
Secure Second Price Auctions
with a Rational Auctioneer

Boaz Catane and Amir Herzberg
Department of Computer Science, Bar Ilan University, Ramat Gan, 52900, Israel

{cataneb, herzbea}@cs.biu.ac.il

Keywords: Auctions, Cryptographic Auction Schemes, Cryptographic Protocols, Vickrey Auctions.

Abstract: We present novel security requirements for second price auctions and a simple, efficient and practical pro-
tocol that provably maintains these requirements. Novel requirements are needed because commonly used
requirements, such as the indistinguishability-based secrecy requirement of encryption schemes presented by
(Goldwasser and Micali, 1982), do not fit properly in the second price auctions context. Additionally, the pre-
sented protocol uses a trustworthy supervisor that checks if the auctioneer deviated from the protocol and fines
him accordingly. By making sure the expected utility of the auctioneer when deviating from the protocol is
lower than his expected utility when abiding by the protocol we ascertain that a rational auctioneer will abide
by the protocol. This allows the supervisor to optimize by performing (computationally-intensive) inspections
of the auctioneer with only low probability.

1 INTRODUCTION

Various types of auctions are used worldwide (En-
glish, Dutch, sealed bid, etc.), each with its own
advantages and disadvantages. Special interest has
been given to second1 price sealed bid auctions (also
known as Vickrey auctions (Vickrey, 1961)), because
of their efficiency and simplicity: each bidder sends
only a single sealed bid, and the winning bidder
(sender of the maximal bid) pays the amount of the
second (or kth) highest bid. The optimal strategy for
players is to bid their true valuation of the goods,
hence these auctions are executed efficiently and se-
curely (assuming rational bidders).

In sealed bid auctions, the auctioneer advertises
the auction details, receives sealed bids and declares
the winner and the price she2 has to pay for the goods
(the clearing price). Many works on such auctions fo-
cus on the actions taken by the bidders and regard the
auctioneer as part of the auction mechanism, assum-
ing he abides by the protocol. Because in such sealed
bid auctions only the auctioneer sees the bids and de-
clares the auction’s outcome, a ‘real world’ auction-
eer may misbehave, e.g. output false results or insert
a fictitious bid just below the highest honest bid to de-

1For simplicity, we focus on second price auctions, but
our results apply also to kth price auctions.

2For clarity, we use ”she”, ”her”, etc. to refer to the
bidders, and ”he”, ”his”, etc. for other entities.

ceitfully raise the clearing price. Hence, a mechanism
that carries out an auction correctly even in the face
of a misbehaving auctioneer is required.

We present a simple and efficient protocol ensur-
ing that a rational auctioneer will not misbehave, i.e.,
his expected utility from outputting the wrong out-
come or dishonestly affecting the outcome will be
lower than his expected utility when outputting the
auction’s true outcome. The protocol is based on a
trusted supervisor, that (randomly) inspects the out-
come reported by the auctioneer; we show that infre-
quent random inspections are sufficient to ensure that
a rational auctioneer will operate correctly. This is
significant since the supervisor - in our protocol and
other protocols - is an external entity trusted by both
bidders and auctioneer, which implies significant pro-
cessing costs.

1.1 Auctions: Entities and Interests

So far, there were only few real-world applications of
secure auction protocols, in spite of the many works
and protocols published. One reason for this may be
that existing proposals are rather complex, conceptu-
ally and computationally. Our goal is to design a sim-
ple and practical protocol for secure auctions.

A secure auction protocol would protect the in-
terests of all parties: bidders, auctioneer and owner.
Since these interests may be conflicting, we assume

the parties agree on an additional trusted party, whom
we refer to as the supervisor. The roles and interests
of the parties are as follows:

Owner The entity owning goods to be auctioned.
The owner wants to receive a maximal price for
the goods, and in particular to receive the value of
the second-highest bid (minus the fee paid to the
auctioneer, if it exists).

Bidders Parties that are interested in buying the auc-
tioned goods. They send sealed bids to the auc-
tioneer in order to win the auction. The winning
bidder is a bidder that bid the highest bid. The
winner pays no more than her bid and receives the
goods. Bidder interests include confidentiality of
the submitted bids (from other bidders and from
the auctioneer, at least while the auction takes
place), and integrity of the auction’s result (i.e.
that the correct (highest bidding) bidder wins and
that she is charged the correct amount offered in
the second-highest bid).

Auctioneer Manages the auction by receiving bids
and outputting the winning bidder and the clear-
ing price. The auctioneer (usually) is a proxy for
the owner of the goods. Note that the auctioneer
may also be interested in purchasing the goods,
and may participate in the auction as a bidder by
inserting his own bids.

Supervisor An entity trusted by the bidders and
owner which is used to ensure that the auction-
eer operates correctly and does not try to cheat.
The auctioneer also trusts the supervisor to oper-
ate adequately, e.g. to follow the protocol and al-
low the auction to end correctly. In practice, in
order for all parties to trust the supervisor he may
be implemented using tamper-resistant hardware
running attested-software, or using a set of mul-
tiple machines operated by different entities for
redundancy; both cases imply significant compu-
tational and communication costs. To decrease his
(amortized) work, the supervisor only checks the
auctioneer randomly; we show that this suffices
(for a rational auctioneer).

1.2 Contribution

This paper’s contributions are:

1. Presentation of novel security requirements ap-
propriate for second price auction schemes. These
requirements include validity, rational correct-
ness, secrecy and non-malleability. The com-
monly used encryption related security require-
ments, such as the indistinguishability-based se-
crecy (Goldwasser and Micali, 1982), do not

fit properly in the auctions context since an ad-
versary may legitimately learn some information
about bids (see Section 1.4).

2. Presentation of a simple and practical auction
scheme that provably maintains the aforemen-
tioned requirements. This is achieved using a
trusted supervisor that randomly validates the auc-
tioneer’s behavior, which enables the protocol to
be very efficient.

1.3 Goals and Protocol Overview

Our protocol’s goals are threefold: Firstly, keep bids
secret from other bidders and from auctioneer until
the end of the bidding phase. If bids are not secret
then a correct clearing price cannot be guaranteed.
A malicious bidder might insert a bid that is only
slightly lower than the highest honest bid, resulting in
a fictitiously high clearing price. This goal is achieved
by using cryptographic tools such as encryption.

Secondly, minimize the trust in the auctioneer. In
sealed bid auctions the auctioneer declares the auc-
tion’s outcome after he alone receives all bids, which
are kept secret from all other entities. Such an entity
can easily manipulate the auction’s results by adding
or removing bids or by declaring false outcome. Min-
imizing the trust in the auctioneer is needed if bidders
are to participate in such an auction. This is attained
in the presented protocol by modeling the auctioneer
as a rational adversary and having a supervisor fine
him in case a false outcome is detected. The fine
is high enough such that the auctioneer’s expected
utility when abiding by the protocol is higher than
when cheating. Thus, a rational auctioneer will not
cheat. The supervisor, as opposed to the auctioneer,
is trusted either because he has less motivation to de-
viate from the protocol (since the bidders do not send
him money at any stage of the protocol) or because his
computation is done using secure and costly means
(e.g. secure hardware or secure multiparty computa-
tion).

Thirdly, have a practical and efficient protocol.
This goal, which is of utmost importance in our
scheme because of the use of costly means to imple-
ment a trusted supervisor, is achieved by using the
supervisor occasionally, i.e. only with some (small)
probability.

Figure 1 shows the high level overview of the pre-
sented protocol. In it, the auctioneer publishes the
auction details (e.g. item to be auctioned, deadline for
bid commitment submission, etc.), and bidders send
timed-commitments of their bids to the auctioneer.
The commitments are timed such that the auctioneer
is able to reveal the value of the bids but not before

Figure 1: Overview of the presented protocol: Auctioneer
publishes auction details. Bidders send timed-commitments
of bids to Auctioneer, and Auctioneer publishes them. After
the bidding phase Auctioneer sends the computed auction’s
outcome to Supervisor. After Supervisor signs on the out-
come Auctioneer sends clearing price to the winning bidder.

the end of the bidding phase. The auctioneer pub-
lishes the received commitments on a bulletin board
(e.g. the auctioneer’s website). After the end of the
bidding phase the auctioneer computes the auction’s
outcome (i.e. winning bidder and clearing price). The
supervisor (possibly) verifies auction’s outcome. If he
detects that the auctioneer tried to cheat he fines the
auctioneer. Otherwise, the supervisor signs the out-
come and sends his signature to the auctioneer. The
auctioneer then sends the supervisor-signed outcome
to the winning bidder.

Loosely speaking, the protocol ensures it will not
be beneficial for the auctioneer to cheat, i.e. devi-
ate from the protocol. Auctioneer’s cheating may
include influencing the auction’s outcome in a vari-
ety of ways: First, he can ignore bid commitments.
Second, the auctioneer can declare arbitrary false re-
sults (wrong winning bidder or wrong clearing price).
Third, the auctioneer can use knowledge about re-
ceived bids to add or remove specific bids. This may
influence the auction’s outcome in different ways:
1. After opening the commitments and seeing all

bids the auctioneer might insert a bid that is only
slightly lower than the highest honest bid. This
will make the winning bidder pay a fictitiously
high clearing price.

2. The auctioneer might insert in advance many dif-
ferent bids. After seeing the honest bids he might

remove bids that he inserted and that are higher
than the highest honest bid but leave the rest,
again making the winning bidder pay a fictitiously
high clearing price.

The protocol ensures that deviation from the protocol
would not be the auctioneer’s rational move.

Notice that some actions taken by the auctioneer
to influence the auction’s outcome are legitimate, and
do not result in a fine; in our formal modeling of utili-
ties these actions are legitimate and do not harm other
parties, although arguably in a practical deployment
some of these actions may be deemed inappropriate.
Firstly, the auctioneer may insert (himself or by a col-
laborating bidder) a commitment for a bid, and in case
his bid is the highest bid he wins the auction. This ef-
fectively introduces a minimal price for the goods (i.e.
inserting such a bid ensures that the goods will not be
sold for a price lower than the auctioneer’s bid). This
is a legitimate strategy and we do not try to prevent
it. Secondly, in case of a tie (e.g. a few bidders bid
the highest bid) the auctioneer may choose a winner
arbitrarily. Such actions are not considered a fraud
since no bidder is harmed: The winning bidder pays
an amount equal to her bid (i.e. the second highest
bid) and receives the goods which she values as equal
to the paid price. Likewise, other bidders do not pay
or receive anything and so no damage is inflicted upon
them. In reality, there may be some objection to this
modeling, e.g., since bidders may have preferred to
bid elsewhere, but this is not captured by the usual
modeling of utilities and will require further research.

1.4 Related Work

Auctions are a well studied subject; a few of the many
good references in this area include (Engelbrecht-
Wiggans, 1980; Milgrom and Weber, 1982; Klem-
perer, 2004). Special interest is given to second price
auctions (also known as Vickrey auctions) (Vickrey,
1961), in which the bidders’ optimal strategy is to bid
their true value of the auctioned goods.

Much work on the use of cryptography for con-
ducting secure auctions has focused on the goal of
complete privacy, where no one (including the auc-
tioneer) learns information about the bids even after
the auction has ended (e.g. (Harkavy et al., 1998;
Naor et al., 1999)); unfortunately, these solutions
have high computational requirements. Our proto-
col is much more efficient and hence more practi-
cal, although allowing the auctioneer and supervisor
to learn the values of the bids (but only after the end
of the bidding phase).

Some protocols achieve complete privacy by
bidder-resolved multi-party computation (Brandt,

2006). However, in many cases privacy is achieved
by using third parties, either through numerous auc-
tioneers or by asymmetric models in which in addi-
tion to the auctioneer the entity of a supervisor (or
auction issuer) is assumed (Naor et al., 1999; Lip-
maa et al., 2003). Parkes et al. (Parkes et al., 2008)
settle for verifiable correctness and trustworthiness in
combination with complete secrecy to all parties ex-
cept the auctioneer. However, their scheme demands
considerable time for preparation and verification of
auctions.

In contrast to the aforementioned work, we define
and require novel security requirements to capture the
notions of correctness, secrecy, and non-malleability
in the auctions context. Past works did not formally
define these requirements or even require all of them,
e.g. non-malleability, although using malleable en-
cryption for preserving bid secrecy can be disastrous,
as shown by Dolev et al. (Dolev et al., 1991). In addi-
tion, close observation reveals that the indistinguisha-
bility based secrecy definition (Goldwasser and Mi-
cali, 1982) commonly used for encryption schemes is
not fit for use in auctions, since an attacker may distin-
guish between encrypted messages and win the cryp-
tographic experiment by using legitimately learned
information about encrypted bids (i.e. the identity
of the winning bidder or the clearing price). Thus,
we settle for complete secrecy for all bidders (but
not the auctioneer or supervisor) and non-malleability
of bids, and analytically prove correctness. This is
achieved by using a supervisor and assuming the auc-
tioneer will deviate from the protocol if and only if it
maximizes his utility function.

In the following protocol we use timed commit-
ments. The general notion of timed cryptography
(e.g. an encrypted message that can only be decrypted
after a predetermined amount of time has passed)
was first introduced by (Rivest et al., 1996). Timed-
commitments, a commitment scheme in which there
is an optional forced opening phase enabling the re-
ceiver to recover (with effort) the committed value
without the help of the sender, were later presented
by (Boneh and Naor, 2000). Although their scheme
is sound, it has considerable computational overhead.
We note that our scheme can be adapted to use their
cryptographic primitive, but for efficiency reasons we
implement timed-commitments using a Time Lapse
Cryptography (TLC) Service that is similar to the one
presented in (Rabin and Thorpe, 2006). This TLC
service provides a commitment scheme which, in ad-
dition to the general hiding and binding properties of
commitments, ensures that the committed value can
be revealed at an exact time in the future even without
the help of the committing party.

A privacy and efficiency comparison of various
protocols is presented in Table 1. For each protocol
we count the (average) number of modular exponen-
tiations computed by each entity.

2 PRELIMINARIES

2.1 Model

In the supervised auction model there are n bidders
participating in an online sealed bid second price auc-
tion with an untrusted auctioneer. Each bidder ψ has
a private valuation vψ for the goods being auctioned,
and each sends her bid bψ to the auctioneer. Note that
in a second price auction bidding one’s true valuation
is the optimal strategy (i.e. bψ = vψ). The auction-
eer should output (ψwin, p) where ψwin is the winning
bidder (i.e. a bidder that bid the highest bid) and p
is the amount she has to pay (i.e. the clearing price,
which is equal to the second highest bid). If it maxi-
mizes his utility function, the auctioneer might output
different values than the true values of (ψwin, p). In
order to prevent him from deviating from the proto-
col and outputting false results a trusted third party, a
supervisor, checks the auction’s outcome, settles dis-
putes, and fines the auctioneer (if needed).

2.2 Time Lapse Cryptography Service

In the presented protocol we use timed-commitments
for hiding the bid values until the end of the bidding
phase. Implementation of timed-commitments can
be done using cryptographic methods, as presented
by (Boneh and Naor, 2000). For efficiency reasons,
our protocol uses a Time Lapse Cryptography (TLC)
Service resembling the one presented by Rabin and
Thorpe (Rabin and Thorpe, 2006). The TLC service
provides a cryptographic timed-commitment protocol
that enables the use of commitments with the classi-
cal hiding and binding properties. In addition, it pre-
vents bidders from refusing to open committed bids
and also prevents the auctioneer from dropping re-
ceived commitments after he published them, claim-
ing not to have been able to open the committed bids.
The supervisor, acting as the TLC service provider,
publishes a public key of a non-malleable encryption
scheme before the auction begins, and sends the cor-
responding private key only when no new bids can be
sent (i.e. after the bid submission deadline).

Whenever timed commitments are used in the pro-
tocol it is to say that a bidder encrypts her bid using
the supervisor-generated public encryption key. This

Table 1: Comparison of various secure auction schemes. Legend: n - Number of bidders; α - Probability that a third party
verifies auctioneer’s output; l - Maximum number of bits needed to represent a single bid; k - A constant used in (Parkes et al.,
2008).

Protocol Bids Privacy Kept No. of Modular Exponentiations
Single Bidder Auctioneer Third Party

Boneh and Naor, 2000 None 1 0 N/A
Our protocol From other bidders 2 2n+1 2+α(n−1)
Parkes et al., 2008 From other bidders n+5 kn + 3

(typically
k > 5400)

n

Lipmaa et al., 2003 From bidders and
Auctioneer. Third
party learns bid
statistics

O(l) O(2l) O(l)

Naor et al., 1999 From all entities O(l) O(nl) O(nl)
Juels and Szydlo, 2003 From all entities 2 (+ O(l) modular

multiplications)
O(nl) O(nl)

encrypted bid is to be opened later by the auctioneer
after receiving the corresponding decryption key.

2.3 Notation

If A is a probabilistic polynomial time (p.p.t) algo-
rithm that runs on input x, then A(x) denotes the ran-
dom variable corresponding to the output of A on in-
put x and uniformly random coins. In addition, we de-
note computational indistinguishability (Goldwasser
and Micali, 1984) of ensembles A and B by A

c
≈ B.

We will need to discuss vectors of values. A vec-
tor is denoted in bold font, as in x. We denote by |x|
the number of components in x, and by x.i the i-th
component, so that x = (x.1, . . . , x.|x|). We extend set
membership notation to vectors, writing e.g. x ∈ x to
mean that x is in the set {x.i : 1 ≤ i ≤ |x|}. We also
extend the notation for algorithms with variables as
input to accept also vectors as input with the under-
standing that operations are performed component-
wise. Thus if A is an algorithm then x ← A(y) is
shorthand for the following: for 1 ≤ i ≤ |y| do x.i←
A(y.i).

We will consider relations of arity d where d will
be polynomial in the security parameter k. Rather
than writing R(x1, . . . ,xd) we write R(x,x) meaning
that the first argument is special and the rest are
bunched into a vector x with |x|= d−1.

Regarding the auctioneer’s utility we use the fol-
lowing notations:

U denotes the auctioneer’s utility when abiding by
the protocol. This utility comprises the salary he
receives for functioning as an auctioneer plus any
rightfully won auction gains (in case he bid and
won the auction).

U+
σ denotes, for a given cheating (i.e. deviating from

the protocol) strategy σ, the auctioneer’s utility
when playing σ and not being caught.

U−σ denotes, for a given cheating strategy σ, the auc-
tioneer’s utility when playing σ and being caught.

α denotes the probability that the auctioneer’s cheat-
ing will be caught (i.e. the probability that the
supervisor will check the auction’s outcome).

Note that the auctioneer’s expected utility when not
abiding by the protocol and playing some cheating
strategy σ is

(1−α)U+
σ +αU−σ (1)

Hence, abiding by the protocol would maximize his
expected utility iff for every cheating strategy σ the
following holds:

U ≥ (1−α)U+
σ +αU−σ (2)

That is, a rational auctioneer would not cheat if his ex-
pected utility when abiding by the protocol is greater
than his expected utility when deviating from it.

2.4 Syntax of Auction Schemes

An auction scheme AUC = (KG, Bidder, De-
code, Auctioneer, Supervisor, Winner) consists of six
polynomial-time algorithms:

• The probabilistic key generation algorithm KG
takes as input an entity ψ ∈ {1, . . . ,n} ∪ {A, S}
and a sting 1k, where k ∈ N is the security param-
eter, and returns a (Public key, Private key) pair.

• The probabilistic bidding algorithm Bidder takes
the following as input: As local input, Bidder re-
ceives a (Public key, Private key) pair and a nu-
meric bid value bid. Bidder also receives pub-

lic information (that may consist of the auction-
eer’s public key, details about the planned auction,
etc.). Additional information (such as the supervi-
sor’s public key) is received off-band. Bidder then
outputs a vector message that consists of mes-
sage.encoded bid and message.id such that mes-
sage.encoded bid encodes bid while message.id
contains additional information (bidder’s identi-
fication information, commitment to pay for the
item in case the bidder won the auction, etc.).
Generating message.encoded bid may require bid
and a secret key. In addition, the encoding string
may hide the numeric value of bid (i.e. may be the
output of an encryption process). The encoding is
reversible, namely bid can be retrieved from mes-
sage.encoded bid by the Decode algorithm (see
below).

• The deterministic decoding algorithm Decode
takes as input a key Dec and a string en-
coded bid and outputs the numeric value bid that
was used by Bidder to generate encoded bid,
or ⊥ if no such bid exists. Formally, Decode
outputs bid such that for any auction details,
bidder’s public and secret keys (pk,sk), nu-
meric bid value bid, auctioneer’s public key
A.pk, and supervisor’s public key S.pk and key
pair (Enc, Dec), if (message.encoded bid, mes-
sage.id) ← Bidder(auction details, S.pk, A.pk,
pk, sk, Enc, bid) then bid ← Decode(Dec, mes-
sage.encoded bid), otherwise ⊥← Decode(Dec,
message.encoded bid).
We note that the Decode algorithm is mainly for
defining and proving the security requirements
(see Sections 2.5 and 4), and does not necessar-
ily need to be implemented in a real auction.

• The probabilistic auctioneering algorithm Auc-
tioneer takes as local input a (Public key, Private
key) pair. Furthermore, Auctioneer receives pub-
lic keys (such as the bidders’ or supervisor’s), and
may receive additional public or private informa-
tion (e.g. encoded bids) and a stage stg ∈ {‘init’,
‘receive’, ‘outcome’}. If stg = ‘init’ the algorithm
outputs details about a planned auction. If stg =
‘receive’ the algorithm outputs state information
to be used later. If stg = ‘outcome’ the algorithm
outputs an auction’s outcome (i.e. the winning
bidder and the clearing price).

• The probabilistic auction supervising algorithm
Supervisor takes as input a (Public key, Private
key) pair, public information (that may consist
of the auctioneer’s public keys), additional in-
put from the auctioneer (such as auction details
or outcome), a probability α, and a stage stg ∈

{‘sign’, ‘generate’, ‘verify’}. If stg = ‘sign’ the
algorithm outputs a signature on the auction de-
tails input. If stg = ‘generate’ the algorithm out-
puts a (Public key, Private key) pair of a non-
malleable CPA-secure encryption scheme. If stg
= ‘verify’ it outputs either the string ‘Verified out-
come’ or a proof that the auctioneer cheated and
an amount fine the auctioneer needs to pay.

• The deterministic winner finding algorithm Win-
ner takes as input bids, a vector of bidders’ bids
and messages, a vector containing outputs of
the Bidder algorithm (namely, a vector of (en-
coded bid, id) pairs) such that bidder i’s bid is
bids.i, and her encoded bid and identity informa-
tion is messages.i.encoded bid and messages.i.id,
respectively. The algorithm outputs the winning
bidder ψwinner according to the auction rules (i.e.
ψwinner is the bidder that bid the highest bid. In
case more than one bidder bid the highest bid the
algorithm outputs the bidder whose encoded bid
has lexicographic precedence).

2.5 Requirements

An auction scheme is required to be secure, as defined
below.

Definition 1. An auction scheme is secure iff it is
valid, correct for a rational auctioneer, preserves se-
crecy, and non-malleable (as detailed below).

2.5.1 Validity

An auction scheme is said to be valid if, when the
supervisor checks the auction’s outcome, in case the
auctioneer deviated from the protocol he will be
caught with overwhelming probability. Formally, for
any auction scheme AUC = (KG, Bidder, Decode,
Auctioneer, Supervisor, Winner), adversary Adv and
k ∈ N we associate Experiment 1. In it, Adv has four
stages: init, details, encode and cheat. In the init stage
Adv is given a unary string 1k and outputs n ∈ N, the
number of participating bidders. In the details stage,
after a public and private key pair was issued to each
entity (the bidders, the auctioneer and the supervisor),
Adv receives the secret keys of all bidders3 along with
all public keys. He then outputs an auction details
string that defines the auction. Possible details may be
the item to be auctioned, maximum allowed bid, etc.
Later, in the encode stage, Adv is invoked on behalf

3Although it may be sufficient to give Adv the secret
keys of colluding bidders only, we simplify this experiment,
as well as Experiments 2 and 3, by giving him the secret
keys of all bidders, as done in other works (e.g. (Bellare
et al., 2003)).

of the bidders and is given the public key Enc gener-
ated by the supervisor. He outputs a vector messages
as the output of all bidders which is comprised of n
(bid encodings, identification string) pairs. Adv is in-
voked again, this time as the auctioneer, in the cheat
stage. He is given the key Dec and outputs the en-
coded bid of the winning bidder winning encoded bid
and a clearing price p as the auction’s outcome. The
Supervisor is then given his private and public keys
along with the auction details, all encoded bids, the
declared outcome (winning encoded bid, p), and 1 as
the probability to validate this auction, and outputs a
verification string. If Adv deviated from the proto-
col (i.e. winning encoded bid is not the encoded bid
of the winning bidder or p is not the second highest
bid) while verification = ‘Verified outcome’ then the
experiment outputs 1, Otherwise it outputs 0. Note
that in addition to the above, in the details and encode
stages Adv outputs state information to be used later.

Experiment 1 ExpValidity
AUC , Adv(k)

1: n← Adv(‘init’, 1k)
2: for each ψ ∈ {1, . . . ,n} ∪ {A, S} do

(ψ.pk, ψ.sk)← KG(ψ,1k)
3: (auction details, St1) ← Adv(‘details’, S.pk,

A.pk, A.sk, 1.pk,1.sk, . . . ,n.pk,n.sk)
4: (Enc,Dec) ← AUC .Supervisor(‘generate’,

auction details, S.pk, S.sk, A.pk, 1k)
5: (messages, St2) ← Adv(‘encode’, St1, Enc)

. |messages|= n
6: (winning encoded bid, p) ←Adv(‘cheat’, St2,

Dec)
7: verification ← AUC .Supervisor(‘verify’,

auction details, S.pk, S.sk,
messages.1.encoded bid, . . . ,
messages.n.encoded bid, Dec,
winning encoded bid, p, 1)

8: for each i ∈ {1, . . . ,n} do
9: bids.i ← AUC .Decode(Dec,

messages.i.encoded bid)
10: ψwinner ← AUC .Winner(bids, messages)
11: if

(
winning encoded bid 6=

messages.ψwinner.encoded bid ∨ p 6=
second highest(bids)

)
∧ verification = ‘Ver-

ified outcome’ then return 1
12: else return 0

The advantage of adversary Adv in breaking the
validity of AUC is denoted by

AdvantageValidity
AUC , Adv(k) =

Pr[ExpValidity
AUC , Adv(k) = 1] (3)

Definition 2. An auction scheme AUC is valid if for
any polynomial-time adversary Adv and k ∈ N the
function AdvantageValidity

AUC , Adv(k) is negligible.

2.5.2 Rational Correctness

An auction scheme is correct for a rational auction-
eer if a rational auctioneer will not deviate from the
protocol, i.e. his expected utility when deviating from
the protocol is not greater than when abiding by it.
Formally, for every auctioneer’s strategy σ Equation
2 should hold (See Section 2.3).

2.5.3 Secrecy

An auction scheme preserves secrecy if no colluding
set of bidders is able to learn any nonessential infor-
mation about other bids even after the auction is over.
Consider two adversarially-chosen bidders (ψ0 and
ψ1) who are assigned two adversarially-chosen bids
(bid0 and bid1). A colluding group of (other) bidders
should not be able to tell which of ψ0 and ψ1 bade
either of the two bids with probability significantly
better than guessing.

Formally, for any auction scheme AUC = (KG,
Bidder, Decode, Auctioneer, Supervisor, Winner), ad-
versary Adv, k ∈N and bit b we associate Experiment
2. In it, Adv has five stages: init, details, choose, en-
code and guess. In the init stage Adv outputs n, the
number of participating bidders, s.t. n > 1. In the de-
tails stage, after each entity (the bidders, the auction-
eer and the supervisor) received a public and private
key pair, Adv receives the secret keys of all bidders
and all public keys. He then outputs state information
St1 and an auction details string that defines the auc-
tion. Possible details may be the item to be auctioned,
maximum allowed bid, and so on. Later, in the choose
stage, Adv is given the public key Enc generated by
the supervisor and outputs state information St2 along
with two special bidders ψ0,ψ1 ∈ {1, . . . ,n} and two
bids bid0, bid1 for these bidders. For each special bid-
der ψi the following takes place: the Bidder algorithm
is invoked with bidder ψi’s keys and bid bidb⊕i. Ad-
ditionally, the Auctioneer algorithm receives Bidder’s
output and saves state information in state. Later, for
each non-special bidder i Adv is invoked in stage en-
code. Adv receives St2, i, and the encoded bids of the
two special bidders and outputs a vector message for
that bidder. The Auctioneer algorithm then receives
the vector message and outputs state. After all mes-
sages were received by Auctioneer he is invoked in
stage outcome with state and Dec as input and out-
puts the auction’s outcome, namely the winning bid-
der ψwinnder and the clearing price p. In the guess
stage, if the winning bidder is one of the two special

bidders then Adv receives state information St2 only.
Otherwise, if the winning bidder is non-special then
Adv additionally receives the winning bidder’s name
and the clearing price. In either case Adv then out-
puts his guess, a bit b′. If b′ = b then the experiment’s
output is 1, otherwise it returns 0.

Experiment 2 ExpSecrecy-b
AUC , Adv(k)

1: n← Adv(‘init’, 1k) . n > 1
2: for each ψ ∈ {1, . . . ,n} ∪ {A, S} do

(ψ.pk, ψ.sk)← KG(ψ,1k)
3: (auction details, St1) ← Adv(‘details’, S.pk,

A.pk, 1.pk, 1.sk, . . ., n.pk, n.sk)
4: (Enc, Dec) ← AUC .Supervisor(‘generate’,

auction details, S.pk, S.sk, A.pk, 1k)
5: (bid0,bid1,ψ0,ψ1,St2) ← Adv(‘choose’,

St1,Enc) . |bid0| = |bid1|, ψ0,ψ1 ∈
{1, . . . ,n}, ψ0 < ψ1

6: state←⊥
7: for each i ∈ {0,1} do
8: messages.ψi ←

AUC .Bidder(auction details, S.pk, A.pk,
ψi.pk, ψi.sk, Enc, bidb⊕i)

9: state ← AUC .Auctioneer(‘receive’,
auction details, S.pk, A.pk, A.sk, 1.pk, . . .,
n.pk, messages.ψi, state)

10: for each i ∈ {1, . . . ,n}\{ψ0,ψ1} do
11: (messages.i, St2) ← Adv(‘encode’,

St2, messages.ψ0.encoded bid,
messages.ψ1.encoded bid, i)

12: state ← AUC .Auctioneer(‘receive’,
auction details, S.pk, A.pk, A.sk, 1.pk, . . .,
n.pk, messages.ψi, state)

13: (ψwinner, p) ← AUC .Auctioneer(‘outcome’,
state, Dec)

14: if ψwinner ∈ {ψ0,ψ1} then b′ ← Adv(‘guess’,
St2)

15: else b′← Adv(‘guess’, St2, ψwinner, p)
16: if b′ = b then return 1
17: else return 0

The advantage of adversary Adv in breaking the
secrecy of AUC is denoted by

AdvantageSecrecy-b
AUC , Adv(k) =∣∣∣Pr[ExpSecrecy-b

AUC , Adv(k) = 1]−Pr[ExpSecrecy-b
AUC , Adv(k) = 0]

∣∣∣
(4)

Definition 3. An auction scheme AUC preserves se-
crecy if for any polynomial-time adversary Adv, k ∈N
and bit b the function AdvantageSecrecy-b

AUC , Adv(k) is negli-
gible.

2.5.4 Non-Malleability

Informally, non-malleability requires that an attacker,
after receiving an encoding of some bid, cannot mod-
ify it into an encoding of a different bid whose “mean-
ingfully related” to the original bid. This requirement
ensures that a set of colluding bidders and the auction-
eer cannot insert bids whose values depend on bids
of honest bidders. Following the work of Pass et al.
(Pass et al., 2006), we present this non-malleability
requirement using an indistinguishability based ex-
periment.

Formally, for any auction scheme AUC = (KG,
Bidder, Decode, Auctioneer, Supervisor, Winner), ad-
versary Adv and k, l ∈ N we associate Experiment 3.
In it, Adv has four stages: init, details, choose and
guess. In the init stage Adv outputs the number of
bidders that will participate in the auction. A public
and secret key pair is then generated and given to each
entity. In the details stage Adv receives the supervi-
sor’s public key along with the public and secret keys
of the auctioneer and all bidders (to capture the possi-
bility of an adversary colluding with both the auction-
eer and bidders). He then outputs the auction details
of his choice and state information St1. The supervi-
sor is then invoked and is given the auction details,
his public and private keys and the auctioneer’s pub-
lic key, and outputs a newly generated key pair (Enc,
Dec). Afterwards, in the choose stage, Adv is given
Enc and St1 and is required to output a bidder ψ, two
bids bid0 and bid1 and state information St2. The Bid-
der algorithm is then invoked with auction details, the
supervisor’s and auctioneer’s public keys, bidder ψ’s
public and private keys, Enc and bidb as input and
outputs a (encoded bid, id) pair. In the guess stage
Adv receives St2 along with bidder ψ’s encoded bid
and outputs a vector of length l containing encoded
strings. The experiment outputs a corresponding vec-
tor containing, for each encoding ci, the symbol ⊥ if
ci is identical to the challenge encoded bid, or a de-
coding of ci (using the Decode algorithm) otherwise.
Adv is successful if the vector returned by the exper-
iment is computationally distinguishable when b = 0
compared to when b = 1.

Definition 4. Let AUC be an auction scheme and
let the random variable ExpNon-Mal-b

AUC , Adv(k, l) where b ∈
{0,1}, Adv is an adversary algorithm and k, l ∈ N
denote the result of Experiment 3. AUC is non-
malleable if for any p.p.t algorithm Adv and for any
polynomial p(k), the following two ensembles are

Experiment 3 ExpNon-Mal-b
AUC , Adv(k, l)

1: n← Adv(‘init’, 1k)
2: for each ψ ∈ {1, . . . ,n} ∪ {A, S} do

(ψ.pk, ψ.sk)← KG(ψ,1k)
3: (auction details, St1) ← Adv(‘details’, S.pk,

A.pk, A.sk,1.pk,1.sk, . . . ,n.pk,n.sk)
4: (Enc, Dec) ← AUC .Supervisor(‘generate’,

auction details, S.pk, S.sk, A.pk, 1k)
5: (ψ, bid0, bid1, St2) ← Adv(‘choose’, Enc, St1)

. |bid0| = |bid1|
6: (encoded bid, id) ←

AUC .Bidder(auction details, S.pk, A.pk,
ψ.pk, ψ.sk, Enc, bidb)

7: (c1, . . . , cl)← Adv(‘guess’, St2, encoded bid)
8: return (d1, . . . , dl) where di ={

⊥ if ci = encoded bid
AUC .Decode(ci) otherwise

computationally indistinguishable:{
ExpNon-Mal-0

AUC , Adv(k, p(k))
}

k∈N

c
≈{

ExpNon-Mal-1
AUC , Adv(k, p(k))

}
k∈N

(5)

3 THE PROTOCOL

3.1 Assumptions

In the presented protocol we assume the following:
• All entities have signature key pairs. Public keys

are known to all.

• All entities have synchronized clocks.

• The auctioneer has a certified bulletin board (such
as a website) to post public information.

• Communication delays for all messages are at
most ∆.

In addition to the above, the protocol uses an
encryption scheme that is non-malleable with re-
spect to chosen-plaintext attacks. We use the
indistinguishability-based definition of such non-
malleability, as presented by Pass et al. (Pass et al.,
2006). To facilitate readability of the protocol and
forthcoming proofs we bring the definition below.

3.1.1 Indistinguishability-based
Non-Malleability Definition

In their paper, given an adversary Adv = (Adv1, Adv2)
and k, l ∈N, Pass et al. present an indistinguishability

based definition of non-malleability for an encryption
scheme Π under a chosen-plaintext attack, as shown
in Definition 5. Note that we have changed some vari-
able names for the reader’s convenience.
Definition 5 (from (Pass et al., 2006)). Let Π =
(KG, Encrypt, Decrypt) be an encryption scheme and
let the random variable ExpNon-Mal-b

Π, Adv (k, l) where b ∈
{0,1}, Adv = (Adv1, Adv2) and k, l ∈ N denote the
result of Experiment 4. Π is non-malleable under a
chosen-plaintext attack if for every p.p.t. algorithm
Adv = (Adv1, Adv2) and every polynomial p(k), the
following two ensembles are computationally indis-
tinguishable:{

ExpNon-Mal-0
Π, Adv (k, p(k))

}
k∈N

c
≈{

ExpNon-Mal-1
Π, Adv (k, p(k))

}
k∈N

(6)

Experiment 4 ExpNon-Mal-b
AUC , Adv(k, l)

1: (Enc, Dec)← KG(1k)
2: (bid0, bid1, state) ← Adv1(Enc, 1k) .
|bid0|= |bid1|

3: y← EncryptEnc(bidb)
4: (c1, . . . , cl)← Adv2(state, y)
5: return (d1, . . . , dl) where di ={

⊥ if ci = y
DecryptDec(ci) otherwise

3.2 The Protocol

Below are details of the presented protocol, as de-
picted in Figure 2.
1. The auctioneer sends auction details to the super-

visor and asks him to participate in the auction.
The auctioneer may pay the supervisor for his ser-
vices. Auction details include: details of the auc-
tioned goods; maximum allowed bid bmaxAl; le-
gal commitment by the auctioneer to pay a fine
of value fine in case the supervisor presents proof
that the auctioneer deviated from the protocol; bid
commitment submission deadline tsd ; maximum
number of bidders nmax; auction ending time tend
(see Section 3.2.1 for detailed computation of the
auction ending time).

2. If the supervisor accepts the auction details he ar-
bitrarily sets α such that

α≥ bmaxAl

fine+bmaxAl
(7)

and sends the auctioneer a public key of a CPA-
secure non-malleable encryption scheme, along

Figure 2: Outline of the protocol. Auctioneer asks Super-
visor to participate in the auction and publishes auction de-
tails. Bidders send timed-commitments of bids to Auction-
eer. Supervisor helps Auctioneer open bids and compute
auction’s outcome, and then Supervisor (possibly verifies
and) signs on the outcome. Auctioneer sends clearing price
to winning bidder.

with the supervisor’s signature on the key and the
auction details.

3. The auctioneer publishes the signed auction de-
tails and public key.

4. Each bidder i sends the auctioneer an encryption
of her bid. The bidder also sends a legal com-
mitment to pay for the goods (a price not higher
than her committed bid) in case the auctioneer
presents, no later than the auction ending time
tend, a supervisor-signed statement saying that this
bidder won the auction and needs to pay such and
such as clearing price. The message is signed by
the bidder’s private signing key.

5. After receiving each message the auctioneer ver-
ifies both that the bidder’s signature is valid and
that an identical encryption was not published ear-
lier on the bulletin board (otherwise the auction-
eer ignores the message). He then publishes the
encrypted bid on the bulletin board.
In case a bidder detects that her encrypted bid was
not published she will resend it to the supervi-
sor, who in turn, after verifying the bidder’s signa-

ture and that such an encrypted bid was not pub-
lished already, will forward it to the auctioneer. If
the auctioneer ignores encrypted bids forwarded
to him by the supervisor then the supervisor will
stop participating in the auction.

6. After time tsd + 3∆, the supervisor saves all pub-
lished bid commitments (to be used later in case
he would verify the auction’s outcome), and sends
the secret decryption key to the auctioneer4.

7. The auctioneer decrypts all bids and computes
(i′, p′) where i′ is the bidder with the highest bid
and p′ is the amount she has to pay (i.e. the second
highest bid). He sends (i′, p′) to the supervisor.
In case of a tie the auctioneer chooses a winner
arbitrarily out of the set of highest bidders (e.g.
he chooses the highest bidder with lexicographi-
cal precedence.).

8. With probability α, the supervisor validates the
auction’s outcome: He decrypts all encrypted bids
he previously saved and verifies that the winning
bidder and clearing price are indeed (i′, p′). If the
supervisor detects that the auctioneer cheated he
will fine him. In case the supervisor did not de-
tect cheating (either the auctioneer did not deviate
from the protocol or the supervisor did not verify
the auction’s outcome) he sends the auctioneer his
signature on (i′, p′).

9. The auctioneer sends the supervisor-signed values
(i′, p′) to the winning bidder.

3.2.1 Auction Ending Time

Note that the auctioneer can compute in advance an
upper bound for the auction’s ending time tend. The
ending time for the auction is no later than the time to
send a bid to the auctioneer in the worst case5, which
is tsd +4∆, plus time to decrypt nmax encryptions and
compute the auction’s outcome twice (in case the su-
pervisor verifies the auctioneer’s computed outcome),
plus time to send 3 more messages (the auctioneer
sends outcome to the supervisor, supervisor replies
with signature, auctioneer sends outcome to winning
bidder). This computed bound is tend.

4According to Section 3.2.1 and Footnote 5, the last mo-
ment in which the supervisor might receive legitimate en-
crypted bids is tsd +3∆.

5e.g. a bidder sends a bid at the last moment possible,
the auctioneer does not publish it, and the bidder resends it
to the auctioneer via the supervisor. So the last message is
received by the auctioneer at time tsd +4∆.

4 SECURITY ANALYSIS

Theorem 1. The presented scheme is secure.

Proof. Security of the scheme follows from Lemmas
1, 2, 3 and 5 asserting that the scheme is valid, correct
for a rational auctioneer, preserves secrecy, and non-
malleable, respectively.

4.1 Validity

Lemma 1. The presented scheme is valid.

Proof. We prove that the probability that the auction-
eer will not be caught by the supervisor when devi-
ating from the protocol if the supervisor validates the
auction’s outcome is negligible. This is done by divid-
ing the protocol into three phases, analyzing deviation
at each phase separately, and proving that the auction-
eer cannot deviate in any phase without being caught
with overwhelming probability.

The protocol can be divided into the following
phases:

1. The preliminary phase: up until the auctioneer
publishes the auction details.

2. The submission phase: from the end of the pre-
liminary phase until the auctioneer stops receiving
new submissions (time tsd +4∆).

3. The outcome revelation phase: from time tsd +4∆

until the end of the auction (tend).

In the preliminary phase, the auctioneer sends the
supervisor auction details of his choice, and the su-
pervisor signs these details. Publishing supervisor-
signed false auction details requires the auctioneer to
forge the supervisor’s digital signature, in which he
has only negligible probability to succeed.

In the submission phase the auctioneer cannot
cheat without being caught with overwhelming prob-
ability. Firstly, he cannot ignore received messages
(i.e. not publish them on the bulletin board) because
then the ignored bidders will resend their messages
to the supervisor, who will verify that the auction-
eer publishes them (otherwise the supervisor will not
sign the auction’s outcome and the auction will be
aborted). Secondly, because of the hiding property
of the used encryption scheme, the auctioneer can-
not learn information about the bids from the received
messages. This prevents him from sending messages
with bid values according to values of already re-
ceived bids (e.g. send an (encryption for a) bid that is
slightly lower than the highest honest bid in order to
have the winning bidder pay a fictitiously high clear-
ing price). We note, however, that he can still insert
bids independently of other bids, since the auctioneer

can participate in the auction as a bidder too. Thirdly,
one might argue that the auctioneer may try to influ-
ence the outcome of the auction by inserting fictitious
encryptions for a range of bids. Then, after receiving
the decryption key and decrypting all messages, the
auctioneer ignores the fictitious bids that are higher
than any honest bid but leaves the rest. This way the
honest winning bidder will still have to pay a ficti-
tiously high clearing price. But such a cheating will
be caught by the supervisor since the supervisor him-
self decrypts all published bids and ensures that they
were all taken into account when determining the auc-
tion’s outcome.

The auctioneer cannot deviate from the protocol
in the outcome revelation phase with non-negligible
probability either. After receiving the decryption key
and decrypting the bid commitments, if the auction-
eer sends the supervisor erroneous outcome (i.e. a
wrong winning bidder i or a wrong clearing price p)
the supervisor will notice it when he independently
calculates the outcome. Furthermore, after sending
the correct outcome to the supervisor and receiving
his signature on it the auctioneer cannot send a bidder
a supervisor-signed erroneous outcome without forg-
ing the supervisor’s signature, in which he has only
negligible probability to succeed.

4.2 Rational Correctness

Lemma 2. The presented scheme is correct for a ra-
tional auctioneer.

Proof. Correctness of the protocol follows from the
assumption that the auctioneer is rational and the fine
that he pays when caught cheating is high enough. If
his expected utility when abiding by the protocol is
higher than his expected utility when deviating from
it he will not deviate and the auction’s outcome will
be correct. As shown in Lemma 1, the protocol is
valid, i.e. in case the supervisor checks the auction he
will detect any misbehavior on behalf of the auction-
eer. In addition, according to Step 2 of the protocol,
the supervisor sets the probability α for validating the
outcome such that Equation 7 holds. As shown be-
low, this ensures that the auctioneer’s expected utility
when deviating from the protocol is non-positive.

The supervisor set α such that Equation 7 holds.
Therefore:

α ·fine+α ·bmaxAl ≥ bmaxAl

α ·fine≥ (1−α)bmaxAl

0≥ (1−α)bmaxAl−α ·fine
(8)

Now, since bids are not higher than the maximum al-
lowed bid bmaxAl, the auctioneer’s utility U+

σ when

playing some cheating strategy σ and not being
caught is not higher than bmaxAl (i.e. in any case
the auctioneer will not receive payments higher than
bmaxAl). Additionally, when the auctioneer is caught
cheating he pays fine, so fine =−U−σ . Thus:

(1−α)bmaxAl−α ·fine≥ (1−α)U+
σ +αU−σ

(1−α)U+
σ +αU−σ = Expected utility

(9)

From Equations 8 and 9 we get that the auctioneer’s
expected utility when playing a cheating strategy σ is
non-positive. Hence, for every non-negative utility U
for abiding by the protocol, a rational auctioneer will
not cheat.

4.3 Secrecy

Lemma 3. The presented scheme preserves secrecy.

Secrecy of bids in the face of colluding bidders is
shown by reduction: If an adversary Adv exists that
has a non-negligible advantage in the secrecy exper-
iment (Experiment 2) then an adversary Adv’ can be
constructed that has a non-negligible advantage in the
non-malleability experiment of the underlying CPA-
secure encryption scheme.

Proof. The proof is depicted as follows: Below we
motivate and present a weaker definition for non-
malleability. In Section 4.3.2 we use the weaker defi-
nition to show a reduction proving the lemma. Section
4.3.3 discusses some preliminaries needed for analyz-
ing the reduction, and the analysis is in Section 4.3.4.

We start the proof by noting that Pass et al. (Pass
et al., 2006) show that the (new) non-malleability
definition for encryption schemes presented in Sec-
tion 3.1.1 is stronger than older definitions of non-
malleability, such as the one presented by Bellare and
Sahai (Bellare and Sahai, 1999) and depicted in Sec-
tion 4.3.1, i.e. an encryption scheme that is non-
malleable according to the new definition is also non-
malleable according to the old definition. Therefore,
in order to show that an encryption scheme is mal-
leable according to the new definition it is sufficient
to show that the scheme is malleable according to the
old definition. Indeed, for this reduction we use the
weaker non-malleability definition for a CPA-secure
encryption scheme presented by Bellare and Sahai.
For the reader’s convenience we present the definition
below.

4.3.1 Weaker Definition of Non-Malleability

In their paper, Bellare and Sahai (Bellare and Sa-
hai, 1999) define non-malleability of an encryption

scheme with respect to chosen-plaintext attacks by
Experiment 5 presented below (note that we changed
some variable names to fit the auctions context).
In the experiment, an adversary Adv works in two
stages: Adv1 and Adv2. Algorithm Adv1 receives a
public key Enc and outputs bid0, bid1 (and state in-
formation) such that |bid0| = |bid1|. After one of the
plaintexts, bidb, is randomly chosen and encrypted
the resulting ciphertext y is given to Adv2 in order to
guess which plaintext was chosen. Algorithm Adv2
is itself comprised of two algorithms, Adv2.Q and
Adv2.G. The former, Adv2.Q, receives the two plain-
texts, the challenge ciphertext y and state informa-
tion and outputs a query vector c of ciphertexts and
new state information. The latter, Adv2.G, receives
the new state information and Decrypt(c), namely the
output of a decryption oracle when given c, and out-
puts guess. Adv wins if guess = b.

Definition 6. (from (Bellare and Sahai, 1999)) Let
Π = (KGen, Encrypt, Decrypt) be an encryption
scheme and let Adv be an adversary. For k ∈ N let

Advantageind-pca0
Π, Adv (k) =

2 ·Pr[Expind-pca0
Π, Adv (k) = 1]−1 (10)

where Expind-pca0
Π, Adv (k) is defined in Experiment 5.

We say that Π is secure in the sense of IND-
PCA0 if Adv being polynomial-time implies that
Advantageind-pca0

Π, Adv (k) is negligible.

Experiment 5 Expind-pca0
Π, Adv (k) (from (Bellare and Sa-

hai, 1999))

1: (Enc, Dec)← KG(1k)
2: (bid0, bid1, s1) ← Adv1(Enc,1k) .
|bid0|= |bid1|

3: b r←{0,1}
4: y← EncryptEnc(bidb)
5: (c, s2)← Adv2.Q(bid0,bid1,s1,y)
6: d← DecryptDec(c)
7: guess← Adv2.G(d,s2)
8: if y 6∈ c∧ (guess = b) then return 1
9: else return 0

4.3.2 Reduction

Given an adversary Adv that has a non-negligible ad-
vantage in the secrecy experiment (Experiment 2),
an adversary Adv’ = (Adv1, Adv2.Q, Adv2.G) can be
constructed that has a non-negligible advantage in
the non-malleability experiment (Experiment 5), as
shown in Algorithms 6, 7 and 8.

In Algorithm 6, given a public key Enc of an en-
cryption scheme and a unary string of k ‘1’s Adv1
simulates an auction scheme for Adv: In the init stage
Adv is given the unary string and outputs n, the num-
ber of participating bidders. In the details stage, af-
ter Adv1 generates key pairs for all bidders and for
the auctioneer and supervisor, Adv receives the ap-
propriate keys and outputs auction details. Later, in
the choose stage, Adv receives the key Enc and out-
puts two special bidders ψ0, ψ1 and two bids bid0,
bid1. Adv1 then saves relevant data as state informa-
tion s1 and returns the two bid values bid0, bid1 as two
plaintexts.

Upon receiving bid0, bid1 and s1 as well as the
challenge ciphertext y, the Adv2.Q algorithm executes
as depicted in Algorithm 7: The algorithm creates
a messages vector that will hold bidders’ messages.
Special bidder ψ0’s encoded bid is set as y and his
id string as ⊥. Adv2.Q then randomly guesses which
plaintext was not encrypted by Experiment 5 and sets
messages.ψ1 to be the output of the Bidder algorithm
when given this bid and key Enc as input. Adv2.Q then
repeatedly invokes Adv in stage encode with the en-
coded bids of the two special bidders as input in order
to receive messages for all other bidders. The query
vector c is then set to contain the encoded bids of all
non-special bidders and ⊥ as the encoded bids of the
special bidders. This is done both to preserve cor-
rect indexing of encoded bids and to ensure the query
vector does not contain the challenge ciphertext y =
messages.ψ1.encoded bid. After saving relevant data
as state information s2 Adv’ outputs the query vector
c.

After vector d of bid values of non-special bidders
is received Adv2.G runs according to Algorithm 8: It
sets the bids vector to contain bid values of all bid-
ders. Adv2.G then checks whether the winning bidder
is a special bidder using the IsWinnerSpecial() sub-
routine (Algorithm 9). Note that this subroutine is
indifferent to whether special bidder ψ0 bid bid0 and
ψ1 bid bid1 or vice versa, so Adv2.G does not need to
know this information. If the winner is a special bid-
der Adv2.G invokes Adv with stage guess and St3 as
input. If the winner is not a special bidder then Adv2.G
finds the winning bidder (among the non-special bid-
ders) and the clearing price, and invokes Adv with
stage guess and state information, the winning bidder,
and the clearing price as input. Adv2.G then outputs a
guess bit guess identical to the output of Adv.

Subroutine IsWinnerSpecial() (Algorithm 9)
works as follows: It receives the two special bidders
ψ0, ψ1 along with bid values and messages (contain-
ing encoded bids) of all bidders. It then finds the
set of bidders that bid the highest bid. Within this

set the bidder whose encoded bid has lexicographic
precedence is set as the winner. If the winner is one
of the two special bidders then the algorithm returns
True, otherwise it returns False.

Algorithm 6 Adv1(Enc,1k)

1: n← Adv(‘init’, 1k)
2: for each ψ ∈ {1, . . . ,n} ∪ {A,S} do

(ψ.pk, ψ.sk)← KG(ψ,1k)
3: (auction details, St1) ← Adv(‘details’, S.pk,

A.pk, 1.pk,1.sk, . . . ,n.pk,n.sk)
4: (bid0,bid1,ψ0,ψ1,St2) ← Adv(‘choose’,

St1,Enc)
5: s1← (ψ0,ψ1,S.pk,A.pk,ψ1.pk,ψ1.sk,Enc,St2)
6: return (bid0,bid1,s1)

Algorithm 7 Adv2.Q(bid0,bid1,s1,y)

1: (ψ0, ψ1, S.pk, A.pk, ψ1.pk, ψ1.sk, Enc, St2)← s1
2: messages.ψ0 ← (y, ⊥)
3: bit r←{0,1}
4: messages.ψ1 ← AUC .Bidder(auction details,

S.pk, A.pk, ψ1.pk, ψ1.sk, Enc, bidbit)
5: for each i ∈ {1, . . . ,n}\{ψ0,ψ1} do
6: (messages.i, St2) ← Adv(‘encode’,

St2, messages.ψ0.encoded bid,
messages.ψ1.encoded bid, i)

7: c.i← messages.i.encoded bid
8: c.ψ0 ←⊥; c.ψ1 ←⊥
9: s2← (St2,ψ0,ψ1,bid0,bid1,messages)

10: return (c,s2)

Algorithm 8 Adv2.G(d,s2)

1: (St3,ψ0,ψ1,bid0,bid1,messages)← s2
2: bids← d
3: bids.ψ0 ← bid0; bids.ψ1 ← bid1
4: if IsWinnerSpecial(ψ0, ψ1, bids, messages) then
5: guess = Adv(‘guess’, St3)
6: else
7: ψ

non-spcl
winner ← AUC .Winner(bids, messages)

8: p← second highest(d∪{bid0, bid1})
9: guess = Adv(‘guess’, St3, ψ

non-spcl
winner , p)

10: return guess

4.3.3 Preliminaries

We begin the analysis by observing that the query vec-
tor c sent to the non-malleability oracle does not con-
tain y (which is significant in step 8 of Experiment

Algorithm 9 IsWinnerSpecial(ψ0,ψ1,bids,messages)
1: highest bidders← argmaxi(bids.i)
2: ψwinner ← First(Order(messages.i.encoded bid

for all i ∈ highest bidders))
3: if ψwinner ∈ {ψ0,ψ1} then
4: return True
5: else return False

5). Firstly, bidder ψ0’s encoded bid is set to ⊥ in-
stead of y (see Algorithm 7, Step 8). Secondly, Adv
can be assumed to not output encoded bids for non-
special bidders that are identical to y. This is because
the auctioneer ignores bid encodings that are identical
to encodings that were already published on the bul-
letin board. Since no new information is gained by
Adv when outputting encodings for non-special bid-
ders that are identical to encodings of special bidders
(because the new non-special encodings are immedi-
ately ignored) it can be assumed, w.l.o.g., that Adv
does not output such encodings. As a side note, we
observe that the probability that honest bidders output
encodings that are identical to other bidders’ encod-
ings when using a probabilistic encryption scheme is
negligible. Therefore, with overwhelming probability
having an auctioneer that ignores such identical en-
codings does not affect the auction.

In addition, we claim that Adv is indifferent in
stage encode to whether it is given as input encod-
ings of bid0 and bid1 or encodings of any other bids.
This is shown in Lemma 4 below by proving that any
adversary (and in particular, our Adv) that has stages
init, details, choose and encode as defined in the se-
crecy experiment cannot tell with probability signif-
icantly higher than guessing whether it was given in
stage encode encodings of bid0 and bid1 or not.

Lemma 4. For every adversary Âdv with stages init,
details, choose and encode as defined in the secrecy
experiment (Experiment 2), the probability for it to
distinguish if it was given in stage encode input con-
taining encodings of bid0 and bid1 or input containing
encodings of different bids is no more than negligibly
higher than guessing.

Proof. For every adversary Âdv that has probability
β to distinguish if its input in stage encode includes
encodings of bid0 and bid1 or not, i.e. for every Âdv
that in stage encode has probability β to output cor-
rectly a bit b such that b = 1 if the input contains
encodings of bid0 and bid1 and b = 0 otherwise, an
adversary Âdv’ = (Âdv’1, Âdv’2) can be constructed
that has probability β to win the indistinguishability

experiment of the underlying CPA-secure encryption
scheme.

We note that if Âdv in stage init sets n = 2 then
Âdv is never called with stage encode and the lemma
is voidly true. We therefore continue the proof assum-
ing n > 2.

Given an encryption key Enc, Âdv’1 runs simi-
larly to Adv1(Enc,1k) (see Algorithm 6): it simulates
an auction scheme for Âdv and outputs the same two
plaintexts bid0 and bid1 as Âdv. Âdv’1 saves the vari-
able n in the state information variable s1 in addition
to all information that Adv1(Enc,1k) saves in s1.

When Âdv’2 receives the challenge ciphertext y it
runs as shown in Algorithm 10: It invokes the Bid-
der algorithm with key Enc and bid bid0 to receive
encoded bid0 and id. It then invokes Âdv in stage en-
code with (‘encode’, St2, y, encoded bid0, i) as input
(using a randomly chosen i). Âdv’ receives a guess
bit b and outputs it as its own guess bit.

The winning probability of both Âdv and Âdv’ is
β because their output bit is identical. Since the un-
derlying encryption scheme is CPA-secure, β is neg-
ligibly higher (at most) than a random guess.

Algorithm 10 Âdv’2(bid0,bid1,s1,y)

1: (ψ0, ψ1, S.pk, A.pk, ψ1.pk, ψ1.sk, Enc, St2, n)
← s1

2: (encoded bid0, id) ←
AUC .Bidder(auction details, S.pk, A.pk,
ψ1.pk, ψ1.sk, Enc, bid0)

3: i r← {1, . . . ,n}\{ψ0,ψ1}
4: b← Âdv(‘encode’, St2, y, encoded bid0, i)
5: return b

4.3.4 Reduction Analysis

When Adv’ simulates an auction scheme for Adv he
randomly chooses which one of bid0, bid1 will be en-
crypted as messages.ψ1.encoded bid (See steps 3 and
4 in Algorithm 7). Therefore, Adv’ correctly simu-
lates an auction scheme and gives Adv encodings of
both special bids with probability 1

2 . In such a case,
since the output bit guess of Adv’ is identical to the
output bit b′ of Adv, the advantage of Adv’ in win-
ning the cryptographic experiment is non-negligible,
as the advantage of Adv.

With probability 1
2 Adv’ does not simulate an auc-

tion scheme correctly, i.e. does not supply Adv with
correct bid encodings. In step 6 of algorithm 7 Adv
receives either two encodings of bid0 or two encod-
ings of bid1 (and not one encoding of each). Lemma

4 ensures that Adv is oblivious to the values the en-
codings encode, i.e. the output of Adv is indiffer-
ent to whether y and messages.ψ1.encoded bid en-
code the same bid or not. In either case, Adv’ will
continue and query the decryption oracle using vec-
tor c and receive the bids of all non-special bidders.
Adv’ will then know if the winning bidder is one
of the two special bidders and what is the clearing
price, ensuring he will invoke Adv with correct in-
put in the guess stage (see Algorithm 8). Thus, the
case in which Adv’ gave Adv wrong y and mes-
sages.ψ1.encoded bid such that they both encode bid0
is indistinguishable (regarding the information Adv
sees) to the case in which Adv’ gave Adv wrong y and
messages.ψ1.encoded bid such that they both encode
bid1. Consequently, the probability that Adv guesses
correctly in the former case is equal to the probability
that Adv guesses correctly in the latter, i.e. Adv (and
Adv’, whose guess is identical) has a winning proba-
bility of 1

2 when the auction scheme was not simulated
correctly.

In summary, with probability 1
2 the advantage

Adv’ has in the non-malleability experiment (Exper-
iment 5) is non-negligible, and with probability 1

2 it
is zero. Therefore, his overall advantage in the exper-
iment is non-negligible and the scheme is malleable.
As discussed earlier, this implies that the underlying
encryption scheme is malleable also according to Def-
inition 5, contradicting the initial assumption.

4.4 Non-Malleability

Lemma 5. The presented scheme is non-malleable.
Non-malleability is shown by reduction: If an ad-

versary Adv exists that can maul an encoded bid into
another one that is related to the original bid then an
adversary Adv’ exists that can maul a ciphertext, gen-
erated by encrypting a plaintext using the auction’s
underlying encryption scheme, into a different cipher-
text that is related to the original plaintext. For the
proof we use the definition of non-malleable encryp-
tion schemes presented by Pass et al. (Pass et al.,
2006). For the reader’s convenience we bring it be-
low.

Proof. If an auction scheme AUC , k, l ∈ N, and
an adversary Adv exist such that the output of the
non-malleability experiment (Experiment 3) is com-
putationally distinguishable when b = 0 compared to
when b = 1 then an adversary Adv’ = (Adv’1, Adv’2)
exists such that the output of the non-malleability ex-
periment of the underlying encryption scheme Π (Ex-
periment 4) is computationally distinguishable. Adv’
would run according to Algorithms 11 and 12, as de-
tailed below.

Algorithm 11 Adv’1(Enc,1k)

1: n← Adv(‘init’, 1k)
2: for each ψ ∈ {1, . . . ,n} ∪ {A,S} do

(ψ.pk, ψ.sk)← KG(ψ,1k)
3: (auction details, St1) ← Adv(‘details’, S.pk,

A.pk, 1.pk,1.sk, . . . ,n.pk,n.sk)
4: (ψ,bid0,bid1,St2)← Adv(‘choose’, St1,Enc)
5: return (bid0, bid1, St2)

Algorithm 12 Adv’2(St2,y)

1: (c1, . . . , cl)← Adv(‘guess’, St2, y)
2: return (c1, . . . , cl)

Given an encryption key Enc algorithm Adv’1
simulates an auction scheme for Adv as detailed in
Algorithm 11: Adv is invoked in stage init and out-
puts the number of participating bidders n. Keys
are then generated to all entities by the KG algo-
rithm. Adv receives relevant keys and outputs auc-
tion details and state information St1. Adv then re-
ceives the public encryption key Enc and outputs a
bidder ψ, two bids bid0, bid1 and state information
St2. Adv’1 outputs the two bids along with the state
information.

When Adv’2 receives state information and the
challenge ciphertext y it invokes Adv in stage guess
with St2 and y as input. Adv’2 then outputs the same
vector of encryptions as Adv does.

If the output of Adv is computationally indistin-
guishable when b = 0 compared to when b = 1 then
so is the output of Adv’, since they have identical out-
puts. Therefore, having an adversary that breaks the
auction’s non-malleability implies that the underlying
encryption scheme is non-malleable.

4.5 Adversarial Bidders

Bidders may slightly abuse the protocol and send their
bids somewhat later than the submission deadline tsd .
By sending her bid directly to the supervisor at time
tsd +2∆, a bidder may commit to a bid at time which
is 2∆ later than the submission deadline. Such a sub-
mission tardiness may give only negligible utility in
some scenarios, but might be significant in others. In
cases where such abuse should be avoided, the fol-
lowing may be added to the protocol: If a bid is to be
submitted after time tsd−2∆ (but before tsd), then the
bidder must simultaneously send a commitment of the
bid to the auctioneer and a doubly committed bid to
the supervisor (using a different, bidder generated key

for the second commitment). Note that this doubly
committed bid will be received by the supervisor not
later than tsd +∆. If a bidder sees that her bid was not
published by the auctioneer she will resend the com-
mitted bid to the supervisor. The supervisor will ver-
ify that the received commitment is indeed what was
committed to by the bidder and received earlier (i.e.
up until tsd +∆), and will forward the commitment to
the auctioneer. This way the bidder must commit to
a bid no later than tsd . Using doubly committed bids
ensures that the supervisor does not learn nonessential
information about the committed bids it received.

Auctioneer’s security against non-paying bidders
is achieved by using signed commitments. Bidders
are legally committed to pay, or else they may be
sued. Alternatively, the auctioneer may require a
signed statement from a trusted third party that a bid-
der has the amount of money she is bidding.

5 CONCLUSIONS

In this paper we presented novel security definitions
for the validity, rational correctness, secrecy, and non-
malleability of second price auction schemes. In ad-
dition, a simple and efficient scheme is presented in
which the security requirements hold. This is done
using a trusted supervisor which randomly validates
the auction’s outcome.

One may wonder, in case such a trusted supervisor
exists, why not let this trusted entity run the auction
instead of the auctioneer. One answer is that an entity
that validates the outcome but which does not receive
payments from the bidders (such as the supervisor)
has less incentive to cheat, as opposed to the auction-
eer. More importantly, in case there is a need for a
highly trusted supervisor, the supervisor program may
be run using secure means such as special hardware
or secure multiparty computation. Employing such
costly means for the supervisor may introduce sub-
stantial overhead. To ensure the protocol’s efficient
and practicality, such a costly supervisor may choose
to participate only in auctions where α is low enough,
guaranteeing both that the auction is secure and that
the supervisor has a low amount of expected compu-
tation. Notice, however, that requiring α to be small
may induce a high fine, since according to Equation 7
the lower bound of fine is:

fine≥ (1−α)bmaxAl

α
(11)

Still, we believe there is enough freedom in tuning the
supervisor’s workload to ensure the scheme is practi-
cal.

6 FURTHER RESEARCH

There are many issues for further research, both in
adding attributes to the presented protocol and in us-
ing the techniques displayed in this paper for creating
protocols for other scenarios.

It is possible to keep bidders’ privacy by hid-
ing their identity from the auctioneer. This can be
done by schemes such as group signatures, which al-
low the auctioneer to authenticate bids as being sent
from authorized bidders without personally identify-
ing the senders. In case of dispute or misbehavior,
an identity called the group manager can break the
anonymity and identify senders of specific bids. For
details, see (Chaum and Van Heyst, 1991; Bellare
et al., 2003; Bellare et al., 2005). Note that group
signature schemes hide the identity of the bidders but
do not hide their bids. Second price auctions that hide
the bids from the auctioneer are the focus of papers
such as (Naor et al., 1999).

Techniques displayed in this paper can be used for
creating protocols for other scenarios as well. For ex-
ample, one may consider the brokerage scenario in
which many put and call options are presented si-
multaneously. A server receives these options and
matches them according to a predefined matching al-
gorithm. Such scenarios are presented in various pa-
pers (Malone et al., 1987; Bichler and Segev, 1999;
Resnick et al., 1995). A possible research subject
would be to find ways to reduce trust in the match-
maker by modeling him as a rational player and cre-
ating an appropriate and efficient protocol for this sce-
nario, as displayed in this paper.

ACKNOWLEDGEMENTS

We thank Alon Rosen, Yehuda Lindell, and Benny
Pinkas for their comments. Additionally, we thank the
following organizations for financially supporting this
research: The Israeli Ministry of Science and Tech-
nology, and the RSA division of EMC corporation.

REFERENCES

Bellare, M., Micciancio, D., and Warinschi, B.
(2003). Foundations of group signatures: For-
mal definitions, simplified requirements, and a
construction based on general assumptions. In
EUROCRYPT, pages 614–629.

Bellare, M. and Sahai, A. (1999). Non-malleable
encryption: Equivalence between two notions,

and an indistinguishability-based characteriza-
tion. In Advances in cryptology-CRYPTO99,
pages 78–78. Springer. http://cseweb.ucsd.
edu/˜mihir/papers/nm.pdf.

Bellare, M., Shi, H., and Zhang, C. (2005). Founda-
tions of group signatures: The case of dynamic
groups. Topics in Cryptology–CT-RSA 2005,
pages 136–153.

Bichler, M. and Segev, A. (1999). A brokerage frame-
work for internet commerce. Distributed and
Parallel Databases, 7(2):133–148.

Boneh, D. and Naor, M. (2000). Timed commitments.
In CRYPTO, pages 236–254.

Brandt, F. (2006). How to obtain full privacy in auc-
tions. International Journal of Information Se-
curity, 5(4):201–216.

Chaum, D. and Van Heyst, E. (1991). Group sig-
natures. In Proceedings of the 10th annual in-
ternational conference on Theory and applica-
tion of cryptographic techniques, pages 257–
265. Springer-Verlag.

Dolev, D., Dwork, C., and Naor, M. (1991). Non-
malleable cryptography. In Proceedings of the
twenty-third annual ACM symposium on Theory
of computing, pages 542–552. ACM.

Engelbrecht-Wiggans, R. (1980). Auctions and bid-
ding models: A survey. Management Science,
pages 119–142.

Goldwasser, S. and Micali, S. (1982). Probabilistic
encryption & how to play mental poker keep-
ing secret all partial information. In Proceed-
ings of the fourteenth annual ACM symposium
on Theory of computing, pages 365–377. ACM
New York, NY, USA.

Goldwasser, S. and Micali, S. (1984). Probabilistic
encryption. Journal of computer and system sci-
ences, 28(2):270–299.

Harkavy, M., Tygar, J., and Kikuchi, H. (1998). Elec-
tronic auctions with private bids. In Proceed-
ings of the 3rd USENIX Workshop on Electronic
Commerce, volume 31.

Klemperer, P. (2004). Auctions: theory and practice.

Lipmaa, H., Asokan, N., and Niemi, V. (2003). Se-
cure vickrey auctions without threshold trust.
In Financial Cryptography, pages 87–101.
Springer.

Malone, T., Yates, J., and Benjamin, R. (1987). Elec-
tronic markets and electronic hierarchies. Com-
munications of the ACM, 30(6):484–497.

Milgrom, P. and Weber, R. (1982). A theory of auc-
tions and competitive bidding. Econometrica:
Journal of the Econometric Society, pages 1089–
1122.

Naor, M., Pinkas, B., and Sumner, R. (1999). Privacy
preserving auctions and mechanism design. In
Proceedings of the 1st ACM conference on Elec-
tronic commerce, pages 129–139. ACM.

Parkes, D., Rabin, M., Shieber, S., and Thorpe,
C. (2008). Practical secrecy-preserving, veri-
fiably correct and trustworthy auctions. Elec-
tronic Commerce Research and Applications,
7(3):294–312.

Pass, R., Vaikuntanathan, V., et al. (2006). Con-
struction of a non-malleable encryption scheme
from any semantically secure one. In Advances
in Cryptology-CRYPTO 2006, pages 271–289.
Springer.

Rabin, M. and Thorpe, C. (2006). Time-lapse cryp-
tography.

Resnick, P., Zeckhauser, R., and Avery, C. (1995).
Roles for electronic brokers. In Toward a Com-
petitive Telecommunication Industry: Selected
Papers from the 1994 Telecommunications Pol-
icy Research Conference. Mahwah, New Jersey:
Lawrence Erlbaum Associates, pages 289–306.

Rivest, R., Shamir, A., and Wagner, D. (1996). Time-
lock puzzles and timed-release crypto.

Vickrey, W. (1961). Counterspeculation, auctions,
and competitive sealed tenders. The Journal of
finance, 16(1):8–37.

