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Abstract. CLEFIA is a 128-bit block cipher proposed by Sony Cor-
poration in 2007. Our paper introduces a new chosen text attack, im-
possible differential-linear attack, on iterated cryptosystems. The attack
is efficient for 16-round CLEFIA with whitening keys. In the paper, we
construct a 13-round impossible differential-linear distinguisher. Based
on the distinguisher, we present an effective attack on 16-round CLEFIA-
128 with data complexity of 2115.52, recovering 96-bit subkeys in total.
Besides, the results of 15-round CLEFIA-128 are given in the Appendix
C. Our attack can also applied to CLEFIA-192 and CLEFIA-256.

Keywords:CLEFIA, impossible differential-linear cryptanalysis, impos-
sible differential cryptanalysis, linear approximation

1 Introduction

CLEFIA [1] is a 128-bit block cipher supporting key lengths of 128, 192 and
256 bits. It achieves enough immunity against known attacks and flexibility for
efficient implementation in both hardware and software. As a block cipher pro-
posed by Sony Corporation in 2007, CLEFIA has received a significant amount
of cryptanalytic attention. However, except for the evaluation report [2] of the
designers, there are only a few significant cryptanalytic results about its security
against various cryptanalytic techniques.

At present, the most powerful attack on CLEFIA is a series of impossible
differential attacks on reduced rounds of it. The first one is proposed by its de-
signers in the evaluation report of CLEFIA [2]. Then, in FSE 2008, Tsunoo et
al. introduced new 9-round impossible differentials for CLEFIA, and present-
ed a 12-round attack on CLEFIA-128 with 2118.9 chosen plaintexts and 2119

encryptions[3] Later, by the same impossible differential distinguisher, Zhang
et al. presented an attack on 14-round CLEFIA, in which design team pointed
out a flaw and showed that it is not successful[5]. In IndoCrypt 2010, Tezcan
proposed improbable differential cryptanalysis and applied it on 13/14/15-round
CLEFIA-128/196/256 by the advantage of the relation of round keys [7].

Our Contribution.In this paper, we will propose a new method, impossible
differential-linear attack, to analyze the CLEFIA block cipher. By constructing



a 13-round distinguisher, using the new method, and combining with key re-
lations we found, we propose an attack on full-round CLEFIA-128 with data
complexity 2115.52 and time complexity 2171. Besides, for another distinguisher
construction, refer to Appendix A. And the attacks to another 16-round and 15-
round CLEFIA-128 are also give in Appendix B/C, more efficient compared to
the present results. Besides, we provide some key relations we found in Appendix
D.

Outline.This paper is organized as follows: Section 2 provides a brief description
of CLEFIA, and Section 3 introduces the new method of impossible differential-
linear attack. Section 4 gives the 13-round impossible differential-linear distin-
guisher in detail. Section 5 presents the 16-round impossible differential-linear
attack on CLEFIA-128 in detail. Finally, Section 6 concludes the paper.

2 Description of CLEFIA

2.1 Notation

a |b : The concatenation of a and b;
a(b): b is the bit length of a;
aT : The transposition of a vector a;
P = (P0, P1, P2, P3): A 128-bit plaintext, Pi ∈ {0, 1}32(0 ≤ i ≤ 4);
C = (C0, C1, C2, C3): A 128-bit ciphertext, Ci ∈ {0, 1}32(0 ≤ i ≤ 4);
(X0
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i ): The i-th round input data, Xj

i ∈ {0, 1}32
∆X: The XOR value of X and X∗;

2.2 CLEFIA

CLEFIA is a 128-bit block cipher having a generalized Feistel structure with
four data lines, where the width of each data line is 32 bits. For the key lengths
of 128, 192, and 256 bits, CLEFIA has 18, 22, and 26 rounds. The encryption
function uses four 32-bit whitening keys WK0,WK1,WK2,WK3 ∈ {0, 1}32 and
2r 32-bit round keys where r is the number of rounds. Ki ∈ {0, 1}32(0 ≤ i < 2r)
denotes round key, WK0,WK1,WK2,WK3 ∈ {0, 1}32 denotes whitening key.
We denote d-branch r-round generalized Feistel network employed in CLEFIA as
GFNd,r. The encryption process can be seen in Fig. 1(a). The detail of GFN4,r

is as follows:

– Step 1. T0 |T1 |T2 |T3 ← P0 |(P1 ⊕WK0) |P2 |(P3 ⊕WK3)
– Step 2. For i = 0 to r − 1 do the following:

T1 ← T1 ⊕ F0(T0, RK2i), T3 ← T3 ⊕ F1(T2, RK2i+1)
T0 |T1 |T2 |T3 ← T1 |T2 |T3 |T0

– Step 3. C0 |C1 |C2 |C3 ← T3 | (T0 ⊕WK2 ) | T1 | (T2 ⊕WK3 )

Each round contains two parallel F functions, F0 and F1, and their structures
are shown in Fig. 1(b) where S0 and S1 are 8× 8-bit S-boxes. The detail of F0

is as follows:



– Step 1. T0 |T1 |T2 |T3 ← RK ⊕ x, Ti ∈ {0, 1}8, x ∈ {0, 1}32
– Step 2. T0 ← S0(T0) , T1 ← S1(T1) , T2 ← S0(T2) , T3 ← S1(T3)
– Step 3. y = M0 · (T0, T1, T2, T3)T , y ∈ {0, 1}32

F1 is defined by replacing the terms in F0 as follows: S0 is replaced with S1,
S1 with S0, and M0 with M1.

The two matrices M0 and M1 used in the F-functions are defined as follows.

M0 =


0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

 ,M1 =


0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01



Fig. 1. CLEFIA

2.3 Key Scheduling

The DoubleSwap function Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X(128) 7→ X[7− 63] |X[121− 127] |X[0− 6] |X[64− 120]

where X[a− b] denotes a bit string cut from the a-th bit to the b-th bit of X.
Let K = K0 |K1 |K2 |K3 be the key and L be an intermediate key, the key

scheduling part consists of the following 3 steps:



– Step 1. L← GFN4,12(CON0, · · · , CON23,K0, · · · ,K3)
– Step 2.WK0 |WK1 |WK2 |WK3 ← K
– Step 3. For i=0 to 8 do the following:

T ← L⊕ (CON24+4i |CON24+4i+1 |CON24+4i+2 |CON24+4i+3 )
L← Σ(L)
If i is odd: T ← T ⊕K
RK4i |RK4i+1 |RK4i+2 |RK4i+3 ← T

3 The Impossible Differential-Linear Attack

We call this cryptanalytic technique an impossible differential-linear attack, since
it combines the impossible differential cryptanalysis and linear cryptanalysis
together.The attack is not completely new, for the impossible differential attack
and linear attack were typical and widely used in previous attacks on various
cryptosystems, but this is the first time that we combine them together.

The basic idea is illuminated from differential-linear attack, first introduced
by Langford and Hell-man in [6]. Our attack procedure is described as follows.

we construct an impossible differential-linear distinguisher at first. The block
cipher E is represented as E = E1 ◦ E0, where E0 and E1 are two subciphers.
The distinguisher uses an impossible differential ΩP 6→ ΩT with probability 1
for E0, and a linear approximation λP → λT with probability 1/2 + q for E1.
Then choose a pair of plaintexts (P, P ∗) which satisfies P ⊕ P ∗ = ΩP , and it is
obvious that the probability of the impossible differential E0(P )⊕E0(P ∗) 6= ΩT

equals 1. This allows us to get the following one bit equation λP · ΩT = a(0 or
1). According to the linear approximation, we can get the equation λP ·E0(P )⊕
λT · E1(E0(P )) ⊕ λK ·K = 0 with probability 1/2 + q. Similarly, we also have
λP · E0(P ∗) ⊕ λT · E1(E0(P ∗)) ⊕ λK ·K = 0 with probability 1/2 + q. Hence,
using the piling up lemma presented in [4], we can get λT · E1(E0(P )) ⊕ λT ·
E1(E0(P ∗)) = λP · (E0(P ) ⊕ E0(P ∗)) = a with probability 1/2 + 2q2. Then
we can get λT · E1(E0(P )) ⊕ λT · E1(E0(P ∗)) = λP · ΩT = a with probability
1/2 − 2q2. This can be used as an impossible differential-linear distinguisher.
The key recovery attack requires about O(q−4) chosen plaintext pairs.

4 The 13-Round Impossible Differential-Linear
Distinguisher

4.1 9-round impossible differential characteristic

Paper [3] presented several 9-round impossible differential characteristics. We
choose the most efficient which is suitable to our attack as follows:

(0, α, 0, 0) 6→ (0, β, 0, 0), where α = (0, 0, 0, x), β = (y, 0, 0, 0)

After the encryption of 9 rounds, the impossible output difference will be

∆X9 = (β, 0, 0, 0) (1)

with probability 1, illustrated in Sect.4.3 Fig.2.



4.2 4-round linear approximation

This subsection we will describe the construction of the 4-round linear approxi-
mation used in our attack in detail.

In the 10th round, we get X0
9 = X3

10 .
In the 11th round, according to the definition of the round function F1, we

can get the following two equations:

X3
10 ⊕ F1(X2

10, RK21) = X2
11, X

2
10 = X1

11

Then by using linear approximations for the non-linear S-boxes in F1, we can
get the following equation.

λP · F1(X1
11, RK21) = λQ ·X1

11 ⊕ λQ ·RK21

Therefore, the linear characteristic of the 11th round can be expressed as
follows:

λP ·X3
10 = λP ·X2

11 ⊕ λQ ·X1
11 ⊕ λQ ·RK21, p1 = 1/2 + q1 (2)

Similarly, the linear characteristics of the 12th round can be expressed as
follows.

λQ ·X1
11 = λQ ·X0

12 ⊕ λT ·X3
12 ⊕ λT ·RK22, p2 = 1/2 + q2 (3)

In the 13th round, we can first get the following equations.

X1
12 ⊕ F0(X0

12, RK24) = X0
13, X

0
12 = X3

13

Then by taking the linear characteristics expressed in Equ. (2) and Equ. (3)
into account, we can choose an appropriate pair of values (λP , λQ), then get the
linear characteristic of the 13th round as follows:

λP ·X1
12 = λP ·X0

13 ⊕ λQ ·X3
13 ⊕ λQ ·RK24, p3 = 1/2 + q3 (4)

Finally, by concentrating the above linear characteristics of round 10-13 to-
gether, we can get the following 4-round linear approximation of CLEFIA:

λP ·X0
9 = λP ·X3

10 = λP ·X0
13 ⊕ λT ·X3

12 ⊕ λK ·K
′
, p = 1/2 + 22q1q2q3 (5)

The 4-round linear characteristic is illustrated in Fig.2.

4.3 The 13-Round Impossible Differential-Linear Distinguisher

Here present a property, which can catenate the above two parts together.
Based on the definition of β in 4.1, we get the following computation:
We can choose an input mask as λP = (0, λ1, λ1, λ1), where λ1 ∈ {01, 02, ...ff}.

Then we will always have λp · β = 0, for β = (y, 0, 0, 0), y ∈ F 8
2 \{0}.



Therefore, we get a property that when choosing the input mask as λP =
(0, λ1, λ1, λ1), we always have the following equation:

λp · β = 0 (6)

According to the analysis in Sect.4.1, if choosing a pair of plaintexts (P, P ∗)
whose difference is (0, α, 0, 0), then based on the 9-round impossible differential
expressed as Equ. (1) and (6), we can get the following equation:

λP ·∆X0
9 = λP · (X0

9 ⊕X0∗
9 ) = 0

and it holds with probability 1.Then the 4-round linear characteristic, which is
expressed as Equ. (5), can be concatenated to the 10-round impossible differen-
tial to form the following 13-round impossible differential-linear distinguisher.

λP · (X0
13 ⊕X0∗

13 )⊕ λT · (X3
12 ⊕X3∗

12 ) = 0 (7)

Details of another 13-round impossible differential distinguisher can be seen
in Appendix A.

Fig. 2. 13-round impossible differential-linear distinguisher



4.4 Selection of λ

In this subsection, we show how to select the value of λP , λQ and λT , making
the bias of the 4-round linear characteristic as high as possible.

At first, we analyze the linear approximation of F1 in the 11th round as
follows.

λP · F1(X1
11, RK21) = λQ ·X1

11 ⊕ λQ ·RK21

The four bytes output of the S-boxes are denoted as (u, v, z, w). Then the
round function can be expressed as:

F1(X1
11, RK21) = M1(S(X1

11 ⊕RK21)) = M1(u, v, z, w)

According to the definition in Sect. 2, we can get the following equation:

M1(u, v, z, w)T =


u⊕ (08× v)⊕ (02× z)⊕ (0a× w)
(08× u)⊕ v ⊕ (0a× z)⊕ (02× w)
(02× u)⊕ (0a× v)⊕ z ⊕ (08× w)
(0a× u)⊕ (02× v)⊕ (08× z)⊕ w


Then based on the discussion of the value choice of λP in the Sect. 4.3, the

left part of the linear approximation can be computed as follows:

λP · F1(X1
11, RK21) = {00 λ1 λ1 λ1} ·M1(u, v, z, w)T

= λ1 · (v ⊕ (08× v)⊕ z ⊕ (02× z)⊕ w ⊕ (0a× w))

Note that the primitive polynomial used in the multiplication is z8 + z4 +
z3 + z2 + 1, which can be denoted as a binary string 100011101. Thus we can
compute the parity of λ1 · (02× z) as follows:

λ1 · (02× z) =
λ1 · (z << 1), z7 = 0
λ1 · (z << 1⊕ 00011101), z7 = 1

where z7 denotes the left-most bit of z. If choosing an appropriate value of λ1
such that λ1 · 00011101 = 0, the above two cases can be transformed both into
the following equation:

λ1 · (02× z) = λ1 · (z << 1) = (λ1 >> 1) · z

no matter what the left-most bit of z is.
Similarly, when λ1 also satisfies (λ1 >> 1) · 00011101 = 0, the parity of

λ1 · (08 · v) and λ1 · (0a · w) can be computed respectively as follows:

λ1 · (08× v) = λ1 · (v << 3) = (λ1 >> 3) · v

λ1 · (0a× w) = λ1 · ((02× w)⊕ (08× w)) = ((λ1 >> 1)⊕ (λ1 >> 3)) · w

Therefore, the left part of the linear approximation can be transformed into
the following equations:



λP · F1(X1
11, RK21)

= (λ1⊕ (λ1 >> 3)) · v⊕ (λ1⊕ (λ1 >> 1)) · z⊕ (λ1⊕ (λ1 >> 1)⊕ (λ1 >> 3)) ·w

= {00, λ1⊕ (λ1 >> 3), λ1⊕ (λ1 >> 1), λ1⊕ (λ1 >> 1)⊕ (λ1 >> 3)} · (u, v, z, w)

Then by utilizing the linear distribution table of each S-box, we use the
following linear approximation for each S-box (ε denotes the bias of the linear
approximation).

(λ1 ⊕ (λ1 >> 3)) · v = λ2 · (X1
11 ⊕RK21)1, p4 = 1/2 + ε1

(λ1 ⊕ (λ1 >> 1)) · z = λ2 · (X1
11 ⊕RK21)2, p5 = 1/2 + ε2

(λ1 ⊕ (λ1 >> 1)⊕ (λ1 >> 3)) · w = λ2 · (X1
11 ⊕RK21)3, p6 = 1/2 + ε3

where (X1
11 ⊕RK21)j denotes the j-th byte of (X1

12⊕RK23)(0 ≤ j ≤ 3), and
(u, v, z, w) denote the corresponding output of each S-box respectively.

Therefore, we have got the following linear approximation for the function
F1 in the 11th round.

λP · F1(X1
11 ⊕RK21) = {00, λ2, λ2, λ2} · (X1

11 ⊕RK21), p = 1/2 + 22ε1ε2ε3

Note here we choose λQ as the form of λQ = {00, λ2, λ2, λ2}, such that we
can make use of the property of the linear transformation described in Sect. 4.1.

Similar analysis can be applied to the linear approximation used in the 12th
and 13th rounds. Then by running through all the possible values of λP , λQ and
λT which satisfies the above conditions, we can choose the following three linear
approximation which achieve the highest biases.

{00, f6, f6, f6} · F1(X1
11 ⊕RK21) = {00, eb, eb, eb} · (X1

11 ⊕RK21)

whose probability is p ≈ 1/2− 2−11.61.

{00, eb, eb, eb} · F0(X3
12 ⊕RK22) = {00, 49, 49, 49} · (X3

12 ⊕RK22)

whose probability is p ≈ 1/2− 2−10.83.

{00, f6, f6, f6} · F0(X3
13 ⊕RK24) = {00, eb, eb, eb} · (X3

13 ⊕RK24)

whose probability is p ≈ 1/2− 2−10.19.
Finally, by taking the corresponding values of λP , λQ and λT into the Equa-

tions (3)-(6), we can get the following 3-round linear characteristic of CLEFIA.

{00, f6, f6, f6}·X3
10 = {00, f6, f6, f6}·X0

13⊕{00, 49, 49, 49}·X3
12⊕λK ·K

′
(8)

whose probability is p ≈ 1/2 + 2−30.63.
So the 13-round impossible differential-linear distinguisher can be expressed

as follows:

{00, f6, f6, f6} · (X0
13 ⊕X0∗

13 )⊕ {00, 49, 49, 49} · (X3
12 ⊕X3∗

12 ) = 0 (9)

Its probability can be computed as described in Sect. 3, which means the total
probability of the 13-round impossible differential-linear distinguisher is about

1/2− 2
(
2−32.63

)2 ≈ 1/2− 2−65.26.



5 The Impossible Differential-Linear Attack on 16-Round
CLEFIA-128

In this section, we explain our impossible differential-linear attack on 16-round
CLEFIA-128 in detail. In the attack, we set the above 13-round impossible
differential-linear distinguisher at rounds 3-15, and then mount a key recov-
ery attack by analyzing the first two rounds and the 16th round with whitening
keys.

The expression of the distinguisher should be transformed to the following
form.

{00, f6, f6, f6} · (X0
15 ⊕X0∗

15 )⊕ {00, 49, 49, 49} · (X3
14 ⊕X3∗

14 ) = 0 (10)

and its probability is 1/2− 2−65.26.
In the following, we first introduce how to obtain the correct pairs, and then

describe the attack procedure in detail, which is also illustrated in Fig.3. In the
end, we estimate the data complexity and time complexity of our attack.

5.1 Chosen Plaintext

Based on the analyses in Sect. 3 and [8], we know that approximately (265.26)2 ≈
2130.52 correct pairs are needed to the 13-round impossible linear distinguisher.
We choose a structure composed of 272 plaintexts which is defined as follows:

SP = (X0
0 , X

1
0 , X

2
0 , X

3
0 )j , 1 ≤ j ≤ 2104,

Choose plaintext pairs (P, P ∗) where P = (X0
0 , X

1
0 , X

2
0 , X

3
0 ) and the corre-

sponding plaintext P ∗ = (X0∗
0 , X1∗

0 , X2∗
0 , X3∗

0 ) = (X0
0 ⊕ δ,X1

0 ⊕ γ,X2
0 , X

3
0 ⊕ α),

whose difference is of the form ∆P = (δ, γ, 0, α), where α = (0, 0, 0, x), δ =
(aw, 2w, 8w,w), w = M0(S(α)), γ = (v0, v1, v2, v3), which results to ∆X2 =
(0, α, 0, 0). The computation of δ, and γ refers to Fig.3. Therefore, we have 255
possible value of α and δ, 232 − 1 possible values of γ. Then one structure can
produce about 2119 distinct correct pairs.

Choose a plaintext structure defined as above, then after two rounds en-
cryption, the output difference should be (0, α, 0, 0). After the first round, ∆X0

1

change to 0, we get the filter probability (28−1)·232/2 · 232/2
(28−1)·232/2 · (232−1)·232/2 ≈ 2−32. From

the computation and structure of δ, we know the probability to get ∆X2
3 is 1.

So the filter probability is 2−32 in total. After data filter, 287 corrct pairs left.

5.2 Key Recovery

1. For each remaining pair, the first three bytes of α are zero, so the input
difference of the first three S-boxes involved in F are zero. Therefore, only the
last byte of RK3 affects F1. Accordingly, we only need to guess (RK0, RK

3
3 ),

40 bits in total, to meet the input difference of impossible differential. For all
the 240 guesses, make a table of K1, · · · ,K240 to record whether the guess is
right. If the output is right, the corresponding Ki plus 1.



2. Insert all the ciphertext into another table indexed by N1, · · ·N256 . For every
guess of the subkey RK30 (32-bit), compute the value of F0(X0

15, RK30) for
each X0

15, and we can obtain the value of X1
15⊕WK2 = X1

15⊕F0(X0
15, RK30)

for each ciphertext. Then for every guess of the last three bytes of subkey
RK29⊕WK2 (24-bit), we can partially decrypt the function F1(X2

14, RK29)
to obtain the value of λQ · X3

14 = λQ · (F1(X1
15, RK29) ⊕ X2

16) for each
ciphertext.
Compute the value of λP ·X0

15⊕ λQ ·X3
14. If the pair satisfies equation (10),

it’s a wrong key that we can filter out, and make Ni plus 1. After running
all 256 guesses, output the maximum value of Ni as the 56-bit correct keys.

3. Repeat step 1 with another pair with the 40 bits guessing key obtaining from
step 2. Output the 40 bits guess which corresponds to the maximum value
of Ki as the correct key.

Complexity Analysis. According to the analysis above, a structure can
produce 2119 plaintext pairs. The filter probability of first two extention rounds
is 2−32, so 287 correct pairs are left. The 13-round distinguisher needs 2130.52 pairs
in total. Then in our key recovery attack, we need about 2130.52

/
287 = 243.52

structures, and the data complexity of our attack is about 272 · 243.52 = 2115.52.
The time complexity for obtaining the ciphertext is 2115.52 encryptions. The

time complexity of sieving the right key is dominated by Sect.5.2, whose complex-
ity can be estimated separately as follows. The time complexity of Step 1 is about
240 · 272 · 245 = 2157 S-box operations, which is equal to 2157

/
8 = 2154 one round

encryption. The time complexity of Step 2 is about 232·232·232·232·224·224 ≈ 2176

F operations, which is equal to 2175 one round encryption. Therefore, the total
time complexity of our attack can be estimate as about (2154 + 2175)

/
16 ≈ 2171.

Our attack can recover 104-bit subkeys.
Note. Another 13-round impossible differential-linear distinguisher refers to Ap-
pendix A, and another 16-round attack to CLEFIA-128 refers to Appendix B.
Attacks to 15-round CLEFIA-128 refer to Appendix C. Our attack is also effec-
tive to CLEFIA-192 and CLEFIA-256.

6 Conclusion

In this paper, we present a new attack, impossible differential-linear attack, and
achieve a result of full-round CLEFIA-128 with 2115.52 CP, and time complexity
is 2171.The comparison of cryptanalytic results to CLEFIA is shown in Table
1, more efficient compared to the present results. The attack is also effective to
15-round CLEFIA-128, given in Appendix C.
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Appendix A. Another 13-round impossible
differential-linear distinguisher

Another 13-round impossible differential-linear distinguisher concatenate an im-
possible differential

(0, 0, 0, α) 6→ (0, 0, 0, β)[3]

with a 4-round linear characteristic, details refer to Fig.4.

Fig. 4. 13-round impossible differential-linear distinguisher



Appendix B. Another Attack on 16-round
CLEFIA-128

The detail of another 16-round attack on CLEFIA-128 is illustrated in Fig.5 with
13-round impossible differential-linear distinguisher in Sect.4, and three rounds
extension on plaintext side.

The data complexity is

2104 ·
[(

265.26
)2/((

216 · 264 · 264 · 264
/

2
)
· 2−96

)]
≈ 2123.52.

The time complexity is[
280 · 2207

/
8 + 224 · 224 · 224

/
2
]/

16 ≈ 2280.

Fig. 5. 16-round impossible differential-linear attack



Appendix C. Attack on 15-round CLEFIA-128

The attacks to 15-round CLEFIA-128 below are all with whitening keys. The
detail of the attack can divided into two cases, the first extension case is one
rounds on plaintext side, and one round on ciphertext side, which is illustrated
in Fig.6. The data complexity is

240 ·
[(

265.26
)2/((

240 · 216
)
· 2−1

)]
≈ 2115.52.

The time complexity is[(
28 · 240

)/
8 +

(
232 · 232 · 232

)
·
(
232 · 224 · 224

)/
2
]/

15 ≈ 2171.09

The second extension is two rounds on plaintext side, illustrated in Fig. 7. The
data complexity is

272 · [
(
265.26

)2/(
(272 · (28 − 1)

2 · 232)
/

2 · 2−32
)

] ≈ 2115.52.

The time complexity is the same to the above, i.e. 2171.09.

Fig. 6. 15-round impossible differential-linear attack



Fig. 7. 15-round impossible differential-linear attack



Appendix D. Round Key Relation

According to the description in Sect. 2, we can get the relationship between
generated round keys and related data as follows:

RK0 |RK1 |RK2 |RK3 ← L⊕ CON24 |CON25 |CON26 |CON27

RK4 |RK5 |RK6 |RK7 ← Σ(L)⊕K ⊕ CON28 |CON29 |CON30 |CON31

RK8 |RK9 |RK10 |RK11 ← Σ2(L)⊕ CON32 |CON33 |CON34 |CON35

RK12 |RK13 |RK14 |RK15 ← Σ3(L)⊕K⊕CON36 |CON37 |CON38 |CON39

RK16 |RK17 |RK18 |RK19 ← Σ4(L)⊕ CON40 |CON41 |CON42 |CON43

RK20 |RK21 |RK22 |RK23 ← Σ5(L)⊕K⊕CON44 |CON45 |CON46 |CON47

RK32 |RK33 |RK34 |RK35 ← Σ8(L)⊕ CON56 |CON57 |CON58 |CON59

Based on the properties proved in [5], we get the following key relations:
RK32 ⊕ C1 = RK1[56− 63] |RK3[100− 102] |RK3[107− 127]
RK33 ⊕ C2 = RK2[72− 95] |RK3[96− 99] |RK3[103− 106]
RK34 ⊕ C3 = RK0[21− 24] |RK0[28− 31] |RK1[32− 55]
RK35 ⊕ C4 = RK0[0− 20] |RK0[25− 27] |RK2[64− 71]

where
C1 = CON56 ⊕ (CON25[56− 63] |CON27[100− 102] |CON27[107− 127] )
C2 = CON57 ⊕ (CON26[72− 95] |CON27[96− 99] |CON27[103− 106] )
C3 = CON58 ⊕ (CON24[21− 24] |CON24[28− 31] |CON25[32− 55] )
C4 = CON59 ⊕ (CON24[0− 20] |CON24[25− 27] |CON26[64− 71] )
Then we get the following properties from the above derivations:
Property 1. If 32 bits RK33 are known, then we can get 24 bits RK2[72−95],

and 8 bits RK3[96− 99] |RK3[103− 106] .
Property 2. If 32 bits RK34 are known, then we can get 8 bits RK0[21 −

24] |RK0[28− 31] , and 24 bits RK1[32− 55].
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