this computation is completely local to D. If
the adversary succeeds, D extracts messages M and M ′ such that the execution graph of M is a subgraph of
M ′. It constructs the corresponding execution graphs pg ← construct(M) and pg′ ← construct(M ′). It
then consistently relabels all message nodes with random values (such that pg remains a subgraph of pg′) and
extracts the resulting messages M ← extract(pg) and M ′ ← extract(pg′).

DistinguisherD then queries its left oracle F .hon (which is either Hh or the random oracleR) on message
M to receive y and on message M ′ to receive y′. Finally, for all x ∈ g−1(y) it computes the remainder of
the execution graph for M ′ using its right oracle (which is either h or SR) starting from the final node of the
subgraph for M ′ and using value x as the label of the outgoing edge of that node. If for any x ∈ g−1(y) the
two computations match it outputs 1, else it outputs 0.

ANALYSIS. Assuming that the adversary is successful and did not guess value y or find an h collision the
distinguisher will succeed in extracting the two messages as described. In the real world, the computation will
always match and the distinguisher will, thus, output 1 with probability 1. In the ideal world, however, as the
simulator will not see the queries related to message M , its probability of correctly guessing value R(M ′)
is at most 2−|M |. As we can assume that M is at least one message block long we have that this probability
is less than 2−d. Note that we can further optimize this probability (for example to 2−s) by repeating the
checking steps, that is, repeatedly relabeling the graphs’ nodes and repeat the checking. Thus, we can estimate

31

the success probability of adversary A as

Pr[A is successful] ≤ Advindiff
Hh,R,S(D) +

q2A
2s−1

+
1

2H∞(g(Us))
+

1

2s
≤

4q2A
2H∞(g(Us))

B.4.2 Extractor for Hash Function Hh

We now prove the extractor lemma from Section 3. Note that the extractor is such, that it reconstructs exactly
those messages M for which an adversary “knows” the corresponding hash value.

Lemma 3.4 (restated). Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and h : {0, 1}d ×
{0, 1}k → {0, 1}s a fixed-length random oracle. Let Ah be an adversary making at most qA queries to h. Let
qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h (together with the corresponding oracle answer)
when algorithm A runs on randomness r. Then there exists an efficient deterministic extractor E outputting
setsM and Y with |M| = |Y| ≤ 3qA, such that

Prr,h

[
(M,y)← Ah(1λ; r);

(M,Y)← E(qryh(Ah(1λ; r))
:
∃ X ∈M : Hh(X) /∈ Y ∨(
Hh(M) = y ∧M /∈M

)]
≤

3q2A
2H∞(g(Us))

.

Value Us denotes a random variable uniformly distributed in {0, 1}s. The probability is over the coins r of Ah

and the choice of random oracle h.

Proof. We will first present extractor E (see Figure 12) to then argue that it achieves the claimed bound.
Extractor E will work with partial graphs that we will store in a set PG. Without loss of generalization we
assume that Q does not contain the same query twice, that is A does repeat queries to h.

The extractor will do a single pass over query sequence Q. In each step extractor E initializes new partial
graphs if the current query is an initial query. A freshly initialized graph consists of either an IV-node con-
nected to a hp-node, a message-block-node (or possibly a second IV-node) connected to a mp-node and an
h-node which is connected to the mp and hp nodes. The outgoing h-edge is free. We denote the creation of new
partial graphs for query (m,x) by

new PartialGraph(mp−1(m), hp−1(x))

Whenever a new partial graph is constructed (or later extended) we compute the value of the sole outgoing
h-edge and denote it by pg.y← y. Note that, by construction we have that pg.y = y = EVALh(pg).

For each query (m,x, y) ∈ Q (where (m,x) denotes the query and y the oracle answer) additionally
to checking if it is an initial query we try to extend existing partial graphs in PG by this query. A partial
graph pg ∈ PG can be extended if its sole outgoing h-edge which transports value pg.y can be connected to
a new h-node constructed from query (m,x). This is the case, if and only if, (i) pg.y = hp−1(x) or if (ii)
pg.y = hmp−1(m). Note that for the second case, where pg.y = hmp−1(m) we can only extend the partial
graph if there is also pg′ ∈ PG such that pg′.y = hp−1(x) as otherwise the hp-node would not have all its input
edges bound, thus the new partial graph is constructed from two previously existing graphs.5 If we extend a
partial graph, a new partial graph is generated for the extended graph and the old one is kept in PG. We denote
by

pg.extendedBy(m,x)

the partial graph generated from pg and extended by query (m,x, y) ∈ Q (corresponding to case (i), see above)
and by

pg.extendedBy(pg′,m, x)

5See the HMAC or NMAC construction (Appendix B.5) for an example, where this case can occur.

32

Extractor: E(Q)
1 M← {};Y ← {};PG ← {}
2 for i = 1 . . . |Q| do /* building partial graphs */
3 (m,x, y)← Q[i]
4 if init(m,x) then
5 newG← new PartialGraph(mp−1(m), hp−1(x))
6 newG.y← y
7 PG ← PG ∪ newG
8 /* try to extend partial graphs */

9 foreach pg ∈ PG : pg.y = hp−1(x) do
10 newG← pg.extendedBy(m,x)
11 newG.y← y
12 PG ← PG ∪ newG
13 foreach (pg, pg′) ∈ PG × PG : pg.y = hmp−1(m) ∧ pg′.y = hp−1(x) do
14 newG← pg.extendedBy(pg′,m, x)
15 newG.y← y
16 PG ← PG ∪ newG
17 foreach pg ∈ PG do /* building target message set */

18 M ← extract(pg)
19 if M 6= ⊥ do
20 M←M∪M
21 Y ← Y ∪ g(pg.y)
22 return (M,Y)

Figure 12: The extractor for Lemma 3.4.

the partial graph generated from the two partial graphs pg and pg′ extended by query (m,x, y) ∈ Q which
corresponds to case (ii). Again, after a new graph is constructed we set pg.y ← y. Note that also here, by
construction, we have that pg.y = y = EVALh(pg).

After all partial graphs are constructed the extractor then recovers for each partial graph the sequence of
message-blocks using algorithm extract. These, form the set of target messages output by extractor E . Fur-
thermore, if extract(pg) outputs a message M , then, by construction we have that g(pg.y) = EVALh(pg) =
Hh(M). This forms the set of target hash values Y . We give the pseudo-code for extractor E in Figure 12.

It remains to argue that extractor E has the claimed runtime, as well as that the target setM as output by E
is sufficient. For the run-time note that the extractor makes a single pass over the query set Q. If adversary A
did not find collisions in h (which only happens with probability less than q2A · 2−s+1) in each step at most 3
new partial graphs are generated. Thus, with overwhelming probability the number of generated partial graphs
is at most 3|Q| = 3qA (for the case that more than 3qA partial graphs are found we assume that E stops and
the adversary wins which corresponds to parts of the first term in the statement of Lemma 3.4). For each of
the partial graphs we run extract once, which leaves us with a runtime of O(3qA · te) where te denotes the
run-time of deterministic algorithm extract.

Let us now show that M is sufficient. By Lemma 3.3 we have that all h-queries occurring during the
computation of Hh(M) must be in Q but for probability

qA
2s

+
1

2H∞(g(Us))

Furthermore, the queries appear in the correct order but for probability qA
2s (see Lemma B.2).

Putting it all together, we have that if A does not find any collision on h (which occurs at most with
probability q2A · 2−s+1) then for any M output by A all h-queries in Hh(M) must be in Q but for the guessing
probability

qA
2s

+
1

2H∞(g(Us))
.

33

Furthermore, the queries must appear in topologically correct order but for probability qA ·2−s. Then, however,
the corresponding message M is reconstructed also by E as by definition it reconstructs partial graphs if all
queries appear in topologically correct order.

B.5 Examples: Hash Constructions in Compliance with Definition 3.1

B.5.1 Merkle-Damgård-like Functions

In the following we show that Merkle-Damgård-like functions such as the plain or chop-MD constructions,
are covered by Definition 3.1. The difference between chop-MD and the plain Merkle-Damgård construction
only lies in the final transformation g which is the identity for plain Merkle-Damgård and which truncates the
output of the final compression function call in case of chop-MD.

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp gIV Hh(M)

Figure 13: Merkle-Damgård Construction

Merkle-Damgård constructions use a single IV that is connected to the first hp-node. Given message
blocks m1‖ . . . ‖m` = pad(M) for M ∈ {0, 1}∗ it is easy to see that algorithm constructcan construct the
corresponding execution graph depicted in Figure 13 in time linear in the number of message blocks, that is
O
(
|M |
d

)
. Similarly checking an execution graph for validity and extracting the message from a valid (partial)

graph can be done in time linear in the number of nodes.

B.5.2 NMAC and HMAC

In the following we show how NMAC and HMAC [BCK96] fit into Definition 3.1. NMAC and HMAC are
originally keyed hash constructions, but can be “de-keyed” by fixing the key to a constant initialization vector.
We here give the formalization NMAC in the unkeyed setting and for HMAC in the keyed setting. Note that
the only difference is that for the keyed setting we exchange the corresponding IV nodes for κ-nodes (see
Section B.2).

HMAC and NMAC are the first constructions where we use the hmp preprocessing function. The run-
ning times of construct and extract are equivalent to the running times for the basic Merkle-Damgård
constructions.

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IVkey1

IVkey2 hp Hh(M)

Figure 14: NMAC: note the use of the hmp node to connect the final h-node to the plain Merkle-Damgård construction.

B.5.3 Hash Tree

In Figure 16 we show how hash trees fit into Definition 3.1. For simplicity we assume that the number of
message blocks ` is a power of 2. Given message blocks m1‖ . . . ‖m` = pad(M) for M ∈ {0, 1}∗ it is easy
to see that we can construct the corresponding execution graph in time log-linear in the number of message
blocks, that is O (` log `). Extracting the message of a given partial graph can be done in time of a (reverse)
breadth first search starting from the final h-node.

34

κ1
mp

h
hp

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IV

h

κ2 mp

IV hp

hp Hh(M)

Figure 15: The HMAC construction in the keyed setting with κ-nodes κ1 and κ2 (see Section B.2). Note that HMAC is similar to
NMAC except that the actual keys are now generated by h-calls.

m1

mp

IV1

hp

h

m2

mp

IV2

hp

h

m`−1

mp

IV`−1

hp

h

m`

mp

IV`

hp

h

hmp hp

h

hmp hp

h

hmp hp

h

g

Hh(M)

Figure 16: A hash tree in the formalization of Definition 3.1.

B.5.4 The Double-Pipe Construction / Extensions to the Model

Stefan Lucks [Luc04] proposes several tweaks to the design of iterated hash functions to, for example, rule
out generic attacks such as Joux’ multi-collision attack [Jou04]. In Figure 17 we show how the double-pipe
construction fits into Definition 3.1. Note that to support constructions like the double-pipe construction we
must slightly extend our model of iterative hash functions. We must now allow that hp-nodes not only have
in-degree 1 but 2. Besides slightly complicating the definition of initial queries and chained queries —we now
have to split the pre-image of hp−1(x) into multiple values— the proofs and intuition presented in this paper
work analogously.

35

m1

mp

m1

mp

h

h

hp

hp

m2

mp

m2

mp

h

h

hp

hp

m`

mp

m`

mp

h

h

hp

hp

hp
h

g Hh(M)

IV

IV

IV

mp

Figure 17: The double-pipe construction from [Luc04]. Note that the message-block-nodes are split for better drawing. They should,
however, be regarded as a single node.

B.6 The Sponge Construction

In the following section we describe what changes need to be done to the model to capture the sponge construc-
tion [BDPA11b] used in SHA-3. The sponge construction is one of the few exceptions that does not iterate a
compression function, but a permutation f : {0, 1}n → {0, 1}n. To process a messagem1‖ . . . ‖m` = pad(M)
sponge starts with an empty state IV = 0n which is split into the bitrate r and capacity c Messages are shorter
than the state—in SHA3 one of the recommended ratios is 576 bit messages and 1024 bit capacity resulting in
a 1600 bit state—and in each round the current message block is xored onto the first part of the state r. The
capacity is never touched by message blocks directly. After the message is xored onto the state the current
state is run through the permutation (r′‖c′) ← f(r‖c) to complete the round. We depict the computation of
sponge in Figure 18. Note that for Keccak the preprocessing functions hp and mp are the identity. The final
transformation g outputs the first ` bits of the current state, for example 512 bits.6

Next we describe how to adapt the definition of initial, chained and result queries for sponge. To be
consistent with our established notation we think of f as having two inputs f : {0, 1}r × {0, 1}c → {0, 1}r ×
{0, 1}c where the first input corresponds to the first r bits of the state (the bitrate) and the second input to the
remaining c bits (the capacity). A query (m,x) to f is an initial query if hp−1(x) = IVc, where IVc denotes
the capacity parts of the initialization vector. For chained and result queries the definitions remain the same.

CONSEQUENCES ON RESULTS. In all our proofs we use only three properties of ideal compression functions:
1) over the choice of compression function h the random variable h(m,x), for fixed m and x has high min-
entropy. This is used to argue that hash values cannot be learned without querying all h-queries that also occur
within an honest execution (see the missing link lemma; Lemma 3.3). 2) Function h is perfectly collision
resistant, that is, finding collisions on h requires approximately 2s/2 many invocations where {0, 1}s denotes
image-space of h. This is used to show that an extractor exists that on seeing all h-queries by an adversary can
reconstruct any execution graph, which also the adversary has access to (see the extractor lemma; Lemma 3.4
as well as Lemma C.2). Finally, 3) we require that a hash value Hh(M) for a message M does not leak any
more information on queries to h during the computation of Hh(M) than does message M (see, for example,
Lemma B.3).

We expect our results also to hold for the sponge setting where the ideal compression function is exchanged
for an ideal permutation (and the adversary might also have access to its inverse) and in the following paragraph
present our reasoning. We note, however, that we have not formally verified this claim.

Clearly, an ideal permutation fulfills the high-entropy requirement. For the collision resistance note, that
in the sponge construction we are concerned with collisions on the capacity part (that is the last c output
bits). Thus, similarly to compression functions, an adversary must make approximately 2c/2 queries to find
a collision. Note, however, that the adversary also has access to the inverse of permutation f and can use it
to generate collisions. For this note that the input f within an execution graph is only partly controlled by

6If one combines the xoring of the message block with the execution of the permutation, then the sponge construction is in fact a
chopMD construction with compression function h(m, (r|c)) := f(r ⊕m|c).

36

m1

mp

⊕
f

hp

m2

mp

⊕ f
hp

m`

mp

⊕ f
hp gIV Hh(M)

Figure 18: The Sponge Construction. A state split into rate and capacity is iteratively processed through a permutation f . In each
round the current message block is xored onto the first r bits of the state. The remaining c bits (the sponge’s capacity) is never directly
influenced by a message block. The final transformation g outputs a substring of the first r bits of the state.

the adversary, that is, the capacity is never touched directly. Thus, in order to “connect” to partial execution
graphs via an inverse query to f requires the adversary to find a target collision for which we can directly upper
bound the probability by q2−s where q denotes the number of queries by the adversary. Finally, for the third
requirement note that a hash value Hh(M) is computed as g(h(m,x)) for some result query (m,x). In the
case of sponge g is greatly compressing— in SHA-3, for example, from 1600 bits to 512—and, hence value
h(m,x) cannot be reconstructed given only g(h(m,x)) even with unbounded resources.

37

Simulator S∗(m,x) :
1 ifM[m,x] 6= ⊥ then returnM[m,x]
2 T ← {}
3 if init(m,x) then
4 T ← T ∪ new PartialGraph(mp−1(m), hp−1(x))
5 /* extend existing graphs */

6 foreach (pg, pg′) ∈ PG × PG : pg.y = hmp−1(m) ∧ pg′.y = hp−1(x) do
7 T ← T ∪ pg.extendedBy(pg′,m, x)
8 foreach pg ∈ PG : pg.y = hp−1(x) do
9 T ← T ∪ pg.extendedBy(m,x)
10 /* test for conditions B2, B3 and if true then abort */

11 if ∃pg ∈ T : extract(pg) 6= ⊥ then
12 M[m,x]←$ g−1(R(extract(pg)))
13 else
14 M[m,x]← {0, 1}s
15 /* test for condition B1 and if true then abort */

16 foreach pg ∈ T then
17 pg.y←M[m,x]
18 PG ← PG ∪ pg
19 returnM[m,x];

Figure 19: Simulator S∗ from Construction C.1 as pseudo-code. The conditions named in comments in lines 10 and 15 are defined in
the second game hop in the proof of Lemma C.2.

C The Composition Theorem 4.2

In this section we present the proof of Theorem 4.2. The proof appearing on page 42 makes use of a generic
simulator and a derandomization technique for this simulator. We present the generic simulator in the upcoming
Section C.1 and the derandomization step in Section C.2. Once having established these results we present the
complete proof of Theorem 4.2 in Section C.3. A proof sketch and the outline of these three steps is given in
Section 4.1.

C.1 A Generic Indifferentiabilitiy Simulator

In the following we show that for any indifferentiable hash construction we can use a generic simulator which
replies with randomly chosen values on any non result query and only on result queries picks a value consistent
with the random oracle. For this we consider the following simulator S∗ that uses similar techniques to that of
the extractor of Lemma 3.4 (see Figure 12). We also use a similar syntax as for the proof of Lemma 3.4.

Construction C.1. We give the pseudo-code of simulator S∗ when receiving query (m,x) in Figure 19. We
assume that it initializes tableM← [] and set PG ← {} before processing the first query.

As in Lemma 3.4 we denote the value of the sole outgoing h-edge of a partial graph pg, relative to an
execution with simulator S∗, by pg.y (which is assigned in line 17). This value is used, as in extractor E (see
Lemma 3.4) to check whether partial graphs can be extended (lines 6 and 8).

A DESCRIPTION OF S∗. We give the pseudo-code of simulator S∗ in Figure 19. The Simulator is very similar
to the extractor from Lemma 3.4. Simulator S∗ keeps a tableM for storing all the queries it received and a
set PG for storing partial graphs that it creates. On receiving a query (m,x) simulator S∗ checks table M
whether the query has been queried before. If so it returns the same result as before: M[m,x]. If it is a fresh
query it takes similar steps as extractor E in Lemma 3.4 to generate new partial graphs which it temporarily
stores in set T . For this it checks whether the query is an initial query, or whether it extends any of the partial
graphs that were generated during previous calls. To compute the output, the simulator checks if any of the
generated partial graphs correspond to a valid execution graph, that is, whether the query was a result query

38

(see Definition 3.2 and description of model in Section 3). If this is the case, it picks a value uniformly at
random from the preimage of g−1(R(extract(pg)) and sets

M[m,x]←$ g−1(R(extract(pg))

(see line 12). Again note that this execution branch corresponds to result queries and the simulator thus picks
the value such that it is consistent with the random oracle. If, on the other hand, no partial graph was generated
or no partial graph can be completed to a valid execution graph, that is, extract(pg) = ⊥ for all pg ∈ T ,
then simulator S∗ chooses a valueM[m,x]← {0, 1}s uniformly at random to answer the query (see line 14).
Let us stress, that this value is generated independently of the state of the simulator, but it depends only on
the query and the simulators random coins. Finally, for all generated partial graphs pg ∈ T the simulator sets
value pg.y toM[m,x] and adds the newly created partial graph to its set of graphs PG (lines 17 and 18). It
returns valueM[m,x].

SIMULATOR S∗ IS A GOOD INDIFFERENTIABILITY SIMULATOR. In the following we show, that simulator
S∗ as described above is a good indifferentiability simulator game as the underlying simulator S that it is build
from. This is captured by the following lemma:

Lemma C.2. Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function andR a random oracle. Let simulator
S∗ be constructed as in Construction C.1 that exports the same interface as h : {0, 1}k × {0, 1}d → {0, 1}s.
Then for any distinguisher D making at most q oracle queries there exists distinguisher D′ such that

Advindiff
Hh,R,S∗(D) ≤ Advindiff

Hh,R,S(D
′) +

11q2

2H∞(g(Us))−1
.

Proof. We want to upper bound the indifferentiability advantage of a distinguisher D for simulator S∗:

Advindiff
Hh,R,S∗(D) =

∣∣∣Pr[DHh,h(1λ) = 1
]
− Pr

[
DR,SR∗ (1λ) = 1

]∣∣∣ .
For the proof we use a game based approach (similar to the indifferentiability proofs in [CDMP05]) starting
from experiment Pr

[
DR,SR∗ (1λ) = 1

]
in GAME1 until we reach the target experiment Pr

[
DHh,h(1λ) = 1

]
in GAME4 summing up the distinguishing probabilities in the individual game hops.

GAME1. We start with the original security game:

Pr[GAME1] = Pr
[
DR,SR∗ (1λ) = 1

]
GAME2. This game is as the previous game, but for a slightly changed simulator. The new simulator S0
works as simulator S∗ but looks for conditions that might be exploited by a distinguisher and deliberately fails
in such a situation. That is, S0 fails if one of the following failure conditions occur on receiving query (m,x):

Condition B1: Simulator S∗ generates an output valueM[m,x] such that there exists (m′, x′) 6= (m,x) for
which g(M[m′, x′]) = g(M[m,x]) .

Condition B2: Simulator S∗ generates two partial graphs pg and pg′ that can both be completed, that is,
extract(pg) 6= ⊥ and extract(pg′) 6= ⊥.

Condition B3: The simulator keeps an additional list L of all queries to it. When on a new query (m,x) a
new partial graph pg is generated it tests for all earlier queries (m′, x′) ∈ L whether pg can be extended
by (m′, x′). If any query is found, the simulator fails.

Let GAME2 be the event that distinguisher D outputs one in this setting, i.e.,

Pr[GAME2] = Pr
[
DR,SR0 (1λ) = 1

]
.

39

The responses between the distinguisher in GAME1 and GAME2 can only differ, if the simulator reaches one
of the failure conditions. For the difference between games GAME1 and GAME2 it holds that

|Pr[GAME2]− Pr[GAME1]| ≤ Pr

[
3⋃
i=1

Bi holds for any of the queries

]

We consider the failure conditions in turn.

For event B1 note that the simulator chooses its outputs uniformly at random from {0, 1}s. Thus, we can
directly estimate the probability of event B1 as

Pr[B1 holds for any of the queries] ≤ q2

2H∞(g(Us))−1

Failure condition B2 corresponds to the simulator generating two partial graphs pg and pg′ on one query
that can both be completed to valid execution graphs. Note that, by definition, in this case extract(pg) 6=
extract(pg′) and hence the simulator could not choose an output that is consistent with both partial graphs.
This, however, directly implies a collision in the simulator’s output and thus

Pr[B2 holds for any of the queries] ≤ q2

2s−1

For event B3 note that for a partial graph pg to be extendable by an earlier query (m′, x′) ∈ L it must
hold that hp−1(x′) = pg.y.7 As partial graph pg was generated only after query (m′, x′) was queried to the
simulator by the distinguisher we can bound the probability of guessing value x′ such that a later query to the
underlying simulator SR yields value hp−1(x′) with the birthday bound as q2 · 2−s+1. Thus,

Pr[B3 holds for any of the queries] ≤ q2

2s−1

Putting it all together (via a union bound) we have that

|Pr[GAME2]− Pr[GAME1]| ≤ Pr

[
3⋃
i=1

Bi hold for any of the queries

]

≤ q2

2H∞(g(Us))−1
+

2q2

2s−1
≤ 3q2

2H∞(g(Us))−1
(3)

GAME3. We now change the left oracle (i.e., the random oracle) such that the left oracle is always consistent
with the right oracle. That is, instead of the random oracle we now give the distinguisher access to HS0 , that
is, the iterative hash construction with the simulator S0 as oracle. Let GAME3 be the event that distinguisher
D outputs one in this setting, i.e.,

Pr[GAME3] = Pr
[
DHS0 ,SR0 (1λ) = 1

]
.

We will show that a distinguisher can only detect a difference in the view of GAME2 and GAME3 if the
simulator S0 fails in at least one of the two games. In other words we show that in GAME2 the responses of
the simulator are always consistent with the random oracle, unless it explicitly fails.

For this note that the simulator uses the exact technique of the extractor from Lemma 3.4 to build its internal
view. Furthermore, failure conditionsB1 toB3 imply that the extraction properly succeeds in case the simulator
sees all relevant queries. That is, collisions do not occur (B1), the answer of the simulator is consistent with
the random oracle on result queries (B2) and that later generated partial graphs cannot be combined with
earlier generated partial graphs (B3). Thus, the only chance to not be consistent in game GAME5 is, if the
distinguisher manages to come up with the result of an intermediary query without querying the simulator and

7Note that the condition hmp−1(m′) = pg.y individually is not sufficient to allow for a graph to be extended which is why we can
ignore it here.

40

thus the simulator does not recognize a potential result query. This, however, directly translates to an adversary
in Lemma B.3 which we can turn into an indifferentiabiltiy distinguisher.

We, thus, have that the view is already consistent in game GAME5 and thus

|Pr[GAME3]− Pr[GAME2]| ≤ Advindiff
Hh,R,S(D

′) +
4q2

2H∞(g(Us))

GAME4. In GAME4 we make the game independent of the random oracle. That is, we now change the
simulator to always choose output values for new queries as a uniformly random string in {0, 1}s. Furthermore,
we remove any failure conditions from the simulator. This yields simulator S1 which effectively simulates a
fixed length random oracle via lazy sampling. Let GAME4 be the event that distinguisher D outputs one in
this setting, i.e.,

Pr[GAME4] = Pr
[
DHS1 ,S1(1λ) = 1

]
.

It holds that a distinguisher can only differentiate between games GAME3 and GAME4 if

• In game GAME3, simulator S0 explicitly fails

• In game GAME4, simulator S1 reaches a state in which simulator S0 would have explicitly failed.

For failure conditions we need to take conditions B1 to B3 into account. Putting it all together we have that

|Pr[GAME4]− Pr[GAME3]| ≤ Pr[S3 fails in GAME3] + Pr[S4 reaches a failure condition]

=
6q2

2H∞(g(Us))−1

We can now complete the proof of the theorem as we have reached the target view. Note that simulator S1
effectively implements a fixed length random oracle. Thus:∣∣∣Pr[DHh,h(1λ) = 1

]
− Pr

[
DHS1 ,S1(1λ) = 1

]∣∣∣ = 0

and hence, summing up the probability loss in the various game steps we get

Advindiff
Hh,R,S∗(D) ≤ Advindiff

Hh,R,S(D
′) +

11q2

2H∞(g(Us))−1
.

C.2 Derandomizing the Generic Simulator

We now show how the generic simulator constructed in the previous section can be derandomized. Note that the
simulator distinguishes between result queries and non result queries (cp. lines 12 and 14 in Figure 19). Result
queries are answered using the underlying simulator. As this simulator is probabilistic we need to define how
randomness is generated for it. Likewise, we need to define how random values are chosen deterministically
for non-result queries (cp. line 14 in Figure 19). Note that for non-result queries, the response is independent
of gathered state, that is, it only depends on the query and the random coins of the simulator.

For the derandomization we rely on techniques developed by Bennet and Gill [BG81] who show that
relatively to a random oracle BPP and P are identical.

Lemma C.3. Let Hh : {0, 1}∗ → {0, 1}n be a iterative hash function and R a random oracle. Let simulator
S∗ be constructed as in Construction C.1 and let it export the same interface as h : {0, 1}k×{0, 1}d → {0, 1}s.
Fix tD ∈ N. Then there exists an efficient and deterministic simulator Sd such that for any distinguisher D
with run-time bounded by tD it holds that

Pr
[
DR,Sd

R
(1λ) = 1

]
= Pr

[
DR,SR∗ (1λ) = 1

]
.

41

Proof. We construct deterministic simulator Sd as follows. Simulator Sd works exactly as simulator S∗ except
for the generation of outputs in lines 12 and 14 in Figure 19. For answering a result query (m,x) (line 12) we
generate the randomness for choosing the preimage of g−1(R(extract(pg)) deterministically as

R(1tD+1‖m‖x)‖R(1tD+2‖m‖x)‖ . . .

picking the i-th bit of the stream as the i-th random bit.
For answering a non-result query (m,x) (line 14 in Figure 19) we compute the answer as

R(0tD+1‖m‖x) .

If we denote with R the random variable, mapping to the random bits used by simulator S∗ and by RRd the
random variable, mapping to the coins used by deterministic simulator Sd (over the choice of random oracle)
then their statistical distance (denoted by δ(·, ·)) is zero, that is:

δ(R,RRd) :=
1

2

∑
x

∣∣Pr[R = x]− PrR
[
RRd = x

]∣∣ = 0

As furthermore the queries to generate the random bits are larger than any queries made by any distinguisher
with run time bounded by tD it follows that

Pr
[
DR,Sd

R
(1λ) = 1

]
= Pr

[
DR,SR(1λ) = 1

]

The simulator constructed in Lemma C.3 is not only deterministic, but it is also stateless with respect
to non-result queries. That is, any non-result query (m,x) will be answered as R(0tD+1‖m‖x) which is
independent of any gathered state.

C.3 Proof of the Composition Theorem for UNSPLITTABLE Games: Theorem 4.2

With Lemma C.3 and C.2 we can now prove Theorem 4.2. For this, let us restate Theorem 4.2 from page 12,
this time in a concrete setting.

Theorem 4.2. Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function indifferentiable from a random
oracle R and let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function. Let game G ∈ LG be any functionality
respecting game that is (tA∗ , qA∗ , εG, εbad)-UNSPLITTABLE forHh and letA1, . . . ,Am be an adversary. Then,
for any indifferentiability simulator S there exists adversary B1, . . . ,Bm and distinguisher D such that for all
values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤Pr

[
GR,B1,...,Bm ⇒ y

]
+ εG + εbad + Advindiff

Hh,R,S(D
′) +

11q2D
2H∞(g(Us))−1

with

qD ≤ qG,0 +
m∑
i=1

qG,i · qA∗i .

Values qG,0 and qG,i denote upper bounds on the number of queries by game G to the honest interface of the
hash functionality and to the i-th adversarial procedure, respectively.

Proof. The proof of our result almost directly follows with Theorem 6.1 in [RSS11a] (Theorem 4 in the pro-
ceedings version [RSS11b]), that is, the composition theorem by RSS for reset indifferentiability.

LetA∗1, . . . ,A∗m be such that during game GF ,A
∗
1,...,A∗m bad result queries occur only with probability εbad,

that is, ∣∣∣Pr[GHh,A1,...,Am
]
− Pr

[
GH

h,A∗1,...,A∗m
]∣∣∣ ≤ εG .

42

The RSS composition theorem for reset-indifferentiability tells us that for adversaryA∗1, . . . ,A∗m and simulator
S there exists an adversary B1, . . . ,Bm and distinguisher D such that

Pr
[
GH

h,A∗1,...,A∗m
]
≤ Pr

[
GR,B1,...,Bm

]
+ Advreset-indiff

Hh,R,S (D) .

Adversary Bi is defined as BRi := A∗i
SR , that is a separate instance of simulator S is used in each procedure

Bi. Distinguisher DF .hon,F .adv is defined as D := GF ,A1,...,Am such that a reset call precedes any adversarial
procedure call A∗i [RSS11b]. For the remainder of the proof we show how to construct a simulator that is able
to handle the reset calls made by D.

SIMULATOR CONSTRUCTION. Let S∗ be the simulator given by construction C.1. We derandomize S∗ with
Lemma C.3 and call the resulting simulator Sd. For Lemma C.3 we need additionally to specify the runtime-
bound. We use the runtime-bound of the above defined RSS distinguisher D and denote it by tD.

As described, adversary Bi in the RSS composition theorem is defined as Bi := A∗
S(i)
d

i where S(i)d denotes
an independent copy of simulator Sd. By construction, we know that for all non-result queries the simulation
is guaranteed to be consistent, as independent instances of simulator Sd give the same answer to the same
query. Further, by construction, during game GR,B1,...,Bm bad result queries happen only with probability at
most εbad. Thus, for result queries, all queries in the corresponding partial graph are with probability at least
1− εbad queried by the same adversarial procedure in correct order. As this allows the procedure’s copy of the
simulator Sd to recognize the partial graph, it follows that also result queries can be answered consistently by
the respective copy of simulator Sd. Thus, with Lemma C.2 (the construction of simulator S∗) and the fact that
the advantage is not changed by the derandomization, we have that there exists distinguisher D′ such that

Advreset-indiff
Hh,R,S (D) ≤ εbad + Advindiff

Hh,R,S(D
′) +

11q2D
2H∞(g(Us))−1

where the factor εbad is due to the probability of bad result queries.

43

game IK-CPAA1,A2

AE (1λ)

b← {0, 1}
(pk0, sk0)← KGen(1λ)
(pk1, sk1)← KGen(1λ)
m, st← A1(pk0, pk1)
c← EH

h

(pkb,m)

b′ ← Ah
2(c, st)

return (b = b′)

Figure 20: Key Indistinguishability under Chosen-Plaintext Attack

D Public-Key Extractability (PK-EXT) for PKE Schemes

Bellare et al. [BBDP01] define the notion of key indistinguishability (IK-CPA, see Figure 20) for PKE schemes
which intuitively captures that no adversary can tell with which key, out of a known set, a ciphertext was
encrypted. The notion is formalized as an indistinguishability experiment, where two keys are generated and
given to the first-stage adversary A1 which outputs a target message. According to a secret bit b the message
is encrypted with one of the two keys and the ciphertext is given to the second-stage adversary A2 which has
to output a guess for b (note that as there is no restriction on the state shared by the two adversaries this is
essentially a single-stage notion). The advantage of an adversary A := (A1,A2) against IK-CPA is defined as

AdvIK-CPA
AE (A) := 2 · Pr

[
IK-CPAAAE ⇒ true

]
− 1

It is easy to see that if the adversary can additionally choose the randomness of the scheme the notion cannot
be fullfilled, as adversary A2 could then simply recompute the ciphertext for both keys and check which one it
received.

In this section we show that our notion of PK-EXT-secure PKE schemes is fullfilled by the REwH1
scheme [BBN+09], if the underlying scheme is IK-CPA secure. Further, if the adversary cannot choose the
randomness then IK-CPA implies PK-EXT for any PKE scheme.

RANDOMIZED-ENCRYPT-WITH-HASH. The Randomized-Encrypt-with-Hash (REwH1) scheme [BBN+09]
builds on a PKE schem AEr := (KGenr, Er,Dr) in the random oracle model. The REwH1 scheme inherits
key generation KGen and decryption D from AEr, while encryption is defined as

ER(pk,m; r) := Er (pk,m;R(pk‖m‖r)) .

D.1 Adaptive IK-CPA

For our result we need to adapt the IK-CPA notion such that the adversary can adaptively generate ciphertexts.
Let us call the adaptive notion aIK-CPA. We depict the corresponding security game in Figure 21. As is the
case for the standard IND-CPA notion for public key encryption, IK-CPA implies aIK-CPA. The proof follows
from a standard hybrid argument.

Proposition D.1. Let A be an aIK-CPA adversary making at most t queries to oracle LoR. Then there exists
adversary B running in time of A, such that

AdvaIK-CPA
AE (A) ≤ t · AdvIK-CPA

AE (B)

We define IK-CPA0A1,A2

AE exactly as IK-CPAA1,A2

AE except that bit b is set to zero at the beginning of the
game and the game returns the guess of adversary A2. Likewise, we define IK-CPA1A1,A2

AE where bit b is set to
one. This allows us to write the advantage of an adversary A := (A1,A2) against IK-CPA as:

AdvIK-CPA
AE (A) := Pr

[
IK-CPA1A1,A2

AE ⇒ 1
]
− Pr

[
IK-CPA0A1,A2

AE ⇒ 1
]

44

game aIK-CPAAAE(1
λ)

b← {0, 1}
(pk0, sk0)← KGen(1λ)
(pk1, sk1)← KGen(1λ)
b′ ← ALoR(pk1, pk2)
return (b = b′)

procedure LoR(m)

return E(pkb,m)

Figure 21: Adaptive Key Indistinguishability under Chosen-Plaintext Attack

Similarly, we define games for the adaptive version:

AdvaIK-CPA
AE (A) := Pr

[
aIK-CPA1AAE ⇒ 1

]
− Pr

[
aIK-CPA0AAE ⇒ 1

]
(4)

Proof of Proposition D.1. Let, without loss of generality, adversary A make exactly t queries. We define a
sequence of adversaries Bi := (Bi1,Bi2) (for 0 < i ≤ t) against IK-CPA having access to an adversary A
against aIK-CPA. Adversary Bi1 gets as input two public keys pk0, pk1. It simulates oracle LoR as follows:
for the first i − 1 queries m it answers with E(pk0,m). For the i-th query m, adversary Bi1 simply outputs
m together with its state. Adversary Bi2 receives as input ciphertext c which is either E(pk0,m) or E(pk1,m)
and the state. It returns c as answer to the LoR-query. Adversary Bi2 answers all further LoR-queries m from
adversary A with E(pk1,m) and outputs as guess for bit b whatever adversary A outputs.

If b equals zero, then adversary Bt perfectly simulates the LoR oracle and likewise if b equals 1 then
adversary B0 perfectly simulates the LoR oracle. Let B := (B1,B2) be the adversary that chooses 0 < i ≤ t
uniformly at random to then implement adversary Bi. Thus, we have that

Pr[B outputs 0|b = 0] :=

t∑
j=1

Pr
[
Bj outputs 0|b = 0 ∧ i = j

]
· Pr[i = j]

=
1

t

t∑
j=1

Pr
[
Aj outputs 0

]
(5)

where Aj is the adversary in the adaptive aIK-CPA game getting an LoR-oracle that on the first j queries uses
public key pk0 and on the remaining queries uses public key pk1. Likewise, we have that

Pr[B outputs 1|b = 1] :=

t∑
j=1

Pr
[
Bj outputs 1|b = 1 ∧ i = j

]
· Pr[i = j]

=
1

t

t−1∑
j=0

Pr
[
Aj outputs 1

]
(6)

Putting it all together, we have that

AdvIK-CPA
AE (B) = Pr

[
IK-CPA1B1,B2AE ⇒ 1

]
− Pr

[
IK-CPA0B1,B2AE ⇒ 1

]
= Pr

[
IK-CPA1B1,B2AE ⇒ 1

]
− 1 + Pr

[
IK-CPA0B1,B2AE ⇒ 0

]

45

With equations (5) and (6) this yields

= Pr[B outputs 1|b = 1] + Pr[B outputs 0|b = 0]− 1

=
1

t

 t−1∑
j=0

Pr
[
Aj outputs 1

]
+

t∑
j=1

Pr
[
Aj outputs 0

]− 1

=
1

t

(
Pr
[
A0 outputs 1

]
+ Pr

[
At outputs 0

])
+

1

t

t−1∑
j=1

(
Pr
[
Aj outputs 1

]
+ Pr

[
Aj outputs 0

])
− 1

As (Pr
[
Aj outputs 1

]
+ Pr

[
Aj outputs 0

]
) = 1 for all 1 ≤ j ≤ t− 1 this is

=
1

t
(Pr[aIK-CPA1⇒ 1] + Pr[aIK-CPA0⇒ 0])− 1

t

=
1

t
(Pr[aIK-CPA1⇒ 1]− Pr[aIK-CPA0⇒ 1] + 1)− 1

t

Finally, with equation (4) we get the advantage statement of the theorem:

=
1

t
AdvaIK-CPA

AE (A)

which concludes the proof.

D.2 REwH1 with IK-CPA implies PK-EXT

We can now show that the Randomized-Encrypt-with-Hash scheme is PK-EXT-secure if the underlying PKE
scheme is IK-CPA-secure. We only consider the PK-EXT-notion in the random oracle model. Note that, as it
is a single-stage notion this suffices for composition in the MRH theorem. Remember that maxpkAE denotes
the maximum probability of a collision for a public-key as generated by KGen, defined in equation (2).

Theorem D.2. Let A be a PK-EXT adversary making at most qA random oracle queries. Then there exists an
adversary B running in time of A, such that

AdvPK-EXT
REwH1 (A) ≤ AdvaIK-CPA

AE (B) + (qA + 1) ·maxpkAE .

Proof. We assume, without loss of generality, that adversary A does not repeat queries to its oracles.
We define adversary B against aIK-CPA. Adversary B gets as input two public keys pk0 and pk1 and runs

adversary A against PK-EXT. It simulates A’s queries to the ENC oracle using its LoR-oracle simply ignoring
the randomness. That is, if (m, r) is a query by A to the ENC-oracle, then B answers this as LoR(m). Let q be
a query to the random oracle by A. Before answering, B tests if the first bits of query q equal one of the public
keys, that is, if

q|1,...,|pk0|
= pk0 or if q|1,...,|pk1|

= pk1 .

If this is the case, then B terminates A and outputs 0 if the first bits were equal to pk0 and 1 otherwise. If the
first bits did not equal either of the keys it responds with R(q). If adversary A terminates with guess pk′ then
adversary B outputs 0 if pk′ = pk0, it outputs 1 if pk′ = pk1, and else outputs a random bit.

Let the event bad1 be defined as A queries its random oracle on message pk1−b‖x where x is a some bit
string, which in turn leads to B outputting a wrong guess for b. As no information about pk1−b is leaked to
adversary A we can bind the probability of bad1 via a union bound with

Pr[bad1] ≤ qA ·maxpkAE

where qA denotes the number of random oracle queries by adversary A.

46

Let the event bad2 be defined as A outputs guess pk′ = pk1−b. With the same argument this probability is
bound by

Pr[bad2] ≤ maxpkAE

If events bad1 and bad2 do not occur then note that adversary B perfectly simulates the oracles that are
expected byA. AdversaryA expects the encryption scheme to use randomness generated asR(pk‖m‖r). This
means that as A never queries the random oracle on pk‖m‖r (this is implied by ¬bad1), it must expect the
scheme to use uniformly random coins. This is exactly what is done by the LoR oracle. In this case adversary
B wins whenever A outputs a correct guess (or queries the random oracle on pkb‖x). This concludes the
proof.

A simple corollary of the theorem is, that if the adversary in the PK-EXT game is not allowed to specify
the randomness used by the encryption scheme, then PK-EXT is directly implied by IK-CPA.

Corollary D.3. Let A be a PK-EXT adversary which is not allowed to specify the randomness used by the
encryption scheme. Then there exists an adversary B running in time of A, such that

AdvPK-EXT
AE (A) ≤ AdvaIK-CPA

AE (B) + (qA + 1) ·maxpkAE .

47

E The Ideal Cipher Model vs. the Ideal Compression Function model

We have stated all of our results relatively to ideal compression functions h : {0, 1}k × {0, 1}d → {0, 1}s. In
this section we briefly discuss the relation between ideal compression functions and ideal ciphers, where an
ideal cipher is a function chosen uniformly at random from all keyed permutations E : {0, 1}k × {0, 1}n →
{0, 1}n where for each key κ ∈ {0, 1}k function Eκ(·) := E(κ, ·) defines a random permutation.

Compression functions in hash functions are often build from keyed permutations, for example, using the
Davies-Meyer (DM) construction [Win83], which relative to keyed permutation E : {0, 1}k × {0, 1}n →
{0, 1}n defines a compression function as h(m,x) := Em(x) ⊕ x. We give the schematic of the construction
in Figure 22.

E

m

x ⊕

Figure 22: The Davies-Meyer construction [Win83] of a compression function from an (ideal) keyed permutation E.

Now it is easily seen, that the DM construction is not an ideal compression function, since given values
h(m,x)⊕ x and y it is possible to reconstruct value x = E−1m (h(m,x)⊕ x), which for an ideal compression
function should not be possible [CDMP05]. We do, however, expect that the DM construction can be plugged
into all our statements which are then analyzed in the ideal cipher setting. Note that we did not formally verify
this claim. In the following we do, however, give our reasoning: As discussed also for the sponge construction
(see Section B.6), our proofs make use of three properties of compression functions:

1. To argue that hash values cannot be learned without querying all h-queries that also occur within an
honest execution (see the missing link lemma; Lemma 3.3), we require that over the choice of h the
random variable h(m,x), for fixed m and x has high min-entropy. For the DM construction this is the
case as over the choice of E value Em(x)⊕ x can take any value in {0, 1}n.

2. We require that compression function h is collision resistant in order to rule out that two execution graphs
labeled relative to h have a common subgraph which includes the final node g (see the extractor lemma;
Lemma 3.4 as well as Lemma C.2). Dodis et al. [DRS09] show that the DM construction is preimage
aware (PrA) which implies collision resistance.

3. We require that a hash value Hh(M) for a message M does not leak any more information on queries
to h during the computation of Hh(M) than does message M (see the proof of Theorem 5.4). This can
be interpreted as, given value Hh(M) the strengthened missing link lemma still holds (see Lemma B.2).
Hash values are computed as g(h(m,x)) for a result query (m,x) where x is a chaining value and
which translates to g(Em(x) ⊕ x) for the DM construction. As E is an ideal cipher, value Em(x) ⊕ x
is uniformly distributed in {0, 1}s. As x is a chaining value and by (1) and the strengthened missing
link lemma has full entropy, value x cannot be learned but for a local re-computation of Hh (M), or via
exhaustive search on E and E−1.

Let us note that if hash function Hh is required to be indifferentiable from a random oracle, that then this
naturally translates to HDME

needing to be indifferentiable from a random oracle. For the case of HMAC,
NMAC, and various Merkle-Damgård variants including chopMD and prefix-free-MD Coron et al. [CDMP05]
have given analyses in precisely this setting.

48

	Introduction
	Preliminaries
	A Model for Iterative Hash Functions
	Important h-Queries
	Message Extractors and Missing Links
	h-Queries during Functionality Respecting Games

	Unsplittable Multi-stage Games
	Composition for Unsplittable Multi-Stage Games

	Applications
	Unsplittability of Keyed-hash Games
	The Chosen Distribution Attack Game
	The Adaptive Chosen Distribution Attack Game
	Message Locked Encryption
	Universal Computational Extractors
	The Proof-Of-Storage Game and Multi-Round Hash Functions
	A Conjecture on Two-Stage Games and Future Work

	Game Playing
	Formalizing Iterative Hash Functions
	Execution Graphs
	Keyed Hash Constructions
	Multi-Round Iterative Hash Functions
	Properties of Iterative Hash Functions
	A Missing Link in Hh
	Extractor for Hash Function Hh

	Examples: Hash Constructions in Compliance with Definition 3.1
	Merkle-Damgård-like Functions
	NMAC and HMAC
	Hash Tree
	The Double-Pipe Construction / Extensions to the Model

	The Sponge Construction

	The Composition Theorem 4.2
	A Generic Indifferentiabilitiy Simulator
	Derandomizing the Generic Simulator
	Proof of the Composition Theorem for unsplittable Games: Theorem 4.2

	Public-Key Extractability (PK-EXT) for PKE Schemes
	Adaptive IK-CPA
	REwH1 with IK-CPA implies PK-EXT

	The Ideal Cipher Model vs. the Ideal Compression Function model

