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Abstract. We put forward the first practical message authentication
code (MAC) which is provably secure against continuous leakage under
the Only Computation Leaks Information (OCLI) assumption. We in-
troduce a novel, modular proof technique: while most previous schemes
are proven secure directly in the face of leakage, we reduce the (leak-
age) security of our scheme to its non-leakage security. This modularity,
while known in other contexts, has two advantages: it makes it clearer
which parts of the proof rely on which assumptions (i.e. whether a given
assumption is needed for the leakage or the non-leakage security) and it
also means that, if the security of the non-leakage version is improved,
the security in the face of leakage is improved ‘for free’. We feel that
this is an advantageous proof technique, providing a better understand-
ing of the scheme’s security properties. In practice, we envisage that our
scheme would be implemented using pairings on some pairing-friendly
elliptic curve, where the ‘leakiness’ of the group operation can be experi-
mentally estimated. This allows us to compare the resulting instantiation
against other leakage resilient MACs (or related schemes), and conclude
that ours is the most efficient, as well as being (by far) the most practical.

1 Introduction

Side channel leakage (e.g. via timing, power or EM side channels) enables the
extraction of secret data out of cryptographic devices, as initially demonstrated
by Kocher (et al.) in 1996 and 1999 [15, 16]. The engineering community reacted
quickly by developing a variety of countermeasures that are commonly described
as masking and hiding (see [17]). Such countermeasures intend to reduce the
overall exploitable leakage via techniques that are cheap to implement.

Initially with hesitance, but more lately with much enthusiasm, the theory
community picked up on the fact that schemes are needed which can tolerate
some leakage. Complementary to the engineering approach, the aim is to design
schemes which do not reduce leakage but cope with it, normally via updating
the keys. The most compelling property of this approach is that the security
definitions intrinsically incorporate leakage and hence security proofs then hold
even in the presence of leakage. The main drawback of having theoretical backing
of security seems to be that the resulting schemes are typically considerably less
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efficient than other schemes. A prime example of such a scheme is the stream
cipher by Dziembowski and Pietrzak [6].

Despite the fact that almost all real word cryptographic protocols require
some form of authentication, there is a distinct gap in the literature when it
comes to leakage resilient message authentication codes (MACs). Hazay et al. [12]
produce a MAC from minimal assumptions (existence of a one way function).
While only relying on minimal assumptions is an advantage from a theoretical
perspective, the scheme has a major drawback in that it only allows a bounded
amount of leakage (this bound relates to the total leakage of the device). This
makes the scheme unsuitable for practice. In his Master’s thesis, Schipper [24]
discusses a MAC construction in yet another security model. However unfortu-
nately this MAC is also undesirable for practice as the number of AES calls used
by verification grows logarithmically in the number of tag queries.

1.1 Our contribution

Inspired by the bilinear ElGamal cryptosystem by Kiltz and Pietrzak [13], we
propose a MAC scheme that is secure within the continuous leakage model, using
the Only Computation Leaks Information assumption (discussed in Sect. 2). To
our knowledge this is the first MAC scheme to be given within this model, which
has become one of the more desirable models due to its closer link with practical
side channel scenarios.

In Sect. 3 we give our basic MAC construction and prove it secure in the ran-
dom oracle model without leakage. Unlike previous work (where schemes have to
be completely re-proven when considering leakage), we can construct our proof
when considering leakage by a reduction to the non-leaky version (see Sect. 4).
This is the first proof to achieve such a clean reduction, which has several advan-
tages. Firstly it shows more clearly how much the leakage is impacting on the
security of a scheme. This also implies if the security of the basic MAC construc-
tion is tightened, the security of the MAC construction with leakage is tightened
‘for free’. This manifests itself (as seen in the theorem statement) by having
the leakage security bound in terms of the security without leakage. Secondly it
becomes clearer which further assumptions are required to prove security when
assuming leakage: for example the basic MAC construction requires a Random
Oracle assumption, while the Generic Group Model is required when leakage is
added.

In Sect. 5 we compare our MAC to the other leakage resilient MACs, as well
as other schemes (i.e. PRFs, Signatures) which can be converted into MACs.
We show that compared to the majority of other provably secure schemes we are
considerably more efficient. The only scheme which is comparable with regards
to efficiency is a signature scheme [11].

1.2 Related Work

Kiltz and Pietrzak [13] combine two techniques that are commonly used within
both communities to build a key encapsulation mechanism on top of a key up-
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date scheme. The first technique is masking (or secret sharing as it is known by
the theoretical community), which invloves splitting the key into two parts and
then working on each share separately. The second technique is frequent rekey-
ing. Unlike other proposals (e.g. [14] or [1]), which are stateful (and thus need
to be synchronised) or ones which needs to transmit a clue [19] to ‘synchronise’
parties, [13] can leverage the algebraic properties of the underlying system such
that the resulting sytem requires no synchronisation. This is achieved by chang-
ing the representation of the shares rather than changing the secret itself. Using
the same techniques, Galindo and Vivek [11] create a leakage resilient signature
scheme. Both constructions are proven secure in the continuous leakage model
using the OCLI assumption [20](see also Sect. 2).

Albeit not related to goal of creating a MAC, there have been several re-
cent papers which design leakage resilient schemes with the balance of prov-
ability and useability: schemes that come with some provable guarantee against
arbitrary leaks without incurring prohibitively high overhead. When relaxing
security notions from completely adaptive inputs (i.e. adversaries may choose
input messages but also the side channel leakage adaptively) to non-adaptive
security, simpler constructions for symmetric key cryptography can be achieved
than previously thought [8]. In a differently motivated publication (proving ex-
isting schemes secure versus creating provably secure schemes), Balasch et al. [2]
take a provably secure method, inner product masking, trim it down to imple-
ment a masked AES with it, and show this leads to a result which is comparable
to other state of the art, yet not formally proven, masking approaches.

Dodis and Pietrzak [5] create a leakage resilient PRF where the leakage func-
tions are chosen non-adaptively before any queries to the PRF are made. Faust
et al. [8] construct a simpler leakage resilient PRF, which is acheived at the
expense of having to make both the input to the PRF and the leakage non-
adaptive. All known PRFs in the continual leakage model have the restriction
of being non-adaptive (in the leakage), while MACs do not have this restriction.
This shows of a seperation between PRFs and MACs which does not exist in
the non-leakage model but PRFs will still serve as an interesting comparision.

2 Modelling Leakage

In this section we discuss what assumptions we make when modelling leakage.
Clearly some restrictions are required on the leakage, otherwise the adversary will
be able to win because he can just ask for the key. One of the first decisions to be
made is how to define a bound for the leakage (i.e. how many bits about a secret
does the adversary get via some side channel). For instance, one could define
there to be an overall bound, i.e. the adversary gets at most a certain number
of bits, irrespective of how often the construction is actually called. Another
option would be to impose a per call bound. In this latter case, each call to the
construction delivers at most a certain number of bits, while the overall leakage
remains unbounded. This type of model is called continuous leakage model and
fits best to real world leakage such as power or EM traces.
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Whilst some previous works ([6, 9]) make an a priori assumption about the
computational complexity of the leakage function, we opted for a concrete secu-
rity statement. This means that the adversarial advantage is explicitly bounded
in the complexity of the leakage function as expressed in the number of queries
to the generic group oracles (see Sect. 2.2).

Finally we need to restrict the scope of the leakage function because oth-
erwise (given our choices of assumptions above) no security would be possible
(because of the infamous ‘future computation attack’ [13]), which we discuss in
the following.

2.1 Only Computation Leaks Information

Micali and Reyzin [20] introduced the Only Computation Leaks Information
(OCLI) assumption. It states that data leakage only occurs on data that is
currently being computed on and that data at rest will not leak. Whilst this
assumption might not strictly hold in practice ([23] shows it to be invalid for
some technologies on gate level), it sufficiently captures the behaviour of many
state of the art devices.

Application of the OCLI assumption requires splitting a large computation
into smaller components that each only operate on a subset of the data available,
thus restricting the scope of what can be leaked on. OCLI will be modelled in
this paper by splitting a function F into two parts F

G#

and F G# . The part of the
sensitive/exploitable input S used by F

G#

will be denoted S

G#

while the parts of

the sensitive input used by F G# will be denoted S G# . Without OCLI, a leakage
query could potentially leak on both shares jointly, and thus reveal information
about S. However due to OCLI, any leakage query can only ever leak on S

G#

and

S G# independently, but never jointly on both.
Concretely, in our model the adversary may adaptively (per function call)

choose leakage functions l

G#

, l G# which will leak up to λ bits (this is a security

parameter) on F

G#

and F G# respectively. The adversary also gets the output

l

G#

(S

G#

, x

G#

, r

G#

) and l G# (S G# , x G# , r G# ) where x

G#

, x G# is the input to the functions

and r

G#

, r G# is the randomness that they use.
Note that while the leakage functions l

G#

and l G# can be chosen adaptively
from query to query, they do have to be chosen at the same time for a single query.
This mild restriction—that the leakage function l G# is not allowed to depend
on the leakage obtained by l

G#

—is quite common in the literature [11, 13], and
reflects the abilities of a real world adversary (they can’t change the measurement
set-up mid measurement).

If this leakage process is iterated multiple times an index is used to specify

which iteration we are on, for example we use l

G#

i , l

G#

i , S

G#

i , S

G#

i , r

G#

i , r

G#

i .

2.2 Bilinear Generic Group Model

We briefly recall the definition of bilinear groups and of bilinear maps, where we
adhere to asymmetric pairings (see Galbraith et al. [10] for an overview). Let
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G1,G2, and G3 be cyclic groups all of prime order p with generators g1, g2, and
g3, respectively. A bilinear map is a function e : G1 ×G2 → G3 with the follow-
ing properties; bilinearity states that ∀u ∈ G1, v ∈ G2, a, b ∈ Zp : e(ua, vb) =
e(u, v)ab, while non-degeneracy e(g1, g2) 6= 1, stops the construction of trivial
maps. From this point onwards we define the generator g3 of G3 to be e(g1, g2).

The generic group model [18, 21, 25] is well established to prove the security
of protocols involving elliptic curves. Its goal is to restrict the adversary in such
a way that structure of the underlying group cannot be exploited (beyond what
follows from the group axioms). This is achieved by representing each element
within the group as a random string and providing oracles for the various group
operations. As a consequence, given only a representation of a group element,
the only ability the adversary has is to check equality (i.e. the adversary must
use an oracle to perform any required group operations).

In the Generic Bilinear Group (GBG) model each of the three groups (or two
when using a symmetric pairing ) has its own randomised encoding. Each of these
encodings will be represented by an injective encoding function ξ1 : Zp → Ξ1,
ξ2 : Zp → Ξ2, ξ3 : Zp → Ξ3 for G1,G2,G3 respectively, where Ξ1, Ξ2, Ξ3 are
sets of bitstrings. The adversary has access to the following 4 oracles:

– O1(ξ1(a), ξ1(b)) = ξ1(a+ b mod p)

– O2(ξ2(a), ξ2(b)) = ξ2(a+ b mod p)

– O3(ξ3(a), ξ3(b)) = ξ3(a+ b mod p)

– Oe(ξ1(a), ξ2(b)) = ξ3(a · b mod p)

for all a, b ∈ Zp. Each of the 4 oracles will return ⊥ if either of the inputs is not a
invalid encoding of an underlying group element. O1,O2,O3 perform the group
operations of G1,G2,G3 respectively, while Oe performs the pairing operation.
To work with these groups an adversary only needs to be given ξ1(1) and ξ2(1)
(corresponding to the generators of G1 and G2 respectively) plus access to the
four oracles, from which any group element can be computed.

Leaking on generic group elements only reveals information about their rep-
resentation. In some proofs (without leakage) that use the generic group model,
the representation of group elements can be chosen in such a way that even
sampling a random group element is hard (for an adversary). This is typically
achieved by representing group elements as ‘long’ random strings. When leakage
is included in proofs, such a strategy would not make sense because it would
imply that only ‘large’ amounts of leakage1 would strengthen the adversary. We
instantiate the generic group model using compact representations instead. By
setting Ξi = {0, 1}n where n = dlog pe we get the unique representations re-
quired. This gives the adversary the ability to sample group elements efficiently
and directly.

1 Typically one would need to leak significantly more than log p bits, where p would
be the size of the group.

5



experiment Expeuf−cma
M (A):

K
$←− KG()

S ← {}
(σ∗,m∗)← ATag(·),V erify(·,·)

if m∗ ∈ S then
return 0

end if
Return V RFY (K,σ∗,m∗)

proc Tag(m):
S ← S ∪ {m}
σ ← TAG(K,m)
Return σ

proc V erify(σ,m):
b← V RFY (K,σ,m)
Return b

Fig. 1. EUF-CMA experiment

In contrast, Kiltz and Pietrzak [13] (and similarly, Galindo and Vivek [11])
use indirect sampling by raising some generator to a random exponent. They
allow leakage on both the random representations, as well as their discrete log-
arithms (relative some generator). To model the adversary’s ability to leak on
the sampling computation itself. Our proof can be seen as more restrictive and
our proofs only hold for implementing the sampling directly. We remark that it
is possible to sample random elliptic curve points efficiently without performing
an exponentiation with an unknown exponent.

3 A MAC scheme

We define a MAC as a tuple of algorithmsM = (KG,TAG, V RFY ) such that:

K
$←− KG()

σ
$←− TAG(K,m)

b← V RFY (K,σ,m).

For correctness we require for all valid keys K that V RFY (K,TAG(K,m),m) =
1. We use the standard definition of EUF-CMA security for the rest of this
section, which is recapped below.

Definition 1 (Existential Unforgability Under Chosen Message Attack
(EUF-CMA)).

Let M = (KG,TAG, V RFY ) be a Message Authentication Code. Then Fig.
1 defines the EUF-CMA security game. The advantage of an adversary A win-
ning the game is defined as Adveufcma

M (A) = Pr[Expeufcma
M (A) = 1].

We now define our basic MAC construction. Using a hash function H :
{0, 1}∗ × {0, 1}k → G2 our basic MAC scheme M = (KG,TAG, V RFY ) is
defined in Fig. 2. It can be shown to provide EUF-CMA security (Thm. 2).
The scheme can be understood as follows; key generation consists of generating
a random group element of G1. Tag generation first hashes a message with a
random value, then takes the resulting hash as input to a bilinear map, using
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proc KG():

K
$←− G1

Return K

proc TAG(K,m):

w
$←− {0, 1}k

W ← H(m,w)
T ← e(K,W )
Return (T,w)

proc V RFY (K, (T,w),m):
W ← H(m,w)
T ′ ← e(K,W )
Return T ′ = T

Fig. 2. Our bilinear MAC scheme M

the secret key as other input. The MAC consists of a message, its tag, and the
internal randomness used. Verification simply reconstructs the tag T and checks
the correctness.

Before we provide the proof of the MAC we introduce a new Bilinear Diffie–
Hellman problem, which we will use in the reduction to show the security of the
MAC. This new DH problem will have its security ‘sandwiched’ between two
other well known DH problems. We then introduce a vairation of the problem,
which makes the proof reduction slightly tidier but will have no effect on the
security of the scheme.

3.1 A New Bilinear Diffie–Hellman Problem

In Definition 2 we introduce a bilinear problem, which we coin the target bilinear
Diffie–Hellman (TBDH) problem. In Theorem 1 give a reduction to show if Co-
Bilinear Diffie–Hellman (CBDH) is assumed to be a hard problem,2 then so is the
TBDH problem. Similarly, it can be shown that if the standard computational
Diffie–Hellman (CDH) Problem is easy in G3 then the TBDH Problem is easy.

Definition 2 (Target Bilinear Diffie–Hellman Problem). Given G1,G2,G3

with a bilinear map e between them, we say the Target Bilinear Diffie–Hellman
(TBDH) Problem is hard if given gx2 , g

y
3 it is hard to compute gxy3 , where x, y are

sampled uniformly at random from Zp. Given an adversary A we define its ad-

vantage of winning this game as Advtbdh(A) = Pr [A = gxy3 : A ← A(g1, g2, g
x
2 , g

y
3 )].

Before relating the TBDH problem to other Diffie–Hellman problems, we
recall the CBDH Problem [26]. The CBDH problem states that given gx2 , g

y
2 ,

where x, y are sampled uniformly at random from Zp, you must find gxy3 .

Theorem 1. Let A be an adversary against the TBDH Problem, then there
exists an adversary B (with approximately the same runtime as A) against the
CBDH Problem, such that:

Advtbdh(A) ≤ Advcbdh(B) .

2 Where we deliberately leave the notion of hardness informal; of course it is possible to
modify our results to the usual notions of negligible advantages against probabilistic
polynomial-time adversaries.
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Proof. Let adversary A against TBDH be given, then adversary B that breaks
CBDH is given in Fig. 3.

adversary B(g1, g2, g
a
2 , g

b
2):

ga3 ← e(g1, g
a
2 )

e(g1, g2)ab ← A(g1, g2, g
b
2, g

a
3 )

Return e(g1, g2)ab

Fig. 3. Constructing a CBDH Adversary from a TBDH Adversary

From this we can see that B will win whenever A does and thus we have
Advtbdh(A) ≤ Advcbdh(B).

We now introduce the TBDHwO problem which will be used in the proof of
security for the MAC. While it makes the reduction cleaner it does not weaken
the security bound. The TBDHwO problem is the same as the TBDH problem
(given gx2 , g

y
3 return gxy3 ) with an additional oracle test(·) which given an element

checks if it is gxy3 .

Definition 3 (Target Bilinear Diffie-Hellman with Oracle Problem).
We say the Target Bilinear Diffie-Hellman with Oracle (TBDHwO) Problem is
hard if given gx2 , g

y
3 it is hard to compute gxy3 , when given access to the test(·)

oracle that checks if the given element is gxy3 , where x, y are sampled uniformly
at random from Zq. Given an adversary A we define its advantage of winning

this game as Advtbdhwo(A) = Pr[A = gxy3 : A ← Atest(·)(g1, g2, g
x
2 , g

y
3 )]

Lemma 1. Assuming the TBDH problem is hard then the TBDHwO problem
is also hard. Moreover Advtbdhwo(A) ≤ (qt + 1)Advtbdh(B), where qt is the
number of test queries made.

The proof of Lemma 1 is a standard hybrid argument: since every time A
wants a test query answered, instead of asking the test oracle, he runs a copy of
his algorithm and outputs the value he wants testing and based on whether this
copy wins or not tells him what value the test function call will return. Since
this needs to be done for each test function the bound given holds.

Theorem 2. Let H : {0, 1}∗ × {0, 1}k → G2 be modelled as a random oracle
and A be an EUF-CMA adversary against M who makes qh queries to the hash
function and qv verification queries, then there exists an adversary B (of similar
computational complexity) against the TBDH problem such that:

Adveufcma
M (A) ≤ (qh + 1)(qv + 1)Advtbdh(B).

Proof. The proof works by reducing the problem of forging the MAC to the
problem of solving the TBDH problem; let A be an adversary against the EUF-
CMA security ofM, Fig. 4 shows the reduction on how an adversary B can solve
the TBDHwO problem using the adversary A.
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adversary B(H = gx2 ,F = gy3 ):
i← 0
j

$←− [qh]
((T,w),m)← AH(·),Tag(·),V RFY (·)()
Return T

simulator H(m,w):
i← i+ 1
if W [m,w] =⊥ then

if i = j then
W [m,w]← ×
Return H

else
W [m,w]

$←− Zq
end if

end if
Return hW [m,w]

simulator Tag(m):

w
$←− {0, 1}k

if W [m,w] =⊥ then

W [m,w]
$←− Zq

else if W [m,w] = × then
ABORT

end if
T ← FW [m,w]

Return T

simulator V RFY ((T,w),m):
if W [m,w] =⊥ then

W [m,w]
$←− Zq

else if W [m,w] = × then
Return test(T )

end if
Return (T = FW [m,w])

Fig. 4. Constructing a TBDHwO Adversary from a EUF-CMA Adversary

Without loss of generality we assume that, if A creates a forgery (T,w) on m,
it has queried H(m,w) (if it hasn’t we can simply create an equivalent adversary
that performs the same operations but hashes H(m,w) before outputting the
forgery, at the cost of one extra hash query).

From this we can see that when the message–randomness pair forged on was
the jth query to the RO, B has won the TBDH game. The reduction constructs
tags in such a way that it simulates having the key as gx1 . If the adversary
subsequently forges on a point whose hash is gy2 , the resulting tag will be the
answer to the TBDH problem (gxy3 ).

The probability of the message–randomness pair being forged on being the
jth RO call is (qh+1)−1. The ABORT does not affect this probability, since the
only time B will abort is if A tries to tag on the value B wants it to make
a forgery on and hence a forgery on this value is no longer possible. Thus
Adveufcma

M (A) ≤ (qh + 1)Advtbdhwo(B) and by Lemma 1 the theorem holds
(where qt from Lemma 1 equals qv).

4 A Leakage Resilient MAC

We start this section by introducing the definition of a key update mechanism.
Kiltz and Pietrzak [13] implicitly constructed and used a key update mechanism
within their KEM. This key update mechanism was then used again in the
signature scheme by Galindo and Vivek [11]. After showing that our definition
aligns with the KP key update mechanism, we define what it means for a scheme
to be compatible with a key update mechanism. We showi this is the case for
our MAC given in the previous section and then go on to prove our MAC secure
in the face of leakage.
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4.1 Key Update Mechanism

We define a key update mechanism as a set of tuplesKU = (Share,Recombine, U

G#

, U G# )
such that:

(S

G#

0 , S

G#

0 )
$←− Share(K)

(S

G#

i+1, ru)
$←− U

G#

(S

G#

i )

S G#

i+1
$←− U G# (S G#

i , ru)

Ki ← Recombine(S
G#

i , S

G#

i )

For correctness we require that Recombine(Share(K)) = K.

We define an equivalence class as follows; we say (S

G#

i , S

G#

i ) ≡ (S

G#

j , S

G#

j ) if

Recombine(S

G#

i , S

G#

i ) = Recombine(S
G#
j , S

G#
j ). Then the final requirement is that

the algorithms U

G#

, U G# preserve the equivalence class of the shares (and thus

∀i : Ki = K). Formally we require (S

G#

i , S

G#

i ) ≡ (S

G#

i+1, S

G#

i+1) where (S

G#

i+1, Oi)
$←−

U

G#

(S

G#

i ), S G#

i
$←− U G# (S G#

i , Oi).

The KP key update mechanism used within the KEM [13] can be seen to
fit within this framework. This is due to the fact that the key is initially split
into two shares which multiply together to give back the original key. The first
share is updated by multiplying it by a random value, while the second share
is updated by multiplying it by the inverse of the random value. This forms
our equivalence class and thus when the two shares are multiplied together we
will recover the orignal key, regardlesss of how many times the shares have been
updated. The KP key update mechanism will be used for the remainder of this
paper (and denoted KU).

Definition 4 (Key Update Splittable). We say that a tuple of functions

(F

G#

, F G# ) is a split of F conforming to key update mechanism KU if the following
two properties hold. Firstly:

{F (K,x)}R = {F ∗(Share(K), x)}R∗

where F ∗ is defined in Fig. 5, the equivalence is over the randomness from sets

R,R∗ used by F, F ∗ respectively. Secondly, that for all sharings (S

G#

0 , S

G#

0 ) the

joint distribution on (S

G#

1 , S

G#

1 ) after F ∗ has been called once is the same as if

(S

G#

0 , S

G#

0 ) had been updated using (U

G#

, U G# ).

Claim. The MACM given in Sec. 3 is Key Update Splittable conforming to the
KP Key Update Mechanism KU .
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proc F ∗(S

G#

i , S

G#

i , x):

(S

G#

i+1, O)
$←− F

G#

(S

G#

i , x)

(S G#
i+1, y)

$←− F G# (S G#

i , O)
Return y

Fig. 5. The algorithm F ∗

proc KG():

K
$←− G1

S

G#

0
$←− G1

S G#

0 ← K · (S

G#

0 )−1

Return (S

G#

0 , S

G#

0 )

proc TAG

G#

(S

G#

i ,m):

w
$←− R

W ← H(m,w)

t

G#

i ← e(S

G#

i ,W )

ri+1
$←− G1

s

G#

i+1 ← S

G#

i · ri+1

Return (S

G#

i+1, ri+1, t
G#

i ,W,w)

proc TAG G# (S G#

i , t

G#

i ,W,w, ri+1):

t G#

i ← e(S G#

i ,W )

S G#

i+1 ← S G#

i · r
−1
i+1

T ← t

G#

i · t G#

i

Return (S G#

i+1, (T,w))

proc V RFY (K, (T,w),m):
W ← H(m,w)
T ′ ← e(K,W )
Return (T ′ = T )

Fig. 6. Leakage Resilient MAC M∗

Proof. M can be converted into M∗ which is given in Fig. 6.
Since we have that:

Tag∗(S

G#

i , S

G#

i ,m) = (T,w)

= (t

G#

· t G# , w)

= (e(S

G#

i , H(m,w)) · e(S

G#

i , H(m,w)), w)

= (e(S

G#

i · S G#

i , H(m,w)), w)

= (e(K,H(m,w)), w)

= Tag(K,m).

Hence M is Key Update Splittable

The security notion used for including leakage is called EUF-CMLA security
and is defined below. There are three algorithms in our leakage resilient MAC:
Key Generation, Tag and Verify. Our security definition only allows to leak on
Tag, and we now explain why this is necessary. Clearly the Key Generation
must not leak because it would leak on the original key. This constraint actually
matches practice because typical (security) devices would be shipped with their
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experiment Expeufcmla
M (A):

K
$←− KG()

(S

G#

0 , S

G#

0 )
$←− SHARE(K)

S ← {}
(σ∗,m∗)← ATag(·),V erify(·,·)

if m∗ ∈ S then
return 0

end if
Return V RFY (K,σ∗,m∗)

proc V erify(σ,m):
b← V RFY K, σ,m
Return b

proc Tag(m, l

G#

i , l

G#

i ):
S ← S ∪ {m}

(S

G#

i+1, Oi)
r

G#

i←−− TAG

G#

(S

G#

i ,m)

Λ

G#

i ← l

G#

i (S

G#

i , r

G#

i )

(S G#

i+1, σ)
r G#

i←−− TAG G# (S G#

i , Oi)

Λ G#

i ← l G#

i (S G#

i , r

G#

i , Oi)

Return (σ,Λ

G#

i , Λ

G#

i )

Fig. 7. EUF-CMLA experiment

keys preinstalled. This leaves to consider whether Tag or Verify (or both) are
allowed to leak. This question has not been considered before in the continual
poly-time leakage model in the case of symmetric schemes. This is because all
previous schemes in this model were public-key in which the question simply
does not arise.

Making Verify leaky is problematic, because we are allowing adaptive leakage,
which this following example shows. Assume the adversary takes a random group
element and a message and sends both to Verify. In the majority of schemes,
Verify has to calculate the correct tag to compare the submitted tag against.
Hence the adversary can keep submitting the same message and random elements
until he has completely leaked the tag created for comparison. This tag can then
be submitted as a forgery since it was never requested from the Tag oracle. There
are currently no known methods to do this form of equality check in a secure
manner when leakage is involved.

Thankfully only leaking on Tag seems to align with practice because in small
devices such as smart cards, it tends to be the card that must authenticate itself
to the reader and not the other way around. This means that the card will be
using the Tag algorithm, which will leak since it is a small device, while it is the
reader who will be verifying the tags and since this is a more powerful device, it
also implement side channel protections to reduce leakage.

Definition 5 (Existential Unforgability Under Chosen Message Leak-
age Attack (EUF-CMLA)).

Let M∗ = (KU , TAG

G#

, TAG G# , V RFY ) be a Message Authentication Code.
Then Fig. 7 defines the EUF-CMLA security game. The advantage of an adver-
sary A winning the game is defined as Adveufcmla

M (A) = Pr[Expeufcma
M (A) = 1].

Theorem 3. The MACM∗ is EUF-CMLA secure in the Generic Group Model.
The advantage of a q-query (to the generic group oracles) adversary who is
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allowed λ bits of leakage is given by:

Adveufcmla
M∗ (A) ≤ 22·λ ·Adveufcma

M (B) +
q2

p
.

Proof. This proof is given in the Generic Group Model and shows that even
with the use of leakage the adversary cannot get any elements that they could
not get when no leakage was involved. After this has been shown it is reason-
ably straightforward to argue that without learning any new elements from the
leakage then the leakage can increase the adversary’s advantage by at most the
number of bits that is leaked on for a single element. By showing that each el-
ement is only leaked on twice we get that the advantage can only be increased
by at most 22λ over the advantage in the game where no leakage is involved.

We will represent group elements with polynomials, which will be instanti-
ated at the end of the computation. The polynomials allow the game to keep
track of which elements the adversary has asked for in a straightforward manner
and because they are instantiated at the end, the adversary’s decisions clearly
can not be dependant on the actual values of the elements. Instatiation of the
polynomials at the end is a common trick used within the litrature but means
that if two (non equal) polynomials, when instantiated, collide the simulation
fails as a single group element now has multiple representations. Thus we must
also show that the chance of an adversary forcing this collision is also small.

Let K, {Ri}qTi=0, {Hi}qHi=1, {Ui}
2qO
i=1 , {Vi}

2qO
i=1 , {Wi}2qOi=1 be indeterminants where

qH is the number of hash queries, qT is the number of Tag calls and qO is the num-
ber of group oracle calls (let q = qH + qT + 6 · qO). The indeterminants represent
the following; K is the secret key, {Ri}qTi=0 are the randomness used to update the

key, {Hi}qHi=1 represent any hash function queries and {Ui}2qOi=1 , {Vi}
2qO
i=1 , {Wi}qOi=1

represent any elements that are guessed in G1,G2,G3 respectively. The lists
L1,L2,L3 are used to keep track of polynomials and their representations in
G1,G2,G3 respectively. They are initialised as follows:

L1 = {(1, ξ11} ∪ {(Ri, ξ1i+2)}qTi=0

L2 = {(1, ξ21)}
L3 = {(1, ξ31)}

All three lists are initially instantiated with the identity, note that it is not
strictly necessary to instantiate the identity in G3 since it can be calculated. We
precompute the representations of the randomness but since the adversary does
not have access to this list of elements (and instantiation, defining the element
happens at the end) this does not change the game but makes it notationally
simpler. All of the representations in this step are chosen randomly with the
requirement that they are unique.

The oracles used by the Generic Group model are given in Fig. 8.
The Adversary A outputs m, (T,w) and is said to have won if:
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proc O1(ξ1, ξ2):
if ξ1 6∈ L1 then
F1 ← Guess1(ξ1)

end if
if ξ2 6∈ L1 then
F2 ← Guess1(ξ2)

end if
get F1 and F2 from L1

F3 ← F1 + F2

if F3 ∈ L1 then
get ξ3 from L1

else
ξ3 ← Sample1(F3)

end if
Return ξ3

proc Oe(ξ1, ξ2):
if ξ1 6∈ L1 then
F1 ← Guess1(ξ1)

end if
if ξ2 6∈ L2 then
F2 ← Guess2(ξ2)

end if
get F1 from L1

get F2 from L2

F3 ← F1 · F2

if F3 ∈ L3 then
get ξ3 from L3

else
ξ3 ← Sample3(F3)

end if
Return ξ3

proc Sample1(F ):

ξ
$←− Ξ1\L1

add (F, ξ) to L1

Return ξ

proc Guess1(ξ):

d
$←− Zp

add (d, ξ) to L1

Return d

Fig. 8. GGM group oracles used within the proof
(O2,O3, Sample2, Sample3, Guess2, Guess3 are not included due to their simi-
larity to the oracles for G1.)

1. F li = F lj for l ∈ {1, 2, 3} and i 6= j
2. K ·H∗−T = 0 where H∗ is the indeterminant corresponding to the hash of
m and w

The first case corresponds to the adversary being able to create two polynomials
which evaluate to the same value. The second case corresponds to the adversary
being able to create a forgery on the MAC.

Since all polynomials in the orginal lists are degree one and the only operation
that increases the degree is the pairing operation which can only be called on
elements in G1,G2. This means that we can have degree two polynomials in G3

but not the other two groups. Hence by the Swartz-Zippel lemma we have that
the probaility of two (non-zero) polynomials evaluate to the same value is 2

p .

Since there are at most q polynomials we get that there are
(
q
2

)
≤ q2

2 pairs of
polynomials that could collide and thus the probability of any two polynomials

colliding is q2

p .
Without loss of generality, we will now only look at leakage in the target group

G3 since any element from G1,G2 calculated by the leakage can be transfered
over to G3 using a pairing and any elements known to the adversary can easily
be recomputed within the leakage.

While we now only need to look at leakage in the target group since each
leakage function has access to different secret elements, the set of elements that
can be calculated by each will be different and thus must be considered indi-
vidually. The adversary will win if he can repeatedly get a (new) Tag into the
leakage function to reveal it, or he can cause collisions within the leakage. If he
can only create a forgery once he will not be able to leak the complete tag and
thus he is required to get in into multiple leakage sets
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Let L

G#

i be the set of elements that could be computed by the leakage function

l

G#

i , then:

L

G#

i = {A · S

G#

i +B ·Ri+1 + C}

WhereA,B ∈ Fp[{Hi}qHi=0, {Vi}
2qO
i=0 ] and C ∈ Fp[K{Hi}qHi=0, {Ui}

2qO
i=0 , {Vi}

2qO
i=0 , {Wi}qOi=0]

and we use S

G#

i to denote
∑i
j=0Ri.

Let L G#

i be the set of elements that could be computed by the leakage function

l G#

i , then:

L G#

i = {A · S G#
i +B ·Ri+1 + C + d · S

G#

i ·Hi}

Without loss of generality we will assume that ith tag call maps to Hi. Also we

have that d ∈ Fp andS G#

i denotes K −
∑i
j=0Ri.

The only Tags that can be contained in L

G#

i are tags of the form Hj ·K for
j < i in which the adversary has included the tag via F and thus there is no
advantage in leaking upon Hj ·K. Ignoring this trivial case, there are no linear
combinations possible that will reveal an unknown tag or the key itself. Similarly

for L

G#

i the only tags that can be included are of the form Hj ·K for j ≤ i this
is because he can again ask to leak on tags he has already seen by embedding
them in F but this time can also leak on Hi ·K but this is also not of any use
because the leakage on this tag will be received at the same time the adversary
is given the Tag and thus no extra information is gained.

From this point on we will only consider leakage on elements that contain
an unknown component, since if all components are completely known by the
adversary it is not worth learning leakage on.

Claim. An element x which has been leaked on can be in at most 2 of the L

G#

i or

L G#

i . More formally ∀i, j, k : i 6= j 6= k L

G#

i ∩L

G#

j ∩L

G#

k = ∅ and L G#

i ∩L G#

j ∩L G#

k = ∅
and if x ∈ L

G#

i ∩ L G#

j then x 6∈ L

G#

k or x 6∈ L G#

k .

Since Ri is only used within L

G#

i , L

G#

i any element involving Ri as a component
can only be leaked on from one of these sets (and thus with leakage functions

l

G#

i , l

G#

i ). Looking at S

G#

i (S G#

i behaves similarly) it can only appear in L

G#

i and L

G#

i−1

(since S

G#

i = S

G#

i−1 + Ri) and thus again can only be leaked on by two leakage

functions. The element S

G#

i · Hi which is passed between Tag

G#

and Tag G# can

only be leaked on by L

G#

i , L

G#

i .

It can not be leaked on from L

G#

i−1 because the randomness w will not be
chosen until the next invocation and thus the leakage function can only guess the
correct w with negligible probability. Since each element can only be leaked on
twice the adversary can only learn up to 2 ·λ bits of information per secret. Thus
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we get the bound as stated in the theorem, since after collisions the adversary’s
advantage can be at most 22·λ times the advantage of playing the standard
non-leakage game.

5 Practical Aspects of our Scheme

In this section we focus on some practical considerations: how efficient is it in
comparison to other leakage resilient MAC constructions, and what would a prac-
tical implementation need to guarantee to meet our leakage bound/assumptions?

Before giving a comparision we need to make some choices for parameters
of the various schemes. In case of schemes which have as underlying primitive
a pseudo random function (PRF), we chose to instantiate this PRF with AES-
128. This is motivated by the fact that this reflects the current state of the art.
For our own scheme, and a somewhat comparable signature scheme, we use as
instantiation of the bilinear map a pairing defined over a suitable pairing friendly
elliptic curve. In this case we choose as group size parameter 2160, again with
the motivation to reflect a state-of-the art security bound (i.e. 280 is regarded
as minimum for bound which is implied by a group of double this size).

5.1 Security considerations

The leakage bound we have for our scheme is that we can tolerate up to approx.
50 bits of leakage assuming a group size of about 2160 per invocation of the
scheme. For a practical implementation it is important to acknowledge that this
will not include the initial sharing out of the key. Consequently in a strict sense
this would need to be done in a secure environment.

When considering what ‘50 bits of leakage’ means given our constructions,
it helps to think about the tagging and verification algorithms in a concrete
instantiation: i.e. we are working with pairings that are defined over some pairing

friendly curve. Consequently, S

G#

i , S G#

i , ri and ri
−1 are elliptic curve points, S

G#

i ·ri
and S G#

i · ri−1 are elliptic curve point additions, and e is a pairing. Now that
we have a concrete instantiation of our scheme, we can argue more concretely
about implementation options. In order to provide some resistance against simple
side channel attacks such as SPA we would hence essentially need to blind the
EC points which correspond to secrets. A recent contribution [3] gives a good
overview on various side channel attacks on pairings from which one can again
conclude that also the pairing operation should best be implemented on blinded
EC points.

The obvious question arising now might be what we have gained in practice,
as we yet again need to apply the basic techniques that would prevent attacks
such as SPA and DPA? The answer is for any non leakage resilient version, even
partial leakage on the random values will probably allow lattice based attacks
such as [22]. The leakage resilient scheme however guarantees that in the presence
of partial leakage no such attack can succeed.
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5.2 Comparison with other leakage-resilient schemes

In our comparison we essentially look at the number of elliptic curve or AES
operations that tagging and verification require. We also report on the tolerated
leakage, the key size and the tag size. Table 1 provides an overview and the
following text explains and discusses the provided numbers. As can be seen from
this table, our scheme is highly competitive when compared with other provably
secure schemes.

The only leakage resilient MAC scheme in the literature that isn’t built on
top of another leakage resilient scheme is by Hazay et al. [12] to the best of our
knowledge. The advantage of their work is that it only relies on very minimal
assumptions (the existence of one-way functions). However the leakage bound
is a total bound, i.e. it holds regardless of the number of times the tag and
verify algorithms are called. Assuming that we instantiate the PRF required for
this scheme with AES-128 (i.e. setting λ = s = 128 to use the notation in the
paper), and using the equations they give in Theorem 5.6, it turns out that AES
will be called 512 times per tag and verify query. While this already makes the
scheme computationally expensive, the larger problem is the overall key size:
the key must be of size approximately 218 bits, which is impractical for many
applications. Even worse, under these parameters the MAC can leak 512 bits over
the lifetime of the system (i.e. not per MAC invocation). This also means that
with these choices AES and the elliptic curve schemes will give approximately
the same level of security.

Due to the small number of leakage resilient MACs, we also provide a com-
parison against PRFs and signatures because although there is not an immediate
strategy to convert them into leakage resilient MACs available, there is potential
that one might use PRFs or signatures to instantiate a MAC with some leakage
resilient properties.

The PRF by Dodis and Pietrzak [5] requires that the leakage functions are
fixed prior to the attack and are not adaptively chosen. They define the PRF
ΓF : Σ3k+n × Σm → Σ4k+2n created from a wPRF F : Σk × Σn → Σ4k+2n.
If we instantiate F with AES-128 with something like F (x) = EncK(x||000)
||EncK(x||001)||EncK(x||010)||EncK(x||011)||EncK(x||100)||EncK(x||101) and
then take the desired number of output bits, this gives us k = m = 128, n = 125
and ΓF : Σ509 × Σ128 → Σ768. As stated in the paper each time the PRF is
called, the function F is called m + 1 times and thus AES will be called 774
times. Hence even if this can be converted into a MAC reasonably inexpensively,
the PRF itself is very expensive.

Schipper’s construction [24] requires the use of a EUF-CMA MAC and a
leakage resilient PRF. Hence, the timings will be very similar to the numbers
from [5] and thus we do not include it explicitly in the table.

The PRF by Faust et al. [8] requires that neither the leakage or the PRF
inputs are queried adaptively but are fixed prior to the start of the game.
They construct a scheme ΓF,m : {0, 1}k+(m+1)l × {0, 1}m → {0, 1}n which
uses the wPRF F : {0, 1}k × {0, 1}l → {0, 1}2k and m + 1 public random
values of length l. If we again instantiated the wPRF with AES-128 to get
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F (x) = EncK(x||0)||EncK(x||1) meaning we get m = k = 128, l = 127,n = 256
and ΓF,128 : {0, 1}16511×{0, 1}128 → {0, 1}256. This will call AES 258 times per
invocation, which while an improvement still seems prohibitive for a practical
implementation.

The signature scheme by Faust et al. [7] uses 2l exponentiations, 4(l−1) mul-
tiplications, l−1 additions and 2 hash function calls in the signing algorithm and
tl exponentiations, tl multiplications and t hash function calls in the verification
algorithm, where l is related to the underlying l-representation problem [4] (as-
sumed to be hard) and t is the depth of the signature chain. The downside of this
scheme is that even if l = 2, while signing is efficient, verification takes longer
depending how deep the signature chain is. This could mean that verification
quickly becomes too expensive for an embedded device to perform.

The signature scheme by Galindo and Vivek [11] is the only one comes close
to our construction in terms of performance, which is unsurprising given that
it is also based on the same key update mechanism. For signing, the algorithm
uses 2 Elliptic Curve scalar multiplications, 5 Elliptic Curve additions and also
generates a random curve point (and its’ inverse), while verification uses 2 Ellip-
tic Curve point additions, 1 Elliptic Curve scalar multiplication and 2 pairings.
Since a pairing is currently only slightly more expensive than an exponentia-
tion, our tagging algorithm will be almost equivalent in timing to their signing
algorithm. Their verification is faster than ours, however, their keys are larger.
Furthermore, while there is no hash function explicit in their scheme, it is as-
sumed that the message comes from Zp and thus in practice to sign arbitrary
messages, the message would have to be hashed onto Zp.
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