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Abstract. CLEFIA is a 128-bit block cipher proposed by Sony Corpo-
ration in 2007. Our paper introduces a new chosen plaintext attack on
iterated cryptosystems, the impossible differential-linear attack. The at-
tack is efficient for 16-round CLEFIA with whitening keys. In the paper,
we construct a 13-round extended impossible differential-linear distin-
guisher. Based on the distinguisher, we present an effective attack on
CLEFIA-128 reduced from 18 to 16 rounds with data and time complex-
ity 2122.7, recovering 96 bits of the subkeys. Our attack can be extended
to CLEFIA-192 and CLEFIA-256.

Keywords:CLEFIA, impossible differential-linear cryptanalysis, impos-
sible differential cryptanalysis, linear approximation.

1 Introduction

CLEFIA [8] is a 128-bit block cipher supporting key lengths of 128, 192 and
256 bits; these three versions have 18, 22 and 26 rounds respectively. It achieves
enough immunity against known attacks and is flexible enough for efficient im-
plementation in both hardware and software. As a block cipher proposed by Sony
Corporation in 2007, CLEFIA has received significant amount of cryptanalytic
attention. However, except for the evaluation report [9] from the designers, there
are only a few significant cryptanalytic results.

At present, the most powerful attack on CLEFIA is a series of impossible
differential attacks on reduced rounds versions. The first one is proposed by its
designers in the evaluation report of CLEFIA [9]. In FSE 2008, Tsunoo et al.
introduced new 9-round impossible differentials for CLEFIA, and presented a
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12-round attack on CLEFIA-128 with 2118.9 chosen plaintexts and 2119 encryp-
tions [10]. Later, by the same impossible differential distinguisher, Zhang et al.
presented an attack on 14-round CLEFIA, in which the design team pointed
out a flaw and showed that it is not successful [11]. In IndoCrypt 2010, Tezcan
proposed improbable differential cryptanalysis and applied it to 13/14/15-round
CLEFIA-128/196/256 by taking advantage of relations among the round keys
[5].

Our Contribution. In this paper, we will propose a new method, the impossible
differential-linear attack, to analyze the CLEFIA block cipher. By constructing
a 13-round distinguisher, using the new method, and combining it with key
relations we found, we propose an attack on 16-round CLEFIA-128 with data and
time complexity 2122.7. Furthermore, Appendix A presents another distinguisher
construction and Appendix B shows another attack on a 16-round version. We
present an attack on 15-round CLEFIA-128 in Appendix C. Our attacks are more
efficient than earlier work. In Appendix D we also provide some key relations.

Outline. This paper is organized as follows. Section 2 provides a brief de-
scription of CLEFIA, and Sect. 3 introduces our new method of impossible
differential-linear attack. In Sect. 4 we present details of the 13-round impos-
sible differential-linear distinguisher. The 16-round impossible differential-linear
attack on CLEFIA-128 is discussed in detail in Sect. 5. We summarize our results
in Sect. 6.

2 Description of CLEFIA

2.1 Notation

a |b : The concatenation of a and b;
a(b) : b is the bit length of a;
aT : The transposition of a vector a;

P = (P0, P1, P2, P3) : A 128-bit plaintext, Pi ∈ {0, 1}32(0 ≤ i ≤ 3);
C = (C0, C1, C2, C3) : A 128-bit ciphertext, Ci ∈ {0, 1}32(0 ≤ i ≤ 3);

(X0
i , X

1
i , X

2
i , X

3
i ) : The input data to the ith round, Xj

i ∈ {0, 1}32
∆X : The XOR of X and X∗;

2.2 CLEFIA

CLEFIA is a 128-bit block cipher with a generalized Feistel structure consisting
of four 32-bit data lines. For the key lengths of 128, 192, and 256 bits, CLEFIA
has 18, 22, and 26 rounds respectively. The encryption function uses four 32-bit
whitening keys WK0,WK1,WK2,WK3 ∈ {0, 1}32 and 2r 32-bit round keys,
where r is the number of rounds. RKi ∈ {0, 1}32(0 ≤ i < 2r) represents round
key, and WK0,WK1,WK2,WK3 ∈ {0, 1}32 are whitening keys. We denote d-
branch r-round generalized Feistel network employed in CLEFIA as GFNd,r.
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Fig. 1. CLEFIA

The encryption process can be seen in Fig. 1(a). The details of GFN4,r are as
follows:

– Step 1. T0 |T1 |T2 |T3 ← P0 |(P1 ⊕WK0) |P2 |(P3 ⊕WK1)

– Step 2. For i = 0 to r − 1 do the following:

T1 ← T1 ⊕ F0(T0, RK2i), T3 ← T3 ⊕ F1(T2, RK2i+1)

T0 |T1 |T2 |T3 ← T1 |T2 |T3 |T0

– Step 3. C0 |C1 |C2 |C3 ← T3 | (T0 ⊕WK2 ) | T1 | (T2 ⊕WK3 )

Each round contains two parallel F functions, F0 and F1, and their structures
are shown in Fig. 1(b) where S0 and S1 are 8× 8-bit S-boxes. The details of F0

are as follows:

– Step 1. T0 |T1 |T2 |T3 ← RK ⊕ x, Ti ∈ {0, 1}8, x ∈ {0, 1}32
– Step 2. T0 ← S0(T0) , T1 ← S1(T1) , T2 ← S0(T2) , T3 ← S1(T3)

– Step 3. y = M0 · (T0, T1, T2, T3)
T , y ∈ {0, 1}32

F1 is defined by replacing the terms in F0 as follows: S0 is replaced with S1,
S1 with S0, and M0 with M1.
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The two matrices M0 and M1 used in the F-functions are defined as follows.

M0 =









0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01









,M1 =









0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01









.

2.3 Key Scheduling

For the 128-bit key, the Double Swap function Σ : {0, 1}128 → {0, 1}128 is
defined as follows:

X(128) 7→ X [7− 63] |X [121− 127] |X [0− 6] |X [64− 120],

where X [a− b] denotes a bit string cut from the a-th bit to the b-th bit of X .
Let K = K0 |K1 |K2 |K3 be the key and L be an intermediate key, the key

scheduling consists of the following 3 steps:

– Step 1. L← GFN4,12(CON0, · · · , CON23,K0, · · · ,K3)
– Step 2.WK0 |WK1 |WK2 |WK3 ← K
– Step 3. For i=0 to 8 do the following:

T ← L⊕ (CON24+4i |CON24+4i+1 |CON24+4i+2 |CON24+4i+3 )
L← Σ(L)
If i is odd: T ← T ⊕K
RK4i |RK4i+1 |RK4i+2 |RK4i+3 ← T

We need 60 constant values CON(s)(0 ≤ s ≤ 59) in the 128-bit key scheduling
algorithm. Let R = 0xb7e1(= (e − 2) · 216) and Q = 0x243f(= (π − 3) · 216),
where e is the base of the natural logarithm (2.71828...) and π is the circle
ratio (3.14159...). CON(s) are generated by the following way, in which IV 128 =

0x428a(= ( 3
√
2− 1) · 216)

– Step 1. T ← IV 128

– Step 2. For j = 0 to 29 do the following:
CON2j ← (T ⊕R)|(T <<< 1)
CON2j+1 ← (T ⊕Q)|(T <<< 8)
T ← T · 0x0002−1(mod z16 + z15 + z13 + z11 + z5 + z4 + 1)

The key relations we found are illustrated in Appendix D.

3 The Impossible Differential-Linear Attack

Inspired by the differential-linear attack, first introduced by Langford and Hell-
man in [4], we propose a new cryptanalytic method called impossible differential-
linear attack, because it combines the impossible differential cryptanalysis and
linear cryptanalysis together. The attack is not completely new, since the im-
possible differential attack and linear attack were typical and widely used in
previous attacks on several cryptosystems. However, no previous work has been
done on combining these two. In this section, we first describe the process of im-
possible differential-linear attack, then we compare this attack with impossible
differential attack.
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3.1 Impossible Differential-Linear Distinguisher

Let a block cipher E is represented as E = E1 ◦ E0, where E0 and E1 are two
subciphers. We use an impossible differential ΩP 6→ ΩT with probability 1 for
E0, and a linear approximation λP → λT with probability 1/2+ q for E1, where
λP · ΩT is a fixed value (0 or 1). i.e., the probability of ΩT → λP is 1, and the
probability of ΩP 6→ λP with the specified difference path is also 1, so we call
ΩP 6→ λP an impossible differential-linear distinguisher. In particular, we call
E′ : ΩP 6→ λT an extended impossible differential-linear distinguisher.

For the extended impossible differential-linear distinguisher E′, the impossi-
ble differential ΩP 6→ ΩT with probability 1, means that both ΩP → ΩM and
Ω′

M → ΩT with probability 1, and in the same state, ΩM 6→ Ω′

M . Additionally,
ΩT → λP with probability 1 and λP → λT with probability 1/2+ q, means that
the probability of ΩT → λT is 1/2 + q. So, Ω′

M → λT with probability 1/2 + q.
We call ΩP → ΩM ‘difference part’, and call Ω′

M → λT ‘extended linear part’.
Different from other attack methods, such as a differential attack, linear at-

tack, impossible differential attack and differential-linear attack, our impossible
difference-linear distinguisher has an “order”, which means that when using it,
first use the ‘extended linear part’ to select some wrong objects, then filter the
wrong object and obtain the correct object with the ‘difference part’. For exam-
ple, if we want recover the key with an (extended) impossible differential-linear
distinguisher E′ : ΩP 6→ λT . we first need to guess the key set K1 = {k1}
satisfying the ‘extended linear part’ Ω′

M → λT , then to guess another key set
K0 = {k0} using the ‘difference part’ ΩP → ΩM , and to the filter the wrong
keys K ′ = {k0} ∩ {k1}, finally, the correct keys K = K0 −K ′ remain. For the
following reasons, you cannot reverse the “order”.

– In our impossible differential-linear distinguisher E′ : ΩP 6→ λP , ΩP 6→ ΩT

with probability 1 and λP · ΩT is a fixed value (0 or 1). In detail, both
ΩP → ΩM and Ω′

M → ΩT with probability 1, in the same state, ΩM 6→ Ω′

M ,
a “contradiction” happens. So our impossible differential-linear distinguisher
has the same “contradiction” as the impossible differential distinguisher. In
the impossible differential-linear attacks, we also use these “contradictions”
to delete the wrong keys.

– Let keys Ka = {ka} satisfy the differential ΩP → ΩM , let keys Kb = {kb}
satisfy the differential Ω′

M → ΩT , let keys Kc = {kc} satisfy that λP ·ΩT is
a fixed value (0 or 1), and let keys Kd = {kd} satisfy the route Ω′

M → λP ,
then Kd ⊃ Kb, because Kd includes Kb and Kc.

– In the impossible differential-linear attack, if we first guess Kd, then guess
Ka and filter wrong keys K ′

il = Kd ∩Ka, the correct keys Kil = Ka −K ′

il

remain. Reverse the “order”, if we first guess Ka, then guess Kd and filter
wrong keys K ′

il = Kd ∩Ka, the correct keys K−1
il = Kd −K ′

il remain.
– In fact, ΩP 6→ ΩT is an impossible differential distinguisher; this distinguish-

er allows to launch an impossible difference attack and recover the correct
keys Kid. We typically guess Kb from Ω′

M → ΩT , guess Ka from ΩP → ΩM ,
filter wrong keys K ′

id = Kb ∩Ka, and obtain correct keys Kid = Ka −K ′

id.
Reversing the “order”, we can obtain the correct keys K−1

id = Kb −K ′

id.
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– Obviously, K ′

il ⊇ K ′

id, so Kil ⊆ Kid and K−1
il ⊇ K−1

id . Kil ⊆ Kid means that
our impossible difference-linear distinguisher can get the same correct keys or
the same number of correct keys as an impossible differential distinguisher.
K−1

il ⊇ K−1
id means that our impossible difference-linear distinguisher cannot

be used in a wrong order.

3.2 The Impossible Differential-Linear Attack

By our extended impossible differential-linear distinguisher, ΩP 6→ λT , we give
an impossible differential-linear attack. Our impossible differential-linear attack
procedure can be described as follows:

1. Encrypting stage: Let M be the set of chosen plaintext pairs whose difference
P ⊕ P ∗ is ΩP ; we encrypt distinct plaintexts in M.
In E0, we have E0(P )⊕ E0(P

∗) 6= ΩT with probability 1.
In E1, we can get the equations

λP · E0(P )⊕ λT · E1(E0(P ))⊕ λK ·K = 0 (1)

and λP · E0(P
∗) ⊕ λT · E1(E0(P

∗)) ⊕ λK · K = 0. Both have probability
1/2 + q. Consequently, using the piling up lemma presented in [7], we can
get

λP · (E0(P )⊕ E0(P
∗)) = λT · E1(E0(P ))⊕ λT ·E1(E0(P

∗)) (2)

with probability 1/2 + 2q2.
2. Decrypting stage: In this stage we will guess part of the subkeys. Then we

decrypt some rounds of the ciphertext pairs with the guessed subkeys. The
decrypting process is also separated into two subciphers E−1

1 and E−1
0 , i.e.,

D = E−1
0 ◦ E−1

1 . In the first decrypting subcipher E−1
1 , take λP · ΩT = π

into Eqn. (2), it can be rewritten as λT · E1(E0(P )) ⊕ λT · E1(E0(P
∗)) =

λP ·ΩT = π.
In fact, we only partially decrypt all ciphertext pairs (C,C∗)=(E1(E0(P )), E1(E0(P

∗)))
with each guessed subkeys in the first decrypting subcipher E−1

1 . The sub-
keys, with the maximal probability not suiting Eqn. (3)

λP ·E−1
1 (C) ⊕ λP ·E−1

1 (C∗) = π, (3)

is regard as the correct subkeys.
Denote the set of pairs satisfying E−1

1 (C)⊕ E−1
1 (C∗) = ΩT as T , and denote

the set of pairs satisfying λP ·E−1
1 (C)⊕ λP ·E−1

1 (C∗) = π as V . It is certain
that T ⊂ V .

Property 1. For T ⊂ V, if an impossible map M 6→ V, another impossible
map M 6→ T also holds.

Proof. Assume that there is a map F̄ : M → T. Randomly choose p ∈ M,
and compute t = F̄ (p) ∈ T. Since T ⊂ V, we can get t ∈ V, which indicates
that there is t = F̄ (p) ∈ V, i.e., the map F̄ ′ : M→ V holds. It contradicts to
the known condition.
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⋄

3. Sieving stage: Guess part of the first rounds subkeys, and eliminate those
wrong values by showing that the impossible property holds if these subkeys
are used. That is, we eliminate those wrong values in terms of E0(P ) ⊕
E0(P

∗) 6= E−1
1 (C) ⊕ E−1

1 (C∗), where λP · E−1
1 (C) ⊕ λP · E−1

1 (C∗) =
π. From Property1, after sieving stage, the right values must satisfy that
E0(P )⊕ E0(P

∗) 6= ΩT .

Property 2. In Sieving stage, the success probability of sieving guessed values by
E0(P )⊕E0(P

∗) 6= E−1
1 (C)⊕E−1

1 (C∗), where λP ·E−1
1 (C)⊕ λP ·E−1

1 (C∗) = π,
is much higher than the filtering probability using E0(P )⊕ E0(P

∗) 6= ΩT .

Proof. In Sieving stage, we eliminate those wrong guessed key values which satis-
fy Eqn. (3). When the number of eliminated values is less than the total number,
the more eliminated values, the higher successful sieving probability. After the
first decrypting subcipher E−1

1 , The number of the key values satisfying Eqn. (3)
is more than the number of the wrong key values with E−1

1 (C)⊕ E−1
1 (C∗) = ΩT .

So Property 2 is established.

⋄

We named all the above as an impossible differential-linear distinguisher. The
probability of our distinguisher is dominated by the above steps 1-2, which can be
estimated separately as follows. The success rates are 1/2+2q2 and 1 in Encrypt-
ing stage and Decrypting stage, respectively. Because our elimination principle
is sieving the values using the condition E0(P )⊕ E0(P

∗) 6= E−1
1 (E1(E0(P ))) ⊕

E−1
1 (E1(E0(P

∗))), where λP · E−1
1 (E1(E0(P ))) ⊕ λP · E−1

1 (E1(E0(P
∗))) = π,

the total probability of our distinguisher is 1− (1/2 + 2q2), i.e., 1/2− 2q2. The
key recovery attack requires about 8×O(q−4) chosen plaintext pairs.

3.3 The Impossible Differential-Linear Attack

4 The 13-Round Impossible Differential-Linear

Distinguisher

In this section, we first present a 13-round impossible differential-linear distin-
guisher, which consists of a 9-round impossible differential characteristic followed
by a 4-round linear approximation.

4.1 9-Round Impossible Differential Characteristic

Paper [10] presented several 9-round impossible differential characteristics. We
choose the following one that is the most efficient and suitable to our attack:

(0, ̟, 0, 0) 6→ (0, β, 0, 0), where ̟ = (0, 0, 0, x), β = (y, 0, 0, 0)
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Fig. 2. 13-round extended impossible differential-linear distinguisher

After the encryption of 9 rounds, the input difference of the 10th round cannot
have the following form:

∆X9 = (∆X0
9 , ∆X1

9 , ∆X2
9 , ∆X3

9 ) = (β, 0, 0, 0) (4)

with probability 1 as illustrated in Fig.2.

4.2 4-Round Linear Characteristic

Here we will describe the construction of a 4-round linear characteristic illustrat-
ed in Fig.2, which is from round 10 to round 13. Details of the 4-round linear
characteristic are described as follows.

In the 10th round, we get X0
9 = X3

10 .
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In the 11th round, based on the definition of the round function F1, we can
get the following two equations:

X3
10 ⊕ F1(X

2
10, RK21) = X2

11, X
2
10 = X1

11

Using linear approximations for the non-linear S-boxes in F1, we can get the
following equation.

λP · F1(X
1
11, RK21) = λQ ·X1

11 ⊕ λQ · RK21

As a result, the linear characteristic of the 11th round can be expressed by
the following equation:

λP ·X3
10 = λP ·X2

11 ⊕ λQ ·X1
11 ⊕ λQ ·RK21, p1 = 1/2 + q1 (5)

Similarly, the linear characteristic of the 12th round can be expressed as

λQ ·X1
11 = λQ ·X0

12 ⊕ λT ·X3
12 ⊕ λT ·RK22, p2 = 1/2 + q2 (6)

In the 13th round, we can first get the following equation.

X1
12 ⊕ F0(X

0
12, RK24) = X0

13, X
0
12 = X3

13

Next, we can choose an appropriate pair of values (λP , λQ) by taking the
linear characteristics expressed in Eqn .(5) and Eqn. (6) into account and get
the linear characteristic of the 13th round as follows:

λP ·X1
12 = λP ·X0

13 ⊕ λQ ·X3
13 ⊕ λQ ·RK24, p3 = 1/2 + q3 (7)

Finally, by concentrating the above linear characteristics of rounds 10-13
together, we can have the following property:

Property 3. If Eqn .(5)-(7) hold, we can get the following 4-round linear charac-
teristic of CLEFIA from round 10 to round 13:

λP ·X0
9 = λP ·X3

10 = λP ·X0
13 ⊕ λT ·X3

12 ⊕ λK ·K
′

, p = 1/2 + 22q1q2q3 (8)

Proof. If Eqn. (5)-(7) are true, this property is obvious from the CLEFIA struc-
ture.

⋄

Note 1. Similarly, if we arbitrarily choose a 4-round CLEFIA from round i(i ≥ 0)
to round i+ 3, we can rewrite Eqn. (5)-(7) as following Eqn. (5′)-(7′):

λP ·X3
i+1 = λP ·X2

i+2 ⊕ λQ ·X1
i+2 ⊕ λQ ·RK2(i+1)+1, p

′

1 = 1/2 + q′1 (5′)

λQ ·X1
i+2 = λQ ·X0

i+3 ⊕ λT ·X3
i+3 ⊕ λT ·RK2(i+2), p

′

2 = 1/2 + q′2 (6′)

λP ·X1
i+3 = λP ·X0

i+4 ⊕ λQ ·X3
i+4 ⊕ λQ · RK2(i+3), p

′

3 = 1/2 + q′3 (7′)

and we can obtain the following 4-round linear characteristic

λP ·X0
i = λP ·X3

i+1 = λP ·X0
i+4 ⊕ λT ·X3

i+3 ⊕ λK ·K
′

, p′ = 1/2 + 22q′1q
′

2q
′

3
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4-Round Linear Approximations. Furthermore, we can derive the 4-round
linear input mask from the above 4-round linear characteristic.

Let (v, u)RKk
be an approximation of a 32-bit invertible function Fs(X

i
j , RKk),

(0 ≤ s ≤ 1, 0 ≤ k ≤ 35). Eqn. (5) suggests that the linear approximation of func-
tion F1(X

2
10, RK21) is

(v, u)RK21
= (λQ, λP ) (9)

Eqn. (6) indicates that the linear approximation of function F0(X
0
11, RK22) is

(v, u)RK22
= (λT , λQ) (10)

and Eqn. (7) indicates
(v, u)RK24

= (λQ, λP ). (11)

Denoting the input mask of the jth 32-bit input data in the ith round as
IM

X
j

i−1

(1 ≤ i ≤ 16, 0 ≤ j ≤ 3), which is also the output mask of the ((j +

1)mod4)th output data in the (i− 1)th round, we can get IMX3
10

= IMX2
11

= λP

from Eqn. (9), IMX1
11

= IMX0
12

= λQ and IMX3
12

= λT from Eqn. (10), and
IMX1

12
= IMX0

13
= λP from Eqn. (11). In addition, we can also derive IMX2

10
=

0, IMX1
10

= 0, and IMX1
10

= 0, and so on.
As a result, we can derive some 128-bit input masks as follows:

Property 4. If Property 3 holds, the 128-bit input masks of 4-round CLEFIA
are:

In the 10th round: IMX9
= (IMX0

9
, IMX1

9
, IMX2

9
, IMX3

9
) = (λP , 0,0,0).

In the 11th round: IMX10
= (IMX0

10
, IMX1

10
, IMX2

10
, IMX3

10
) = (0,0,0, λP ).

In the 12th round: IMX11
= (IMX0

11
, IMX1

11
, IMX2

11
, IMX3

11
) = (0, λQ, λP , 0).

In the 13th round: IMX12
= (IMX0

12
, IMX1

12
, IMX2

12
, IMX3

12
) = (λQ, λP , 0, λT ).

In the 14th round, IMX13
= (IMX0

13
, IMX1

13
, IMX2

13
, IMX3

13
) = (λP , ∗, λT , 0),

where “ ∗ ” denotes an unknow 32-bit input mask.

Note 2. If a 4-round CLEFIA, from round i(i ≥ 0) to round i + 3, satisfies
Eqn. (5′)-(7′), their 128-bit input masks are IMXi

= (λP , 0,0,0), IMXi+1
=

(0,0,0, λP ), IMXi+2
= (0, λQ, λP , 0), and IMXi+3

= (λQ, λP , 0, λT ), respectively.
Additionally, IMXi+4

= (λP , ∗, λT , 0).

4.3 The 13-Round Extended Impossible Differential-Linear

Distinguisher

Here, we first propose a new property, impossible differential-linear property,
which is a concatenation of impossible differential characteristic and linear char-
acteristic. To concatenate the above two parts together, the core technology
resides in how to link the output differential ∆X9 = (β, 0, 0, 0) and the input
masks IMX9

= (λP , 0,0,0) of the 10th round together?
From section 4.1, we have β = (y, 0, 0, 0), y ∈ F 8

2 \{0}. If choosing λP =
(0, λ1, λ1, λ1),λ1 ∈ {01, 02, ...ff}, by Eqn. (4), we can get the following equation
with probability 1:

λP ·∆X0
9 = λP · (X0

9 ⊕X0∗
9 ) = 0. (12)
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As a result, we always have IMX9
·∆X9 = (0, 0, 0, 0) in the 10th round, which

links the output differential ∆X9 and the input masks IMX9
together.

Property 5. For a pair of plaintexts (P, P ∗) whose difference is (0, ̟, 0, 0) with
̟ = (0, 0, 0, x), if we choose λP = (0, λ1, λ1, λ1),λ1 ∈ {01, 02, ...ff}, the 4-round
linear characteristic can be concatenated to the 9-round impossible differential
characteristic based on Eqn. (8)and Eqn. (12) to form the following 13-round
impossible differential-linear distinguisher.

λP · (X0
13 ⊕X0∗

13 )⊕ λT · (X3
12 ⊕X3∗

12 ) = 0 (13)

Details of another 13-round impossible differential distinguisher are discussed in
Appendix A.

4.4 Selection of λ

In this subsection, we show how to select the values for λP , λQ and λT to make
the bias of the 4-round linear characteristic as high as possible.

At first, we analyze the linear approximation of F1 in the 11th round as
follows.

λP · F1(X
1
11, RK21) = λQ ·X1

11 ⊕ λQ · RK21

The four bytes output of the S-boxes are denoted as (u, v, z, w). Then the
round function can be expressed as:

F1(X
1
11, RK21) = M1(S(X

1
11 ⊕RK21)) = M1(u, v, z, w)

According to the definition in section 2, we can get the following equation:

M1(u, v, z, w)
T =









u⊕ (08× v)⊕ (02× z)⊕ (0a× w)
(08× u)⊕ v ⊕ (0a× z)⊕ (02× w)
(02× u)⊕ (0a× v)⊕ z ⊕ (08× w)
(0a× u)⊕ (02× v)⊕ (08× z)⊕ w









Next, based on the discussion in section 4.3 about how to choose value for
λP , the left part of the linear approximation can be computed as follows:

λP · F1(X
1
11, RK21) = {00 λ1 λ1 λ1} ·M1(u, v, z, w)

T

= λ1 · (v ⊕ (08× v)⊕ z ⊕ (02× z)⊕ w ⊕ (0a× w))

Note that the primitive polynomial used in the multiplication is z8 + z4 +
z3 + z2 + 1, which can be denoted as a binary string 100011101. Hence, we can
compute the parity of λ1 · (02× z) as follows:

λ1 · (02× z) =
λ1 · (z << 1), z7 = 0
λ1 · (z << 1⊕ 00011101), z7 = 1
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where z7 denotes the left-most bit of z. By choosing an appropriate value of λ1

such that λ1 · 00011101 = 0, the above two cases can both be transformed into
the following equation:

λ1 · (02× z) = λ1 · (z << 1) = (λ1 >> 1) · z

no matter what the left-most bit of z is.
Similarly, when λ1 also satisfies (λ1 >> 1) · 00011101 = 0, the parity of

λ1 · (08 · v) and λ1 · (0a · w) can be computed respectively as follows:

λ1 · (08× v) = λ1 · (v << 3) = (λ1 >> 3) · v

λ1 · (0a× w) = λ1 · ((02× w)⊕ (08× w)) = ((λ1 >> 1)⊕ (λ1 >> 3)) · w
Therefore, the left part of the linear approximation can be transformed into

the following equation:
λP · F1(X

1
11, RK21)

= (λ1 ⊕ (λ1 >> 3)) · v⊕ (λ1 ⊕ (λ1 >> 1)) · z ⊕ (λ1 ⊕ (λ1 >> 1)⊕ (λ1 >> 3)) ·w

= {00, λ1⊕ (λ1 >> 3), λ1⊕ (λ1 >> 1), λ1⊕ (λ1 >> 1)⊕ (λ1 >> 3)} · (u, v, z, w)
By utilizing the linear distribution table of each S-box, we use the following

linear approximation for each S-box (ε denotes the bias of the linear approxima-
tion).

(λ1 ⊕ (λ1 >> 3)) · v = λ2 · (X1
11 ⊕RK21)1, p4 = 1/2 + ε1

(λ1 ⊕ (λ1 >> 1)) · z = λ2 · (X1
11 ⊕RK21)2, p5 = 1/2 + ε2

(λ1 ⊕ (λ1 >> 1)⊕ (λ1 >> 3)) · w = λ2 · (X1
11 ⊕RK21)3, p6 = 1/2 + ε3

where (X1
11 ⊕RK21)j stands for the jth byte of (X1

11 ⊕ RK21)(0 ≤ j ≤ 3),
and (u, v, z, w) denotes the corresponding output of each S-box respectively.

As a result, we get the following linear approximation for the function F1 in
the 11th round.

λP · F1(X
1
11 ⊕RK21) = {00, λ2, λ2, λ2} · (X1

11 ⊕RK21), p = 1/2 + 22ε1ε2ε3

Note that we choose λQ as the form of λQ = {00, λ2, λ2, λ2}, such that we
can make use of the property of the linear transformation as described in section
4.1.

Similar analysis can be applied to the linear approximation used in the 12th

and 13th round. By running through all the possible values of λP , λQ and λT

that satisfies the above conditions, we can choose the following three linear
approximations which achieve the highest biases.

{00, f6, f6, f6} · F1(X
1
11 ⊕RK21) = {00, eb, eb, eb} · (X1

11 ⊕RK21)

whose probability is p ≈ 1/2− 2−11.61.

{00, eb, eb, eb} · F0(X
3
12 ⊕RK22) = {00, 49, 49, 49} · (X3

12 ⊕RK22)
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whose probability is p ≈ 1/2− 2−10.83.

{00, f6, f6, f6} · F0(X
3
13 ⊕RK24) = {00, eb, eb, eb} · (X3

13 ⊕RK24)

whose probability is p ≈ 1/2− 2−10.19.
Plugging the corresponding values of λP , λQ and λT into Eqn. (5)-(8), we

can get the following 3-round linear characteristic of CLEFIA.

{00, f6, f6, f6}·X3
10 = {00, f6, f6, f6}·X0

13⊕{00, 49, 49, 49}·X3
12⊕λK ·K

′

(14)

whose probability is p ≈ 1/2− 2−30.63.
Finally, the decrypting stage of the 13-round impossible differential-linear

distinguisher can be expressed as:

{00, f6, f6, f6} · (X0
13 ⊕X0∗

13 )⊕ {00, 49, 49, 49} · (X3
12 ⊕X3∗

12 ) = 0 (15)

The total probability of the 13-round impossible differential-linear distinguisher
can be computed as described in section 3, which is about 1/2− 2−60.26.

5 The Impossible Differential-Linear Attack on 16-Round

CLEFIA-128

In this section, we explain our impossible differential-linear attack on 16-round
CLEFIA-128 with whitening keys. In this attack, we set the above 13-round
impossible differential-linear distinguisher as rounds 3-15, and extend two rounds
backward and one round forward as shown in Fig.3.

The expression of the decrypting stage of the 13-round impossible differential-
linear distinguisher should be transformed to the following form:

{00, f6, f6, f6} · (X0
15 ⊕X0∗

15 )⊕ {00, 49, 49, 49} · (X3
14 ⊕X3∗

14 ) = 0, (16)

and the total probability of the 13-round extended impossible differential-linear
distinguisher is around 1/2 − 2−60.26, theoretically. Based on the analysis in
section 3, we can know that approximately 12 × (2−61.26)−2 ≈ 2126.1 correct
pairs are needed to mount the key recovery attack.

In the following, we first introduce how to obtain the plaintext pairs, then
describe the attack procedure in detail as illustrated in Fig.3. In the end, we
estimate the data complexity and time complexity of our attack.

5.1 Chosen Plaintext

We choose a structure composed of 272 plaintexts that is defined as follows:

SP = (X0
0 , X

1
0 , X

2
0 , X

3
0 )j , 1 ≤ j ≤ 272,

If we choose plaintext pairs (P, P ∗) where P = (X0
0 , X

1
0 , X

2
0 , X

3
0 ) and P ∗ =

(X0∗
0 , X1∗

0 , X2∗
0 , X3∗

0 ) = (X0
0 ⊕ δ,X1

0 ⊕ γ,X2
0 , X

3
0 ⊕ ̟), whose difference takes

the form ∆P = (δ, γ, 0, ̟) with ̟ = (0, 0, 0, x), δ = (aw, 2w, 8w,w), w =
M0(S(x

′)) ⊕ M0(S(x
′ ⊕ x)) (x′ ∈ F 8

2 ), and γ = (v0, v1, v2, v3). We can get
∆X2 = (0, ̟, 0, 0). For the computations of δ and γ, please refer to Fig.3. Thus,
we have 255 possible values of both ̟ and δ, 232 − 1 possible values of γ, and
one structure can produce about 2119 distinct plaintext pairs.
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Fig. 3. 16-round impossible differential-linear attack

5.2 The Impossible Differential-Linear Attack on 16-Round

CLEFIA-128 with Whitening Keys

In the following, we will discuss our impossible differential-linear attack on 16-
round CLEFIA-128 with whitening keys in detail. In Fig.3, plaintext P = X0,
ciphertext C = X16.

Step 1. Take 250.73 structures defined above, i.e. 272×250.73 = 2122.73 plaintexts,
so 2119 × 250.73 = 2169.73 plaintext pairs. Encrypt 2122.73 distinct plaintexts
for 16 rounds. Insert all ciphertexts into a table T0 indexed by X0

15, (X
0
15 =

X0
16).

Step 2. Let 32-bit subkey RK30 and 24-bit subkey (RK29 ⊕WK2) be indexed
by N1, . . . , N256 and reset Ni(1 ≤ i ≤ 256).
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Create a table T1 of F0(X
0
15, RK30), indexed by all 232 values of RK30 and

232 values of X0
15. For every guess of RK30 (32-bit), look up the value of

F0(X
0
15, RK30) in T1 for each X0

15, and obtain the value of X1
15 ⊕WK2 =

X1
16⊕F0(X

0
15, RK30) for each X1

16. Select only the pairs whose difference are
equal in the first byte of (X1

15 ⊕WK2), the expected number of such pairs
is 2169.73 × 2−8 = 2161.73.

Then for every guess of the last three bytes of subkey RK29 ⊕WK2 (24-
bit), we can partially compute the value of λQ · X3

14 = λQ · (F1(X
1
15 ⊕

WK2, RK29 ⊕WK2)⊕X2
16) for eachX2

16, and the value of λP ·X0
15⊕λQ·X3

14.
If the pair satisfies Eqn. (16), increment the corresponding Ni by 1.

After running all 256 guesses, we output the minimum value of Ni as the
56-bit correct subkeys. Based on the analysis in section 3 and [1,7], we know
that approximately 8× (260.26)2 ≈ 2123.52 plaintext pairs are needed for the
13-round impossible linear distinguisher, we expect to have 238.21 pairs left
with this condition.

Step 3. We eliminate those wrong 40-bit values for the first two rounds subkey
(RK0, RK3

3) (The first three zero bytes of ̟ only lead to the last byte of
RK3 that affects ∆F1, so 32-bit RK0 and 8-bit RK3) by showing that the
impossible property holds if these subkeys are used. To do so, we use a
precomputation stage. At this precomputation stage, we consider all pairs
whose difference (∆X0

2 , ∆X1
2 , ∆X2

2 , ∆X3
2 ) = (0, ̟, 0, 0) after the first two

rounds encryption. To achieve this, we need to perform two step, the first
step makes sure that ∆X0

1 = 0, and the second step enables ∆X2
2 = 0.

1). If ∆X0
1 = 0, there are 232 possible values for X0

1 . We perform A1 =
F−1
0 (X0

1 ⊕WK0 ⊕ X1
0 ) and create a hash table H1 containing one of

the outputs of A1 and the XOR of the two outputs (X0
0 ⊕RK0). There

are 232 possible values for (X0
0 ⊕RK0), and on average one value of X0

1

corresponds to each value of (X0
0 ⊕ RK0). Now for each of the 238.21

remaining pairs we compute (X0
0 ⊕RK0), and use the table H1 to fetch

one possibility of X0
1 that corresponds to the computed (X0

0 ⊕ RK0).
The process identifies roughly one wrong value for the subkey RK0 by
XORing the plaintext and A1. The probability of a wrong 32-bit value
for RK0 is (1 − 2−32). After analyzing all 238.21 pairs, we expect only

232 × (1− 2−32)2
38.21

×1 ≈ 2−75 wrong values of RK0 remaining.

2). In round 2, if ∆X2
2 = 0, there are 232 possible values for X2

2 . We
perform A2 = F−1

1 (X2
2 ⊕X3

1 ) = F−1
1 (X2

2 ⊕X0
0 ) and create a hash table

H2 containing one of the outputs of A2 and XOR of the two outputs
(X2

1⊕RK3). There are 2
32 possible values for (X2

1⊕RK3) and 28 possible
values for RK3

3 . Now for each of the 238.21 remaining pairs we compute
(X2

1 ⊕ RK3), and use the table H2 to fetch one possibility of X2
2 that

corresponds to the computed (X2
1⊕RK3). The process identifies roughly

one wrong value for the subkey RK3 by XORing the plaintext and A2.
The probability of a wrong 8-bit value for RK3

3 is (1 − 2−32). After

analyzing all 238.21 pairs, we expect only 28 × (1− 2−32)2
38.21

×1 ≈ 2−99

wrong values of RK3
3 .
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Therefore, wrong values of the 40-bit of (RK0, RK3
3) can be established un-

less the initial guess of the 32-bit value of RK30 or 24-bit value of (RK29 ⊕
WK2) is correct. It is expected that we can eliminate the whole 40-bit value
of RK0 and RK3 in this step, since the wrong values of (RK0, RK3

3 , (RK29⊕
WK2), RK30) remains with a small probability of max{256×2−75 = 2−19, 256×
2−99 = 2−43}. Hence if there remains a value of (RK0, RK3

3), we can assume
that the guessed 56-bit values for (RK29⊕WK2) and RK30 are correct. Our
attack can recover 96-bit subkeys.

Complexity Analysis. According to the above analysis , a structure has 272

plaintexts, we need about 250.73 structures, so the data complexity of our attack
is about 272 × 250.73 = 2122.73.

Step 1 need 2122.73 encrypting operations, Step 2 requires (2 × 232 × 232 ×
232) ≈ 297 F operations, which is equal to 296 one round operation. The re-
quired time for memory access in step 3 is less than (232 × 232) × 238.21 +
(28 × 232) × 238.21 ≈ 2102.21 F operations, i.e. 2101.21 operations one round.
Therefore, the total time complexity of our attack can be estimate as about
2122.73 + (296 + 2101.21)

/

16 ≈ 2122.73.

2122.73
/

23 = 2119.73 bytes of memory are needed to store the table T0,
296/23 = 293 bytes of memory are needed to store the list of deleted key values
(RK30, RK29, RK0, RK3

3), 2×231 = 232 bytes of memory are needed to store the
hash table (H1, H2), and 264/23 = 261 bytes of memory are needed to store table
T1. Our attack can recover 96-bit subkeys (RK0, RK3

3 , RK29 ⊕WK2, RK30).

Note 3. For another 13-round extended impossible differential-linear distinguish-
er and another 16-round attack to CLEFIA-128, please refer to Appendix A and
Appendix B, respectively. For attacks to 15-round CLEFIA-128, please refer to
Appendix C. Our attack is also effective to CLEFIA-192 and CLEFIA-256.

6 Conclusion

In this paper, we present a new attack, impossible differential-linear attack, and
achieve a result of 16-round CLEFIA-128 with 2122.73 CP, and time complexity is
also 2122.73. The comparison of cryptanalytic results with CLEFIA is illustrated
in Table 1, which shows that our attack is more efficient than the present results.
The attack is also effective to 15-round CLEFIA-128, given in Appendix C.
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Appendix A. Another 13-round extended

impossible differential-linear distinguisher

Another 13-round extended impossible differential-linear distinguisher concate-
nates an impossible differential

(0, 0, 0, ̟) 6→ (0, 0, 0, β)[3]

with a 4-round linear characteristic. For details please refer to Fig.4.
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Appendix B. Another Attack on 16-round

CLEFIA-128

Another 16-round attack on CLEFIA-128 is illustrated in Fig.5 with the 13-
round impossible differential-linear distinguisher in section 4, and three rounds
extension on plaintext side. Its main ideas is: Choose a structure composed
of 2104 plaintexts, whose corresponding plaintext pairs are of the form ∆P =
(̟, ξ, γ, θ). Encrypt all 2183 plaintext pairs, select only the pairs whose cipher-
texts are equal in the first byte of X2

16. According to section 5.2, we can recover
104-bit subkeys.

The data complexity is about

2104 ×
[

8×
(

260.26
)2
/

(

2183 × 2−8 × 2−32 × 2−32 × 2−8
)

]

≈ 2124.52.

The time complexity is

[(232 × 232)
/

2+((232 × 232)× 272 + (232 × 232)× 272 + (28 × 232)× 272)
/

2]
/

16 ≈ 2131
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Appendix C. Attacks on 15-round CLEFIA-128

The attacks to 15-round CLEFIA-128 below are all with whitening keys. The
details of the attack can be divided into two cases.

The first extension is one round on plaintext side, and one round on ciphertext
side as illustrated in Fig.6. We can choose a structure composed of 240 plaintexts,
whose plaintext differences is of the form ∆P = (0, 0, ̟, δ). Obviously, one
structure can produce about 255 different plaintext pairs. Similar to the section
5.2, we can recover 64-bit subkey composed of RK0

1(8bit), RK27(24bit), and
RK28(32bit), with impossible differential-linear attack.

The data complexity is

240 × [8× (260.26)
2
/

(255 · 2−8 · 2−8)] ≈ 2124.52

The time complexity is

[(2× 232 × 232 × 232)
/

2 + ((28 × 232)× 28)
/

2]
/

15 ≈ 293.1

The second extension is two rounds on plaintext side, illustrated in Fig. 7. We
can choose a structure composed of 272 plaintexts, whose plaintext differences is
of the form ∆P = (δ, γ, 0, ̟). Obviously, one structure can produce about 2119

distinct plaintext pairs. Similar to section 5.2, we can recover 64-bit subkey, that
is RK0(32bit), RK0

3(8bit), and RK29(24bit), with impossible differential-linear
attack.

The data complexity is

272 × [8× (260.26)
2
/

(2119 · 2−8 · 2−32 · 2−8)] ≈ 2124.52

The time complexity is

[(232 × 232)
/

2+((232 × 232)× 240 + (28 × 232)× 240)
/

2]
/

15 ≈ 299.1
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Appendix D. Round Key Relation

According to the description in section 2, we can get the relationship between
generated round keys and related data as follows:

RK0 |RK1 |RK2 |RK3 ← L⊕ CON24 |CON25 |CON26 |CON27

RK4 |RK5 |RK6 |RK7 ← Σ(L)⊕K ⊕ CON28 |CON29 |CON30 |CON31

RK8 |RK9 |RK10 |RK11 ← Σ2(L)⊕ CON32 |CON33 |CON34 |CON35

RK12 |RK13 |RK14 |RK15 ← Σ3(L)⊕K⊕CON36 |CON37 |CON38 |CON39

RK16 |RK17 |RK18 |RK19 ← Σ4(L)⊕ CON40 |CON41 |CON42 |CON43

RK20 |RK21 |RK22 |RK23 ← Σ5(L)⊕K⊕CON44 |CON45 |CON46 |CON47

RK32 |RK33 |RK34 |RK35 ← Σ8(L)⊕ CON56 |CON57 |CON58 |CON59

Based on the properties proved in [5], we get the following key relations:
RK32 ⊕ C1 = RK1[56− 63] |RK3[100− 102] |RK3[107− 127]
RK33 ⊕ C2 = RK2[72− 95] |RK3[96− 99] |RK3[103− 106]
RK34 ⊕ C3 = RK0[21− 24] |RK0[28− 31] |RK1[32− 55]
RK35 ⊕ C4 = RK0[0− 20] |RK0[25− 27] |RK2[64− 71]

where
C1 = CON56 ⊕ (CON25[56− 63] |CON27[100− 102] |CON27[107− 127] )
C2 = CON57 ⊕ (CON26[72− 95] |CON27[96− 99] |CON27[103− 106] )
C3 = CON58 ⊕ (CON24[21− 24] |CON24[28− 31] |CON25[32− 55] )
C4 = CON59 ⊕ (CON24[0− 20] |CON24[25− 27] |CON26[64− 71] )
Thus we get the following properties from the above derivations:

Property 6. . If 32 bits RK33 are known, we can get 24 bits RK2[72− 95], and
8 bits RK3[96− 99] |RK3[103− 106].

Property 7. . If 32 bits RK34 are known, then we can get 8 bits RK0[21 −
24] |RK0[28− 31] , and 24 bits RK1[32− 55].
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