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Abstract

Composite-order bilinear groups provide many structural features that have proved useful for
both constructing cryptographic primitives and as a technique in security reductions. Despite these
convenient features, however, composite-order bilinear groups are less desirable than prime-order
bilinear groups for reasons of efficiency. A recent line of work has therefore focused on translating
these structural features from the composite-order to the prime-order setting; much of this work
focused on two such features, projecting and canceling, in isolation, but a recent result due to Seo
and Cheon showed that both features can be obtained simultaneously in the prime-order setting.

In this paper, we reinterpret the construction of Seo and Cheon in the context of dual pairing
vector spaces (which provide canceling as well as useful parameter hiding features) to obtain a
unified framework that simulates all of these composite-order features in the prime-order setting. We
demonstrate the strength of this framework by providing two applications: one that adds dual pairing
vector spaces to the existing projection in the Boneh-Goh-Nissim encryption scheme to obtain leakage
resilience, and another that adds projecting to the existing dual pairing vector spaces in an IND-
CPA-secure IBE scheme to “boost” its security to IND-CCA1. Our leakage-resilient BGN application
is of independent interest, and it is not clear how to achieve it from pure composite-order techniques
without mixing in additional vector space tools. Both applications rely solely on the Symmetric
External Diffie Hellman assumption (SXDH).

1 Introduction

Since their introduction in 2005 by Boneh, Goh, and Nissim [9], composite-order bilinear groups have
been used to construct a diverse set of advanced cryptographic primitives, including (hierarchical)
identity-based encryption [27, 29], group signatures [12, 13], and functional and attribute-based encryp-
tion [24, 28, 26]. The main assumptions used to prove the security of such schemes are variants of the
subgroup decision assumption, which (in the simplest case) states that, for a bilinear group G of order
N = pq, without an element of order q it should be hard to distinguish a random element of G from a
random element of order p. Such assumptions crucially rely on the hardness of factoring N .

Beyond this basic assumption and its close variants, many of these schemes have exploited addi-
tional structural properties that are inherent in composite-order bilinear groups. Two such properties,
projecting and canceling, were formally identified by Freeman [18]; projecting requires (roughly) that
there exists a trapdoor projection map from G into its p-order subgroup (and a related map in the tar-
get group GT ), and canceling requires that elements in the p-order and q-order subgroups cancel each
other out (i.e., yield the identity when paired). Additionally, Lewko [25] identified another property,
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parameter hiding, that requires (again, roughly) that elements in the p-order subgroup reveal nothing
about seemingly correlated elements in the q-order subgroup.

While therefore quite attractive and rich from a structural standpoint, the use of composite-order
bilinear groups comes with a number of drawbacks, both in terms of efficiency and security. Until a recent
construction of Boneh, Rubin, and Silverberg [11], all known composite-order bilinear groups were on
supersingular, or Type-1 [19], curves. Even in the prime-order setting, supersingular curves are already
less efficient than their ordinary counterparts: speed records for the former [3, 41] are approximately
six times slower than speed records for the latter [4]. In the composite-order setting, it is furthermore
necessary to increase the size of the modulus by at least a factor of 10 (from 160 to at least 1024 bits) in
order to make the assumption that N is hard to factor plausible. Operations performed in composite-
order bilinear groups are therefore significantly slower; for example, Guillevic [21] recently observed
that computing a pairing was 254 times slower. (This slowdown also extends to the non-supersingular
construction of Boneh et al., and indeed to any composite-order bilinear group.) Furthermore, from a
security standpoint, a number of recent results [22, 23, 20, 1] demonstrate that it is possible to efficiently
compute discrete logarithms in common types of supersingular curves, so that one must be significantly
more careful when working over supersingular curves than when working over their non-supersingular
counterparts.

One natural question to ask is: to what extent it is possible to obtain the structural advantages
of composite-order bilinear groups without the disadvantages? Although the structural properties de-
scribed above might seem specific to composite-order groups, both Freeman and Lewko are in fact able
to express them rather abstractly and then describe how to construct prime-order bilinear groups in
which each of these individual properties are met; they also show how to translate the subgroup decision
assumption into a generalized version, that in prime-order groups is implied by either Decision Linear [8]
or Symmetric External Diffie Hellman (SXDH) [5].

In contrast, Meiklejohn, Shacham, and Freeman [34] showed that it was impossible to achieve pro-
jecting and canceling simultaneously under a “natural” usage of Decision Linear; as a motivation, they
presented a blind signature scheme that seemingly relied upon both projecting and canceling for its
proof of security. Recently, Seo and Cheon [43] showed that it was actually possible to achieve both
projecting and canceling simultaneously in prime-order groups, and Seo [42] explored both possibility
and impossibility results for projecting. To derive hardness of subgroup decision in their setting, how-
ever, Seo and Cheon rely on a non-standard assumption and show that this implies the hardness of
subgroup decision only in a very limited case. They also provide a prime-order version of the Meikle-
john et al. blind signature that is somewhat divorced from their setting: rather than prove its security
directly using projecting and canceling, they instead alter the blind signature, introduce a new property
called translating, and then show that the modified blind signature is secure not in the projecting and
canceling setting, but rather in a separate projecting and translating setting.

Our contributions. In this paper, we present in Section 3 an abstract presentation of the projecting
and canceling pairing due to Seo and Cheon [43]; in the process, we eliminate their reliance on a non-
standard assumption for many instances of subgroup decision, enabling us to base our applications
solely on SXDH. Our presentation is based on dual pairing vector spaces (DPVS) [36, 37], and it
can be parameterized to yield projection properties of varying strength. This perspective yields several
advantages. First, all the power of DPVS is embedded inside this construction and can thus be exploited
as in prior works. Second, we observe that many instances of subgroup decision problems in this
framework are implied by the relatively simple SXDH assumption.

The advantages of our perspective are most clear for our BGN application, which we present in
Section 4. If one starts with the goal of making the composite-order BGN scheme leakage resilient,
the first obstacle one faces is the uniqueness of secret keys. Since the secret key is a factorization of
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the group order, there is only secret key for each public key, making the common kind of hash proof
argument for leakage resilience (as codified by Naor and Segev [35], for example) inapplicable. The
DPVS techniques baked into our projecting and canceling prime-order construction remove this barrier
quite naturally by allowing secret keys to be vectors that still serve as projection maps but can now be
sampled from subspaces containing exponentially many potential keys. This demonstrates the benefits
of adding canceling and parameter hiding to applications that are designed around projection.

As an additional application, in Section 5, we present an IND-CCA1-secure identity-based encryp-
tion (IBE) scheme that uses canceling, parameter hiding, and weak projecting properties in its proof
of security. Although efficient constructions of IND-CCA2-secure IBE schemes have been previously
obtained by combining IND-CPA-secure HIBE schemes with signatures [15], we nevertheless view our
IBE construction as a demonstration of the applicability of our unified framework. Furthermore, our
new construction does not aim to amplify security by adding new primitives; instead, it explores the
existing security of the IND-CPA-secure IBE due to Boneh and Boyen [7] (which cannot be IND-CCA2
secure, as it has re-randomizable ciphertexts), and observes that, by modifying the scheme in a rather
organic way and exploiting the (weak) projecting and canceling properties of the setting, we can prove
IND-CCA1 security directly. Hence, we view this as an exploration of the security properties that can
be proved solely from the minimalistic spirit of the Boneh-Boyen scheme.

Our two applications serve as a proof of concept for the usefulness of obtaining projecting and
canceling simultaneously in the prime-order setting, and a demonstration of how to leverage such prop-
erties while relying only on relatively simple assumptions like SXDH. We believe that the usefulness
of our framework extends beyond these specific examples, and we intend our work to facilitate future
applications of these combined properties.

Our techniques To obtain a more user-friendly interpretation of the projecting and canceling pairing
construction over prime-order groups, we begin by observing that it is essentially a concatenation of
DPVS. Dual pairing vector spaces were first used in prime-order bilinear groups by Okamoto and
Takashima [36, 37] and have since been employed in many works, in particular to instantiate dual
system techniques (as introduced by Waters [44]) in the prime-order setting [26, 38, 25]. These previous
uses of DPVS typically relied on the canceling property, variants of subgroup decision problems, and
certain parameter hiding properties that are present by design in DPVS. One particularly nice feature
of DPVS constructions is that a large family of useful subgroup decision variants can be proven to follow
from standard assumptions like SXDH for asymmetric groups and DLIN for symmetric groups; viewing
the construction of a projecting and canceling pairing as a natural extension of DPVS therefore has the
twin benefits that it provides a clear guide on how to derive certain subgroup decision variants from
standard assumptions, and that it comes with all the built-in tools that DPVS offers.

In particular, DPVS includes a suite of vector-space-based tools for proving leakage resilience, similar
to ones used in several previous works (e.g., [35, 14, 16, 33, 31, 17]). This enables us to combine the
projecting-supported limited homomorphic functionality of the BGN encryption scheme with provable
leakage resilience. DPVS also supports a toolkit developed for dual system proofs (e.g., [32, 39, 40]),
which is what enables us to boost our IBE to full IND-CCA1 security with just the addition of projection.

2 Definitions and Notation

In this section, we define bilinear groups and the three functional properties we would like them to satisfy:
projecting, canceling, and parameter hiding. For the first two, we use the definitions of Freeman [18]
(albeit in a somewhat modified form); for parameter hiding, on the other hand, we come up with a new
formal framework. In addition to these functional properties, we consider the notion of subgroup decision
in bilinear groups, in which a random element of a subgroup should be indistinguishable from a random
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element of the full group. The variant we define, called generalized correlated subgroup decision, is
very general: in addition to seeing random elements of subgroups, we allow an attacker to see elements
correlated across subgroups (e.g., elements of different subgroups with correlated randomness), and
require that it is still difficult for him to distinguish between correlated elements of different subgroups.
We then see in Sections 3 and 6 that many specific instances of this general notion are implied by more
standard notions of subgroup decision in both prime-order and composite-order groups.

2.1 Bilinear groups

In what follows, we refer to a bilinear group as a tuple G = (N,G,H,GT , e, µ), where N is either prime
or composite, |G| = |H| = kN and |GT | = `N for some k, ` ∈ N, and e : G × H → GT is a bilinear
map; i.e., e is an efficient map that satisfies both bilinearity (e(xa, yb) = e(x, y)ab for all x ∈ G, y ∈ H,
a, b ∈ Z/NZ) and non-degeneracy (if e(x, y) = 1 for all x ∈ G then y = 1 and if e(x, y) = 1 for all
y ∈ H then x = 1). In some bilinear groups, we may additionally include generators g and h of G and
H respectively (if G and H are cyclic), information about meaningful subgroups of G and H, or some
auxiliary information µ that allows for efficient membership testing in G and H (and possibly more).
In what follows, we refer to the algorithm that is used to generate such a G as BilinearGen. Beyond the
security parameter, BilinearGen takes in an additional parameter n that specifies the number of desired

subgroups; i.e., for (N,G,H,GT , e, µ)
$←− BilinearGen(1k, n), we have G = ⊕ni=1Gi and H = ⊕ni=1Hi

(where typically Gi and Hi are cyclic).
In terms of functional properties of bilinear groups, we first define both projecting and canceling ;

our definitions are modified versions of the ones originally given by Freeman [18]. We give three flavors
of projecting. The first, weak projecting, considers projecting into a single subgroup of the source group,
without requiring a corresponding map in the target group. The second, which we call simply projecting,
most closely matches the definition given by Freeman, and considers projecting into a single subgroup
in both the source and target groups. Lastly, we define full projecting, which considers projecting into
every subgroup individually. As we will see in Section 3, we can satisfy all of these flavors by tweaking
appropriate parameters in our prime-order construction.

Definition 2.1 (Weak projecting). A bilinear group G = (N,G,H,GT , e, µ) is weakly projecting if
there exist decompositions G = G1 ⊕G2 and H = H1 ⊕H2, and projection maps πG and πH such that
πG(x1) = x1 for all x1 ∈ G1 and πG(x2) = 1 for all x2 ∈ G2, and similarly πH(y1) = y1 for all y1 ∈ H1

and πH(y2) = 1 for all y2 ∈ H2.

Definition 2.2 (Projecting). A bilinear group G = (N,G,H,GT , e, µ) is projecting if there exist
subgroups G′ ⊂ G, H ′ ⊂ H, and G′T ⊂ GT such that there exist non-trivial maps πG : G → G′,
πH : H → H ′, and πT : GT → G′T such that πT (e(x, y)) = e(πG(x), πH(y)) for all x ∈ G, y ∈ H.

Definition 2.3 (Full projecting). A bilinear group G = (N,G,H,GT , e, µ) is fully projecting if there
exists some n ∈ N and decompositions G = ⊕ni=1Gi, H = ⊕ni=1Hi, and GT = ⊕ni=1GT,i, and non-
trivial maps πGi : G → Gi, πHi : H → Hi, and πT i : GT → GT,i for all i such that πT i(e(x, y)) =
e(πGi(x), πHi(y)) for all x ∈ G, y ∈ H.

Definition 2.4 (Canceling). A bilinear group G = (N,G,H,GT , e, µ) is canceling if there exists some
n ∈ N and decompositions G = ⊕ni=1Gi and H = ⊕ni=1Hi such that e(xi, yj) = 1 for all xi ∈ Gi, yj ∈ Hj,
i 6= j.

2.2 Parameter hiding

Beyond projecting and canceling, we aim to define parameter hiding. As mentioned in the introduction,
this property roughly says that elements in one subgroup should not reveal anything about related
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elements in other subgroups, and was previously used, without a formal definition, by Lewko [25]. In
essence, parameter hiding in composite-order groups is a simple consequence of the Chinese Remainder
Theorem, which tells us that if we sample a random value modulo N = pq, its reductions modulo p and
q are uncorrelated. In the prime-order setting, a form of parameter hiding can be instantiated from dual
pairing vector spaces, leveraging the fact that if one commits to only certain parts of dual orthonormal
bases over Fnp , there is remaining ambiguity in the hidden basis vectors.

The main difficulty in providing a formal definition for parameter hiding is that it is not as self-
contained a feature as projecting and canceling: elements within subgroups may be related to elements
in other subgroups in a myriad of ways, and their relation to one another may depend both on the form
of the element (which can involve any function on the exponents) and on the subgroups. We therefore
do not try to consider all types of correlations, but instead focus on one simple type, defined as follows:

Definition 2.5. For a bilinear group G = (N,G = ⊕ni=1Gi, H = ⊕ni=1Hi, GT , e, {gi}ni=1, {hi}ni=1), an
element x ∈ Z/NZ, and indices 1 ≤ i1, i2 ≤ n, an x-correlated sample from the subgroup Gi1 ⊕ Gi2 is

an element of the form gαi1 · g
αx
i2

for α
$←− Z/NZ.

We also consider correlated samples in H, but for convenience we define a y-correlated sample from

the subgroup Hi1 ⊕ Hi2 to be an element of the form hβyi1 · h
β
i2

for β
$←− Z/NZ. Although we choose

this type of correlation mainly for ease of exposition (and because we encounter it in Section 5), our
discussion below could be adjusted to accommodate more general types of correlation, which would
remain compatible with our prime-order construction in Section 3.

Intuitively then, parameter hiding says that, under certain restrictions about which subgroup ele-
ments one is allowed access to, the distributions over x-correlated samples and random samples should
in fact be the same, even when x is known. (We need some restrictions because there may be testable re-
lationships between the images of various generators in the target group.) To consider the distributions
we can use — i.e., what additional information we might give out besides the samples — we consider
distributions D parameterized by sets Sph

G = {Sph
G,gen, S

ph
G,sam, S

ph
G,cor}, S

ph
H = {Sph

H,gen, S
ph
H,sam, S

ph
H,cor}, and

C; intuitively, Sph
G and Sph

H tell us which elements to include in the distribution, and C tells us which
correlated samples to change to random. Formally, these sets are defined as follows:

• Sph
G,gen indicates which subgroup generators to include: For all si ∈ Sph

G,gen, include gsi in D.

• Sph
G,sam is a multiset that indicates which random samples to include: For all ti = (t1,i, . . . , tmi,i) ∈
Sph
G,sam, include a random sample from Gt1,i ⊕ . . .⊕Gtmi,i

in D.

• Sph
G,cor is a set that indicates which correlated samples to include: For all ci = (xi, c1,i, c2,i) ∈ Sph

G,cor,

include gac1,i · g
axi
c2,i in D, where a

$←− Z/NZ.

• Sph
H is defined analogously to Sph

G .

• C indicates which correlated samples to change: For all ci = (bi, c
′
i) ∈ C, if bi = 0 then c′i ∈ S

ph
G,cor

and if bi = 1 then c′i ∈ S
ph
H,cor; i.e., we require that C ⊆ {0× Sph

G,cor} ∪ {1× S
ph
H,cor}.

Given all these sets, we now require that they are well-behaved in the following two ways: (1) for
any changed x-correlated sample, do not reveal the corresponding subgroup generators on either side
of the pairing, and (2) do not change correlated samples for the same value x in the same subgroups on
opposite sides of the pairing. Formally, we express these requirements as

• Don’t include generators for switched samples: For all (bi, (xi, c1,i, c2,i)) ∈ C, sj ∈ Sph
G,gen, and

s` ∈ Sph
H,gen, sj 6= c1,i, c2,i and s` 6= c1,i, c2,i.

• Don’t switch x-correlated samples in overlapping subgroups of G and H: For all (0, (xi, c1,i, c2,i)),
(1, (xj , c1,j , c2,j)) ∈ C, either xi 6= xj or c1,i 6= c1,j , c2,j and c2,i 6= c1,j , c2,j .
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To see why these restrictions can be necessary, consider trying to establish that an x-correlated
sample in G1 ⊕G2 is identical to a random sample in G1 ⊕G2, and suppose we are given h1 and h2. If
we are given gα1 g

αx
2 (for some random, unknown α), then — assuming we are using a canceling pairing —

we can compute e(g1, h1)
α and e(g2, h2)

αx. When working with specific instantiations, there may be
a known relationship between e(g1, h1) and e(g2, h2). (In fact, for our IBE construction, e(g1, h1) =
e(g2, h2)

−1.) In this case, if x is known then we can test for an x-correlation in the target group, and
hence distinguish an x-correlated sample from a random one. Similarly, if we have x-correlated samples
gα1 g

αx
2 and hβx1 hβ2 , then pairing these yields the identity, which distinguishes them from random.

Definition 2.6 (Parameter hiding). We say that a group G = (N,G,H,GT , e, µ) satisfies parameter

hiding with respect to a well-behaved distribution D = (Sph
G , S

ph
H , C) if D is identical to the distribution

in which the correlated samples indicated by C are replaced with random samples.

Example 2.7. As an example, consider the distribution D defined by Sph
G = {{1, 2}, ∅, {(x, 1, 2), (x, 3, 4)}},

Sph
H = {{1, 2, 5, 6}, {(3, 4), (3, 4)}, {(y, 1, 2), (y, 3, 4)}}, and C = {(0, (x, 3, 4)), (1, (y, 3, 4)} for any x, y ∈

Z/NZ such that x 6= y; we can easily check that these sets are well-behaved in the sense defined above.

Then parameter hiding holds for G = (N,G,H,GT , e, µ) if for a, b, c, d, s, t, u, v, w, z
$←− Z/NZ,

(N,G,H,GT , e, µ, g1, g2, h1, h2, h5, h6, h
a
3h

b
4, h

c
3h
d
4, h

ty
1 h

t
2, h

zy
3 h

z
4, g

s
1g
sx
2 , g

w
3 g

wx
4 )

is identical to

(N,G,H,GT , e, µ, g1, g2, h1, h2, h5, h6, h
a
3h

b
4, h

c
3h
d
4, h

ty
1 h

t
2, h

v
3h

z
4, g

s
1g
sx
2 , g

w
3 g

u
4 ).

In our uses of parameter hiding in Section 5, we restrict ourselves to this one example. Again,
this is due to the difficulty of providing a fully general definition of parameter hiding, as certain types
of correlated samples require more entropy than others. We nevertheless do not find it to be overly
limiting to consider this one example, as it keeps our constructions in Section 5 simple and tailored to
the requirements that we need. We also use a variant of parameter hiding in the proof for our leakage-
resilient BGN variant presented in Section 4. Here, the flexibility in the hidden parameters is leveraged
to allow the simulator to a leak on a secret key before fully committing to a complete basis (i.e., before
determining how to form an appropriate ciphertext). The details of this can be found in the proof of
Lemma 4.5.

2.3 Generalized correlated subgroup decision

Beyond functional properties of bilinear groups, we must also consider the types of security guar-
antees we can provide. The assumption we define, generalized correlated subgroup decision, consid-
ers indistinguishability between subgroups in a very general way: given certain subgroup generators
and “correlated” elements across subgroups (i.e., elements in different subgroups that use the same
randomness), it should still be hard to distinguish between elements of other subgroups. Formally,

we consider sets Ssgh
G = {Ssgh

G,gen, S
sgh
G,sam}, S

sgh
H = {Ssgh

H,gen, S
sgh
H,sam}, T1 = {(`1, λ1), . . . , (`m, λm)}, and

T2 = {(`′1, λ′1), . . . , (`′m+1, λ
′
m+1)}, and an indicator bit b. (We assume without loss of generality that

T2 is the larger set.) Intuitively, Ssgh
G and Ssgh

H tell us which group elements an adversary is given, and
(T1, T2, b) tell us what the challenge terms should look like. We have the following requirements:

• Ssgh
G,gen indicates which subgroup generators to include: Give out gsi for all si ∈ Ssgh

G,gen.

• Ssgh
G,sam indicates which samples to include: For each ti = ((`1,i, λ1,i), . . . , (`mi,i, λmi,i)) ∈ S

sgh
G,sam,

give out ga1`1,i · . . . ·g
ami
`mi,i

and ga1λ1,i · . . . ·g
ami
λmi,i

for a1, . . . , ami

$←− Z/NZ. These elements are correlated,

in that the same randomness is used for both.
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• The bit b indicates which group the challenge element comes from: b = 0 indicates G, and b = 1
indicates H.

• The sets T1 and T2 must differ in exactly one pair; i.e., there must exist a unique pair P such
that P /∈ T1 but P ∈ T2. For this pair P = (`, λ), we cannot give out the subgroup generators on

either side of the pairing, so we require si 6= ` and si 6= λ for any si ∈ Ssgh
G,gen or si ∈ Ssgh

H,gen.

If P ∈ ti for some ti ∈ Ssgh
G,sam∪S

sgh
H,sam, then T1∩ ti 6= ∅; i.e., P can appear only in random samples

that also contain another component in the challenge term. Then, assuming b = 0 (and replacing
g with h if b = 1), our challenge elements are of the form T := (ga1`1 · . . . · g

am
`m
, ga1λ1 · . . . · g

am
λm

) and

T ′ := (ga1`1′
· . . . · gam+1

`′m+1
, ga1λ′1

· . . . · gam+1

λ′m+1
) for a1, . . . am+1

$←− Z/NZ.

Assumption 2.8 (Generalized correlated subgroup decision). For all tuples (Ssgh
G , Ssgh

H , T1, T2, b) sat-

isfying the requirements specified above and for any n ∈ N, for any PPT adversary A given G $←−
BilinearGen(1k, n) and the elements specified by Ssgh

G and Ssgh
H , it is hard to distinguish between values T

defined by (b, T1) and values T ′ defined by (b, T2).

As an example, consider the case in which n = 6 and Ssgh
G = {{1, 2}, {((1, 2), (3, 4))}}, Ssgh

H =
{{1, 2, 5, 6}, {((1, 2), (3, 4)), ((3, 4), (5, 6))}}, T1 = {(1, 2), (5, 6)}, T2 = {(1, 2), (3, 4), (5, 6)}, and b = 0.
In this case, the concrete assumption is: Given G and generators g1, g2, h1, h2, h5, h6, correlated samples
from G1⊕G3 and G2⊕G4, correlated samples from H1⊕H3 and H2⊕H4, and correlated samples from
H3 ⊕H5 and H4 ⊕H6, it should be hard to distinguish correlated samples from G1 ⊕G5 and G2 ⊕G6

from correlated samples from G1 ⊕G3 ⊕G5 and G2 ⊕G4 ⊕G6.

3 A Prime-Order Bilinear Group Satisfying All Features

Our ultimate goal in this section is to define a prime-order bilinear group that satisfies all three of the
properties defined in the previous section: projecting, canceling, and parameter hiding; additionally, we
want to require that subgroup decision is hard in this group. Our construction can be viewed as an
abstraction of the construction of Seo and Cheon [43], which they prove satisfies (regular) projecting,
canceling, and a somewhat restrictive notion of subgroup decision. In contrast, our construction satisfies
canceling and parameter hiding, is flexible enough to achieve any of the three flavors of projecting
we defined in the previous section (depending on the parameter choices), and comes equipped with
reductions for more general instances of subgroup decision.

Notationally, we augment the bilinear groups G discussed in the previous section: we now focus
only on the case when the group order is some prime p, and consider G = (p,B1, B2, BT , E, µ) built on
top of G = (p,G,H,GT , e); this means B1, B2, and BT may contain multiple copies of G, H, and GT
respectively, and that the map E uses e as a component. Because we are moving to bigger spaces, we also
include a value µ that allows us to test membership in B1 and B2; as an example, consider B1 ⊂ G×G.
Then, while an efficient membership test for G implies one for G×G, additional information µ may be
necessary to allow one to (efficiently) test for membership in B1.

Our construction crucially uses dual pairing vector spaces, which were introduced by Okamoto and
Takashima [36, 37] and have been previously used to provide pairings E : Gn ×Hn → GT , built on top
of pairings e : G×H → GT , that satisfy the canceling property. As we cannot have a cyclic target space
if we want to satisfy projecting, however, we instead need a map whose image is GdT for some d > 1.
Intuitively, we achieve this by piecing together d “blocks,” where each block is an instance of a dual
pairing vector space; the construction of Seo and Cheon is then obtained as the special case in which
d = n, and regular dual pairing vector spaces are obtained with d = 1. We begin with a key definition:
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Definition 3.1 (Dual orthonormal). Two bases B = (~b1, . . . ,~bn) and B∗ = (~b∗1, . . . ,
~b∗n) of Fnp are dual

orthonormal if ~bj ·~b∗j ≡ 1 mod p for all j, 1 ≤ j ≤ n, and ~bj ·~b∗k ≡ 0 mod p for all j 6= k.

We note that one can efficiently sample a random pair of dual orthonormal bases (B,B∗) by sampling
first a random basis B and then solving uniquely for B∗ using linear algebra over Fp; we denote this

sampling process as (B,B∗) $←− Dual(Fnp ). By repeating this sampling process d times, we can obtain a
tuple ((B1,B∗1), . . . , (Bd,B∗d)) of d pairs of dual orthonormal bases of Fnp . We denote the vectors of Bi as

(~b1,i . . . ,~bn,i), and the vectors of B∗i as (~b∗1,i, . . . ,
~b∗n,i). We then give the following definition:

Definition 3.2 (Concatenation). The concatenation of bases (B1, . . . ,Bd) of Fnp is a collection of n

vectors (~v1, . . . , ~vn) in Fdnp , where each ~vj := ~bj,1|| . . . ||~bj,d. Alternatively, we can view each ~vj as a d×n
matrix, where the i-th row is ~bj,i. We denote the concatenation of (B1, . . . ,Bd) as Concat(B1, . . . ,Bd).

To begin our construction, we build off G = (p,G,H,GT , e, g, h), where g and h are generators of G
and H respectively, and consider groups B1 ⊂ Gdn and B2 ⊂ Hdn. Notationally, we write an element of
B1 as gA, where A = (αi,j)

d,n
i,j=1 is a d× n matrix and gA := (gα1,1 , . . . , gα1,j , . . . , gα1,n , gα2,1 , . . . , gαd,n).

We similarly write elements of B2 as hB for a d× n matrix B = (βij)
d,n
i,j=1, and furthermore define the

bilinear map E : B1 ×B2 → GdT as

E(gA, hB) :=

(
n∏
k=1

e(gα1,k , hβ1,k), . . . ,
n∏
k=1

e(gαd,k , hβd,k)

)
. (1)

Observe that the i-th coordinate of the image is equal to e(g, h)Ai·Bi mod p, where Ai and Bi denote the
i-th rows of A and B respectively. Then, to begin to see how our construction will satisfy projecting
and canceling, we have the following lemma:

Lemma 3.3. Let (~v1, . . . , ~vn) = Concat(B1, . . . ,Bd) and (~v∗1, . . . , ~v
∗
n) = Concat(B∗1, . . . ,B∗d), where

(Bi,B∗i ) are dual orthonormal bases of Fnp . Then

E(g~vj , h~v
∗
j ) = (e(g, h), . . . , e(g, h)) ∀j and E(g~vj , h~v

∗
k) = (1T , . . . , 1T ) ∀j 6= k.

Proof. By the definition of the pairing, E(g ~vj , h
~v∗
k) =

(
e(g, h)

~bj,1·~b∗k,1 , . . . , e(g, h)
~bj,d·~b∗k,d

)
for any j and

k. If j = k, then the fact that (Bi,B∗i ) are dual orthonormal for all i implies by definition that
~bj,i ·~b∗j,i ≡ 1 mod p for all i and j, and thus E(g~vj , h~v

∗
j ) = (e(g, h), . . . , e(g, h)). For the second property,

we again use the definition of dual orthonormal bases to see that ~bj,i ·~b∗k,i ≡ 0 mod p for all j 6= k, and

thus E(g~vj , h~v
∗
k) = (1T , . . . , 1T ).

While Lemma 3.3 therefore shows us directly how to obtain canceling, for projecting we are still
mapping into a one-dimensional image. To obtain more dimensions, it turns out we need only perform
some additional scalar multiplication. We give the following definition:

Definition 3.4 (Scaling). Define C = (ci,j)
d,n
i,j=1 to be a n×d matrix over Fp. Given bases (B1, . . . ,Bd) of

Fnp , we define the scaling of these bases by C to be new bases (D1, . . . ,Dd), where Di = (c1,i~b1,i, . . . , cn,i~bn,i)
for all i, 1 ≤ i ≤ d. We denote the scaling of (B1, . . . ,Bd) by C as Scale(C,B1, . . . ,Bd).

Intuitively then, we use the entries in the i-th column of C to scale the vectors in the basis Bi and
obtain the basis Di. As we still have ~bj,i ·~b∗k,i ≡ 0 mod p for j 6= k, multiplication by a scalar will not
affect this and we still satisfy canceling. The scalar values do, however, build in extra dimensions into
the image of our pairing, as demonstrated by the following lemma:
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Algorithm 1 BilinearGen′: generate a bilinear group G that satisfies projecting and canceling

Input: d, n ∈ N; distribution Dd,n over matrices in Mn×d(Fp); security parameter 1k.

1. (p,G,H,GT , e)
$←− BilinearGen(1k, 1).

2. Pick values g and h such that G = 〈g〉 and H = 〈h〉.
3. Sample d pairs (Bi,B∗i )

$←− Dual(Fnp ) to obtain two sets (B1, . . . ,Bd) and (B∗1, . . . ,B∗d) of bases of
Fnp , where (Bi,B∗i ) are dual orthonormal.

4. Sample C = (cij)
d,n
i,j=1

$←− D and compute (D1, . . . ,Dd) := Scale(C,B1, . . . ,Bd).
5. For all i, 1 ≤ i ≤ n, define B1,i := 〈g~vi〉 and B2,i := 〈h~v∗i 〉, where (~v1, . . . , ~vn) := Concat(D1, . . . ,Dd)
and (~v∗1, . . . , ~v

∗
n) := Concat(B∗1, . . . ,B∗d).

6. Define B1 := ⊕ni=1B1,i ⊂ Gdn, B2 := ⊕ni=1B2,i ⊂ Hdn, and BT := GdT . Define the pairing
E : B1 ×B2 → BT as in Equation 1.
7. Finally, to be able to check that an element gM ∈ Gdn for M = (mij)

d,n
i,j=1 is an element of B1, we

observe that the vectors ~v1, . . . , ~vn span an n-dimensional subspace V of Fdnp . Thus, there must be
another subspace, call it W, of dimension dn−n, that contains all vectors in Fnp that are orthogonal to

vectors in V. Given µ2 := (h~w1 , . . . , h~w(d−1)n), where the {~wi}(d−1)ni=1 are a basis of W, one can therefore
efficiently check if gM ∈ B1 by checking if E(gM , h~wi) = (1T , . . . , 1T ) for all i, 1 ≤ i ≤ (d− 1)n.

Analogously, given µ1 := (g ~w
∗
1 , . . . , g

~w∗
(d−1)n), one can check if hA ∈ B2 by checking if E(g ~w

∗
i , hA) =

(1T , . . . , 1T ), where {~w∗i }
(d−1)n
i=1 are a basis for the subspace W∗ of Fnp consisting of vectors orthogonal

to vectors in the span of ~v∗1, . . . , ~v
∗
n.

8. Output G := (p,B1, B2, BT , E, (µ1, µ2)).

Lemma 3.5. Let (B1, . . . ,Bd) and (B∗1, . . . ,B∗d) be sets of bases for Fnp such that (Bi,B∗i ) are dual
orthonormal for all i. Define (~v1, . . . , ~vn) := Concat(D1, . . . ,Dd) and (~v∗1, . . . , ~v

∗
n) := Concat(B∗1, . . . ,B∗d),

where (D1, . . . ,Dd) = Scale(C,B1, . . . ,Bd) for some C ∈Mn×d(Fp). Then

E(g~vj , h~v
∗
j ) = (e(g, h)cj,1 , . . . , e(g, h)cj,d) ∀j and E(g~vj , h~v

∗
k) = (1T , . . . , 1T ) ∀j 6= k.

Proof. By the definition of the pairing, E(g~vj , h~v
∗
k) =

(
e(g, h)cj,1

~bj,1·~b∗k,1 , . . . , e(g, h)cj,d
~bj,d·~b∗k,d

)
for any

j and k. If j = k, then the fact that (Bi,B∗i ) are dual orthonormal for all i implies by defini-

tion that ~bj,i · ~b∗j,i ≡ 1 mod p for all i and j, and thus cj,i~bj,i · ~b∗j,i ≡ cj,i mod p and E(g~vj , h~v
∗
j ) =

(e(g, h)cj,1 , . . . , e(g, h)cj,d). For the second property, we again use the definition of dual orthonormal
bases to see that ~bj,i ·~b∗k,i ≡ 0 mod p for all j 6= k, and thus cj,i~bj,i ·~b∗k,i ≡ 0 mod p and E(g~vj , h~v

∗
k) =

(1T , . . . , 1T ).

We are now ready to give our full construction of an algorithm BilinearGen′, parameterized by integers
n and d, and a distribution Dn,d on n× d matrices, to achieve a setting G = (p,B1, B2, BT , E, µ) such
that B1 ⊂ Gdn, B2 ⊂ Hdn, and BT = GdT . We present this construction in Algorithm 1, and demonstrate
that it satisfies projecting, canceling, parameter hiding, and subgroup decision.

The generality of this construction stems from the choices of d, n, and D; in fact, by choosing
different values for these parameters, we can satisfy each of the different flavors of projecting from
Section 2. To satisfy fully projecting, we choose C from a distribution over matrices of full rank n and
use d ≥ n. If we use a less restrictive distribution, we obtain weaker projection capabilities and a more
efficient construction (as we can have d < n) when projecting onto all subgroups individually is not
needed: to achieve (regular) projecting, we can use d > 1 and pick C to be of rank > 1, and to achieve
weak projecting we can in fact use d = 1 and pick C to be the vector consisting of all 1 entries. (This
last case is equivalent to working in regular dual pairing vector spaces.)
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Theorem 3.6. For all values of n ≥ 2, the bilinear group G $←− BilinearGen′(1k, n, d,Dd,n) satisfies
canceling, fully projecting as defined in Definition 2.3 for d ≥ n when Dd,n is defined over full-rank
matrices, projecting as defined in Definition 2.2 for d > 1 when Dd,n is defined over matrices of rank
> 1, and weak projecting as defined in Definition 2.1 for d = 1.

Proof. Given that our construction was specifically designed to satisfy the conditions for Lemma 3.5, we
immediately obtain canceling. To satisfy projecting, we additionally need to construct the projection
maps πij and argue that they satisfy the requirements of Definition 2.3 (in the case that C is full rank).
By the way our subgroups are defined, each projection map π1i within the group B1 must map an
arbitrary element ga1~v1+···+an~vn of B1 to gai ~vi ∈ B1,i; similarly, π2i must map ha

∗
1~v
∗
1+···+a

∗
n~v
∗
n ∈ B2 to

ha
∗
i ~v
∗
i ∈ B2,i. For π1i, we observe that it can be computed efficiently by anyone knowing ~vi and another

vector in Fdnp that is orthogonal to ~vk for all k 6= i. The situation for π2i is analogous.
As for the projection maps πT,i required for the target space, we define πT,i to map an element

e(g, h)a1C1+···+anCn to e(g, h)aiCi , where we recall Ci denotes the i-th row of the scaling matrix C (Ci
is thus a vector in Fdp for all i).

Finally, we show that the required associativity property holds, namely that E(π1,i(g
M ), π2,i(h

A)) =
πT,i(E(gM , hA)) for all elements gM ∈ B1, h

A ∈ B2, and for all i, 1 ≤ i ≤ d. To see this, observe
that gM ∈ B1 implies that gM = gα1~v1+···+αn~vn for some α1, . . . , αn ∈ Fp, and similarly that hA =
hβ1~v

∗
1+···+βn~v

∗
n . We therefore have that

E(π1,i(g
M ), π2,i(h

A)) = E(gαi~vi , hβi~v
∗
i ) = e(g, h)αiβiCi ,

where this last equality follows from Lemma 3.5. On the other hand, we have that

πT,i(E(gM , hA)) = πT,i(
n∏
k=1

e(g, h)αkβkCk) = e(g, h)αiβiCi ,

and the two quantities are therefore equal.
A similar argument applies to obtaining more limited projections when C has lower rank.

It remains to prove that our construction also satisfies parameter hiding and subgroup hiding. For
the latter property, our definition in Section 2.3 is highly general and we cannot prove that all instances
of generalized correlated subgroup decision reduce to any one assumption. Instead, we show that certain
“nice” instances of the assumption follow from SXDH.

Before we define a nice instance, we first restrict our attention to the case where n = 8, d = 1,
C is a matrix with all 1 entries. For succinctness here and in later sections, we use BasicGen(1k) =
BilinearGen′(1k, 8, 1,D), where D produces matrices with all 1 entries; i.e., we use BasicGen to produce
the specific setting in which we are interested in Section 5.

We consider two variants of this setting, which differ only in the auxiliary information µ. For µ as
defined above in Algorithm 1, we show that the required instances of the correlated subgroup decision
assumption are implied by SXDH. We additionally consider a case where µ is augmented to contain the
following three pieces of information: (1) the vectors ~v7, ~v8, ~v

∗
7, and ~v∗8; (2) a random basis for the span

of (~v1, . . . , ~v6) inside F8
p; and (3) a random basis for the span of (~v∗1, . . . , ~v

∗
6) inside F8

p. With this µ, one

can then perform a membership test for G1 ⊕ . . . ⊕ G6 on some element g~v by computing a basis for
the orthogonal space of the span of (~v1, . . . , ~v6), pairing against h raised to these vectors, and taking a
dot product in F8

p. While this additional information in µ makes some instances of subgroup decision
easy, instances entirely within G1⊕ . . .⊕G6 and H1⊕ . . . H6 are still implied by SXDH. To refer to this
instance with augmented µ in what follows, we call it the augmented construction. Now, by “nice,”
we mean that the instance of the assumption behaves as follows: if the challenge terms are in H (the
situation is analogous if they are in G), then there is a single pair in S that is common to the challenge
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sets T1 and T2 that appears in all tuples in Ssgh
G,sam that also contain the differing pair. In other words,

the given correlated samples from the opposite side of the challenge that include the differing space must
also be attached to a particular space that is guaranteed to be present in the challenge term. As we will
see, this feature turns out to be convenient for reducing to SXDH, as demonstrated by the following
lemmas. For the augmented construction, we additionally restrict to instances where each correlated
sample ti in Ssgh

G,sam or Ssgh
H,sam is contained within the set S := {(1, 2), (3, 4), (5, 6)} (this is to avoid the

additional information in µ from compromising the hardness).

Lemma 3.7. For the augmented construction, the nice instances of the generalized correlated subgroup
decision assumption, where additionally each correlated sample ti in Ssgh

G,sam or Ssgh
H,sam is contained within

the set {(1, 2), (3, 4), (5, 6)}, are implied by the SXDH assumption.

Proof. We consider a nice instance of the generalized correlated subgroup decision assumption param-
eterized by sets Ssgh

G and Ssgh
H containing singletons and tuples of the pairs (1, 2), (3, 4), (5, 6) and

challenge sets T1 and T2 differing by one pair. We assume without loss of generality that the differing
pair is (3, 4), that (1, 2) is a common pair to both T1, T2, and the challenge terms are in G.

We assume we are given an SXDH challenge of the form (g, h, ga, gb, T ), where T = gab or is random
in G. We will simulate the specified instance of the generalized correlated subgroup decision assumption.
We first choose a random dual orthonormal bases pair F,F∗ for F8

p. We then implicitly define B,B∗ as
follows:

~b1 = a~f3 + ~f1, ~b2 = a~f4 + ~f2, ~b3 = ~f3, ~b4 = ~f4, ~b5 = ~f5, ~b6 = ~f6, ~b7 = ~f7, ~b8 = ~f8

~b∗1 = ~f∗1 ,
~b∗2 = ~f∗2 ,

~b∗3 = ~f∗3 − a~f∗1 , ~b∗4 = ~f∗4 − a~f∗2 , ~b∗5 = ~f∗5 ,
~b∗6 = ~f∗6 ,

~b∗7 = ~f∗7 ,
~b∗8 = ~f∗8 .

We note that (B,B∗) are properly distributed, since applying a linear transformation to randomly sam-
pled dual orthonormal bases while preserving orthonormality produces equivalently distributed bases.
We observe that ~v7, ~v8, ~v

∗
7, ~v
∗
8 are known, as are the spans of {~v1, . . . , ~v6} and {~v∗1, . . . , ~v∗6}. Thus we can

produce the specified auxiliary information µ.
Since we have h, g, ga, we can produce all generators except h3, h4. Since (3, 4) is the differing pair

for the challenges, these generators cannot be required. Since all generators are known on the G side,
any correlated samples in G are easy to produce. To produce correlated samples for tuples containing
(1, 2) and (3, 4) in H, we simply choose random exponents t′, z ∈ Fp and implicitly set t = az + t′. We
can then produce

ht1h
z
3 = ht

′ ~f∗1+z
~f∗3 , ht2h

z
4 = h−t

′ ~f∗2−z ~f
∗
4 .

To produce the challenge terms, we compute

T
~f3(gb)

~f1 , T
~f4(gb)

~f2 .

If (5, 6) is also common to T1, T2, we can use the generators g5, g6 to add on properly distributed terms
in these subgroups as well.

The same proof can also be applied more generally when µ is not augmented, resulting in:

Lemma 3.8. For G $←− BasicGen(1k), all nice instances of the generalized correlated subgroup decision
assumption are implied by SXDH.

Finally, we prove that parameter hiding holds for the augmented construction as well.

Lemma 3.9. Parameter hiding, as in Example 2.7, holds for the augmented construction.
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Proof. This is essentially Lemmas 3 and 4 in [25], and is a consequence of the following observation.
We consider sampling a random pair of dual orthonormal bases F,F∗ of F8

p, and let A be an invertible

2 × 2 matrix over Fp. We consider the 8 × 2 matrix F whose columns are equal to ~f3 and ~f4. Then
FA is also an 8 × 2 matrix, and we form a new basis B from F and A by taking these columns in
place of ~f3, ~f4. To form the dual basis B∗, we similarly multiply the matrix with columns ~f∗3 ,

~f∗4 by the
transpose of A−1. It is noted in [25] that the resulting distribution of B,B∗ is equivalent to choosing
this pair randomly, and in particular, this distribution is independent of the choice of A. Lemma 4
in [25] observes that if take x 6= y and define ~x to be the transpose of (1, x) and ~y to the be transpose
of (y,−1), then choosing random scalars γ, λ in Fp and a random matrix A over Fp yields that the joint
distribution of λA−1~x and γAT~y is negligibly close to the uniform distribution over F2

p × F2
p. This is

precisely our parameter hiding requirement, where A represents the ambiguity in our precise choice of
the generators ~b3,~b4,~b

∗
3,
~b∗4, conditioned on the span of {~b3,~b4} and the span of {~b∗3,~b∗4} being known (in

addition to the other individual ~bi and ~b∗i vectors for i /∈ {3, 4}).

Finally, although we do not use any non-nice instances of the generalized correlated subgroup decision
assumption in this work, it is interesting to ask which of the more complex instances can be reduced
to SXDH or other static assumptions. For values of d > 1, the additional structure required to achieve
projecting seems to make directly reducing a large space of assumptions to SXDH difficult. Nonetheless,
we are able to rely only SXDH for our projecting leakage-resilient BGN variant through the use of hybrid
transitions that incrementally change the rank of the scaling matrix C. We leave it as an interesting
question for future work to further explore the minimal assumptions for supporting a broader class of
subgroups decision variants.

4 A Leakage-Resilient BGN Variant

A very elegant use of the projecting property in the composite-order setting is the public key encryption
scheme of Boneh, Goh, and Nissim [9], a scheme that is designed to allow arbitrary additions and one
multiplication of ciphertexts. The basic group operation is used for ciphertext addition, while the
bilinear map is applied during ciphertext multiplication. The secret key is then a projection map
(which equates to a factorization of the group order) that allows the decryptor to strip off the blinding
factors of the underlying ciphertexts, even after their interaction has migrated to the target group.

While these limited homomorphic properties make the BGN scheme appealing, the rigid structure
of keys can be a source of frustration when one attempts to augment its functionality or security
guarantees. Having the secret key reveal a factorization of the group order means that different users
must generate different groups, and it additionally means that the secret key is uniquely determined
(information-theoretically) from the public key. This presents a challenge, for instance, if one wants to
design a variant with provable guarantees of leakage resilience.

Proofs of leakage resilience for public key encryption schemes typically follow a strategy inspired by
the hash proof paradigm of Naor and Segev [35]. This paradigm starts with a scheme that has many
possible secret keys for each public key. A hybrid argument is used, where the first step changes to a
malformed — or invalid — ciphertext, that decrypts to different messages under the different secret keys
associated to a fixed public key. A bound on the total leakage of the secret key is then used to argue
that the adversary cannot tell which of the many possible secret keys the challenger is holding. Thus,
even though the challenger may be holding a secret key that decrypts the challenge ciphertext correctly,
he may as well be a holding a key that decrypts it to a random message. It is then possible to argue
that the scheme remains secure under leakage.

If we wish to apply this kind of proof strategy to a version of the BGN scheme, we first need a way
of allowing many secret keys for each public key. The DPVS framework we described in the previous

12



section provides a natural answer. In this framework, the projection map is no longer a factorization, but
rather a vector that comes from a suitably high-dimensional space to allow for many possibilities. This
makes it rather easy to imagine a BGN variant that preserves the somewhat-homomorphic properties
of ciphertexts, yet allows for an exponential number of secret keys per public key.

It is already well-known that applying DPVS and similar techniques for designing vector spaces in
the exponent is a useful approach for achieving leakage resilience. For example, Lewko et al. [33] demon-
strated that leakage resilience can be incorporated quite easily into dual system encryption proofs by
combining mechanisms for canceling, parameter hiding, and the fact that the dot product of sufficiently
long vectors over Fp has convenient information-theoretic properties (roughly, the dot product modulo p
is a good two-source extractor). The same high level of compatibility exists between our framework and
the pre-existing leakage resilience techniques, thus allowing us to repurpose the same linear algebraic
underpinnings that implement projecting and canceling in our framework to achieve leakage resilience
for a BGN-type scheme.

4.1 The scheme

We use our framework from Section 3 with n = d = 4. For the matrix distribution D, we consider
all matrices whose second and third rows form a rank-1 submatrix. The setting we then work in is

G $←− BilinearGen′(1k, 4, 4,D). Rather than use this framework generically, as we do in Section 5, we
re-purpose the matrix C and basis vectors (~v1, ~v2, ~v3, ~v4), (~v

∗
1, ~v
∗
2, ~v
∗
3, ~v
∗
4) ∈ F16

p — defined in Step 4 and
Step 5 of Algorithm 1 respectively — and use them explicitly in our construction and proofs. Below, we
use Ci to denote the i-th row of the scaling matrix C (for i ∈ {1, 2, 3, 4}).

• Setup(G): Pick r, r∗
$←− Fp and define ~u :=

∑
i ~vi, ~u

∗ :=
∑
i ~v
∗
i , ~w := r~v2, and ~w∗ := r∗~v∗2. Choose ~y

uniformly at random from the set of vectors in F4
p such that ~y ·C2 = 0, noting that ~y ·C3 = 0 then

holds automatically as well. Output pk = (g, g~u, g ~w, h~u
∗
, h~w

∗
) and sk =

(
~y, skT = e(g, h)~y·(

∑
i
Ci)
)
.

Note that, by construction, ~y · (
∑
iCi) = ~y · (C1 + C4) and, by Lemma 3.5, E(g~u, h~u

∗
) =(

e(g, h)
∑

j
cj,1 , . . . , e(g, h)

∑
j
cj,4
)

.

• Enc(pk ,m): We have two types of ciphertexts: Type A and Type B. If we want to be able to
perform homomorphic operations on any pair of ciphertexts, a single ciphertext could include

both types. To form a Type A ciphertext, choose s
$←− Fp and compute ctA := gm~u+s~w. To form a

Type B ciphertext, choose s∗
$←− Fp and compute ctB := hm~u

∗+s∗ ~w∗ . Output ct = (ctA, ctB). (Or
just ctA or ctB, depending on the desired homomorphic properties.)

• Eval(pk , ct1, ct2): We describe two evaluation cases: addition of Type A ciphertexts (the operations
are analogous for Type B ciphertexts), and multiplication of a Type A and Type B ciphertext
(which can then be further added in the target space BT ).

First pick a random value t
$←− Fp. If ct1 and ct2 are Type A, then return ct = ct1 · ct2 · gt ~w. If ct1

is Type A and ct2 is Type B, then return ct = E(ct1, ct2) · E(g ~w, h~w
∗
)t.

• Dec(sk , ct): To decrypt a ciphertext (ct1, ct2, ct3, ct4) ∈ G4
T , compute

∏4
i=1 ct

yi
i = skmT . Using

knowledge of skT , exhaustively search for m (this is possible since we have a small message
space). If ct is Type A, then compute ct′ = E(ct,Enc(pk , 1)) and decrypt ct′ (and analogously for
a Type B ciphertext).

To see that decryption is correct, observe that∏
i

ctyii =
∏
i

e(g, h)
myi

∑
j
cj,i = e(g, h)

m
∑

i

∑
j
yicj,i = e(g, h)

m
∑

j

∑
i
yicj,i = e(g, h)

m
∑

j
~y·Cj = skmT .
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To see that evaluation is correct, observe that if ct1 encrypts m1 and ct2 encrypts m2 then

ct = gm1~u+s1 ~w · gm2~u+s2 ~w · gt ~w = g(m1+m2)~u+(s1+s2+t)~w,

which is a properly distributed Type A encryption of m1 +m2. Pairing a Type A ct1 and a Type B ct2
similarly yields a properly distributed encryption of m1m2 in the target space, just as in BGN.

4.2 Security analysis

The security model we use is leakage against non-adaptive memory attacks, as defined by Akavia et
al. [2, Definition 3]. Briefly, the attacker first declares a leakage function f mapping secret keys to
{0, 1}` for a suitably small `. The attacker then receives pk and f(sk), and proceeds as in a standard
IND-CPA game; i.e., it outputs two messages m0 and m1, receives an encryption of mb, and wins if
it correctly guesses b. As in the case of the original BGN scheme, it suffices to argue security for
challenge ciphertexts generated in G/H, as security for the ciphertexts generated via the multiplicative
homomorphism follows from the security of ciphertexts in the base groups. While there are several
other interesting models for leakage-resilient PKE security, we choose to work with this one, as it is
clean and simple and thus allows us to give a concise demonstration of the use of our framework.

Theorem 4.1. If SXDH holds in G and ` ≤ log(p− 1)− 2k, the above construction is leakage resilient
with respect to non-adaptive memory attacks.

As in the typical hash proof system paradigm, we first define invalid ciphertexts that have more
blinding randomness than honestly generated ciphertexts. Initially, these are still decrypted consistently
by the set of secret keys corresponding to a fixed public key. After having transitioned to a game with
an invalid challenge ciphertext, however, we gradually adjust the respective distributions of secret keys
and ciphertexts to arrive at a game where, in the adversary’s view, it seems that the secret key decrypts
the ciphertext randomly.

In the course of these game transitions, we use SXDH in multiple ways. First we use it to change
from an honest to an invalid ciphertext by bringing in an additional blinding factor in a new subgroup.
This is just a “nice” instance of subgroup decision. We will also use it to make changes to the rank of
particular submatrices inside the scaling matrix C. This technique is inspired by the observation in [10]
that DDH implies a rank-1 matrix in the exponent is hard to distinguish from a rank-2 matrix. To
make the crucial switch from a secret key that properly decrypts the challenge ciphertext to a key that
decrypts it incorrectly, we rely on an information-theoretic argument leveraging a form of parameter
hiding, along with the leakage bound. Essentially, the simulator uses the remaining ambiguity in the
underlying parameters (conditioned on the public key) to help it create an invalid challenge ciphertext
after supplying the leakage.

We begin by defining the invalid encryption algorithm that blinds a gm~u payload with a random

term g
~δ, where ~δ is sampled uniformly from the span of ~v2, ~v3, instead of just the 1-dimensional span

of ~v2 within this. Similarly, it blinds a hm~u
∗

payload with a random term h
~δ∗ where ~δ∗ is sampled

uniformly from the span of ~v∗2, ~v
∗
3 instead of the 1-dimensional span of ~v∗2.

We let Game0 denote the real security game, and Game1 denote a game where the invalid encryption
algorithm is used to create the challenge ciphertext. Note that the secret key still properly decrypts an
invalid challenge ciphertext. We argue that the attacker’s advantage can change only negligibly as we
transition from Game0 to Game1:

Lemma 4.2. Under the SXDH assumption, no PPT adversary can obtain a non-negligible change in
advantage between Game0 and Game1.

14



Proof. We show how to accomplish this transition for Type A ciphertexts, relying on the DDH assump-
tion in G. This is essentially an instance of Lemma 3.8, but we include the proof here for completeness.
The case for Type B ciphertexts is analogous, relying on the DDH assumption in H. If one wants to
produce a joint ciphertext that includes both a Type A and Type B encryption, then one can simply
think of these two separate arguments as forming a hybrid argument for this transition that first changes
the Type A part of the ciphertext and then the Type B part.

Suppose there exists a PPT adversary A whose advantage changes non-negligibly between Game0
to Game1 (with a Type A challenge ciphertext). We create a PPT algorithm B that achieves a non-
negligible advantage against SXDH. B is given group elements g, ga, gb, T in G, and it is B’s task to
determine if T = gab or is random.

B first samples dual orthonormal bases (F1,F∗1), . . . , (F4,F∗4)
$←− Dual(F4

p). It then samples matrix

rows C1, C3, C4
$←− F4

p, and a random row C̃2 from the span of C3. It implicitly sets C2 = aC̃2. We note
that the resulting C is properly distributed for Game0 and Game1.

B implicitly sets:

~v1 = c11 ~f11||c12 ~f12||c13 ~f13||c14 ~f14, ~v∗1 = ~f∗11||~f∗12||~f∗13||~f∗14,

~v2 = c21(~f21 + a~f31)||c22(~f22 + a~f32)||c23(~f23 + a~f33)||c24(~f24 + a~f34), ~v
∗
2 = a~f∗21||a~f∗22||a~f∗23||a~f∗24,

~v3 = c31 ~f31||c32 ~f32||c33 ~f33||c34 ~f34, ~v∗3 = ~f∗31 − a~f∗21||~f∗32 − a~f∗22||~f∗33 − a~f∗23||~f∗34 − a~f∗24,

~v4 = c41 ~f41||c42 ~f42||c43 ~f43||c44 ~f44, ~v∗4 = ~f∗41||~f∗42||~f∗43||~f∗44.

We note that B can compute g~v1 , g~v2 , g~v3 , and g~v4 , and hence can compute g~u. It can also choose a

random scalar r
$←− Fp and compute g ~w := gr~v2 . We observe that ~u∗ = ~f∗1 1+ ~f∗31+ ~f∗41|| . . . ||~f∗14+ ~f∗34+ ~f∗44

is known to B, so it can also compute h~u
∗
. It chooses a random r̃

$←− Fp and sets h~w
∗

= hr̃(
~f∗21||...||~f

∗
24).

Observe that this results in properly distributed public parameters, which it gives to A.
Since it knows the span of C2, C3 as well as C1 + C4 it can also honestly sample the secret key

and respond to A’s leakage query. B also has the ability to produce either valid or invalid Type
B ciphertexts (even though it cannot produce h~v

∗
3 by itself, it can sample random combinations of

~v∗2, ~v
∗
3 in the exponent, which are identically distributed to random combinations of (~f∗21|| . . . ||~f∗24) and

(~f∗31|| . . . ||~f∗34)).
To create the challenge ciphertext of Type A, B computes:

gmb~uT (c21f31||...||c24f34)(gb)c21
~f21||...||c24 ~f24 .

If T = gab, this is equal to gm~u+b~v2 , which is a Type A ciphertext that is properly distributed for Game0.

If T is random, this is distributed as gmb~u+~δ where ~δ is a random linear combination of ~v2 and ~v3. To
see this, recall that C3 is the span of C2. Hence, if T = gab, B has properly simulated Game0, and if T is
random, then B has properly simulated Game1 (with a Type A challenge ciphertext). So B can leverage
A’s difference in advantage between these games to achieve a non-negligible advantage in solving DDH
in G.

We now define Game2. In this game, the scaling matrix C is chosen to be a uniformly random 4× 4
matrix over Fp (note that it has full rank with high probability). The ciphertext is still produced as
an invalid encryption, and the secret key ~y is sampled so that ~y · C2 = 0 = ~y · C3. (There is now a
2-dimensional space of such ~y.)

To transition between Game1 and Game2, we use the fact that DDH in G implies the hardness of
distinguishing a random rank one from a random rank two matrix in the exponent. This was previously
observed in [10].
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Lemma 4.3. Under DDH in G, no PPT adversary can attain a non-negligible difference in advantage
between Game1 and Game2.

Proof. We suppose there is a PPT adversary A that exhibits a non-negligible difference in advantage
between Game1 and Game2, and create a PPT algorithm B that breaks DDH in G with a non-negligible
advantage. B receives g, ga, gb, h, T = gt. Its task is to guess if t = ab or is random.

B chooses a random 2×4 matrix M over Fp (note with high probability this has rank 2). It implicitly
sets C2, C3 equal to the rows of:(

1 a
b t

)(
m11 m12 m13 m14

m21 m22 m23 m24

)
=

(
m11 + am21 m12 + am22 m13 + am23 m14 + am24

bm11 + tm21 bm12 + tm22 bm13 + tm23 bm14 + am24

)
.

B can form gc2i , gc3i for each i using its knowledge of M and g, ga, gb, gt. If t = ab, this is distributed
as a random rank-1 matrix. If t is random, this is distributed as a random rank-2 matrix. We further
note that B can sample a vector ~γ uniformly from the orthogonal space of the rows of M , which remain
orthogonal to the implicitly determined rows C2, C3. We claim that ~γ is distributed as a random vector
orthogonal to C2, C3 for either case of t. In the case that t is random, this is clear because the span
of C2, C3 is equal to the span of the rows of M . In the case that t = ab, note that M2, the second
row of M , is random conditioned on M1 + aM2, so choosing ~y such that it is also orthogonal to the
freshly random vector M2 does not change its distribution as a uniformly random vector orthogonal to
M1 + aM2.

B samples dual orthonormal bases (B1,B∗1), . . . , (B4,B∗4)
$←− Dual(F4

p). It samples the first and fourth
rows C1 and C4 of C randomly from F4

p. B defines:

~v1 = c11~b11||c12~b12||c13~b13||c14~b14, ~v∗1 = ~b∗11||~b∗12||~b∗13||~b∗14,

~v2 = c21~b21||c22~b22||c23~b23||c24~b24, ~v∗2 = ~b∗21||~b∗22||~b∗23||~b∗24,

~v3 = c31~b31||c32~b32||c33~b33||c34~b34, ~v∗3 = ~b∗31||~b∗32||~b∗33||~b∗34,

~v4 = c41~b41||c42~b42||c43~b43||c44~b44, ~v∗4 = ~b∗41||~b∗42||~b∗43||~b∗44.

B can produce all of g~v1 , . . . , g~v4 and h~v
∗
1 , . . . , h~v

∗
4 . It can then form g~u, g ~w, h~u

∗
, h~w

∗
appropriately

and give A the public parameters.
B sets ~y := ~γ for the secret key. It can then compute e(g, h)C1+C4·~y. It then responds to A’s

declared leakage function f by computing f(~y, e(g, h)C1+C4·~y) and returning the result to A. Again
using knowledge of g~v1 , . . . , g~v3 and h~v

∗
1 , . . . , h~v

∗
3 , B can produce a properly distributed ciphertext.

If t = ab, then B has properly simulated Game1. If t is random, then B has properly simulated Game2.
Hence B can leverage A’s non-negligible difference in advantage to achieve non-negligible advantage
against DDH in G.

We next define Game3. This is the same as Game2, except that the secret key ~y is sample from the
larger space of vectors such that ~y · C2 = 0 (note that ~y · C3 will no longer be zero). The element of
GT then included along with ~y in the secret key will still be e(g, h)~y·(C1+C2+C3+C4), though ~y · C3 now
makes a non-zero contribution to this. It is crucial to observe that in Game3, the secret key no longer
properly decrypts the challenge ciphertext, but it continues to properly decrypt normal ciphertexts
(such as those the adversary can make for itself using the public parameters). We transition between
Game2 and Game3 by using the following information-theoretic tool, commonly invoked in arguments
for leakage resilience (see [14, 33], for instance).
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Lemma 4.4. Let m ∈ Z, m ≥ 3, and let p be a prime. Let ~γ, ~τ be chosen independently and uniformly
at random from Fmp , and let ~τ ′ ∈ Fmp be chosen uniformly at random from the set of vectors orthogonal
to γ (w.r.t the dot product modulo p). Let F : Fmp →W be some function. Then:

dist
(
(~γ, F (~τ)), (~γ, F (~τ ′))

)
≤ ε,

as long as

|W | ≤ 4

(
1− 1

p

)
pm−2ε2.

Lemma 4.5. No adversary can attain at most a negl(λ) difference in advantage between Game2 and
Game3 as long as ` ≤ log(p− 1)− 2λ.

Proof. We suppose there is an adversary A whose advantage changes noticeably between Game2 and
Game3. We use this to create a function F and a distinguisher B that violate Lemma 4.4 for m = 3.

B first picks dual orthonormal bases (F1,F∗1), . . . , (F4,F∗4)
$←− Dual(F4

p) and a row C2
$←− F4

p. It also

picks a random vector C̃ = (c̃1, . . . , c̃4) to be equal to C1 + C2 + C3 + C4. (Observe that it is not
necessary to commit individually to the rows of C in order to fix the public parameters.) It chooses
random values αij , α

∗
ij ∈ Fp for i, j ∈ [4] up to the constraints that α2j = 1 and α∗2j = c2j for each j,

and
∑
i αijα

∗
ij = c̃j for each j. It sets:

~v2 := ~f21||~f22||~f23||~f24,

~v∗2 := c21 ~f
∗
21||c22 ~f∗22||c23 ~f∗23||c24 ~f∗24,

~u := α11
~f11 + α21

~f21 + · · ·+ α41
~f41|| . . . ||α14

~f14 + · · ·+ α44
~f44,

~u∗ := α∗11
~f∗11 + α∗21

~f∗21 + · · ·+ α∗41
~f∗41|| . . . ||α∗14 ~f∗14 + · · ·+ α∗44

~f∗44.

This allows it to produce public parameters, which it gives to A.
Next, A declares a leakage function f to be applied to ~y and e(g, h)C̃·~y. B fixes a 4 × 3 matrix M

over Fp such that M is a bijection from 3-dimensional vectors over Fp into the orthogonal space of C2

inside F4
p and also that MTM is equal to the 3 × 3 identity matrix over Fp. It implicitly sets ~y = M~τ

and defines F such that F (~τ) = f(~y, e(g, h)C̃·~y). It then receives ~γ, F (~τ) and forwards F (~τ) to A as the
response to the leakage query.

B now chooses a random scalar t
$←− Fp and sets C3 = M~γ+ tC2. Note that with high probability, C2

is not self-orthogonal, and hence not in the image of M , and this will then be properly distributed as a
random vector. The task for B is now to find settings for ~v1, ~v3, ~v4, ~v

∗
1, ~v
∗
3, ~v
∗
4 that are consistent with the

values of C̃, C3, ~u, ~u
∗, ~v2, ~v

∗
2. This is an instance of parameter-hiding: essentially B will take advantage

of the fact that the values it previously committed to did not in fact determine C3. We show how it is
able to leverage the remaining degrees of freedom in the parameter settings to now accommodate this
freshly chosen value of C3.

We consider the first four coordinates of the ~vi and ~v∗i first (and then we consider the next block of
four coordinates, etc.). Our goal is to define suitable values of c11, c41 and suitable matrices A,A∗ of
the form

A :=


a11 0 a13 a14
0 1 0 0
a31 0 a33 a34
a41 0 a43 a44

 , A∗ :=


a∗11 0 a∗13 a∗14
0 c21 0 0
a∗31 0 a∗33 a∗34
a∗41 0 a∗43 a∗44


such that

~v1 = a11 ~f11 + a13 ~f31 + a14 ~f41, ~v∗1 = c11(a
∗
11
~f∗11 + a∗13

~f∗31 + a∗14
~f∗41),
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~v3 = a31 ~f11 + a33 ~f31 + a34 ~f41, ~v∗3 = c31(a
∗
31
~f∗11 + a∗33

~f∗31 + a∗34
~f∗41),

~v4 = a41 ~f11 + a43 ~f31 + a44 ~f41, ~v∗4 = c41(a
∗
41
~f∗11 + a∗43

~f∗31 + a∗44
~f∗44)

is a valid setting. For this, we need A∗ = (A−1)T , and we need

α11 = a11 + a31 + a41, α∗11 = c11a
∗
11 + c31a

∗
31 + c41a

∗
41,

α31 = a13 + a33 + a43, α∗31 = c11a
∗
13 + c31a

∗
33 + c41a

∗
43,

α41 = a14 + a34 + a44, α∗41 = c11a
∗
14 + c31a

∗
34 + c41a

∗
44.

To see how to solve this system of equations, we first define the matrix

B =

1 0 0
0 0 0
1 1 1

 .
We then observe that a matrix A will satisfy the linear restrictions above imposed by α11, α31, α41

whenever A is of the form

A = B−1 ·

 r t u
s v w
α11 α31 α41

 ,
where r, t, u, s, v, w are free variables. We can then express the other constraints as:

(c11 c31 c41)(A
−1)T = (α∗11 α

∗
31 α

∗
41),

which we may rewrite as

(c11 c31 c41)B = (α∗11 α
∗
31 α

∗
41)

r s α11

t v α31

u w α41

 .
It is easy to see that by choosing r, t, u, s, v, w appropriately, we can make the right-hand side of this
expression equal to any vector in F3

p whose final coordinate is α11α
∗
11 + α31α

∗
31 + α41α

∗
41. Thus, for any

choice of c11 and c41 such that c11 + c31 + c41 equal this value, we can solve for r, s, t, u, v, w, and hence
for the first four coordinates of the vectors ~v1, ~v3, ~v4, ~v

∗
1, ~v∗3, ~v∗4.

B can similarly solve for suitable values for the remaining 12 coordinates of these vectors by consid-
ering each 4-coordinate block in a similar fashion. Note that applying different matrices A and (A−1)T

as a change of basis for each (Fi,F∗i ) still results in a proper distribution of random dual orthonormal
bases in each block of 4 coordinates. Once B has determined properly distributed values of ~v1, ~v3, ~v4,
~v∗1, ~v∗3, ~v∗4, it can easily form a properly distributed challenge ciphertext.

We observe that when ~τ , ~δ are orthogonal, ~y and C3 are also orthogonal (and ~y is distributed
randomly up to the constraint that it is orthogonal to C2 and C3). In this case, B properly simulates
Game2. However, when ~τ , ~δ are uniformly random, then ~y is distributed randomly up to the constraint
that it is orthogonal to C2, and hence B properly simulates Game3. Lemma 4.4 thus implies Lemma 4.5.

We next define Game4, which is the same as Game3 except that C is sampled so that C1, C2 are
random, and C3, C4 are sampled randomly from the span of C1.

Lemma 4.6. Under DDH in G, no PPT adversary can attain a non-negligible difference in advantage
between Game3 and Game4.
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Proof. We accomplish this transition in two phases, first moving to a Game3.5 where C1, C2, C4 are
random, and C3 is sampled from the span of C1. We start by supposing there is a PPT adversary A
that exhibits a non-negligible difference in advantage between Game3 and Game3.5, and create a PPT
algorithm B that breaks DDH in G with a non-negligible advantage. B receives g, ga, gb, h, T = gt. Its
task is to guess if t = ab or random.

As in the proof of Lemma 4.3, B chooses a random matrix M and implicitly sets C1, C3 equal to the
rows of (

1 a
b t

)(
m11 m12 m13 m14

m21 m22 m23 m24

)
.

B samples dual orthonormal bases (B1,B∗1), . . . , (B4,B∗4)
$←− Dual(F4

p). It samples C2, C4
$←− F4

p.
B defines:

~v1 = c11~b11||c12~b12||c13~b13||c14~b14, ~v∗1 = ~b∗11||~b∗12||~b∗13||~b∗14,

~v2 = c21~b21||c22~b22||c23~b23||c24~b24, ~v∗2 = ~b∗21||~b∗22||~b∗23||~b∗24,

~v3 = c31~b31||c32~b32||c33~b33||c34~b34, ~v∗3 = ~b∗31||~b∗32||~b∗33||~b∗34,

~v4 = c41~b41||c42~b42||c43~b43||c44~b44, ~v∗4 = ~b∗41||~b∗42||~b∗43||~b∗44.

B can produce all of g~v1 , . . . , g~v4 and h~v
∗
1 , . . . , h~v

∗
4 using g, h, ga, gb, gt. It can then produce g~u, g ~w, h~u

∗
, h~w

∗

appropriately and give A the public parameters.
To form the secret key, B samples a random vector ~y such that ~y · C2 = 0. We note that it can

compute e(g, h)(C1+C3+C4)·~y because it can compute each e(g, h)c1i and e(g, h)c3i and it knows ~y. This
allows B to respond to the leakage query made by A.

Using knowledge of g~v1 , . . . , g~v3 and h~v
∗
1 , . . . , h~v

∗
3 , B can produce a properly distributed ciphertext.

Now, if t = ab, B has properly simulated Game3. If t is random, B has properly simulated Game3.5.
Hence it can leverage A’ difference in advantage to break DDH. We can similarly rule out a PPT
adversary that distinguishes between Game3.5 and Game4.

Finally, we define Game5, which is the same as Game4 except that the (invalid Type A) ciphertext is
distributed as g~z for a completely random ~z in the span of ~v1, . . . , ~v4, independent of the message to be
encrypted. (Similarly for a Type B ciphertext it would be h~z

∗
for a random ~z∗ in the span of ~v∗1, . . . , ~v

∗
4.

Lemma 4.7. Under the SXDH assumption, no PPT adversary can obtain a non-negligible change in
advantage between Game4 and Game5.

Proof. As in the proof of Lemma 4.2, we show how to accomplish this transition for Type A ciphertexts
relying on the DDH assumption in G. This is again essentially an instance of Lemma 3.8, but we
include the proof here for completeness. The case for Type B ciphertexts is analogous, relying on the
DDH assumption in H. We also break this transition for a Type A challenge ciphertext into two stages,
first moving to a Game4.5 where only the coefficients of ~v1, ~v2, ~v3 in the exponent vector of the challenge
ciphertext are randomized. (In Game5, the coefficient of ~v4 is additionally randomized.)

Suppose there exists a PPT adversary A whose advantage changes non-negligibly between Game4
to Game4.5 (with a Type A challenge ciphertext). We create a PPT algorithm B that achieves a non-
negligible advantage against SXDH. B is given group elements g, ga, gb, T in G, and it is B’s task to
determine if T = gab or is random.

B first samples dual orthonormal bases (F1,F∗1), . . . , (F4,F∗4)
$←− Dual(F4

p). It sample random matrix

rows C1, C2, C4
$←− F4

p. It samples C̃3 randomly from the span of C1. It implicitly sets C3 = aC̃3. We
note that the resulting C is properly distributed for Game4 and Game5.
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B implicitly sets:

~v1 = c11 ~f11||c12 ~f12||c13 ~f13||c14 ~f14, ~v∗1 = ~f∗11 − a~f∗31||~f∗12 − a~f∗32||~f∗13 − a~f∗33||~f∗14 − a~f∗34,

~v2 = c21 ~f21||c22 ~f22||c23 ~f23||c24 ~f24, ~v∗2 = ~f∗21||~f∗22||~f∗23||~f∗24,

~v3 = c̃31(~f31 + a~f11)||c̃32(~f32 + a~f12)||c̃33(~f33 + a~f13)||c̃34(~f34 + a~f14), ~v
∗
3 = a~f∗31||a~f∗32||a~f∗33||a~f∗34,

~v4 = c41 ~f41||c42 ~f42||c43 ~f43||c44 ~f44, ~v∗4 = ~f∗41||~f∗42||~f∗43||~f∗44.

We note that B can compute g~v1 , g~v2 , g~v3 , and g~v4 , and hence can compute g~u. It can also choose a

random scalar r
$←− Fp and compute g ~w := gr~v2 . We observe that ~u∗ = ~f∗11+ ~f∗21+ ~f∗41|| . . . ||~f∗14+ ~f∗24+ ~f∗44

is known to B, so it can also compute h~u
∗
. It chooses a random r∗

$←− Fp and sets h~w
∗

= hr
∗~v∗2 . This

results in properly distributed public parameters, which it gives to A.
Since it knows C2, B can sample a ~y randomly such that C2 · ~y = 0. It also must compute

e(g, h)~y·(C1+C3+C4). It knows C1, C4, so it easily can produce e(g, h)~y·(C1+C4). It can then produce

e(g, h)~y·C3 as e(ga, h)~y·C̃3 and multiply this in. This allows it to form a properly distributed secret key
and respond to A’s leakage query.

We note that B also has the ability to produce invalid Type B ciphertexts, as it can sample random
combinations of ~v∗2, ~v

∗
3 in the exponent, which are identically distributed to random combinations of

(~f∗21|| . . . ||~f∗24) and (~f∗31|| . . . ||~f∗34)). Furthermore, it can produce Type B ciphertexts as they would
be distributed in Game5, as random linear combinations of ~v∗1, . . . , ~v

∗
4 are identically distributed to

random linear combinations of (~f∗11|| . . . ||~f∗14), . . . , (~f∗41|| . . . ||~f∗44). (This would be needed to do a hybrid
argument for a joint ciphertext that has both Type A and Type B parts.)

To create the challenge ciphertext of Type A, B chooses a random t
$←− Fp and computes:

gmb~ugt~v2T (c31f11||...||c34f14)(gb)c31
~f31||...||c34 ~f34 .

If T = gab, this is equal to gm~u+t~v2+b~v3 , which is a Type A ciphertext that is properly distributed for

Game4. If T is random, this is distributed as gmb~u+~δ where ~δ is a random linear combination of ~v1, ~v2,
and ~v3. To see this, recall that C1 is the span of C3. Hence, if T = gab, B has properly simulated Game4,
and if T is random, then B has properly simulated Game4.5 (with a Type A challenge ciphertext). So B
can leverage A’s difference in advantage between these games to achieve a non-negligible advantage in
solving DDH in G.

The transition from Game4.5 to Game5 with a Type A ciphertext is analogous, just with the roles of
C1 and C4 reversed (note that both are in the span of C3).

This completes the proof of leakage resilience for our scheme.

5 An IBE with IND-CCA1 Security

The second application we provide is an IND-CCA1-secure identity-based encryption scheme. Although
IND-CCA2-secure IBE schemes have already been constructed, we believe our techniques are more
generally useful beyond this single application.

At its heart, our construction can be thought of as a variant on the Boneh-Boyen scheme, which
is IND-CPA secure (and is clearly not IND-CCA2 secure, as it has re-randomizable ciphertexts). By
adding in various components in different subgroups, we first show (using canceling, parameter hiding,
and subgroup decision variants) that our construction satisfies a weak notion of IND-CCA1 security,
in which the adversary does not even get to see the public parameters. While such a notion might
not seem to be very useful on its own, we next show that, by folding in weak projecting for additional
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subgroups, we are able to boost up to full IND-CCA1 security. This is a new application of projecting
that requires only a mild expansion of the structure of the original scheme and fits in nicely with the
evolution of dual system encryption techniques.

The high-level idea of the construction and proof is as follows. We start with the core Boneh-Boyen
construction and embed it into groups with several canceling subgroups; we then add decryption checks
to confirm that the ciphertext conforms to the appropriate structure in certain subgroups. Now, we
observe that if an adversary is not given the public parameters, it can attempt to produce well-formed
decryption queries only using the information it gains from key requests. We can apply a dual-system
encryption approach to add random components to these keys in a subgroup that we also add to the
ciphertext. Now, since everything in this “semi-functional” subgroup is randomized, the adversary
cannot learn the appropriate structure that is being tested for by the decryption oracle. Hence, the
only successful decryption queries it can produce must avoid this semi-functional space; we can use an
adversary who produces such a query while receiving elements with random semi-functional components,
however, to break a variant of subgroup decision. In this weak security game where no public parameters
are given out, we can therefore prove IND-CCA1 security. Our notion of the weak game here is inspired
by the new interpretation of dual system encryption techniques developed by Lewko and Waters [30].

To reduce full IND-CCA1 security to this weak version, we enlarge the space of our weakly secure
scheme by adding two more subgroups so that we can project separately onto the components of the
embedded scheme and the additional space; our construction then places meaningful components only
in this additional space. To prove security, we first expand into the embedded space using a variant of
subgroup decision. We now have a “shadow” copy of the scheme, attached to both keys and ciphertexts,
that is not reflected in the public parameters, and we can project separately onto the real copy and
onto this shadow copy. Thus, we can reduce full security to the weak security of the shadow scheme
by having the reduction create the components in the real space itself and use projection to interpolate
between an adversary on the full game and a challenger for the weak game.

5.1 An IBE with weak IND-CCA1 security

We first define a weak version of IND-CCA1 security for IBE, in which the adversary does not get to
see the full public parameters, but only the bilinear group:

Definition 5.1. For a bilinear group generator BilinearGen, an IBE (Setup,KeyExt,Enc,Dec), an ad-
versary A, and a bit b, let pA

b (k) be the probability of the event that b′ = 0 in the following game:

• Step 1. G $←− BilinearGen(1k, n); (params,msk)
$←− Setup(G).

• Step 2. (state,m0,m1, id
∗)

$←− ADec(params,msk ,·,·),KeyExt(params,msk ,·)(G).

• Step 3. If |m0| 6= |m1| or A queried its KeyExt oracle on id∗, output ⊥. Otherwise, output

ct∗
$←− Enc(params, id∗,mb).

• Step 4. b′
$←− AKeyExt(params,msk ,·)(state, ct∗).

We say that the IBE satisfies weak IND-CCA1 security if for all PPT algorithms A there exists a
negligible function ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

For our bilinear group, we require six subgroups on each side of the pairing; this means we run G =

(N,G,H,GT , e, {gi}i, {hi}i, µ)
$←− BilinearGen′(1k, 6), where G := ⊕6

i=1Gi = 〈gi〉, H := ⊕6
i=1Hi = 〈hi〉,

e : G ×H → GT , µ allows one to check membership in both G and H, and N is the maximum order
of any element in these groups. We require that the message space is the cyclic subgroup generated
by e(g1, h1) in GT . Our construction relies generically on the structure of the group and thus can be
instantiated, as we see below, in either composite-order groups, using N as a product of distinct primes,
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or prime-order groups, using N as a prime. In addition to the regular canceling (and parameter hiding)
requirements, we also require that specific generators gi ∈ Gi and hi ∈ Hi for all i, 1 ≤ i ≤ 4, are chosen
such that

e(g1g2, h1h2) = e(g3g4, h3h4) = 1. (2)

Although this might seem like an additional requirement, as we see below and in Section 6, this property
can be trivially constructed in prime-order and composite-order settings that satisfy the regular notion
of canceling. This same sort of reorganization could also be applied to the original Boneh-Boyen
construction by conceptualizing keys and ciphertexts as single elements in G×G instead of as pairs of
elements in G, and more generally we consider the distinction between single group elements in a larger
group and tuples of elements in a smaller group a matter of taste. (Of course, thinking of G × G as
a single group results in certain cases of subgroup decision problems being easy, such as distinguishing
G× 1G from G×G, but these cases will not come up.) Armed with such a bilinear group, we begin by
presenting our IBE construction.

• Setup(G): Parse G = (N,G,H,GT , e, {gi}6i=1, {hi}6i=1, µ) and pick α
$←− Z/NZ. Output params :=

((N,G,H,GT , e, µ), g1, g2, A := e(g1, h1)
α) and msk := (hα1 , {hi}6i=1).

• KeyExt(params,msk , id): Pick t, t′, γ, γ′, β, β′
$←− Z/NZ and compute sk id ,1 := hα1h

tid
1 ht2h

γ
5h

β
6 and

sk id ,2 := ht
′id
1 ht

′
2 h

γ′

5 h
β′

6 Output sk id := (sk id ,1, sk id ,2).

• Enc(params, id ,M): Pick s
$←− Z/NZ and compute ct1 := M · As and ct2 := gs1 · gsid2 . Output

ct := (ct1, ct2).

• Dec(params, sk id , ct): Check that ct2 ∈ G and that e(ct2, sk id ,2) = 1; output ⊥ if either of these
does not pass. Otherwise, output M := ct1 · e(ct2, sk id ,1)

−1.

We note that msk can be used to decrypt directly; i.e., rather than form sk id and decrypt in the
usual way, we can instead compute M = ct1 · e(ct2, hα1 )−1.

Lemma 5.2. If canceling and Equation 2 hold in G, then the above construction describes a correct
identity-based encryption scheme.

Proof. To see that, for all identities id and messages M , sk id
$←− KeyExt(params,msk , id) correctly

decrypts a ciphertext ct
$←− Enc(params, id ,M), we first observe that the decryption check will pass, as

e(ct2, h
t′id
1 ht

′
2 h

γ′

5 h
β′

6 ) = e(gs1 · gsid2 , hid1 h2)
t′ = e(gs1, h

id
1 )t

′ · e(gsid2 , h2)
t′ = (e(g1, h1)e(g2, h2))

st′id = 1,

where the first equality follows from canceling and the last equality follows from Equation 2. Addition-
ally, decryption succeeds in recovering the message, as

ct1 · e (ct2, sk id ,1)
−1 = M ·As · e(gs1gsid2 , hα1 · htid1 · ht2 · h

γ
5 · h

β
6 )−1

= M · e(g1, h1)αs · e(gs1, hα1 · htid1 )−1 · e(gsid2 , ht2)
−1

= M · e(g1, h1)αs · e(g1, h1)−αs · e(g1, h1)−stid · e(g2, h2)−stid

= M · e(g1, h1)−stide(g2, h2)−stid

= M · (e(g1, h1)e(g2, h2))−stid

= M,

where the second equality again follows from canceling and the last from Equation 2.
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Theorem 5.3. If canceling, parameter hiding, Equation 2, and generalized correlated subgroup decision
hold in G, then the above construction describes a weakly IND-CCA1-secure identity-based encryption
scheme.

To actualize these abstract requirements, for completeness we consider in Section 6 how they are
satisfied in a composite-order bilinear group. In the prime-order setting, we already gave our augmented
BasicGen construction in Section 3 (which we recall uses n = 8, d = 1, a scaling matrix C with all 1
entries, and auxiliary information µ that allows for a membership test in the first six subgroups),
and proved that it satisfied canceling and parameter hiding, and that all nice instances of generalized
correlated subgroup decision hold if SXDH holds. Our construction also uses gi = g~vi and hi = h−~v

∗
i ,

so the definition of dual orthonormal bases ensures that Equation 2 holds as well. As all the instances
we use in our proof are nice, we have the following corollary:

Corollary 5.4. If SXDH holds in G $←− BasicGen(1k) and G uses augmented information µ, where
BasicGen and augmented µ are as specified in Section 3 , then the instantiation of the above construction
in G is a weakly IND-CCA1-secure identity-based encryption scheme with identity space Fp and message
space GT .

To prove Theorem 5.3, we proceed through a series of game transitions as follows; formal descriptions
of the games and proofs of their indistinguishability can be found in Appendix A.

• Game0. The honest weak IND-CCA1 game.

• Game1. Switch to adding in a “duplicate” component in G3 ⊕G4 to the challenge ciphertext ct∗2;
i.e., the value gs

′
3 g

s′id
4 . This is indistinguishable from Game0 by subgroup decision.

• Game2. Switch the G3⊕G4 component in ct∗2 to be uniformly random. This is identical to Game1
by parameter hiding.

• Game3. Switch the keys returned by KeyExt to have random components in H3⊕H4 on sk id ,1 and
on sk id ,2; i.e., values hs

′
3 h

s′′
4 (different values of s′, s′′ for sk id ,1 and sk id ,2). This is indistinguishable

from Game2 using a hybrid argument relying on subgroup decision and parameter hiding.

• Game4. Switch from performing the decryption check with a term of the form ht
′id
1 ht

′
2 h

γ′

5 h
β′

6 to

using a term of the form ht
′id
1 ht

′
2 h

t′′id
3 ht

′′
4 h

γ′

5 h
β′

6 . This is indistinguishable from Game3 by subgroup
decision.

• Game5. Switch the Dec oracle to return ⊥ on every query in which ct2 6= 1, and 1 if ct2 = 1. This
is indistinguishable from Game4 by subgroup decision and parameter hiding.

• Game6. Switch to encrypting a random message in the challenge ciphertext. This is indistinguish-
able from Game5 by subgroup decision; furthermore, as there is now no information about the bit
b, any adversary playing this game has advantage exactly zero.

5.2 Boosting to full IND-CCA1 security

With a weak IND-CCA1-secure IBE in place, we now consider how to augment it to achieve full IND-
CCA1 security. Briefly, we do this by adding extra subgroups: to start, we assume we have a bilinear

group G̃ := (N, G̃, H̃, G̃T , ẽ, µ̃)
$←− BilinearGen(1k, 8); i.e., a group such that G̃ := ⊕8

i=1G̃i = 〈g̃i〉,
H̃ := ⊕8

i=1H̃i = 〈h̃i〉, and ẽ : G̃ × H̃ → G̃T , and µ̃ allows one to efficiently test membership in G̃ and
H̃. Once again, these subgroups should all be canceling, and satisfy

ẽ(g̃1g̃2, h̃1h̃2) = ẽ(g̃3g̃4, h̃3h̃4) = ẽ(g̃7g̃8, h̃7h̃8) = 1. (3)

for a particular choice of generators g̃i, h̃i. Additionally, the group generation process should also
produce a trapdoor τ that allows for the efficient computation of projection maps πG and πH such that
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πG : G̃→ G̃1 ⊕ . . .⊕ G̃6 and πH : H̃ → H̃1 ⊕ . . .⊕ H̃6; i.e., these map into subgroups analogous to the
ones that we used in our construction of a weak IND-CCA1-secure IBE.

Finally, if we consider explicitly the group G = (N,⊕6
i=1Gi,⊕6

i=1Hi, GT , e, µ) from our weakly secure
construction, then it should be the case that from G one can create G̃ := (N, G̃, H̃, G̃T , ẽ, µ̃) such that
Gi = G̃i and Hi = H̃i for all i, 1 ≤ i ≤ 6, and τ can be derived from knowledge of µ. The message space
and the space of possible identities are the same for the full scheme and the embedded weak scheme.

In our reduction to the weak IND-CCA1 security, we crucially rely on these projection maps, as
well as one other property: if the groups G̃ and H̃ are generated from scratch, then generators for
every subgroup will be known. If the groups are instead generated from the group description for the
weak scheme, however, then not all such generators are known; we require that knowledge of suitable
generators g̃7, g̃8, h̃7, and h̃8 be incorporated in τ , but the rest of the generators may be unknown.

We now give our construction in this framework:

• Setup(G̃): Parse G̃ = (N, G̃, H̃, G̃T , ẽ, µ̃, {g̃i}8i=1, {h̃i}8i=1) and pick α
$←− Z/NZ. Output params :=

(N, G̃, H̃, G̃T , ẽ, µ̃), g̃7, g̃8, A := ẽ(g̃7, h̃7)
α) and msk := (h̃α7 , {h̃i}8i=1).

• KeyExt(params,msk , id): Pick t, t′, γ, γ′, δ, δ′
$←− Z/NZ and compute sk id ,1 := h̃α7 · h̃tid7 · h̃t8 · h̃

γ
5 · h̃δ6

and sk id ,2 := h̃t
′id
7 · h̃t′8 · h̃

γ′

5 · h̃δ
′

6 . Output sk id := (sk id ,1, sk id ,2).

• Enc(params, id ,M): Pick s
$←− Z/NZ and compute ct1 := M · As, ct2 := g̃s7 · g̃sid8 . Output

ct := (ct1, ct2).

• Dec(params, sk id , ct): First check that ct2 ∈ G̃ and that ẽ(ct2, sk id ,2) = 1; output ⊥ if equality
does not hold. Otherwise, output M := ct1 · ẽ(ct2, sk id ,1)

−1.

We note that decryption can again be simplified using msk ; in this case, we compute M = ct1 ·
ẽ(ct2, h̃

α
7 )−1.

Lemma 5.5. If canceling and Equation 3 hold in G̃, then the above construction describes a correct
identity-based encryption scheme.

Proof. To see that, for all identities id and messages M , sk id
$←− KeyExt(params,msk , id) correctly

decrypts ct
$←− Enc(params, id ,M), we first observe that the decryption check will pass, as e(ct2, h̃

γ′

5 h̃
δ′
6 ) =

1 by canceling, and

ẽ(ct2, h̃
t′id
7 h̃t

′
8 ) = ẽ(g̃s7 · g̃sid8 , h̃t

′id
7 h̃t

′
8 ) = (ẽ(g̃7, h̃7)ẽ(g̃8, h̃8))

st′id = 1.

by canceling and Equation 3.
To additionally see that decryption will succeed in recovering the message, we have

ct1 · ẽ(ct2, sk id ,1)
−1 = M ·As · (ẽ(g̃s7 · g̃sid8 , h̃α7 · h̃tid7 · h̃t8 · h̃

γ
5 · h̃

β
6 )−1

= M · ẽ(g̃7, h̃7)αs · ẽ(g̃s7, h̃α7 · h̃tid7 )−1 · ẽ(g̃sid8 , h̃t8)
−1

= M · e(g̃7, h̃7)αs · e(g̃7, h̃7)−αs · e(g̃7, h̃7)−stid · e(g̃8, h̃8)−stid

= M · (e(g̃7, h̃7)e(g̃8, h̃8))−stid

= M,

where the second equality again follows from canceling and the last from Equation 3.

Theorem 5.6. If weak projecting, canceling, parameter hiding, Equation 3, and generalized correlated
subgroup decision hold in G̃, then the above construction is a IND-CCA1-secure identity-based encryption
scheme.
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As we did for our weak IBE construction, we consider how to actualize these abstract requirements in
both the composite-order and prime-order settings; for completeness, our composite-order construction
and proofs that it satisfies these requirements can be found in Section 6. For the prime-order setting, we
can now use our BasicGen construction from Section 3; here, as G̃ = G8, we can use our non-augmented
construction, as testing membership in G̃ reduces to testing membership in G. We have already proved
this setting satisfies weak projecting, canceling, and parameter hiding, and that the nice instances of
generalized correlated subgroup decision hold if SXDH holds. As with our weak IBE, Equation 3 holds
trivially by the definition of dual orthonormal bases.

We must also consider how to embed G into G̃ as described above; this is also quite simple, however,
as we can simply use G̃i = Gi. The augmented auxiliary information µ for the weak scheme furthermore
enables computation of the projection maps πG and πH , as knowledge of the spans of {~v1, . . . , ~v6} and
{~v∗1, . . . , ~v∗6} allows one to compute a linear transformation that projects from F8

p onto these spans, which
can then be applied in the exponent to map onto G1 ⊕ . . .⊕G6 and H1 ⊕ . . .⊕H6.

As all of the instances of generalized correlated subgroup decision that we use in our proof of
Theorem 5.6 are nice, we obtain the following corollary:

Corollary 5.7. If SXDH holds in G̃, where G̃ is constructed from G $←− BasicGen(1k) as described above,
then the instantiation of the above construction in G̃ is an IND-CCA1-secure identity-based encryption
scheme with identity space Fp and message space GT .

To prove Theorem 5.6, we proceed through the following series of game transitions:

• Game0. The honest IND-CCA1 game.

• Game1. Switch the secret keys returned by KeyExt to have additional “duplicate” elements in
H̃1⊕ H̃2 attached; i.e., elements of the form h̃β1 h̃

t′id
1 h̃t

′
2 on sk id ,1 and h̃t

′′id
1 h̃t

′′
2 on sk id ,2. Switch Dec

to use h̃β1 h̃
α
7 in place of just h̃α7 , and use a term of the form h̃t

′′id
1 h̃t

′′
2 h̃

tid
7 h̃t8h̃

γ′

5 h̃
δ′
6 for the decryption

check. This is indistinguishable from Game0 by subgroup decision.

• Game2. Switch the challenge ciphertext to add “duplicate” terms ẽ(g̃1, h̃1)
βs′ to ct∗1 and g̃s

′
1 g̃

s′id
2

to ct∗2. This is indistinguishable from Game1 by subgroup decision.

Finally, we show that if an adversary can win Game2 then, using weak projection, it can be used
to construct an adversary that breaks the weak IND-CCA1 security of the underlying scheme (i.e., the
scheme constructed in the previous section). We therefore reduce the full IND-CCA1 security of this
scheme to the weak IND-CCA1 security of the embedded scheme.

Following this outline, we begin by adding in extra components to secret keys, and changing de-
cryption accordingly.

25



Game0, Game1

1 (N, G̃, H̃, G̃T , ẽ, {g̃i}8i=1, {h̃i}8i=1)
$←− BilinearGen(1k, 8); G̃← (N, G̃, H̃, G̃T , ẽ)

2 α
$←− Z/NZ, α, β

$←− Z/NZ ; A← ẽ(g̃7, h̃7)
α, msk ← h̃α7 , msk ← h̃β1 h̃

α
7

3 params ← (G̃, g̃1, g̃2, h̃1, h̃2, A)

4 (state,M0,M1, id
∗)

$←− AKeyExt,Dec(G̃)

5 b
$←− {0, 1}∗

6 s
$←− Z/NZ; ct∗1 ←Mb ·As, ct∗2 ← g̃s7 · g̃sid

∗
8

7 b′
$←− AKeyExt(state, (ct∗1, ct

∗
2))

Procedure KeyExt(id)

8 t, t′, γ, γ′, δ, δ′
$←− Z/NZ, t, t′, t′′, t′′′, γ, δ, γ′, δ′

$←− Z/NZ
9 return sk1

id := h̃α7 · h̃tid7 · h̃t8 · h̃
γ
5 · h̃δ6, sk2

id := h̃t
′id
7 · h̃t′8 · h̃

γ′

5 · h̃δ
′

6

return sk id ,1 := h̃β1 h̃
t′′id
1 h̃t

′′
2 · h̃α7 h̃tid7 · h̃t8 · h̃

γ
5 · h̃δ6, sk id ,2 := h̃t

′′′id
1 h̃t

′′′
2 h̃t

′id
7 · h̃t′8 · h̃

γ′

5 · h̃δ
′

6

Procedure Dec(id , (ct1, ct2))

10 t, γ, δ
$←− Z/NZ, t, t′, γ, δ

$←− Z/NZ

11 if ẽ(ct2, h̃
tid
7 h̃t8h

γ
5h

δ
6) 6= 1 return ⊥ if ẽ(ct2, h̃

t′id
1 h̃t

′
2 h̃

tid
7 h̃t8h

γ
5h

δ
6) 6= 1 return ⊥

12 return ct1 · ẽ(ct2,msk)−1

Lemma 5.8. If the generalized correlated subgroup decision assumption holds, then Game0 is computa-
tionally indistinguishable from Game1.

Proof. We assume there exists an adversary A that can distinguish between Game0 and Game1 with
some non-negligible advantage and use it to construct an adversary B that solves an instance of the
generalized correlated subgroup decision problem with related non-negligible advantage. We invoke
the instance of the assumption parameterized by sets Ssgh

G := {{7, 8}, ∅}, Ssgh
H := {{3, 4, 5, 6, 7, 8}, ∅},

T1 = {(7, 8)}, and T2 = {(1, 2), (7, 8)}, with challenge terms in H̃.
B receives as input G̃ = (N, G̃, H̃, G̃T , ẽ) and elements

(g̃7, g̃8, h̃3, . . . , h̃8, T, T
′),

where either (T, T ′) = (h̃v7, h̃
v
8) or (T, T ′) = (h̃v7h̃

z
1, h̃

v
8h̃

z
2) for v, z

$←− Z/NZ. B implicitly sets α = v and
gives params := (G̃, g̃7, g̃8, ẽ(g̃7, T )) to A.

On KeyExt queries for an identity id , B picks random t, t′, δ, δ′, σ, σ′, η, η′
$←− Z/NZ and returns

sk id ,1 := T · T ηid · (T ′)ηh̃tid7 h̃t8h̃
δ
5h̃
σ
6 , sk id ,2 := T η

′id · (T ′)η′ h̃t′id7 h̃t
′
8 h̃

δ′
5 h̃

σ′
6 ,

Note that if (T, T ′) = (h̃v7, h̃
v
8), this is distributed as in Game0. If instead (T, T ′) = (h̃v7h̃

z
1, h̃

v
8h̃

z
2), then

this is distributed as in Game1, with β := z.

On Dec queries for (id , (ct1, ct2)), B picks random values t′, δ′, σ′, η′
$←− Z/NZ and checks that

ẽ(ct2, T
η′id · (T ′)η′ h̃t′id7 h̃t

′
8 h̃

δ′
5 h̃

σ′
6 ) = 1 and outputs ⊥ if this check fails. Otherwise, it returns

M := ct1 · ẽ(ct2, T h̃id7 h̃8)−1.

Note that if T = h̃v7, this will produce the same responses as the decryption oracle in Game0, and if
T = h̃v7h̃

z
1, this will produce the same responses as the decryption oracle in Game1.
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Since B knows the public parameters, it can simply use the regular encryption algorithm to produce
the challenge ciphertext. It can therefore leverage A’s non-negligible advantage in distinguishing between
Game0 and Game1 to achieve a non-negligible advantage against this instance of the correlated subgroup
decision problem.

Next, in Game2, we add in duplicate components to the challenge ciphertext as well. This means
changing Game1 as follows:

Game1, Game2

6 s
$←− Z/NZ, s, s′

$←− Z/NZ ; ct∗1 ←Mb ·As, ct∗1 ←Mb ·As · ẽ(g̃1, h̃1)βs
′

,

ct∗2 ← g̃s7 · g̃sid
∗

8 , ct∗2 ← g̃s7 · g̃sid
∗

8 · g̃s′1 · g̃s
′id∗

2

Lemma 5.9. If the generalized correlated subgroup decision assumption holds, then Game1 is computa-
tionally indistinguishable from Game2.

Proof. We assume there exists an adversary A that can distinguish between Game1 and Game2 with some
non-negligible advantage and use it to construct an adversary B that solves an instance of the generalized
correlated subgroup decision problem with related non-negligible advantage. We invoke the instance
of the assumption parameterized by sets Ssgh

G := {{7, 8}, ∅}, Ssgh
H := {{3, 4, 5, 6, 7, 8, {((1, 2), (7, 8))}},

T1 = {(7, 8)}, and T2 = {(1, 2), (7, 8)}, with challenge terms in G̃.
To start, B receives as input G̃ = (N, G̃, H̃, G̃T , ẽ) and elements

(g̃7, g̃8, h̃3, . . . , h̃8, h̃1,7 := h̃z1h̃
t
7, h̃2,8 := h̃z2h̃

t
8, T, T

′),

where either (T, T ′) = (g̃s7, g̃
s
8) or (T, T ′) = (g̃s7g̃

w
1 , g̃

s
8g̃
w
2 ) for z, t, s, w

$←− Z/NZ. B then picks a random

α′
$←− Z/NZ and implicitly sets α := tα′ and β := zα′. It then gives params := (G̃, g̃7, g̃8, ẽ(g̃7, h̃1,7)α

′
)

to A.
On KeyExt queries for an identity id , B chooses random δ, δ′, σ, σ′, η, η′, γ, γ′

$←− Z/NZ and returns

sk1
id := h̃α

′
1,7h̃

ηid
1,7 h̃

η
2,8h̃

γid
7 h̃γ8 h̃

δ
5h̃
σ
6 = h̃zα

′
1 h̃zηid1 · h̃tα′7 h̃tηid7 · h̃zη2 · h̃

γid
7 · h̃tη8 h̃

γ
8 · h̃

δ
5 · h̃σ6 ,

sk2
id := h̃η

′id
1,7 h̃

η′

2,8h̃
γ′id
7 h̃γ

′

8 h̃
δ′
5 h̃

σ′
6 = h̃zη

′id
1 · h̃tη

′id
7 · h̃zη

′

2 · h̃
γ′id
7 · h̃tη

′

8 h̃γ
′

8 · h̃
δ′
5 · h̃σ

′
6 ,

which, for β := zα′, is distributed identically to the key computed in both Game1 and Game2.

On Dec queries of the form (id , (ct1, ct2)), B chooses random η′, γ′, δ′, σ′
$←− Z/NZ and checks that

ẽ(ct2, h̃
η′id
1,7 h̃

η′

2,8h̃
γ′id
7 h̃γ

′

8 h̃
δ′
5 h̃

σ′
6 ) = 1, and outputs ⊥ if any of this check fails. Otherwise, it returns

M := ct1 · ẽ(ct2, h̃α
′

1,7h̃
id
7 h̃8)

−1.

To produce the challenge ciphertext for id∗, B picks b
$←− {0, 1} and computes

ct1 := Mbẽ(T, h̃
α′
1,7) and ct2 := T (T ′)id

∗
.

If (T, T ′) = (g̃s7, g̃
s
8), this is a properly distributed encryption of Mb for Game1. If instead (T, T ′) =

(g̃s7g̃
w
1 , g̃

s
8g̃
w
2 ), this is a properly distributed encryption of Mb for Game2 (with s′ = w). Thus, B can

leverage A’s non-negligible difference in advantage between these games to achieve a non-negligible
advantage against this instance of the generalized correlated subgroup decision problem.
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Lemma 5.10. If the embedded scheme is weakly IND-CCA1 secure and weak projecting holds in G̃,
then no PPT adversary can achieve a non-negligible advantage in Game2.

Proof. We assume there exists an adversary A that achieves a non-negligible advantage in Game2, and
use it to construct an adversary B that has related non-negligible advantage in the weak IND-CCA1
game for the embedded scheme. To start, B receives as input G = (N,G,H,GT , e, µ). It then constructs
G̃ = (N, G̃, H̃, G̃T , ẽ, µ̃) with the properties described above; as a reminder, this is done in such a way
that B knows the trapdoor information τ and suitable generators g̃7, g̃8, h̃7, and h̃8. It then picks

α
$←− Z/NZ, and gives params := (G̃, g̃7, g̃8, ẽ(g̃7, h̃7)α) to A.
On KeyExt queries for an identity id , B first outputs id as its own KeyExt query to receive back

sk id ,1, sk id ,2 ∈ H1 ⊕H2 ⊕H5 ⊕H6. It then chooses t, t′
$←− Z/NZ and computes its response as

((sk id ,1)
′ := h̃α7 · h̃tid7 · h̃t8 · sk id ,1, (sk id ,2)

′ := h̃t
′id
7 · h̃t′8 · sk id ,2).

We note that this produces properly distributed keys.

On Dec queries of the form (id , (ct1, ct2)), B first chooses a random t
$←− Z/NZ and checks if

ẽ(ct2, h
tid
7 ht8) = 1. If this check fails, it outputs ⊥. (Since t is randomly chosen, there is only a negligible

chance that A can produce a query that fails this check but pass the decryption check with the additional
terms in H̃ present.) Otherwise, it outputs its own Dec query

(id , 1, πG(ct2)) ,

where here 1 denotes the identity element in GT . If it receives ⊥ in response, it replies with ⊥ to A. If
instead it receives some X ∈ GT , it returns to A the message

M := ct1 ·X ·
(
ẽ(ct2, h̃

α
7 h̃

id
7 h̃8)

)−1
.

To see that this properly simulates the decryption oracle, note that when the decryption checks
pass, we have

Dec(sk , (ct1, ct2)) = ct1 · ẽ(ct2, (sk id ,1)
′)−1 = ct1 · ẽ(ct2, sk id ,1)

−1 ·
(
ẽ(ct2, h̃

α
7 h̃

id
7 h̃8)

)−1
.

Moreover, we have
ẽ(ct2, sk id ,1)

−1 = e(πG(ct2), sk id ,1)
−1 = X

(by construction of the decryption algorithm for the embedded weakly secure scheme).
Finally, when A outputs its challenge (M0,M1, id

∗), B outputs M0,M1, id
∗ as its own challenge to

receive back a ciphertext (ct′1, ct
′
2). It then picks s

$←− Z/NZ and computes

ct∗1 := ct′1 · ẽ(g̃7, h̃7)αs and ct∗2 := ct′2 · g̃s7 · g̃sid8 ,

and gives (ct1, ct2) as the challenge ciphertext to A. We note that this is a properly distributed
ciphertext. When A outputs its guess bit b′, B outputs the same bit.

6 A Composite-Order Instantiation of Our IBE

To show that we can instantiate our IBE constructed in Section 5 (both the weakly and fully IND-CCA1
variants), we must construct a composite-order bilinear group that satisfies weak projecting, canceling,
parameter hiding, and generalized correlated subgroup decision.
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We begin with a symmetric bilinear group (N,G′, G′T , e
′), where N = pqrs for distinct primes p, q,

r, and s, and G′ = Gp ⊕ Gq ⊕ Gr ⊕ Gs for Gp = 〈gp〉, Gq = 〈gq〉, Gr = 〈gr〉, and Gs = 〈gs〉. The first
three primes are used in our weak scheme, and the last prime s is used to embed the weak scheme into
the full scheme.

We then pick random values a, b
$←− Z/NZ and define G := G1 ⊕ . . .⊕G6 to be GpGqGr ×GpGqGr,

where G1 := 〈(gp, gap)〉, G2 := 〈(1, gbp)〉, G3 := 〈(gq, gaq )〉, G4 := 〈(1, gbq)〉, G5 := 〈(gr, 1)〉, and G6 :=
〈(1, gr)〉. To provide a membership test for G, we assume that we are given the prime s as part of µ, so
pqr and s are separately known, but it is still hard to factor pqr.

Similarly, we define H = H1 ⊕ . . . ⊕ H6 to be GpGqGr × GpGqGr, where H1 := 〈(gbp, 1)〉, H2 :=

〈(gap , g−1p )〉, H3 := 〈(gbq, 1)〉, H4 := 〈(gaq , g−1q )〉, H5 := 〈(gr, 1)〉, and H6 := 〈(1, gr)〉. We define e :
G×H → GT by

e((g, g′), (h, h′)) := e′(g, h) · e′(g′, h′) ∀g, g′, h, h′ ∈ G′,

and set G = (N,G,H,GT := G′T , e, µ). It is easy to verify that e satisfies both bilinearity and non-
degeneracy. In addition, as pairing elements in any of the two subgroups (e.g., Gp and Gq) yields the
identity, a case-by-case analysis reveals that canceling is satisfied as well; for example, to show that
e(G1, H3) = 1, we observe that, to have order p, we must have gp = (g′)αqrs for some α ∈ Z/NZ, and
similarly have gq = (g′)βprs for some β ∈ Z/NZ, where g′ is a generator of G′. We therefore have

e((gp, g
a
p), (gbq, 1)) = e′(gp, g

b
q) · e′(gap , 1) = e((g′)αqrs, (g′)bβprs) = e(g′, g′)bαβpqr

2s2 = e(g′, g′)bαβrs·N = 1.

Projecting is also satisfied, as the Chinese Remainder theorem implies that we can efficiently construct,
for example, a value λp such that

λp ≡


1 mod p
0 mod q
0 mod r,

and thus project G′ into Gp and, incorporating the values a and b as well, into the subgroups Gi and
Hi accordingly. Finally, Equation 2 is satisfied, as

e(g1g2, h1h2) = e′(gp, g
b
p) · e′(gbp, g−1p ) = 1,

and
e(g3g4, h3h4) = e′(gq, g

a
q ) · e′(gaq , g−1q ) = 1,

so that e(g1g2, h1h2) = e(g3g4, h3h4) = 1 as required.
We note that the message space for the scheme will be the subgroup of GT of order p. This is

not the usual case, as messages are typically be assumed to come from the larger group GT . However,
this strange feature is circumvented in the prime-order case, where we can adjust things to work with
the typical message space of GT . We view this composite-order construction mostly as an instructive
demonstration of our proof techniques rather than as a scheme recommended for practice, so we are not
overly concerned with the oddity of the message space here.

We show that parameter hiding is satisfied as well in the following lemma:

Lemma 6.1. The parameter hiding requirement in Example 2.7 holds for G = (N,G,H,GT , e, µ) defined
as above.

Proof. To prove that the distributions in Example 2.7 are equivalent, we observe that hzy3 h
z
4 = (gbzyq ·

gazq , g
−z
q ) = (g

z(a+by)
q , g−zq ) and gw3 g

wx
4 = (gwq , g

aw
q · gbwxq ) = (gwq , g

w(a+bx)
q ). By the Chinese Remainder

Theorem, the values of a, b modulo q are uniformly random and independent of their values modulo the
other primes. Thus, when x 6= y, the values ax + b and ay + b are distributed uniformly at random
modulo q, since f(φ) = aφ+ b is a pairwise independent function modulo q.
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All it remains to show is that generalized correlated subgroup decision holds in this setting. To
do this, we use the generalized subgroup decision assumption, formalized by Bellare et al. [6]. Our
formalization also allows for a single prime s to be revealed, and requires subgroup decision hardness
only within the subgroups of the other prime orders. We state this as follows:

Assumption 6.2. [25] Let (S0, S1, . . . , Sk) be non-empty subsets of [m] such that for each 2 ≤ j ≤ k,
either Sj ∩ S0 = ∅ = Sj ∩ S1 or Sj ∩ S0 6= ∅ 6= Sj ∩ S1. Given a bilinear group generator BilinearGen,
define the following distribution:

G = (N = p1 . . . pmpm+1, pm+1, G,GT , e)
$←− BilinearGen(1k),

Z0
$←− GS0 , Z1

$←− GS1 , . . . , Zk
$←− GSk

,

D := (G, Z2, . . . , Zk).

(Here, the notation GSi denotes the subgroup of order
∏
j∈Si

pj.) Then for any PPT algorithm A there
exists a negligible function ν(·) such that

|Pr[A(D,Z0) = 1]− Pr[A(D,Z1) = 1]| < ν(k).

Lemma 6.3. If the generalized subgroup decision assumption holds in G, so does generalized correlated
subgroup decision.

Proof. We consider an arbitrary instance of generalized correlated subgroup decision described by sets
Ssgh
H , Ssgh

H , T1, and T2; without loss of generality we assume the challenge terms are in G. We associate
the pair (1, 2) with the prime p, the pair (3, 4) with the prime q, and the pair (5, 6) with the prime r.
In this way, we can re-interpret T1 and T2 as subsets of {p, q, r} that differ in precisely one element. We
then consider an instance of the generalized subgroup decision assumption for the composite-order group
G′ where the challenge term is either a random element of the subgroup whose order is the product of
the primes in T1 or a random element of the subgroup whose order is the product of the primes in T2.
We may assume that generators of all prime-order subgroups are given out except for the prime that
differs between T1 and T2. Also, for any subset Z of {p, q, r} such that T1 ∩ Z 6= ∅ 6= T2 ∩ Z, we may
assume that a random element is given out from the subgroup whose order is the product of the primes
in Z.

We now observe that such elements must suffice to produce the elements of G and H prescribed

by S. We choose a, b
$←− Z/NZ and can then produce all of the required generators, since S cannot

include single numbers corresponding to the prime that differentiates between T1 and T2. Now, any
tuple of pairs that appears in S and involves the prime for which we are not given a generator must
also include a pair that is common to T1 and T2. Hence, we have been given a random element X
from the subgroup whose order is the product of the primes corresponding to the pairs in the tuple. To

produce the correlated samples, we simply choose a random exponent t
$←− Z/NZ and take X raised to

appropriate powers in terms of a and b. For example, suppose that X is a random element of GpGq, and
we are tasked with creating correlated samples from G1 ⊕G3 and G2 ⊕G4; then we produce (X,Xta)
and (1, Xtb). The fact that this is properly distributed as a correlated sample follows from the Chinese
Remainder theorem, as the values of t modulo p and q are independent and each uniformly random.

By construction, we have now proved the following theorem:

Theorem 6.4. If generalized subgroup decision holds in G as described above, then the instantiation of
the construction in Section 5.1 in G is a weakly IND-CCA1-secure identity-based encryption scheme.
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We would also like to prove the corresponding theorem for the fully secure variant. To do this, we
need to show that a group G of order N = pqrs can be constructed using the previously defined group
G′ of order pqr. We observe that we could treat G′ as a subgroup of this larger group G = G′ ⊕ Gs,
and restrict ourselves to computations within this subgroup, letting a generator gs for this additional
subgroup be known. (While this process of restricting computation to strictly within G′ might reveal
s, we allow s to be known anyway.) We assume that this process of thus “embedding” a group of order
pqr into a group G of order pqrs for known s generates the trapdoor knowledge τ that allows one to
efficiently compute projection maps from G into G′.

We then define G̃ := G̃1 ⊕ . . . ⊕ G̃8 = G2, with the generators g̃1, . . . , g̃6 and h̃1, . . . , h̃6 defined
as before, and the additional generators defined as g̃7 := (gs, g

a′
s ), g̃8 := (1, gb

′
s ) h̃7 := (gb

′
s , 1), and

h̃8 := (ga
′
s , g

−1
s ) for a′, b′

$←− Z/NZ, where N = pqrs. We define ẽ by

ẽ((g, g′), (h, h′)) := e′(g, h) · e′(g′, h′) ∀g, g′, h, h′ ∈ G,

and thus use G̃T := G′T . Finally, knowledge of s allows one to project onto Gpqr and Hpqr, and the
correlated subgroup decision assumption for this expanded setting follows from the generalized subgroup
decision assumption for G of order N = pqrs by the same argument applied above for the case of three
primes, which proves the following theorem:

Theorem 6.5. If generalized subgroup decision holds in G̃, then the instantiation of the construction
in Section 5.2 in G̃ is an IND-CCA1-secure identity-based encryption scheme.
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A Proofs for Our Weak IND-CCA1-Secure IBE (Section 5.1)

To prove Theorem 5.3, which says that our IBE construction is weakly IND-CCA1 secure, we proceed
through the following series of game transitions:

• Game0. The honest weak IND-CCA1 game.

• Game1. Switch to adding in a “duplicate” component in G3 ⊕G4 to the challenge ciphertext ct∗2;
i.e., the value gs

′
3 g

s′id
4 . This is indistinguishable from Game0 by subgroup decision.

• Game2. Switch the G3⊕G4 component in ct∗2 to be uniformly random. This is identical to Game1
by parameter hiding.

• Game3. Switch the keys returned by KeyExt to have random components in H3⊕H4 on sk id ,1 and
on sk id ,2; i.e., values hs

′
3 h

s′′
4 (different values of s′, s′′ for sk id ,1 and sk id ,2). This is indistinguishable

from Game2 using a hybrid argument relying on subgroup decision and parameter hiding.

• Game4. Switch from performing the decryption check with a term of the form ht
′id
1 ht

′
2 h

γ′

5 h
β′

6 to

using a term of the form ht
′id
1 ht

′
2 h

t′′id
3 ht

′′
4 h

γ′

5 h
β′

6 . This is indistinguishable from Game3 by subgroup
decision.

• Game5. Switch the Dec oracle to return ⊥ on every query in which ct2 6= 1, and 1 if ct2 = 1. This
is indistinguishable from Game4 by subgroup decision and parameter hiding.

• Game6. Switch to encrypting a random message in the challenge ciphertext. This is indistinguish-
able from Game5 by subgroup decision; furthermore, as there is now no information about the bit
b, any adversary playing this game has advantage exactly zero.

Following this outline, we begin in Game1 by adding a “duplicate” G3 ⊕ G4 component to the
ciphertext.
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Game0, Game1

1 (N,G,H,GT , e, {gi}6i=1, {hi}6i=1, µ)
$←− BilinearGen′(1k, 6); G← (N,G,H,GT , e, µ)

2 α
$←− Z/NZ, A← e(g1, h1)

α, msk ← hα1

3 (state,M0,M1, id
∗)

$←− AKeyExt,Dec(G)

4 b
$←− {0, 1}

5 s
$←− Z/NZ, s, s′

$←− Z/NZ ; ct∗1 ←Mb ·As, ct∗2 ← gs1g
sid∗
2 , ct∗2 ← gs1g

sid∗
2 gs

′
3 g

s′id∗
4

6 b′
$←− AKeyExt(state, (ct∗1, ct

∗
2))

Procedure KeyExt(id)

7 t, t′, γ, γ′, β, β′
$←− Z/NZ

8 return (sk id ,1 ← hα1 · htid1 · ht2 · h
γ
5 · h

β
6 , sk id ,2 ← ht

′id
1 · ht′2 · h

γ′

5 · h
β′

6 )

Procedure Dec(id , (ct1, ct2))

9 t′, γ′, β′
$←− Z/NZ

10 if e(ct2, h
t′id
1 ht

′
2 h

γ′

5 h
β′

6 ) 6= 1 return ⊥
11 return ct1 · e(ct2,msk)−1

Lemma A.1. If the generalized correlated subgroup decision assumption and canceling hold in G, then
Game1 is computationally indistinguishable from Game0.

Proof. We assume there exists an adversary A that can distinguish between Game0 and Game1 with some
non-negligible advantage and use it to construct an adversary B that solves an instance of the generalized
correlated subgroup decision problem with related non-negligible advantage. We invoke the instance of
the assumption parameterized by sets Ssgh

G := {{1, 2}, ∅}, Ssgh
H := {{1, 2, 5, 6}, {((1, 2), (3, 4))}}, T1 =

{(1, 2)}, and T2 = {(1, 2), (3, 4)}, with challenge terms in G.
To start, B therefore receives as input the bilinear group G = (N,G,H,GT , e, µ), and elements

(g1, g2, h1, h2, h5, h6, h1,3 := ht1h
z
3, h2,4 := ht2h

z
4, T, T̃ ),

where either (T, T̃ ) = (gs1, g
s
2) or (T, T̃ ) = (gs1g

w
3 , g

s
2g
w
4 ) for t, z, s, w

$←− Z/NZ. B then chooses a random

α
$←− Z/NZ and implicitly sets A := e(g1, h1)

α; it then gives G to A. On KeyExt queries, B can use
its knowledge of α to compute hα1 and thus answer queries honestly. To answer decryption queries, B
performs the check in line 10 and executes line 11 honestly.

Finally, to produce the challenge ciphertext, B picks b
$←− {0, 1} and computes

ct∗1 := Mb · e(T, h1)α and ct∗2 := T · T̃ id∗ .

If (T, T̃ ) = (gs1, g
s
2), then ct∗1 = Mb ·e(g1, h1)αs and ct∗2 = gs1 ·gsid

∗
2 , and thus this is distributed identically

to the honest ct∗ in Game0. If instead (T, T̃ ) = (gs1g
w
3 , g

s
2g
w
4 ), then

ct∗1 = Mb · e(gs1gw3 , h1)α = Mb · e(g1, h1)αs,

where this last equality follows from canceling, and ct∗2 = gs1 · gsid
∗

2 · gw3 · gwid
∗

4 , and thus (ct∗1, ct
∗
2)

is distributed identically to the ct∗ in Game1. At the end of the game, if A guesses it is in Game0
then B therefore guesses that (T, T̃ ) = (gs1, g

s
2), and if A guesses it is in Game1 then B guesses that

(T, T̃ ) = (gs1g
w
3 , g

s
2g
w
4 ). As B perfectly simulates the interaction that A expects in either game and

furthermore guesses correctly whenever A does, B succeeds with an advantage negligibly different from
that of A, and thus succeeds with non-negligible advantage.
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Next, in Game2, we switch to using a random component in G3 ⊕ G4 as opposed to a duplicate
component. This means switching one line of Game1 as follows:

Game1, Game2

5 s, s′
$←− Z/NZ, s, s3, s4

$←− Z/NZ ; ct∗1 ←Mb ·As, ct∗2 ← gs1g
sid∗
2 gs

′
3 g

s′id∗
4 , ct∗2 ← gs1g

sid∗
2 gs33 g

s4
4

Lemma A.2. If parameter hiding holds in G, then Game2 is information-theoretically indistinguishable
from Game1.

Proof. Given the distribution D defined in Example 2.7 for x = id∗, one can simulate an honest
interaction in Game1, as it provides the id∗-correlated samples S1 := gs1g

sid∗
2 and S2 := gw3 g

wid∗
4 , which

can be used to form ct∗2 := S1 · S2. By parameter hiding, S2 is distributed identically to gw3 g
u
4 for

u
$←− Z/NZ, and thus Game1 and Game2 are identical.

Next, in Game3, we transition to adding in random components in H3⊕H4 to the keys. This means
changing two lines of Game2 as follows:

Game2, Game3

7 t, t′, γ, γ′, β, β′
$←− Z/NZ, t, t′, t3, t4, t

′
3, t
′
4, γ, γ

′, β, β′
$←− Z/NZ

8 return (sk id ,1 ← hα1 · htid1 · ht2 · h
γ
5 · h

β
6 , sk id ,2 ← ht

′id
1 · ht′2 · h

γ′

5 · h
β′

6 ),

return (sk id ,1 ← hα1 · htid1 · ht2 · ht
′′id
3 · ht′′4 · h

γ
5 · h

β
6 , sk id ,2 ← ht

′id
1 · ht′2 · ht

′′′id
3 · ht′′′4 · h

γ′

5 · h
β′

6 )

To now show that adding in random H3 ⊕ H4 components to extracted keys goes unnoticed, we
proceed through a series of q hybrids, where q is the number of queries made to the KeyExt oracle. In
the i-th hybrid, we answer the first i queries with additional component ht

′
3 h

t′′
4 , and we answer the last

q−i queries without such components; in fact, in the reduction we answer the queries using id -correlated
components in H3⊕H4, but we argue using parameter hiding that this is distributed identically to the
keys in Game3. We can therefore see that the first hybrid Game3,0 is equivalent to Game2, while the
last hybrid Game3,q is equivalent to Game3; to show the indistinguishability of Game2 and Game3, it
therefore suffices to show the following lemma:

Lemma A.3. If the generalized correlated subgroup decision assumption and parameter hiding hold in
G, then Game3,i is computationally indistinguishable from Game3,i−1 for all i, 1 ≤ i ≤ q.

Proof. We break the transition from Game3,i−1 to Game3,i into two nearly identical steps. In the
first step, we change the i-th key to have a random component in H3 ⊕ H4 on sk id ,1. In the sec-
ond step, we also make this change on sk id ,2. We assume there exists an adversary A that, for
some i, can distinguish between the first step and Game3,i−1 with some non-negligible advantage and
use it to construct an adversary B that solves an instance of the generalized correlated subgroup
decision problem with related non-negligible advantage (assuming parameter hiding holds). We in-

voke the instance of the assumption parameterized by sets Ssgh
G := {{1, 2}, {((1, 2), (3, 4))}}, Ssgh

H :=
{{1, 2, 5, 6}, {((3, 4), (5, 6)), ((1, 2), (3, 4))}}, T1 = {(1, 2), (5, 6)}, and T2 = {(1, 2), (3, 4), (5, 6)}, with
challenge terms in H.

To start, B therefore receives as input the bilinear group G = (N,G,H,GT , e, µ) and elements

(g1, g2, h1, h2, h5, h6, g1,3 := gs1g
w
3 , g2,4 := gs2g

w
4 , h3,5 := ha3h

b
5, h4,6 := ha4h

b
6, h1,3 := hr1h

v
3, h2,4 := hr2h

v
4, T, T̃ ),
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where either (T, T̃ ) = (ht1h
γ
5 , h

t
2h
γ
6) or (T, T̃ ) = (ht1h

z
3h
γ
5 , h

t
2h
z
4h
γ
6) for s, w, a, b, r, v, t, z, γ

$←− Z/NZ. It

then chooses a random α
$←− Z/NZ and implicitly sets A := e(g1, h1)

α; it also gives G to A. For the

first i− 1 KeyExt queries, B picks t, t′, δ, φ, σ, φ, δ′, φ′, σ′, φ′
$←− Z/NZ and returns

sk id ,1 := hα1 · htid1 · ht2 · hδ3,5 · h
ψ
4,6 · h

σ
5h

φ
6 and

sk id ,2 := ht
′id
1 · ht′2 · hδ

′
3,5 · h

ψ′

4,6 · h
σ′
5 · h

φ′

6 .

To respond to the i-th query, B instead chooses σ, φ, t′, σ′, φ′
$←− Z/NZ and returns

sk id ,1 := hα1 · T id · T̃ · hσ5 · h
φ
6 and

sk id ,2 := ht
′id
1 · ht′2 · hσ

′
5 · h

φ′

6 .

For the rest of the queries, B picks t, t′, σ, φ, σ′, φ′
$←− Z/NZ and returns

sk id ,1 := hα1 · htid1 · ht2 · hσ5 · h
φ
6 and

sk id ,2 := ht
′id
1 · ht′2 · hσ

′
5 · h

φ′

6 .

To respond to decryption queries, B picks t, σ, φ
$←− Z/NZ and checks that e(ct2, h

tid
1 ht2h

σ
5h

φ
6 ) = 1. If

this check fails, it outputs ⊥. Otherwise, it decrypts honestly using hα1 and outputs the result.
Finally, to create the challenge ciphertext for message Mb and identity id∗, B computes

ct∗1 := Mb · e(g1,3, h1)α and ct∗2 = g1,3(g2,4)
id∗ .

If A guesses it is in Game3,i−1, then B guesses that (T, T̃ ) has no H3 or H4 component, while if it guesses
that it is in the game with the first step applied B guesses that it does have this additional component.
To see that B guesses correctly whenever A does, we observe that if (T, T̃ ) = (ht1h

γ
5 , h

t
2h
γ
6) then, for the

i-th query,

sk id ,1 = hα1 · htid1 · ht2 · h
γid
5 · hσ5 · h

γ
6 · h

φ
6 = hα1 · htid1 · ht2 · h

γid+σ
5 · hγ+φ6 = hα1 · htid1 · ht2 · hσ

′
5 · h

φ′

6 ,

where σ′ and φ′ are distributed uniformly at random; this is therefore distributed identically to a key
in Game2. Similarly, if (T, T̃ ) = (ht1h

z
3h
γ
5 , h

t
2h
z
4h
γ
6) then, for the i-th query,

sk id ,1 = hα1 · T id · T̃ · hσ5 · h
φ
6 = hα1 · htid1 · ht2 · hzid3 · hz4 · h

γid
5 · hσ5 · h

γ
6 · h

φ
6 = hα1 · htid1 · ht2 · hzid3 · hz4 · hσ

′
5 · h

φ′

6 ,

which is distributed identically to a key in Game3, except an id -correlated sample is used in H3 ⊕
H4 in place of a random sample. As knowledge of the distribution D in Example 2.7 allows one to
simulate A’s view, however, the requirement that id 6= id∗ means parameter hiding implies that this
is in fact distributed identically to a key in Game3. As B therefore perfectly simulates Game3,i−1 in
the case that (T, T̃ ) = (ht1h

γ
5 , h

t
2h
γ
6) and perfectly simulates sk id ,1 keys in Game3,i in the case that

(T, T̃ ) = (ht1h
z
3h
γ
5 , h

t
2h
z
4h
γ
6), it succeeds in guessing whenever A does, and thus succeeds with non-

negligible advantage.
The second step of this transition adds a random component onto sk id ,2 in an analogous way, and

thus the reduction here is analogous to the one just presented (using the same instance of the generalized
correlated subgroup decision assumption).

Next, in Game4, we change the decryption check as follows:
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Game3, Game4

9 t′, γ′, β′
$←− Z/NZ, t′, t′′, γ′, β′

$←− Z/NZ

10 if e(ct2, h
t′id
1 ht

′
2 h

γ′

5 h
β′

6 ) 6= 1 return ⊥,

if e(ct2, h
t′id
1 ht

′
2 h

t′′id
3 ht

′′
4 h

γ′

5 h
β′

6 ) 6= 1 return ⊥

Lemma A.4. If the generalized correlated subgroup decision assumption holds in G, then Game4 is
computationally indistinguishable from Game3.

Proof. We assume we have an adversary A that distinguishes between Game3 and Game4 with some non-
negligible advantage, and use it to create an adversary B that solves an instance of the generalized cor-
related subgroup decision problem with related non-negligible advantage. We invoke the instance of the
assumption parameterized by sets Ssgh

G := {{1, 2}, {((1, 2), (3, 4))}}, Ssgh
H := {{1, 2, 5, 6}, {((3, 4), (5, 6)),

((1, 2), (3, 4))}}, T1 = {(1, 2), (5, 6)}, and T2 = {(1, 2), (3, 4), (5, 6)}, with challenge terms in H.
To start, B therefore receives as input the bilinear group G = (N,G,H,GT , e, µ) and elements

(g1, g2, h1, h2, h5, h6, g1,3 := gs1g
w
3 , g2,4 := gs2g

w
4 , h3,5 := ha3h

b
5, h4,6 := ha4h

b
6, h1,3 := hr1h

v
3, h2,4 := hr2h

v
4, T, T̃ ),

where either (T, T̃ ) = (ht1h
γ
5 , h

t
2h
γ
6) or (T, T̃ ) = (ht1h

z
3h
γ
5 , h

t
2h
z
4h
γ
6) for s, w, a, b, r, v, t, z, γ

$←− Z/NZ. It

then chooses a random α
$←− Z/NZ and implicitly sets A := e(g1, h1)

α; it also gives G to A.

To respond to KeyExt queries, B picks t, t′, δ, φ, σ, φ, δ′, φ′, σ′, φ′
$←− Z/NZ and returns

sk id ,1 := hα1 · htid1 · ht2 · hδ3,5 · h
ψ
4,6 · h

σ
5h

φ
6 and

sk id ,2 := ht
′id
1 · ht′2 · hδ

′
3,5 · h

ψ′

4,6 · h
σ′
5 · h

φ′

6 .

To respond to decryption queries, B chooses σ, φ, t′, t, σ′, φ′
$←− Z/NZ and checks that

e(ct2, h
tid
1 · ht2 · T t

′id · T̃ t′ · hσ5 · h
φ
6 ) = 1.

If this check fails, it outputs ⊥. Otherwise, it decrypts honestly using hα1 and outputs the result. If T
and T̃ have no H3 ⊕H4 components, this check matches the one in Game3, and otherwise this matches
the check in Game4.

Finally, to create the challenge ciphertext for message Mb and identity id∗, B computes

ct∗1 := Mbe(g1,3, h1)
α and ct∗2 = g1,3(g2,4)

id∗ .

If A guesses that it is in Game3, B guesses that (T, T̃ ) = (ht1h
γ
5 , h

t
2h
γ
6), and if A guesses that it is in

Game4, B guesses that (T, T̃ ) = (ht1h
z
3h
γ
5 , h

t
2h
z
4h
γ
6). By our argument above, and the fact that B perfectly

simulates either Game3 or Game4, B guesses correctly whenever A does and thus guesses with the same
non-negligible advantage.

Next, in Game5, we switch to returning ⊥ on all decryption queries, unless ct2 = 1 (in which case
we return 1). As we will see, this reduction is where we crucially leverage the weak IND-CCA property
that the parameters are not given to the attacker.

Game4 Game5

9 if e(ct2, h
t′id
1 ht

′
2 h

γ′

5 h
β′

6 ) 6= 1 return ⊥ if ct2 = 1 return 1
10 return ct1 · e(ct2,msk)−1 return ⊥
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Lemma A.5. If the generalized correlated subgroup decision assumption and parameter hiding hold in
G, then Game4 is computationally indistinguishable from Game5.

Proof. Looking at the difference between the games, we can see that the only way for an adversary
to distinguish between them is to produce a decryption query (id , (ct1, ct2)) for which ct2 6= 1 but the

decryption check e(ct2, h
tid
1 ht2h

t′id
3 ht

′
4 h

σ
5h

φ
6 ) = 1 passes. By parameter hiding, we argue that, given the

elements that an adversary sees in the course of the game, this probability must be negligible unless
ct2 is an element of G1 ⊕G2. If this is the case, we will use ct2 to break an instance of the correlated
subgroup decision assumption.

We consider the instance of the generalized correlated subgroup decision assumption parameterized
by sets Ssgh

G := {{3, 4}, {((1, 2), (3, 4))}}, Ssgh
H := {{3, 4, 5, 6}, {((1, 2), (5, 6))}}, T1 := {(3, 4), (5, 6)}, and

T2 := {(1, 2), (3, 4), (5, 6)}, with challenge terms in H.
To start, B therefore receives as input the bilinear group G = (N,G,H,GT , e, µ), and elements

(g3, g4, h3, h4, h5, h6, g1,3 := gs1g
w
3 , g2,4 := gs2g

w
4 , h1,5 := ha1h

b
5, h2,6 := ha2h

b
6, T, T̃ ),

where either (T, T̃ ) = (hz3h
γ
5 , h

z
4h
γ
6) or (T, T̃ ) = (ht1h

z
3h
γ
5 , h

t
2h
z
4h
γ
6) for s, w, a, b, z, γ, t

$←− Z/NZ.
B implicitly sets α = a and gives G to A. On KeyExt queries, B chooses random values σ, δ, η, ψ, ν, σ′, δ′,

η′, ψ′, ν ′
$←− Z/NZ and returns

sk id ,1 := h1,5 · hηid1,5 · h
η
2,6h

σ
3h

δ
4h
ψ
5 h

ν
6 and

sk id ,2 := hη
′id

1,5 · h
η′

2,6h
σ′
3 h

δ′
4 h

ψ′

5 h
ν′
6 .

By inspection, we can see that this produces keys that are distributed identically to the honest keys in
both Game4 and Game5. For the challenge ciphertext, B similarly computes it honestly.

When A queries its Dec oracle on (id , (ct1, ct2)), B first checks that e(ct2, h5) = e(ct2, h6) = 1 and
e(ct2, h3) = e(ct2, h4) = 1. If these checks pass, then ct2 is contained entirely in G1 ⊕G2. In this case,
either ct2 = 1, in which case Game4 and Game5 return the same answer and thus are identical, or ct2
can be paired against T and T̃ to determine the presence of H1 and H2 terms; i.e., if e(ct2, T ) = 1 then
T = hz3h

γ
5 , and if e(ct2, T ) 6= 1 then T = ht1h

z
3h
γ
5 . In the case that the checks pass and ct2 6= 1, B can

therefore break this variant of subgroup decision.
To argue that if ct2 6= 1 this case must happen with non-negligible probability, we claim that A

can, with only negligible probability, produce a query such that e(ct2, h
tid
1 ht2h

t′id
3 ht

′
4 h

σ
5h

φ
6 ) = 1 and

e(ct2, h3) = e(ct2, h4) = e(ct2, h5) = e(ct2, h6) = 1 does not hold; this implies that the case we want will
happen with overwhelming probability, and thus we are done. To see this, we again use the parameter
hiding in Example 2.7: in A’s view, only random elements of H3⊕H4 appear, and h3 and h4 are never
used individually. One can thus simulate A’s view using the distribution D in Example 2.7, and ht

′id
3 ht

′
4

for a fixed id is distributed identically to a uniformly random element of H3⊕H4 by parameter hiding.
Hence, A has only a negligible chance of passing the decryption check unless ct2 ∈ G1 ⊕ G2, in which
case either ct2 = 1, in which case the games are identical, or ct2 6= 1, in which case B succeeds in
breaking subgroup decision.

Finally, in Game6, we switch to encrypting a random message in GT .

Game5, Game6

5 s, s3, s4
$←− Z/NZ, M

$←− GT ; ct∗1 ←Mb ·As, ct∗1 ←M ·As , ct∗2 ← gs1g
sid∗
2 gs33 g

s4
4

Lemma A.6. If the generalized correlated subgroup decision assumption holds, then Game6 is compu-
tationally indistinguishable from Game5.
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Proof. We assume there exists an adversary A that distinguishes between these games with non-
negligible advantage, and use A to construct an adversary B that solves an instance of the correlated
subgroup decision assumption with related non-negligible advantage. We invoke the instance of this as-
sumption parameterized by sets Ssgh

G := {{3, 4}, {((1, 2), (3, 4))}}, Ssgh
H := {{3, 4, 5, 6}, {((1, 2), (5, 6))}},

T1 = {(3, 4), (5, 6)}, and T2 = {(1, 2), (3, 4), (5, 6)}, with challenge terms in H.
B is therefore given as input the bilinear group G = (N,G,H,GT , e, µ), and elements

(g3, g4, h3, h4, h5, h6, g1,3 := gs1g
w
3 , g2,4 := gs2g

w
4 , h1,5 := ht

′
1 h

z
5, h2,6 := ht

′
2 h

z
6, T ),

where either T = hr3h
γ
5 or T = hα

′
1 h

r
3h
γ
5 for s, w, t′, z, α′, r, γ

$←− Z/NZ.
B implicitly sets α = t′+α′ (where α′ is 0 if T has no h1 component) and gives G to A. On KeyExt

queries, B chooses random values σ, σ′, δ, δ′, η, η′, ψ, ψ′, ν, ν ′
$←− Z/NZ and returns

sk id ,1 := T · h1,5 · hηid1,5 · h
η
2,6h

σ
3h

δ
4h
ψ
5 h

ν
6 ,

sk id ,2 := hη
′id

1,5 · h
η′

2,6h
σ′
3 h

δ′
4 h

ψ′

5 h
ν′
6 .

By inspection, we can see that this produces properly distributed keys for both Game5 and Game6. On
decryption queries, B simply replies with ⊥ whenever ct2 6= 1 and with 1 whenever ct2 = 1. This also
matches the specifications of both Game5 and Game6.

Finally, to form the challenge ciphertext, B chooses random values β, φ
$←− Z/NZ and computes

ct∗1 := Mbe(g1,3, h1,5) and ct∗2 := g1,3 · gid
∗

2,4 g
β
3 g

φ
4 .

Now, if T = hr3h
γ
5 , then α = t′, and this is a properly distributed encryption of Mb as in Game5. If

T = hα
′

1 h
r
3h
γ
5 , however, then α = t′+α′ for a fresh random value t′, which means, using the fact that the

message space is the subgroup generated by e(g1, h1), this is distributed as an encryption of a random
message as in Game6. If B therefore guesses that T = hr3h

γ
5 when A guesses it is in Game5, and that

T = hα
′

1 h
r
3h
γ
5 when A guesses it is in Game6 then, because B has furthermore perfectly simulated honest

interactions in either game, B succeeds in guessing with the same non-negligible advantage as A.

As there is no longer any information about Mb, and thus the bit b, in the challenge ciphertext
(or anywhere), A therefore has advantage exactly zero in Game6. Furthermore, as each game was (at
least) computationally indistinguishable from the previous one, A can have at most negligibly different
advantage in each, and thus must have negligible advantage in the weak IND-CCA1 game.
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