
Synchronous Sampling and Clock Recovery of Internal
Oscillators for Side Channel Analysis and Fault Injection

Colin O’Flynn · Zhizhang (David) Chen

Abstract Measuring power consumption for side chan-

nel analysis typically uses an oscilloscope, which mea-

sures the data relative to an internal sample clock. By

synchronizing the sampling clock to the clock of the

target device, the sample rate requirements are con-

siderably relaxed; the attack will succeed with a much

lower sample rate.

This work characterizes the performance of a syn-

chronous sampling system attacking a modern micro-

controller running a software AES implementation. This

attack is characterized under four conditions: with a

stable crystal-oscillator based clock, with a clock that

is randomly varied between 3.9 MHz–13 MHz, with

an internal oscillator that is randomly varied between

7.2 MHz–8.1 MHz, and with an internal oscillator that

has slight random variation due to natural ‘drift’ in the

oscillator.

Traces captured with the synchronous sampling tech-

nique can be processed with a standard Differential

Power Analysis (DPA) style attack in all four cases,

whereas when an oscilloscope is used only the stable

oscillator setup is successful. This work also develops

the hardware to recover the internal clock of a device

which does not have an externally available clock. It is

possible to implement this scheme in software only, al-

lowing it to work with existing oscilloscope-based test

environments.

Performing the recovery in hardware allows the use

of fault injection with excellent temporal stability rel-

ative to a sensitive event. This is demonstrated with a

power glitch inserted into a microcontroller, where the

glitch is triggered based on a signature in the measured

power consumption.

Dalhousie University, Halifax, Canada
E-mail: {coflynn, z.chen}@dal.ca

5 10 15 20 25 30 35 40 45 50
0

50

100

150

Trace Number

A
v

e
ra

g
e

 P
G

E
 A

cr
o

ss
 S

u
b

ke
y

s
PGE Comparison for Capture Hardware

PS−A 625 MS/s

PS−A 312 MS/s

PS−A 156 MS/s

PS−A 78.1 MS/s

PS−A 31.2 MS/s

CW−A 78.1 MS/s

CW−S 29.4 MS/s

CW−S: 7.37 MS/s

PS−A 31.2 MS/s (decimated from 312 MS/s)

10

Fig. 1 PS–A means the PicoScope 6403D sampling at the
given sample rate, asynchronous to the device clock. CW–A
means the ChipWhisperer in asynchronous mode at the given
sample rate, and CW–S means the ChipWhisperer in syn-
chronous mode.

Keywords side-channel analysis, acquisition, syn-

chronization, DPA

1 Introduction

By measuring the power consumed by a digital device

on each clock cycle, it is possible to infer something

about the data being processed by this device. This was

demonstrated as a method of breaking cryptographic

cores using Differential Power Analysis (DPA)[7]. Such

measurements are typically done with standard oscillo-

scopes, which depending on the attack algorithm and

device under attack may range from simple low-cost

oscilloscopes to high-end specialist oscilloscopes. But if

the underlying objective is to measure data on the clock

edges of the system clock, sampling at the clock rate of

the system is sufficient, provided such samples occur at

2 Colin O’Flynn, Zhizhang (David) Chen

the correct moment (i.e. on the clock edge). This sam-

pling technique is called synchronous sampling, where

the sample clock is synchronized to the device clock.

The application of this to side-channel analysis was first

described in Section 5.2 of [10]. A demonstration of this

technique to attack the SASEBO-GII board is given in

[12], where sampling at 96 MS/s synchronously achieves

similar results to 2 GS/s asynchronously.

For this to be successful, the previous work assumed

that the system clock was readily available. For many

systems this will be the case—an external oscillator or

clock drives the digital logic, and it is trivial to tap

into this clock. But many devices rely instead on an in-

ternal oscillator; there is no clock signal available for

synchronous sampling. In addition devices may pur-

posely vary the frequency of the internal oscillator in

an attempt to stop power traces from synchronizing in

the time domain, requiring the attacker to resynchro-

nize the traces after capture. The varying clock coun-

termeasure is assumed to be difficult to reverse in most

instances. For example it is claimed in [21] that vary-

ing the clock frequency “makes time correlation, a very

important step in power analysis attacks, impossible.”

If the data was capture asynchronously (i.e. with

a normal oscilloscope) with sufficient sample rate, it’s

possible to compensate for the varying clock frequency

via post-processing. This is of little use for attacks re-

quiring real-time information: a trigger matching an

analog pattern in the power data, or the injection of

glitches timed to specific events requires real-time knowl-

edge of the device clock.

This work addresses the problem of recovering the

clock from a device under test for both side-channel

analysis and fault injection. First, an introduction to

the reference platform being used is given, along with

a comparison of the synchronous sampling technique to

standard asynchronous sampling on this platform.

The platform is then changed to use an internal

oscillator which actively varies the frequency during

cryptographic operations. Attacks using standard asyn-

chronous oscilloscopes without preprocessing, with pre-

processing, and synchronous sampling are all compared.

Finally a method of performing clock recovery, and

using that clock for synchronous sampling is demon-

strated. The clock recovery method can be seen as a

hardware implementation of the software preprocess-

ing technique. The use of Sum-of-Absolute Difference

(SAD) triggers to detect specific events in the system

is demonstrated, and finally the injection of glitches is

performed on the target while the operating frequency

varies.

2 Experimental Platform

The device under test (DUT) is an Atmel AtMega48A

microcontroller in 28-pin DIP. This device was selected

due to several clocking features: it can use an internal

or external clock source, the internal oscillator can be

adjusted by firmware running on the microcontroller

during operation, and the internal clock can be output

onto an I/O pin. The differential voltage is measured

across a shunt inserted into the VCC pin of the mi-

crocontroller. For asynchronous sampling a PicoScope

6403D oscilloscope is used, and for synchronous sam-

pling the ChipWhisperer is used. Full details of the cap-

ture hardware and software are available in [13] and at

the ChipWhisperer wiki1. See Fig. 18 for a photo of the

test setup.

The ‘A’ suffix for the AtMega48A indicates it is us-

ing a recent fabrication process; the older AtMega48P

by comparison is made with a larger (0.35µm) process.

The AtMega48P draws more power, and thus would be

expected to give a stronger signal across the resistive

shunt used to measure current. The AtMega48A thus

reflects a reasonable platform which can be compared

against any recent digital IC2.

The crypto module under attack is a C implemen-

tation of the AES-128 algorithm. The specific C imple-

mentation chosen was ‘AES in C’ available from avr-

cryptolib3. The attack algorithm is a standard Corre-

lation Power Analysis (CPA) attack[3].

2.1 Comparison of Sampling Platforms

While the ChipWhisperer is capable of using both asyn-

chronous and synchronous sampling, it is limited to a

maximum sample rate of 100 MS/s. For comparison

of higher speed asynchronous captures, a PicoScope

6403D is used for asynchronous sampling, which can

achieve up to 5 GS/s.

Fig. 1 shows a comparison between the different os-

cilloscopes and sampling types. For this figure an ex-

ternal 7.37 MHz crystal oscillator was used as a clock

source. Results in this paper will be an average of the

partial guessing entropy (PGE) of all subkeys, and where

space permits the PGE of each individual subkey is

graphed. The reader is referred to Section 2.2 if they

are unfamiliar with the PGE metric.

With the PicoScope 6403D (the PS–A data from

Fig. 1), it is noted that increasing sample rates have

1 www.chipwhisperer.com
2 The feature size of this specific device is unknown, but

based on similar devices is assumed to be within the 0.12 µm
– 0.18 µm range
3 http://avrcryptolib.das-labor.org

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 3

improved attack performance initially, but beyond a

certain point almost no improvement occurs. For this

attack setup there is minimal change from 156 MS/s

to 625 MS/s, and in particular the results of 312 MS/s

and 625 MS/s are almost indistinguishable.

In the introduction of synchronous sampling, it has

been previously claimed the main issue is the random

jitter between the trigger event and the first sample oc-

curring that causes the poor performance at lower sam-

ple rates in asynchronous systems [10]. We would thus

expect a system using a fast sample rate for capture

(i.e. so the jitter between the trigger and first sample is

minimized), but decimated to a lower sample rate, to

have better performance than simply selecting a lower

sample rate.

In Fig. 1 the line labelled PS–A 31.2 MS/s (dec-

imated from 312 MS/s) is captured in such a fashion.

The 312 MS/s data is decimated to 31.2 MS/s by select-

ing every 10th data point and writing them to a new

trace file, which the attack is run against. Note that

the performance is considerably better than the capture

which originally occurred at 31.2 MS/s. No anti-aliasing

or other filter has been used in the decimation process.

Certain oscilloscopes contain a feature to capture at a

high sample rate, and perform such downsampling —

the PicoScope 6403D for example provides this option,

although this feature is not used in this work.

The performance of the ChipWhisperer hardware

at 78.1 MS/s in asynchronous mode shows consider-

ably better performance than the PicoScope 6403D at

78.1 MS/s. It is assumed the built-in Low Noise Am-

plifier (LNA) in the front-end is resulting in less noise,

compared to the PicoScope 6403D which has a more
general-purpose front-end.

Finally, note the ChipWhisperer hardware in syn-

chronous mode results in further improvement in per-

formance, despite the considerably reduced sample rates.

In synchronous mode the device must sample at a mul-

tiple of the 7.37 MHz clock, so sampling is done at

7.37 MS/s and 29.4 MS/s. Both of these results are al-

most indistinguishable on the graph, indicating that on

this particular hardware using a single sample per clock

is sufficient.

2.2 Meaning of PGE

The ‘guessing entropy’ can be defined as the “average

number of successive guesses required with an optimum

strategy to determine the true value of a random vari-

able X”[9]. In this paper the ‘optimum strategy’ is to

take the output of the attack, and rank the possible

values of the subkey from most to least likely.

0 20 40 60 80 100 120 140 160 180 200
7.42

7.43

7.44

7.45

7.46

7.47

7.48
ATMega48A Internal RC Oscillator Drift

C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Time (µS)

0 20 40 60 80 100 120 140 160 180 200
−0.45

−0.30

−0.15

0.00

0.15

0.30

0.45

C
h

a
n

g
e

 f
ro

m
 M

e
a

n
 (

%
)

Fig. 2 Atmel AtMega48A internal clock drift during a side-
channel attack.

The ‘partial’ refers to the fact that we are finding

the guessing entropy on each subkey. This gives us a

PGE for each of the 16 subkeys4. A PGE of 0 indicates

the subkey is perfectly known, a PGE of 10 indicates

that 10 guesses were [incorrectly] ranked higher than

the correct guess.

The PGE for each subkey is calculated when the

attack algorithm has access to 1, 2, · · · , N traces. We

record the number of traces when the maximum PGE

across all subkeys falls below 10. To improve consis-

tency the PGE for each subkey is averaged over several

attacks (trials).

3 Varying Clock Frequency

When an attacker is recording the power traces, ideally

each trace would be perfectly synchronized with each

other. That is to say that each time instance across

all traces corresponds to the same instruction occur-

ring on the DUT. In real systems, traces may not be

perfectly synchronized. This could come from jitter in

the trigger signal, unintended non-linear code flow such

as interrupts on the DUT, or countermeasures such as

instruction shuffling or random delay insertion. A dis-

cussion of algorithms and their performance for resyn-

chronizing is compared in [5]. For all these events the

clock is operating at a constant frequency.

Another class of synchronization aims to compen-

sate for the clock frequency of the device varying (called

varying clock or VC), either due to countermeasures or

simply due to the oscillator drift. For an example of

the natural variation see Fig. 2, which was measured

the short-term drift of the internal oscillator on the ex-

perimental platform used here. This small amount of

variance was enough to prevent the same CPA attack

from being successful with over 2500 traces5, when with

a stable crystal oscillator it was successful in only 30

traces. Algorithms which aim to reverse the VC are

given in [20,6,15,18].

4 This paper is always using AES-128
5 After 2500 traces the average PGE was 40, and only 4 of

the 16 bytes had a stable PGE < 5

4 Colin O’Flynn, Zhizhang (David) Chen

When a large number of points are required per

trace or a large offset from the trigger to the points

of interest exist, even the short-term drift differences

between the oscillator in the DUT and the oscillator in

the oscilloscope may result in desynchronized traces.

With synchronous sampling, variations in clock fre-

quency will naturally be eliminated from the data source.

Each sample no longer corresponds to a time instant,

but instead to a clock transition. Synchronization may

be required for reasons previously discussed such as

trigger jitter or countermeasures, but is not needed to

compensate for the clock frequency changing.

3.1 Synchronous Sampling of Varying Clock

As a demonstration of synchronous sampling under VC

conditions the AtMega48A target was designed to ran-

domly vary the internal clock frequency before calling

the AES encryption routines, and a side-channel attack

was mounted. For this initial test the CLKOUT fuse

was programmed to output the internal clock onto an

IO pin, and the sampling is done synchronous to this

clock.

3.1.1 Internal Oscillator Adjustment Range

The AtMega48A datasheet guarantees the oscillator can

be calibrated between 7.3 MHz–8.1 MHz, but the ac-

tual range is much larger—the specific part used here

had a range of 3.95 MHz–13.0 MHz. This test is oper-

ating the device outside of guaranteed operating range;

commercial products would be advised to only use the

adjustment over a smaller range. The time required to

switch from the two possible extremes of the randomly

selected frequencies, 3.9 MHz to 13 MHz, is shown in

Fig. 3. The datasheet specifies a maximum change of

2% clock cycle period between cycles for an external

clock; it is not clear if this rapidly changing internal os-

cillator would also be subject to these considerations[1].

For this reason a number of NOP instructs are inserted

before beginning further processing after changing the

OSCCAL register.

Table 1 For the ATMega48A, several different clocking op-
tions are used. Two of them purposely vary the frequency of
the internal oscillator, one uses the internal oscillator without
adjustment, and one uses the standard crystal oscillator.

Name Range(MHz) Mean(MHz) Std-Dev

Extended 3.945 – 12.96 7.210 2.190 MHz
Narrow 7.247 – 8.110 7.663 287.5 kHz
Drift 7.315 – 7.413 7.358 11.78 kHz
Crystal 7.373 – 7.373 7.373 5.469 Hz

0

1

2

3

ATMega48A OSCCAL=0x00 to OSCCAL=0xFF

 C
lo

ck
 S

ig
n

a
l (

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

4

6

8

10

12

14

 C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Time (µS)

Fig. 3 Atmel AtMega48A internal clock frequency change as
OSCCAL changes from 0 to 255.

7.30 7.32 7.34 7.36 7.38 7.40 7.42

Frequency (MHz)

0

100

200

300

400

500

600

700

O
cc
u
ra
n
ce

s

Frequency Distribution

Fig. 4 The histogram of the operating frequency for the
‘drift’ range. The distribution appears to approximately fol-
low the Normal distribution.

3.1.2 Internal Oscillator Ranges Used

In this course of this paper, three ‘ranges’ are used for

adjustment of the internal oscillator. The first is the

extended range, as mentioned spans from 3.9 MHz –

13 MHz. A smaller narrow range is also used, which

limits the adjustment to a level consistent with the

datasheet. Finally the drift range is also explored, which

reflects the natural random variations due to the na-

ture of the internal oscillator in this device. Detailed

information about each of those ranges is presented in

Table 1. To validate the frequency measurement sys-

tem, the crystal range is also included, where a crystal

oscillator is used to maintain a perfect clock reference.

In Fig. 4, the histogram of operating frequency dur-

ing the requested encryptions is shown for the ‘drift’

range. This appears to follow the normal distribution,

as would be expected by a process resulting from ran-

dom noise. In Fig. 5 the histogram is shown for the

‘extended’ operating range. The value written to the

adjustment register (OSCCAL) is uniformly random in

the range [0, 255]. The AtMega48A splits the OSCCAL

register into two over-lapping frequency ranges. Fur-

thermore it does not have linear mapping from the OS-

CCAL register to operating frequency, resulting in a

non-standard distribution[1].

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 5

2 4 6 8 10 12 14

Frequency (MHz)

0

50

100

150

200

250

300

O
cc
u
ra
n
ce
s

Frequency Distribution

Fig. 5 The histogram of the operating frequency for the ‘ex-
tended’ range. The non-linear mapping of the control register
to operating frequency, which is also split into two overlap-
ping ranges, results in a non-standard distribution.

3.2 Preprocessing of Traces

The power consumption of a digital device is dependent

on the frequency of operation, and this follows a linear

relationship. For the ATMega48A at 3.3V, the power

consumption when moving from 3.9 MHz to 12 MHz

goes from 1.7 mA to 3.1 mA[1]. While the power traces

will line up in the time domain with synchronous sam-

pling, they will require scaling in order to allow com-

parison of the same point across multiple traces. In [15]

it is suggested to add an adjustment factor based on the

measured frequency of operation, as in (1). Here Tp,n
is a single point at index p in trace n, C is a scaling

constant, and fp,n is the frequency of the clock at point

Tp,n.

T ′p,n = Tp,n + Cfp,n (1)

This assumes that the change in power measure-

ment due to varying clock frequency simply results in

an ‘offset’ of the measured power. This assumption is

also validated in [18], where a ‘sliding match’ method

is used to compensate for the effect of the varying clock

on power consumption traces.

To further test this assumption, the mean and stan-

dard deviation of each power trace was plotted for the

operating frequency fn, where fn varies by the ‘ex-

tended’ range given in Table 1. The results are shown

in Fig. 6.

Over a somewhat limited range the assumption ap-

pears to hold: for example over the range of approx-

imately 7.2 MHz – 8.1 MHz the mean varies linearly

with frequency, and the standard deviation is constant.

Thus in this range there is no scaling of values, just a

bias which must be corrected for. Over the extended

frequency range it would appear some scaling of points

is required, as the standard deviation is also varying

with frequency.

Fig. 6 Plot of the trace mean standard deviation compared
to operating frequency of the microcontroller, from 3.9 –
13 MHz. Inset details 7.2 – 8.1 MHz range. Red line shows
the µ̂(f) and σ̂(f) functions used in (4) and (5).

Four additional preprocessing methods are proposed

here; all five methods will be tested by comparing the

results of the Correlation Power Analysis (CPA) attack

over several frequency ranges.

First, two methods which do not require knowledge

of the frequency of operation are proposed. The most

basic simply scales all traces to be zero-mean, which

again would be expected to only work over a limited

frequency range:

T ′p,n = Tp,n − µ̂Tn (2)

This can be improved by also scaling by standard-

deviation, which should improve performance over a

wider range. This will convert the distribution of each

trace to be the ‘standard normal’ distribution. Apply-

ing this zero-mean, unit variance normalization (MVN)

to side-channel attacks has already been used to im-

prove the applicability of template-based attacks be-

yond the specific hardware which generated the tem-

plate[11]. This preprocessing is given by:

T ′p,n =
Tp,n − µ̂Tn

σ̂Tn
(3)

The main downsides of these methods is they re-

quire the frequency be constant over the entire length

6 Colin O’Flynn, Zhizhang (David) Chen

of the trace. Method (1) was proposed in [15] as it could

function where the frequency varies per clock cycle. To

accomplish this same goal, we will define an estimate

function µ̂(f) which provides an estimate of the mean of

the power trace for a known frequency f, and similarly

σ̂(f) which provides an estimate of standard deviation

of the power trace. These functions are simply 15th or-

der polynomial curves fitted to the data in Fig. 6. The

plots of both functions are shown in Fig. 6 as well.

Repeating (2) but with µ̂ being a function of f , and

not simply calculated over the entire trace:

T ′p,n = Tp,n − µ̂(fp,n) (4)

And similarly for (3):

T ′p,n =
Tp,n − µ̂(fp,n)

σ̂(fp,n)
(5)

Fig. 7 shows traces before and after preprocessing,

using (5)—note the alignment in the time domain of

all the traces due to synchronous sampling, despite the

varying clock of the DUT.

Even with synchronous sampling, some trace resyn-

chronization may be required. In this case if the sam-

pling was started and then the clock speed changed,

the traces had slight misalignment. It is assumed this

comes from either the microcontroller delaying execu-

tion during the frequency change, or errors in the sam-

pling ADC as the clock frequency changes. The syn-

chronous sampling still greatly simplified the further

resynchronization required, as all traces were within 3

samples (clock cycles) of each other. If the sampling

was started after the clock frequency speed changed, no

resynchronization was required, despite the DUT run-

ning at different frequencies.

3.3 Results

The PGE of the CPA attack on an ‘extended’ frequency

variation is shown in Fig. 8. Note from Table 2 the more

widely varying ‘extended’ range of frequency variation

has slightly worse performance than the ‘drift’ range,

thus the varying clock does diminish performance. With

the crystal oscillator, performance is similar to the ‘ex-

tended’ range. One would expect it to be similar to the

‘drift’ range instead, since the frequency is not varying.

Thus is assumed to be caused by the external oscilla-

tor circuitry in the AVR microcontroller resulting in

more noise on the trace measurement. Thus using an

internal RC oscillator can actually result in lower-noise

measurements compared to an external oscillator.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

Trace Number

A
v

e
ra

g
e

 P
G

E
 (

1
1

 T
ri

a
ls

)

Partial Guessing Entropy (PGE) With Varying Clock

Subkey 0

Subkey 1

Subkey 2

Subkey 3

Subkey 4

Subkey 5

Subkey 6

Subkey 7

Subkey 8

Subkey 9

Subkey 10

Subkey 11

Subkey 12

Subkey 13

Subkey 14

Subkey 15

Average all Subkeys

max(PGE)<10

Fig. 8 Results of a CPA attack on a device with oscilla-
tor frequency randomly varying between 3.9 MHz–13 MHz
on each encryption, and no trace synchronization being per-
formed. The Byte N refer to the subkey Partial Guessing En-
tropy(PGE), Average refers to the average of all 16 subkeys.
max(PGE) < 10 shows the metric used in Table 2.

Attempting to attack anything besides the ‘crystal’

range with measurements taken by a standard asyn-

chronous oscilloscope fails. The PGE does not signifi-

cantly improve over the range of trace measurements,

even for the ‘drift’ range. The results of Fig. 21 demon-

strate this in practice.

As previously mentioned a number of preprocess-

ing methods are also tested, with final results shown in

Table 2. The details of the PGE metric are provided

in Section 2.2. The max(PGE) < 10 point is shown

in figures as the horizontal line at PGE = 10. It can

be noted that over a narrow frequency range no pre-

processing is required: the ‘drift’ range has no improve-

ment using any preprocessing method. Only the ‘ex-

tended’ range shows significant improvement in attack

performance by using preprocessing, and even then the

method makes little difference.

These results suggest that details of the preprocess-

ing are not too critical, and would also validate previous

work such as [15] which indicate a simple frequency-

dependant bias is sufficient. In cases where the fre-

quency is constant over the entire trace, it is sufficient

to simply subtract the mean of each trace from itself,

forcing the trace to be zero-mean.

Considering the extremely large range the oscilla-

tor was varied over (3.9 MHz–13 MHz), these results

show that synchronous sampling is a simple method of

attacking the varying clock (VC) countermeasure.

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 7

Table 2 The number of traces for the Partial Guessing Entropy (PGE) of the CPA attack to be < 10 is given in this table,
where the traces have been preprocessed by different methods.

Clock Tn Tn + Cfn Tn − µTn
Tn−µTn
σTn

Tn − µ̂(fn) Tn−µ̂(fn)
σ̂(fn)

Extended 93 32 28 30 28 30
Narrow 23 19 16 15 15 15
Drift 12 12 12 13 12 12
Crystal 29 29 29 30 30 29

Fig. 9 Previous work on trace compression can be considered
a simple example of clock recovery. Here the trace compres-
sion is performed by simply detecting zero-crossing events
which correspond to

4 Clock Recovery as Preprocessing

If we consider the case of asynchronous sampling, where

the sample rate is infinitely fast, the synchronous sam-

pling method would be equivalent to performing trace

compression which is keeping a single point per clock

sample[8]. Practically of course this means simply sam-

pling ‘fast enough’ for a specific target; looking at Fig. 1,

we can see for the AtMega48A sampling at 312 MS/s

should be sufficient.

In this work, recovering the clock is done by filtering

the recovered signal around the fundamental frequency

component. This method is used since it is possible to

implement in both software and hardware. In particular

the hardware implementation will be used for real-time

recovery of a device clock for synchronous sampling and

glitch generation.

Fig. 9 shows a block diagram of the clock recov-

ery and decimation logic. A FFT is used on the input

trace to determine the operating frequency of the de-

vice, where it is assumed the operating frequency re-

sults in the largest harmonic component. Systems with

multiple oscillators may require a more complex selec-

tion logic.

A 5th order IIR Butterworth bandpass filter with a

center frequency fC processes the received data, where

fC is selected as the device operating frequency. The

passband of the filter is configured to have a bandwidth

of 20%, where the bandwidth for a filter with a pass-

band from fL to fH is given by (6).

BW = 2
fH − fL
fH + fL

(6)

The sample corresponding to a clock edge is selected

based on a zero-crossing detection of the filtered out-

put. This means the effective sample rate becomes 2×
the device clock frequency, since two zero-crossings are

produced for every cycle.

The results of a CPA attack against a system where

the clock is constant, i.e. the crystal range, is shown in

Fig. 10. This comparison shows that the clock recovery

logic can reduced the trace size with minimal impact on

attack performance. Using integer decimation by com-

parison results in a performance penalty on the attack

results.

Fig. 7 Traces can be normalized by (5) before passing to a standard CPA attack to remove the effect of varying operating
frequency.

8 Colin O’Flynn, Zhizhang (David) Chen

5 10 15 20 25 30 35 40 45 50
0

50

100

150

Trace Number

A
ve

ra
ge

 P
G

E
 A

cr
os

s
S

ub
ke

ys

PGE Comparison for Clock Recovery

312 MS/s Asynchronous Capture
Clock Recovery Preprocessing
31.2 MS/s decimated from 312 MS/s

Fig. 10 All results come from same traces, captured on Pi-
coScope 6403D at 312 MS/s. Each trace in the raw file has
31888 points, the clock recovery version has 1500 points, and
the decimated trace file has 3188 points.

4.1 Clock Recovery with Varying Clock

Initially, the internal RC oscillator is used without any

explicit random frequency generation. The RC oscilla-

tor does randomly drift about ±0.5% during operation

as measured in Table 1. Measurements taken with a

standard oscilloscope fail to recover the key as shown

in Fig. 21, even after 1000 trace measurements. When

the clock is stable the standard oscilloscope recovers the

key in < 20 traces, as in Fig. 1. Thus the small amount

of clock variation causes the CPA attack to fail, despite

the starting point having perfect synchronization. If in-

stead we use clock recovery algorithm from Fig. 9, the

results are as in Fig. 11. The CPA attack is successful

and with similar success to the original setup!

Next, the ‘narrow’ frequency range in Table 1 is

used for clock recovery, which has a center frequency

of 7.66 MHz. The frequency was varied approximately

±5.5%. Fig. 12 gives the results of the CPA attack on

this system.

Finally, the ‘extended’ clock frequency range which

varies from 3.9 MHz – 13 MHz is used, which has a

center frequency of 7.21 MHz. Fig. 13 gives the results

of the CPA on this setup.

These results show that the CPA attack remains

successful on all targets, despite the highest operating

frequency being over 3× the lowest operating frequency.

5 Clock Recovery Hardware

In many devices the clock is not available externally,

meaning additional work is required to perform syn-

chronous sampling. In side-channel analysis, it was pre-

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Trace Number

A
ve

ra
g

e
P

G
E

 (
10

0
T

ri
al

s)

Partial Guessing Entropy (PGE) With Varying Clock (drift)

 Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15
Average all Subkeys
max(PGE)<10

Fig. 11 Results of a CPA attack on a device with an internal
RC oscillator, where the oscillator frequency changes ±0.5%
during operation due to drift, and the clock is not externally
available, but clock recovery as a preprocessing is used. Aver-
age refers to the average of all 16 subkeys. Subkey plot legend
same as in Fig. 8.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

Trace Number

A
ve

ra
g

e
P

G
E

 (
25

 T
ri

al
s)

Partial Guessing Entropy (PGE) With Varying Clock (Narrow)

 Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15
Average all Subkeys
max(PGE)<10

Fig. 12 Results of a CPA attack on a device with an internal
RC oscillator, where the oscillator frequency changes ±5.5%
during operation, and the clock is not externally available,
but clock recovery as a preprocessing is used. Average refers
to the average of all 16 subkeys. Subkey plot legend same as
in Fig. 8.

viously demonstrated how to force an internal oscilla-

tor to lock to an external signal [16]. This was used to

stabilize the internal RC oscillator and improve trace

synchronization, but the same method could be used

to generate the reference clock for synchronous sam-

pling. This will fail if the device itself is varying the

clock frequency, so instead clock recovery must be used

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 9

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Trace Number

A
ve

ra
g

e
P

G
E

 (
25

 T
ri

al
s)

Partial Guessing Entropy (PGE) With Varying Clock (Extended)

 Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15
Average all Subkeys
max(PGE)<10

Fig. 13 esults of a CPA attack on a device with an internal
RC oscillator, where the oscillator frequency changes −45%
to +80% during operation, and the clock is not externally
available, but clock recovery as a preprocessing is used. Av-
erage refers to the average of all 16 subkeys. Subkey plot
legend same as in Fig. 8.

to generate a copy of the clock. The idea of clock re-

covery is not new—in communications electronics this

has been used for many years to synchronize a receiver

clock to a transmitter clock over long distances[4].

The basic method used here for clock recovery is to

filter the power signal so that only the fundamental fre-

quency from the internal oscillator is left. This can then

be amplified and turned into a digital signal. To prevent

glitches from resulting at the output a PLL is used to

provide a clean digital signal. Details of this hardware

design and results of side-channel analysis tests will be

presented next.

5.1 Hardware Design

A block diagram of the system is given in Fig. 14, for

a complete schematic see Appendix A. A Low Noise

Amplifier (LNA) is placed on each side of the band-

pass filter (BPF), the BPF selecting the fundamen-

tal frequency from the power signal. The output of

the final LNA is limited to logic levels and fed into

the Phase Lock Loop (PLL) block. The PLL used is a

single-chip solution, the Texas Instruments CDCE906

device which integrates the Voltage Controller Oscilla-

tor (VCO), Phase Detect (PD), loop filters, and fre-

quency dividers into a single package. For an introduc-

tion to PLLs the reader is referred to [2].

Fig. 15 shows an example of recovering an internal

oscillator on an Atmel AVR ATMega48A device. With

Fig. 14 Clock Recovery Block Diagram.

Fig. 15 Recovery of 7.7 MHz Internal RC Oscillator on AT-
Mega48A. (A) is the amplified power trace after the LNA. (B)
is the output of the band-pass filter, and (C) is the output of
the limiter, which generates a logic-level signal. The output
of (C) can be passed through a PLL to further stabilize the
signal. In (D) the actual RC oscillator output is shown, note
the perfect alignment of the recovered signal (C) and internal
RC oscillator (D).

this device it is possible to switch on a ‘clock out’ pin,

which allows measurement of the internal RC oscilla-

tor signal. The clock recovery logic works equally well

with this pin enabled or not, but enabling the pin al-

lows comparison of the recovered clock to the internal

oscillator.

5.2 Filter Design

The design of the band-pass filter (BPF) is critical for

the success of the clock recovery, details of the design

process are given in Appendix A. Selection of the pass-

band is based on the frequency of the internal oscil-

lator for the device under attack. If this frequency is

not known it can typically be found by viewing the fre-

quency spectrum of the device during operation.

Careful consideration must be given for the group

delay of the filter, which changes over frequency. As

an example the 6.5 MHz–8.5 MHz BPF used for the

ATMega48A device is shown in Fig. 16. The group de-

lay, which is usually measured in time units or phase

degree, has been scaled by the frequency to give us a

group delay in ‘clock cycles’. The group delay will cause

synchronization errors between traces if the frequency

10 Colin O’Flynn, Zhizhang (David) Chen

7 7.5 8 8.5 9 9.5
40

60

80

100

120

140
AtMega48A Internal Oscillator vs Recovered Clock Phase Difference

Frequency (MHz)

P
ha

se
 D

iff
er

en
ce

 (
D

eg
re

es
)

Fig. 17 As the phase difference changes, the alignment of
measurements is compromised, requiring more traces. This
figure shows the measured phase difference for the overall
system, i.e. phase difference between the RC oscillator on the
AVR and the final recovered clock. A Bessel analog filter (as
given in Appendix A) is used here, results are from measure-
ment.

of the DUT oscillator changes, since the delay through

the filter varies with frequency.

For more detail, the delay between the actual in-

ternal RC oscillator and the recovered clock is plotted

in Fig. 17 over a more limited range. Here the delay

is measured in degrees, where 360 ◦ equals one clock

cycle. This figure comes from measurements of the fi-

nal implemented system, whereas Fig. 16 is based on

simulations of just the BPF.

Three methods to reduce this error can be used.

First, the type of analog BPF should be matched with

the DUT. If the frequency of the oscillator varies only

a tiny amount, it would be possible to use a Cheby-

shev filter with the better attenuation performance. If

the DUT oscillator frequency will vary a filter with bet-

ter group delay performance could be used such as the

Bessel. The second way to reduce this error is to mea-

sure the frequency during each trace acquisition, and

shift the recorded waveform by the known group delay

of the filter at this frequency. Finally a standard trace

synchronization algorithm can be used to synchronize

all such traces.

5.3 Results of CPA Attack

The AtMega48A platform is used again for this eval-

uation. The ‘external clock’ output is disabled during

these tests—the AVR driving the IO pin at the clock

frequency results in a very strong fundamental har-

monic on the power trace, which results in a better

signal for the PLL to lock onto. Such a system would

be unrealistic since real systems would not be driving

an arbitrary IO pin causing this strong fundamental.

The complete setup with clock recovery module,

OpenADC capture hardware, and target is shown in

Fig. 18.

The test setup is almost identical to that of Sec-

tion 4.1, where clock recovery is done via processing

of traces capture asynchronously. Again initially only a

small frequency variation due to drift of about ±0.5%

during operation is used, as measured in Table 1. With

synchronous sampling with clock recovery as proposed

in this paper, the results are as in Fig. 19. The CPA

attack is successful without any special processing of

the traces.

Next, the ‘narrow’ frequency range in Table 1 is

used for clock recovery, which has a center frequency of

7.66 MHz. Fig. 20 gives the results of the CPA attack

on this system. The reduced performance is mainly due

to the phase delay of the clock varying with frequency,

as in Fig. 17. When the clock is directly available and

not obtained through clock recovery, as in the results of

Table 2, the ‘narrow’ frequency range has similar per-

formance to the ‘drift’ range.

The ‘extended’ clock frequency range of 3.9 MHz –

13 MHz could not be recovered using the simple filtering

method. This is due to the fact that the 3rd harmonic

of 3.9 MHz will be at 11.7 MHz, which would fall within

the bandpass filter bandwidth. Using clock recovery on

a very widely varying clock would require a tunable

filter which follows the fundamental frequency.

Note that comparing the results to the software-

based clock recovery from Section 4.1 shows that asyn-

chronous sampling has better performance, it is as-

sumed due to the ability to generate an ideal filter,

instead of being limited by physical component selec-

tion. The clock recovery method is still useful when it

is desired to use synchronous sampling due to the re-

duced sample rate requirement compared to capturing

asynchronously and later processing the data. For fault

injection processing the data after capture is not use-

ful, since real-time information is required. The next

section will concentrate on the use of clock recovery for

these cases.

6 Fault Injection

For injecting faults into an embedded system, having a

clock which is phase-locked to the device clock allows

more precise temporal location selection. If triggering

must count a certain number of clock cycles for exam-

ple, this is difficult to do over long periods due to drift

in either the device clock or the instrument clock. If the

device clock itself is used, it is trivial to count over a

large number of cycles with great accuracy.

Previous work has looked at either disabling the

switch to an unstable clock [19], or forcing the inter-

nal clock to lock to an external clock[16]. These meth-

ods are highly dependant on a specific system design;

a device may instead always come up on an internal

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 11

5 6 7 8 9 10
−40

−36

−32

−28

−24

−20

−16

−12

−8

−4

0

A
tt
e
n
u
a
ti
o
n
 (
d
B
)

Frequency (MHz)

Bessel 5 th Order LC Filter Characteristics

0

2

4

6

8

10

12

14

16

18

20

D
e
la
y
 (
E
q
u
iv
a
le
n
t
C
lo
ck
 C
y
cl
e
s)

5 6 7 8 9 10
−40

−36

−32

−28

−24

−20

−16

−12

−8

−4

0

A
tt
e
n
u
a
ti
o
n
 (
d
B
)

Frequency (MHz)

Chebyshev 5 th Order LC Filter Characteristics

0

2

4

6

8

10

12

14

16

18

20

D
e
la
y
 (
E
q
u
iv
a
le
n
t
C
lo
ck
 C
y
cl
e
s)

Fig. 16 Choice of filter type means a choice between better group delay performance and better attenuation outside the pass-
band. Two examples are given here: a Chebyshev filter and a Bessel filter, both 5th order made from discrete LC components.
Results are from simulation.

Fig. 18 Test Setup for side-channel analysis with clock recovery of internal oscillator on ATMega48A. The oscilloscope is used
to measure recovered clock frequency. The long board center-front performs amplification, filtering, and limiting. The PLL is
located inside the capture hardware on the left-hand side. The back right board is the AtMega48A target.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Trace Number

S
ub

ke
y

P
G

E

Partial Guessing Entropy (PGE) without Clock Recovery

Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15
Average

Fig. 21 Results of a CPA attack on a device with an internal RC oscillator, where the oscillator frequency changes ±0.5%
during operation due to drift, and a standard asyncronous oscilloscope samples the device at 312 MS/s. Average refers to the
average of all 16 subkeys.

12 Colin O’Flynn, Zhizhang (David) Chen

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Trace Number

A
v

e
ra

g
e

 P
G

E
 (

5
1

 T
ri

a
ls

)

Partial Guessing Entropy (PGE) Using Clock Recovery

 Subkey 0

Subkey 1

Subkey 2

Subkey 3

Subkey 4

Subkey 5

Subkey 6

Subkey 7

Subkey 8

Subkey 9

Subkey 10

Subkey 11

Subkey 12

Subkey 13

Subkey 14

Subkey 15

Average all Subkeys

max(PGE)<10

Fig. 19 Results of a CPA attack on a device with an internal
RC oscillator, where the oscillator frequency changes ±0.5%
during operation due to drift, and the clock is not externally
available, but clock recovery with synchronous sampling used.
Average refers to the average of all 16 subkeys. Subkey plot
legend same as in Fig. 8.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

Trace Number

A
ve

ra
g

e
P

G
E

 (
51

 T
ri

al
s)

Partial Guessing Entropy (PGE) Using Clock Recovery

 Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15
Average all Subkeys
max(PGE)<10

Fig. 20 Results of a CPA attack on a device with an internal
RC oscillator, where the oscillator frequency changes ±5.5%
during operation, and the clock is not externally available, but
clock recovery with synchronous sampling used. Plot legend
same as in Fig. 8.

oscillator, making it impossible to keep it running on

the external clock.

Having a phase-locked clock means glitches can even

be inserted at specific portions of the device clock cy-

cle. These glitches could be power, EM[14], or laser/op-

tical[17]. We are assuming there is no external clock

in this work, thus are ignoring clock perturbations as

a valid glitch. This work will use power glitches as a

demonstration of the usefulness of maintaining a phase-

locked reference, such as is derived by the clock recovery

scheme.

In addition a triggering mechanism that depends

on waveforms in the analog data is demonstrated. How

changes in operating frequency affect the triggering re-

liability is also explored, and it will be demonstrated

that synchronous sampling provides a highly reliable

data source for this trigger.

6.1 Sum of Absolute Difference Trigger

To inject a fault at a specific location, a pattern de-

tection trigger called the Sum of Absolute Difference

(SAD) is used. The implementation of the SAD comes

from the ChipWhisperer system [13]. In this implemen-

tation 128 input samples, T, are continuously compared

to a 128 point reference waveform, R, using (7). If the

input was exactly the same as the reference waveform,

the output of (7) would be 0. Normally the trigger con-

dition is simply when the output of (7) falls below some

point.

SAD =

127∑
p=0

|Tp −Rp| (7)

If the data T has already been recorded (e.g. for

resynchronizing recorded data), the form of (8) can be

used. In this form an ‘offset’ parameter m is added,

which slides the comparison window across all points

in the recorded trace.

SAD(m) =

127∑
p=0

|Tp+m −Rp| (8)

To determine the effect of varying clock frequency,

a SAD reference waveform R will be compared to a

recorded power trace T, where the same operation is

occurring in both T and R. The frequency that the

target is operating at when T is recorded varies, and

the output of the SAD equation (8) is calculated. It

is known a priori that when m = 0 the operations in

both waveforms should be synchronized. Thus we would

expect the following:

arg min
m

(SAD(m)) = 0 (9)

To determine the margin for the SAD trigger level,

the minimum value of (8) is found when the offset is

not zero, i.e. for all the wrong alignments of R. This

is plotted against frequency in Fig. 22 — the distance

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 13

4 5 6 7 8 9 10
Operating Frequency (MHz)

0

1000

2000

3000

4000

5000

6000

7000

S
A
D
 R
e
su
lt

Sum of Absolute Difference (SAD) vs. Operating Frequencies

min(SAD(offset≠0))
SAD(offset=0)

Fig. 22 Output of (8) for the offset m being zero or non-
zero. When the offset m = 0, this means the SAD output for
the correct alignment of traces. When m 6= 0, this means the
best possible SAD output for incorrect alignment of traces.
Data sampled asynchronously at 312.5 MS/s.

between the two groups indicates the margin available.

This uses a normal asynchronous capture, and note the

SAD trigger would only function at a very narrow win-

dow around the reference trace waveform, which was

captured when running at about 7.4 MHz.

By comparison, if we use synchronous sampling the

SAD triggering is able to reliably detect the triggering

point for T being recorded with a device frequency be-

tween 4.2 MHz – 13 MHz, even though the reference R

was recorded at a different device operating frequency

(about 7.6 MHz). At the extreme lower end of the oper-

ating frequency range the SAD triggering is not reliable,

as around 3.9 MHz it would select the wrong triggering

point.

For using the SAD triggering, hardware clock recov-

ery is required if the device frequency is not constant.

We will next consider not only the triggering of glitches,

but the actual parameters defining the glitches as the

device frequency varies.

6.2 Fault Injection and Target Code

For generation of faults, power glitching is used. A MOS-

FET is used across the power pins of the chip; the MOS-

FET forms a voltage divider with the shunt resistor be-

ing used for side channel power analysis measurement,

and allows quickly dropping the voltage on the VCC

pin. An example of the glitch waveform is shown in

Fig. 24.

This setup allows power consumption to be moni-

tored (required for the SAD trigger) along with mon-

itoring the glitch status. The width and offset of the

4 5 6 7 8 9 10 11 12 13
Operating Frequency (MHz)

0

2000

4000

6000

8000

10000

S
A
D
 R
e
su
lt

Sum of Absolute Difference (SAD) vs. Operating Frequencies

min(SAD(offset≠0))
SAD(offset=0)

Fig. 23 Output of (8) for the offset m being zero or non-
zero. When the offset m = 0, this means the SAD output for
the correct alignment of traces. When m 6= 0, this means the
best possible SAD output for incorrect alignment of traces.
Data sampled synchronously at 4× device clock.

V
C

C

C
lo

c
k

Width

O set

VCC Glitch Waveform

Time (nS)

Fig. 24 The VCC glitch inserted into the AtMega48A device
for this test is derived from a source clock. The glitch width
and offset are a function of that source clock, see [13] for
details.

glitch is controlled via the ChipWhisperer system. The

glitch width and offset is based on a percentage dif-

ference from the ‘source clock’. If the device clock is

known, this allows the width and offset to scale with

changes in frequency, and ensures perfect synchroniza-

tion of glitch location relative to clock edges. The Chip-

Whisperer system has high resolution on the glitch width

and offset, having approximately 100 pS resolution on

these options.

Where the source clock isn’t known, i.e. without

using clock recovery, an asynchronous clock is instead

used to generate the glitch width and offset. In this case

the glitch offset will occur relative to the trigger event,

14 Colin O’Flynn, Zhizhang (David) Chen

however the glitch parameters do not scale with device

frequency, since the device frequency is not known.

Listing 1 The source C code for the AtMega48A on which
the glitch is tested.

#define OSCUART 94

#define OSCGLITCH 105

void g l i t c h ()

{
volat i le u i n t 8 t a = 0 ;

// Set f requency then TX

OSCCAL = OSCUART;

delay ms (1 0) ;

output ch 0 (’A ’) ;

//Wait f o r charac t e r to TX

// then change f requency

delay ms (1 0) ;
OSCCAL = OSCGLITCH;

delay ms (1 0) ;

//Trigger Line

PORTC = 0x01 ;

PORTC = 0x00 ;

// S en s i t i v e Loop

while (a != 2){
;

}

//Padding a f t e r loop

nop () ; nop () ; nop () ;

nop () ; nop () ; nop () ;

// Set f requency back

OSCCAL = OSCUART;

delay ms (1 0) ;

ch0 puts (”1234”) ;

}

6.3 Dependency on Target Frequency

As previously mentioned, the use of clock recovery is

required for the SAD triggering to function. To allow

comparison of glitch insertion with and without clock

recovery, the AtMega48A is also programmed to set an

IO line high at the moment where a glitch should be

inserted. The glitch can thus be triggered even if the

SAD trigger cannot be used, although in real systems

it’s unlikely such a trigger would exist. This trigger oc-

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

20

40

60

80

100

120

Device Frequency (MHz)

G
lit

ch
 S

uc
ce

ss
 R

at
e

(%
)

Glitch Success Rate vs. Operating Frequency

Width/Offset Synchronized to Clock
Width/Offset Asynchronous

Fig. 25 Success of voltage glitching where the glitch param-
eters are fixed to maximize success at a clock frequency of
7.37 MHz, and then device is then operated at different fre-
quencies.

curring at the moment of glitch insertion also means

there is no error due to a differing number of device

cycles between the trigger event and actual glitch, as

would be the case if glitch insertion had a time-based

offset from the trigger.

The code being glitched is shown in Listing 1, where

a successful glitch is one which breaks out of the loop,

without skipping past the padding. This allows a simple

test to check if the glitch is causing the desired effect.

A metric of the percent of glitches causing the desired

effect that ‘1234’ is printed is used to compare efficiency,

which is averaged over 100 glitches.

The glitch offset and width is varied until what ap-

pears to be the maximum success rate is found. In one

case the glitch width and offset scales with frequency

(i.e. the device clock is fed into glitch generation), in the

other the glitch width and offset is constant. The hard-

ware is the same on both cases, again the AtMega48A

device with an internal RC oscillator being used as the

device clock.

It can be seen from the results of Fig. 25 that using

the clock-synchronous glitch not only provides a more

reliable glitch, but requires less tuning of parameters

for operation over different frequencies in this example.

Considering that the synchronous capture provides

the additional advantage of a useful SAD triggering sys-

tem and the ability to easily count clock cycles from a

trigger event, the clock recovery and synchronous cap-

ture method proposed here should have significant per-

formance gains for fault injection.

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 15

7 Conclusions

Synchronous sampling has already been demonstrated

to be a useful tool in reducing the data complexity when

working with side-channel analysis measurements [10,

12,13]. It is know that compression of the power traces

can be performed post-capture to reduce them to points

of interest. Using synchronous sampling, however, elim-

inates the processing requirement, and makes triggering

such as the Sum of Absolute Difference (SAD) mecha-

nism reliable across operating frequency.

Synchronous sampling depends on the availability of

the device clock, where many real devices contain an in-

ternal oscillator with no external signal. This paper has

demonstrated how a ‘clock recovery’ technique can gen-

erate an external reference clock which is phase-locked

to the internal oscillator of the device.

If the device under attack is varying the internal

oscillator, this external clock will remain phase-locked

to the true frequency. As synchronous sampling is mea-

suring clock edges and not absolute time, this varying

clock has very little effect of the success rate of an at-

tack performed on these traces. The traces remain well

synchronized despite the changing clock frequency, with

the exception of a phase offset due to delay in the filter.

This recovered clock is also useful for fault injection,

where it is desired to insert a fault at some specific clock

cycle or portion of a clock cycle.

In addition to hardware-based solutions, this paper

has also demonstrated the use of clock recovery with a

standard asynchronous oscilloscope. This algorithm is

of low complexity, and an implementation is available

in the open-source ChipWhisperer project.

Acknowledgements Special thanks to funding provided by
NSERC Canada Graduate Scholarship and OZ Optics. The
authors appreciate the many constructive comments from
anonymous reviewers which helped improve the final version
of this paper.

References

1. Atmel Corporation: ATmega48A Datasheet
2. Banerjee, D.: PLL Performance Simulation and Design

Handbook, 4th edn. Texas Instruments (2006)
3. Brier, E., Clavier, C., Olivier, F.: Correlation power anal-

ysis with a leakage model. Cryptographic Hardware and
Embedded Systems - CHES 2004 pp. 135–152 (2004)

4. Costas, J.: Synchronous Communications. Communica-
tions Systems, IRE Transactions on 5(1), 99 –105 (1957).
DOI 10.1109/TCOM.1957.1097490

5. Guilley, S., Khalfallah, K., Lomne, V., Danger, J.L.: For-
mal Framework for the Evaluation of Waveform Resyn-
chronization Algorithms. In: Proceedings of the 5th IFIP
WG 11.2 International Conference on Information Se-
curity Theory and Practice, WISTP’11, pp. 100–115.

Springer-Verlag, Berlin, Heidelberg (2011). URL http:

//dl.acm.org/citation.cfm?id=2017824.2017835

6. Kafi, M., Guilley, S., Marcello, S., Naccache, D.: Decon-
volving Protected Signals. In: Availability, Reliability
and Security, 2009. ARES ’09. International Conference
on, pp. 687 –694 (2009). DOI 10.1109/ARES.2009.197

7. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis.
In: Advances in Cryptology - CRYPTO’ 99, pp. 388–397.
Springer-Verlag (1999)

8. Mangard, S., Oswald, E., Popp, T.: Power Analysis At-
tacks: Revealing the Secrets of Smart Cards. Advances
in information security. Springer (2008)

9. Massey, J.: Guessing and entropy. In: Information The-
ory, 1994. Proceedings., 1994 IEEE International Sympo-
sium on, pp. 204– (1994). DOI 10.1109/ISIT.1994.394764

10. Messerges, T.: Power Analysis Attacks and Countermea-
sures for Cryptographic Algorithms. Ph.D. thesis, Uni-
versity of Illinois at Chicago (2000)

11. Montminy, D., Baldwin, R., Temple, M., Laspe, E.:
Improving cross-device attacks using zero-mean unit-
variance normalization. Journal of Cryptographic
Engineering 3(2), 99–110 (2013). DOI 10.1007/
s13389-012-0038-y

12. O’Flynn, C., Chen, Z.D.: A case study of Side-Channel
Analysis using Decoupling Capacitor Power Measure-
ment with the OpenADC. Lecture Notes in Computer
Science 7743, 328–344 (2013)

13. O’Flynn, C., Chen, Z.D.: ChipWhisperer: An Open-
Source Platform for Hardware Embedded Security Re-
search. In: Constructive Side-Channel Analysis and Se-
cure Design - COSADE 2014 (2014)

14. Quisquater, J.J., Samyde, D.: Eddy current for Magnetic
Analysis with Active Sensor. In: Esmart 2002, Nice,
France (2002)

15. Réal, D., Canovas, C., Clédière, J., Drissi, M., Valette, F.:
Defeating Classical Hardware Countermeasures: A New
Processing for Side Channel Analysis. In: Proceedings
of the Conference on Design, Automation and Test in
Europe, DATE ’08, pp. 1274–1279. ACM, New York, NY,
USA (2008). DOI 10.1145/1403375.1403684

16. Skorobogatov, S.: Synchronization method for SCA and
fault attacks. Journal of Cryptographic Engineering 1(1),
71–77 (2011). DOI 10.1007/s13389-011-0004-0

17. Skorobogatov, S., Anderson, R.: Optical Fault Induction
Attacks. In: B. Kaliski, e. Ko, C. Paar (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES
2002, Lecture Notes in Computer Science, vol. 2523,
pp. 2–12. Springer Berlin Heidelberg (2003). DOI
10.1007/3-540-36400-5 2. URL http://dx.doi.org/10.

1007/3-540-36400-5_2

18. Tian, Q., Huss, S.: On Clock Frequency Effects in Side
Channel Attacks of Symmetric Block Ciphers. In: New
Technologies, Mobility and Security (NTMS), 2012 5th
International Conference on, pp. 1 –5 (2012). DOI 10.
1109/NTMS.2012.6208680

19. van Woudenberg, J., Witteman, M., Menarini, F.: Practi-
cal Optical Fault Injection on Secure Microcontrollers. In:
Fault Diagnosis and Tolerance in Cryptography (FDTC),
2011 Workshop on, pp. 91–99 (2011). DOI 10.1109/
FDTC.2011.12

20. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.:
Improving Differential Power Analysis by Elastic Align-
ment. In: Proceedings of the 11th International Con-
ference on Topics in Cryptology: CT-RSA 2011, CT-
RSA’11, pp. 104–119. Springer-Verlag, Berlin, Heidelberg
(2011)

16 Colin O’Flynn, Zhizhang (David) Chen

21. Yang, S., Gupta, P., Wolf, M., Serpanos, D., Narayanan,
V., Xie, Y.: Power analysis attack resistance engineering
by dynamic voltage and frequency scaling. ACM Trans.
Embed. Comput. Syst. 11(3), 62:1–62:16 (2012). DOI
10.1145/2345770.2345774

Appendix A: Hardware and Design Details

This appendix provides some brief notes on the physical

hardware realized in this paper, along with a few notes

for researchers looking to duplicate it. Note that full

details are posted as part of the ChipWhisperer Wiki

at http://www.ChipWhisperer.com.

7.1 Core Clock Recovery Module

The core part of this work is a module with a Low

Noise Amplifier (LNA), Limiter, and Phase-Lock Loop

(PLL) chip. The schematic for this is given in Fig. 26.

The LNA is an Analog Devices AD8331, which has a

variable gain up to 55dB. A resistor connected to the

‘RLIM’ pins provides an ability to set an arbitrary clip-

ping level for the output. This clipped output is con-

nected to the PLL chip, which is a Texas Instruments

CDCE906. The clipped output from the LNA is used

a LVDS input to the PLL, which works assuming the

input to the entire block was sufficiently clean, that is

to say contains only a single frequency component. Ad-

ditional filtering can be added by placing capacitors on

each of the input pins of the CDCE906 to ground, val-

ues between 100 pF–680 pF are reasonable depending

on the fundamental frequency being targeted.

The CDCE906 was chosen for it’s ability to oper-

ate down to 1 MHz, many PLL devices have higher

lower frequency limits. If attacking devices with rel-

atively slow internal oscillators, such as the KeeLoq

devices at 1.3 MHz, this lower range is needed. The

CDCE906 can be configured via I2C to adjust parame-

ters such as input drive level, frequency divider settings,

and outputs in use. For this work it was configured to

enable the PLL with frequency dividers such that the

input and output frequency were the same. The sam-

pling rate can easily be set to a higher multiple of the

system frequency with this PLL block.

7.2 Filter

The filter design was done using the Quite Universal

Circuit Simulator (QUCS) software. QUCS contains a

Filter Synthesis tool, which can be used to generate

an appropriate band-pass filter. This will be calculated

with ‘ideal’ component values, and then these values are

Fig. 27 Bandpass Filter Design Environment. Note the com-
ponent values have been changed to reflect those being used
in the actual circuit, and some optimizations may be needed
to get acceptable performance. The equation to plot group
delay in clock cycles can be seen in this diagram.

adjusted to the closest standard part, and a simulation

confirms if the performance is still acceptable.

Note that at DC the filter will present a dead short,

as no blocking capacitors are present. If connecting one

side of the filter to a shunt or other device with a DC

bias, always insert DC blocking capacitors.

7.3 First Stage LNA

An additional LNA may be required in front of the

band-pass filter depending on the signal strength. It is

possible to use a standard device such as a MiniCir-

cuits ZFL-1000LN+. Care must be taken with RF am-

plifiers, as most of them are designed for use with 50Ω

systems. If the output or input is not matched properly

the amplifier may oscillate, causing errors. Generally

amplifiers based on Op-Amps are safer in this regard,

and specially-designed differential amplifiers can be ex-

ceedingly useful when measuring across current shunts.

Synchronous Sampling and Clock Recovery of Internal Oscillators for Side Channel Analysis and Fault Injection 17

Fig. 26 Schematic for the LNA, Limiter, and PLL as used in Fig. 14.

