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Abstract
This paper describes new algorithm for breaking McEliece cryptosystem, built on Reed-
Muller binary code RM(r,m), which receives the private key from the public key. The
algorithm has complexity O(nd+n4log2n) bit operations, where n = 2m, d = GCD(r,m−1).
In the case of GCD(r,m − 1) limitation, attack has polynomial complexity. Practical
results of implementation show that McEliece cryptosystems, based on the code with length
n = 65536 bits, can be broken in less than 7 hours on a personal computer.

1 Introduction
McEliece сryptosystem — one of the oldest public-key cryptosystems. It was introduced
in 1978 by R. G. McEliece. McEliece Cryptosystem based on NP-hard (non-deterministic
polynomial-time hard) problem in coding theory. The main idea of its construction is
masking some code with efficient decoding algorithms under the code, which does not
have a visible algebraic and combinatorial structure. Such codes are called generic codes.
Binary Goppa codes are used for building original McEliece cryptosystem. Digital signa-
ture can be constructed based on McEliece cryptosystem [1]. McEliece cryptosystem is
an alternative to RSA cryptosystems and ElGamal which is quite common in practice.
However, the development of quantum computing may lead to the rejection of the use
of these cryptosystems in post-quantum era because they will be not secure. Thus, the
study of public-key cryptosystems, which security is not based on the complexity of the
discrete logarithm problem and factoring integers is quite important.

In 1994 V.M.Sidelnikov proposed to used Reed-Muller codes RM(r,m) for build
McEliece cryptosystem [2].
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Reed-Muller code RM(r,m) is called the set of vector values Ωf of all boolean functions
f(y1, . . . , ym), the degree of non-linearity (maximum length monomial in the Zhegalkin
polynomial of function f) does not exceed r [3]. That is

RM(r,m) ={Ωf = (x1, . . . , xn), n = 2m |

f(y1, . . . , ym) = a0 ⊕
t⊕

s=1

⊕
16i1<...<is6m

ai1,...,isyi1 . . . yis , t 6 r}

Note that in the future, the word vector, unless otherwise said, refers to a row vector. It
is known that the code RM(r,m) has dimension k =

∑r
i=0

(
m
i

)
, length n = 2m, Hamming

distance d = 2m−r. Denote R is generating matrix of the Reed-Muller code RM(r,m),
which consists of a unit vector and vector-values of all monomials m, variable degree of
non-linearity is not exceeding r.

R =


G0

G1
...
Gr

 ,

where G0 = Ω1 = (1, 1 . . . , 1),

G1 =


Ωym
...

Ωy2

Ωy1

 , G2 =


Ωym−1ym

...
Ωy1y3

Ωy1y2

 , Gr =


Ωym−r+1ym−r+2...ym

...
Ωy1y2...yr−1yr+1

Ωy1y2...yr−1yr


Further, for simplicity of presenting we will not make a difference in designation be-

tween vector of boolean functions and boolean function expressed as a Zhegalkin polyno-
mial. Let us describe the structure of McEliece cryptosystem constructed on the basis of
the Reed-Muller code. Private key cryptosystem is a pair (H,P ). Here H — nonsingular
(k× k)-matrix over the field F2 = {0, 1}, chosen randomly and with uniform distribution
from the set of nonsingular binary (k×k)-matrices. P is permutation matrix, i.e. at each
line and each column is exactly one unit, and has the dimensions n× n. In other words,
the matrix P simulates a permutation. Note, that in the private key matrix R is not
included (although in the original cryptosystem it is in the private key), because it does
not make sense because of the uniqueness of the Reed-Muller RM(r,m) with parameters
[n, k].

Definition 1. Public key McEliece cryptosystem is the matrix G :

G = H ·R · P.

Let us describe an algorithm of encryption. To encrypt the message m, with length k
it is necessary:

Encryption algorithm.
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1. Calculate c′ = mG.

2. Select random n-dimensional vector e with weight wt(e) = bd−1
2
c.

3. Calculate c = c′ + e.

Let us describe the algorithm for decrypting the cryptogram c.
Decryption algorithm.

1. Calculate c′ = cP−1.

2. Due to the decoding algorithm RM(r,m) let us represent c′ as c′ = aR + e′, for
some a ∈ F k

2 and a error vector e′ ∈ F n
2 with weight bd−1

2
c.

3. Calculate m = aR−1J H−1, where RJ — nonsingular submatrix k × k of matrix R.

2 Known attack
Let us describe a model scheme of attack on the McEliece cryptosystem built on Reed-
Muller codes RM(r,m), which was proposed L. Minder and A. Shokrollahi.

Step 1. Build the code RMσ(1,m) from the code RMσ(r,m).
Step 2. Find a permutation σ′ such that RMσ·σ′(1,m) = RM(1,m). Then σ′ will be

found, it will be satisfy RMσ·σ′(r,m) = RM(r,m).
Theorem 1. There is an algorithm with complexity O(n3) bit operations, which сon-

structs a permutation σ′ such that RMσ·σ′(1,m) = RM(1,m) from the code generator
matrix RMσ(1,m), m > 3.

Proof. Let G — arbitrary generating(m+ 1×2m)-matrix code RMσ(1,m) сontaining
unit row. Let G′ — (m × 2m)-matrix obtained from G by removing that line. In the
matrix G can not be the equal columns, as in this case, the matrix G has two identical
columns, or three columns sum is zero. So, in this case, the Hamming distance for
(RMσ(1,m))⊥ = RMσ(m − 2,m) should not be more, than three. But the Hamming
distance RMσ(m− 2,m) equals to 22 = 4. This contradicts the assumption. Thus, in the
matrix G′ there are no two identical columns. Total number of columns this with lengthm
is 2m, so in the matrix G′ there are all columns of length m. Take as σ′ permutation that
orders the columns of G in lexicographical order of numbers, which binary representation
are the columns of G′ (high-order bits from the top). Under the action of permutation σ′
matrix G obviously transforms into a generator matrix R of code RM(1,m) in standard
form (up to accurate within). For find a permutation we need sort the columns of the
matrix G′. The complexity of sorting is O(n log2 n). Finally, we need to obtain a matrix
containing the row of units from an arbitrary generator matrix G of code RMσ(1,m). It
is sufficient to solve the system of linear equations:

(a1 . . . am+1) ·G = (1 . . . 1).
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Then the matrix AG,

where A =


a1 . . . am+1

a1 ⊕ 1 . . . am+1
... . . .

...
a1 . . . am+1 ⊕ 1

 ,

will be looked for. Solving the system of linear equations and calculating matrix multi-
plication requires O(n3) operetions.

�

The question is how to write RMσ(1,m) from code RMσ(r,m). The first method, pro-
posed by L. Minder is to accumulate sufficient number of codewords of minimum weight,
and after it build the code RMσ(r − 1,m) from RMσ(r,m). Next, in the same manner
we can build the code RMσ(r − 2,m) from the code RMσ(r − 1,m). Continuing the
construction, we get the code RMσ(1,m) in the end.

The theorem, which is a consequence of the work of L. Minder and A. Shokrollahi, is
holds.

Theorem 2. There is an algorithm with complexity O(nr) bit operations, which build-
ing code RMσ(r − 1,m) from the code RMσ(r,m).

3 The theoretical results
This paper proposes a different approach to building code RMσ(1,m).

Theorem 3. There is an algorithm which builds code RMσ(r1 + r2,m) from the codes
RMσ(r1,m) and RMσ(r2,m) and requires O(n4) bit operations, where n is the length of
the viewed codes.

Proof. Let us see the codeRMσ(r1,m) basis {f1, f2, . . . , fk1} and the codeRMσ(r2,m)
basis {g1, g2, . . . , gk2}. View the code C, which is linear span of the vectors
{f1g1, f1g2, . . . , f1gk2 , f2g1, . . . , f2gk2 , . . . , fk1g1, . . . , fk1gk2}. Prove that the resulting code
equal the code RMσ(r1 + r2,m). On the one hand, since the degree of multiplication
(fi)

σ−1
(gj)

σ−1
, 1 6 i 6 k1, 1 6 j 6 k2, does not exceed the sum of the degrees of each

function, entered in, i.e.:

deg((fi)
σ−1

(gj)
σ−1

) 6 deg(fσ
−1

i ) + deg(gσ
−1

j ) 6 r1 + r2, 1 6 i 6 k1, 1 6 j 6 k2,

then C ⊆ RMσ(r1 + r2,m).
Prove the reverse inclusion. For this we give the lower bound of the dimension of

the code C. Due to the fact that the dimension of the code is not changed by being
subjected to a permutation, then we estimate the dimension of the code Cσ−1

. This code
is a linear span of the vectors (fi)

σ−1
(gj)

σ−1
= f ′i · g′j, 1 6 i 6 k1, 1 6 j 6 k2. Herewith,

{f ′1, f ′2, . . . , f ′k1} — basis of the code RM(r1,m), and {g′1, g′2, . . . , g′k2} — basis of the code
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RM(r2,m). Without loss of generality, we assume that r1 6 r2. We prove that the code
Cσ−1 will contain the following linearly independent vectors

{Ω1, {Ωyj1yj2 ...yjs
}s=1,...,r1+r2,16j1<j2<...<js6m}.

This will be sufficient to prove the theorem. Indeed, the number of these vectors is

r1+r2∑
i=0

(
m

i

)
= dimRM(r1 + r2,m).

So dimC = dimCσ−1
> dimRM(r1 + r2,m) = dimRMσ(r1 + r2,m) and C = RMσ(r1 +

r2,m). View the vector f ∈ {1, yi1yi2 . . . yit , 1 6 t 6 r1, 1 6 i1 < i2 < . . . < it 6 m}. It lies
in the code RM(r1,m), and in the code RM(r2,m), so it can be expanded in the basis of
these codes:

f =

k1∑
i=1

αif
′
i =

k2∑
j=1

βjg
′
j.

Then we have the chain of equalities

f = f · f =

k1∑
i=1

αif
′
i ·

k2∑
j=1

βjg
′
j =

∑
i,j

αiβjf
′
ig
′
j.

As f ′ig′j ∈ Cσ−1
, so the vector f also belongs to the code Cσ−1

.
View the vector f ∈ {yi1yi2 . . . yit , r1 + 1 6 t 6 r1 + r2, 1 6 i1 < i2 < . . . < it 6 m}.

Then f the following expansion in the basis holds:

f = yi1yi2 . . . yir1yir1+1 . . . yit .

Herewith, yi1yi2 . . . yir1 ∈ RM(r1,m), and yir1+1 . . . yit ∈ RM(r2,m), as 1 6 t − r1 6 r2.
So the expansions hold:

yi1yi2 . . . yir1 =

k1∑
i=1

αif
′
i ; yir1+1 . . . yit =

k2∑
j=1

βjg
′
j.

Hence we obtain

f =

k1∑
i=1

αif
′
i ·

k2∑
j=1

βjg
′
j =

∑
i,j

αiβjf
′
ig
′
j.

As f ′ig′j ∈ Cσ−1
, the vector f also belongs to the code Cσ−1

. It remains to estimate the
number of operations required to build the code RMσ(r1 + r2,m). Let {f1, f2, . . . , fk1} —
arbitrary basis of code RM(r1,m), {g1, g2, . . . , gk2} — arbitrary basis of code RM(r2,m),
and let L = {h1, h2, . . . , hk} consists of all linearly independent multiplication fi · gj, 1 6
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i 6 k1, 1 6 j 6 k2. From the construction the linear span L coincides with C. To build
the code C is enough to construct a set L, that is its basis.

We form L as follows.Take a vector f1g1. Add to it the vector f1g2. And we reduce
f1g2 to upper triangular form. This requires one bit-wise addition of two vectors. If as a
result we obtain a linearly dependent system, then we discard the vector f1g2 and move
on to the next vector, repeating the reducing to upper triangular form. Suppose that we
have tested x1 vectors to obtain a linearly independent system of two vectors. Then there
will be at most x1 addition of vectors of length n. Similarly construct a system of three
linearly independent vectors. Given that the system of the first two vectors is reduced
to upper triangular form, the process of bringing the system of three vectors to upper
triangular form we need 2 additions of vectors of length n. Suppose that we have tested
x2 candidate for a third vector, then only need to 2x2 addition of vectors of length n.
Continuing the arguments, we conclude that the complexity of building a complete code
base will require

N =

k(1,2)−1∑
i=1

i · xi

addition of vectors of length n, since the total number of tested vectors can not be greater
than the number of multiplication figj.

∑k(1,2)−1
j=1 xj = k1·k2, where k(1, 2) — the dimension

of the code RMσ(r1 + r2,m). The estimation of Nis :

N 6 k(1, 2) ·
k(1,2)−1∑
i=1

xi = k(1, 2) · k1 · k2.

As k(1, 2), k1, k2 6 n, thenN 6 n3. Then the number of bit operations for the construction
of basis will be equal O(N · n) = O(n4), where n is the length of code.

�

Theorem 4. There is an algorithm which builds the code RMσ(m − r − 1,m) from
code RMσ(r,m) with complexity O(n3), where n — length of RM(r,m).

Therefore, to build the code RMσ(1,m) from code RMσ(r,m) we can use the following
operation:

1. Multiplication � of codes RMσ(r1,m) and RMσ(r2,m) such that r1 + r2 6 m− 2 :
RMσ(r1,m)�RMσ(r2,m) = RMσ(r1 + r2,m).

2. Obtaining the orthogonal code ⊥ from code RMσ(r,m):
(RMσ(r,m))⊥ = RMσ(m− r − 1,m).

Also, we can consider the superposition ◦ of these operations. For simplicity, instead of
RMσ(r,m) will use the notation (r,m).

Definition 2. Let U = {x� y, x⊥}. Introduce the concept of the formula U.
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1. Element u ∈ U is a formula over U with depth 1.

2. Let v1, v2 — formulas over U with depth s. Then v1 � v2 and v⊥1 are formulas over
U with depth s+ 1.

3. There is no other formula.

Definition 3. Closure [(r,m)] of code (r,m) is the set of all such codes (t,m), which
can be obtained from (r,m) with application to it of all possible formulas of U.

We denote
tmin((r,m)) = min

(t,m)∈[(r,m)]
t.

Let us study set [(r,m)].
Proposition 1. Code (t,m), 1 6 t 6 m− 2, belongs [(r,m)], if and only if there are

integers a and b 6= 0 such that t = a · (m− 1) + b · r.
Proof. Prove, that if (t,m) ∈ [(r,m)], then there are integers a and b 6= 0 such

that t = a · (m − 1) + b · r. We use induction on the depth of the formula. If (t,m)
obtained from (r,m) with depth 1, then either (t,m) = (r,m)⊥ = (m − r − 1,m), or
(t,m) = (r,m)�(r,m) = (2r,m). Thus, the proposition for the codes obtained by applying
the formulas of depth 1 is executed.

Suppose, that the proposition hold for all (t,m), obtained from (r,m) with application
of the formulas of depth 6 s − 1. We prove the proposition for all (t,m), obtained from
(r,m) with application of the formulas of depth s. There are two cases:

1. Code (t,m) = (t′,m) � (t′′,m), where code (t′,m) and (t′′,m) are obtained from
(r,m) with the aid of formula with depth 6 s−1. By the induction hypothesis there
are integers a′, b′ 6= 0, a′′, b′′ 6= 0, that t′ = a′(m − 1) + b′r и t′′ = a′′(m − 1) + b′′r.
From the definition of the operation � we find that t = (a′+a′′)(m− 1) + (b′+ b′′)r.
Let b′+b′′ = 0. Then t = (a′+a′′)(m−1) and t > m−2, or t 6 0, and the operation
� could not be applied to the codes (t′,m) and (t′′,m). The statement in this case
is true.

2. Code (t,m) = (t′,m)⊥, where code (t′,m) obtained from (r,m) with the aid of
formula with depth 6 s−1. By the induction hypothesis there are integers a′, b′ 6= 0,
that t′ = a′(m − 1) + b′r. From the definition of the operation ⊥ we find that
t = m − 1 − a′(m − 1) − b′r = (−a′ + 1)(m − 1) + (−b′)r, that is, in this case, the
statement is also true.

Let us prove the opposite, that is, if there are integers a и b 6= 0 such that t =
a · (m− 1) + b · r, then (t,m) ∈ [(r,m)]. There are four cases:

1. a > 0, b > 0. Given that 1 6 t 6 m − 2, we obtain a(m − 1) + br 6 m − 2. So
br 6 (1− a)(m− 1)− 1. If a > 1, then

br 6 −((a− 1)(m− 1) + 1) 6 0,
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so b = 0, which is impossible by assumption. So, a = 0. Then t has the form
t = br 6 m−2. Hence, (t,m) obtained by the b-time application of � to code (r,m)
:

(t,m) = (r,m)� (r,m)� . . .� (r,m)︸ ︷︷ ︸
b

.

In this case, proposition is proved.

2. a > 0, b < 0. We represent b′ = −b > 0 as b′ = q · a− s, where q, s — non-negative
integers and 0 6 s 6 a− 1. Then

t = a(m− 1)− b′r = a(m− 1− qr) + sr.

As s, r > 0 and t 6 m−2, then 0 < a(m−1−qr) 6 m−2. So 0 < m−1−qr 6 m−2
and 1 6 qr 6 m−2. So, by the operation � we can get the code (qr,m). By applying
to the operation ⊥, which we can get the code (m− 1− qr,m). Now this code, we
can apply the operation � to this code. Then, we get the code (a(m− 1− qr),m).
It remains to prove that it is possible to get code (sr,m) from (r,m). Then the
required code (t,m) can be obtained with the operation � :

(a(m− 1− qr),m)� (sr,m) = (t,m).

As m − 1 − qr, a > 0 и t 6 m − 2, we obtained 0 6 sr 6 m − 2. i.e. code (sr,m)
can be obtained as follow:

(sr,m) = (r,m)� (r,m)� . . .� (r,m)︸ ︷︷ ︸
s

.

3. a 6 0, b < 0. As t = a(m− 1) + br > 0, this case is impossible.

4. a 6 0, b > 0. Consider the code (m − 1 − t,m) = ((1 − a)(m − 1) − br,m). For it
(1 − a) > 0 и (−b) < 0. Since the case 2 we can get the code (m − 1 − t,m), by
applying to the operation ⊥, we can get the source code.

�

Proposition 2.Equality tmin(r,m) = GCD(r,m− 1). holds.
Proof. By proposition 1 [(r,m)] consists of all codes (t,m), for which there exist

integers a and b, b 6= 0, that
t = a(m− 1) + br.

It is clear that d = GCD(r,m− 1) has this property, then (d,m) ∈ [(r,m)]. Let (t,m) ∈
[(r,m)] and t < d. As d divides m−1 and divides r, then d divides t, that it is impossible.

�
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Proposition 3. Let GCD(r,m − 1) = d. Then there is an algorithm that builds code
(d,m) from the code (r,m) with complexity O(n4 log2 n).

Proof. By Proposition 2 we can use operations � and ⊥ to the code (r,m) to get
code (d,m), where d = GCD(r,m − 1). We calculate the bit complexity of such system.
As (d,m) ∈ [(r,m)] then from the proposition 1 follows that there exist two integers a
and b 6= 0, that

d = a(m− 1) + br.

We can assume that |b| 6 m−1. If not present |b| as b = a′(m−1)+ b′, where |b′| 6 m−1
and move on to a new concept: d = (a + a′r)(m− 1) + b′r. In proposition 1 we consider
the 3 cases.

1. a > 0, b > 0. As follows from the proof of proposition 1 in this case d = br. We
conclude that d divided by r, so the source code (r,m) was a source (d,m).

2. a > 0, b < 0. As follows from the proof proposition 1 in this case d = a(m − 1 −
qr) +sr, 0 < m−1− qr 6 m−2, 1 6 sr 6 m−2. So, by the operation � we can get
the code (qr,m), by applying the operation ⊥, we can get the code (m− 1− qr,m).
By theorem 3 and theorem 4 this requires O((q− 1)n4 +n3) operations. Now, using
the operation � to the resulting code, we get the code (a(m − 1 − qr),m)) for
O((q− 1 +a− 1)n4 +n3) operations. Code (sr,m) can be obtained for O((s− 1)n4)
operations, so the required code (d,m) can be obtained for O((q+a+s−2)n4 +n3)
operations. Given that s < a and q 6 |b|, we find that the total number of operations
is equal to O((|b|+2a)n4). As b 6 m−1 < m and a = d+|b|r

m−1 6
r+(m−1)r
m−1 = rm

m−1 < m,
we finally find that the complexity equals O(mn4) = O(n4 log2 n).

3. a 6 0, b > 0. This case differs from the case 2 by additional application of the oper-
ation ⊥, as well as the complexity of the operation is O(n3). The overall complexity
equals O(n4 log2 n).

�

A consequence of the proposition 3 and theorem 1 will be the next main theorem.
Theorem 5. Suppose GCD(r,m− 1) = 1. Then there is the algorithm with the com-

plexity of O(n4 log2 n) bit operations, which find a permutation σ′ such that RMσ·σ′(r,m) =
RM(r,m) from the code generator matrix RMσ(r,m).

Theorem 6. Suppose GCD(r,m − 1) = d > 1. Then there is the algorithm with
the complexity O(nd + n4 log2 n) bit operations, which find a permutation σ′ such that
RMσ·σ′(r,m) = RM(r,m) from generator code matrix RMσ(r,m).

Proof. From the code (r,m) we can build the code (d,m) this the complexity
O(n4 log2 n). Next, from the code (d,m) we can build the code (d − 1,m) with com-
plexity O(nd) operations and the code (m− d− 1,m) with O(n3) operations. Next, build
the code (m − d − 1,m) � (d − 1,m) = (m − 2,m). This requires O(n3) bit operations.
Total obtain the required number of operations.

�
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4 Practical results
To get practical results we implement the algorithm in software and run it multiple times
on PC with a 2.1GHz Intel Centrino processor and 2Gb RAM. The average time of the
algorithm for different parameters is given in the table. "M" — Denotes that our algorithm
is not better than Minder’s algorithm.

If the algorithm reduces the original problem (r,m) to the problem with less complexity
(d,m), it is noted in the table with symbols (d, m).

(r,m) m = 8 m = 9 m = 10 m = 11 m = 12 m = 13 m = 14 m = 15 m = 16
r = 2 0.007s M 0.48s M 6s M 3m13s M 2h30м
r = 3 0.01s 0.2s M 1.35s 19s M 5m29s 30m31s M
r = 4 0.043s M 0.43s (2,11) 15s M 7m10s (2,15) 3h28м
r = 5 0.042s 0.4s 0.8 M 16.5s 2m1s 14м12s 53m M
r = 6 (2,9) (3,10) (2,11) 23s M 9m28s 14m16s (3,16)
r = 7 0.86s 3.2s 25s 3м16с 10m54s M 6h43m

5 Conclusion
The article describes a new algorithm for the attack on the McEliece cryptosystem, based
on the Reed-Muller code (r,m). Article provides theoretical proof of the method and
bit complexity of the algorithm. Comparing the practical results obtained during the
implementation of the new method, with the already published in the paper [4], it is easy
to see that for the set of parameters satisfying GCD(r,m) = 1, the proposed algorithm is
significantly more effective. In particular, the proposed attack allows to carry out breaking
cryptosystems of McEliece, based on the code with length n = 65536 bits, in less than 7
hours on a personal computer.
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