
Theory of masking with codewords in hardware:

low-weight dth-order correlation-immune Boolean

functions

Shivam Bhasin Claude Carlet Sylvain Guilley

January 16, 2014

Abstract

In hardware, substitution boxes for block ciphers can be saved already
masked in the implementation. The masks must be chosen under two con-
straints: their number is determined by the implementation area and their
properties should allow to deny high-order zero-offset attacks of highest
degree. First, we show that this problem translates into a known trade-off
in Boolean functions, namely finding correlation-immune functions of low-
est weight. For instance, this allows to prove that a byte-oriented block
cipher such as AES can be protected with only 16 mask values against
zero-offset correlation power attacks of orders 1, 2 and 3. Second, we study
dth-order correlation-immune Boolean functions Fn

2 → F2 of low-weight
and exhibit such functions of minimal weight found by a satisfiability
modulo theory tool. In particular, we give the minimal weight for n ≤ 10.
Some of these results were not known previously, such as the minimal
weight for (n = 9, d = 4) and (n = 10, d ∈ {4, 5, 6}). These results set
new bounds for the minimal number of lines of binary orthogonal arrays.
In particular, we point out that the minimal weight wn,d of a dth-order
correlation-immune function might not be increasing with the number of
variables n.

Keywords: side-channel attacks, zero-offset high-order correlation power at-
tacks, masking countermeasure, Boolean functions, dth-order correlation-im-
munity, orthogonal arrays, SMT.

1 Introduction

Masking is a technique to deceive attacks that exploit side-channel emanations
leaking from cryptographic implementations. The main difficulty when design-
ing a masking scheme is to pass through the substitution boxes (sboxes). Clas-
sical techniques are:

• Sboxes recomputation: before starting the encryption, the sbox S is re-
placed in memory by a masked version. An alternative is the mathematical

1

computation of the sbox during the algorithm; this solution can totally
avoid look-ups.

• Global look-up table: a huge sbox is implemented, with three inputs (the
functional input, the input and the output masks).

• Random choice of premasked sboxes: a set of w masked sboxes is already
implemented, and their selection is done randomly at each new encryption.

All these techniques come at a non-negligible cost: sboxes recomputation re-
quires time and therefore incurs a non-negligible latency, the global look-up
table is greedy in memory or silicon area, and the random choice of premasked
sboxes needs to function with a limited amount of masks thus compromising
with the entropy. In this article, we are interested in a masking solution with-
out timing overhead and a limited significant area overhead. This rules out the
two first options.

An architecture that implements the random choice of premasked sboxes
in hardware has been presented in [25]. We summarize its main features. A
small number of sboxes (e.g. w = 16 for the AES) are embedded already
masked in the implementation. For cost-efficiency, the masks cannot be up-
dated i.e. either ROM is used instead of RAM, or the masked sboxes are simply
synthesized in logic gates. The gate count of a masked sbox (with constant
masks) is similar to that of the unmasked sbox, since both are basically random
functions or structured functions whose properties are preserved after masking.
Such masking scheme is especially relevant for the ciphers that use many in-
stances of the same sbox (e.g. AES (i.e. Advanced Encryption Standard [26])
or PRESENT [4]). For instance, AES uses 16 identical sboxes addressing 16
different bytes of the 128-bit plaintext in its round function. Therefore, it is
natural to consider a countermeasure where the 16 sboxes are instantiated each
with a different mask. At every encryption, the allocation of the sbox for each of
the 16 plaintext bytes is done randomly. Compared to the sbox recomputation
or the global look-up table options, only w = 16 masks are possible amongst
the 256 possible ones. Still, it is interesting to assess the level of resistance such
a countermeasure can achieve. Because all the w sboxes are evaluated in par-
allel, we exclude collision attacks or high-order attacks with the combination of
leakage from individual sboxes. At least, we assume that the designer has taken
all the actions to make those attacks impossible. Thus, the only viable attack
that remains is the high-order zero-offset attack [34] (at order d, that consists in
correlating a sensitive variable with the dth power of the centered side-channel
leakage.

Our problem involves three parameters:

1. n: the sbox bitwidth, e.g. n = 8 bit for AES,

2. d: the targetted order of resistance, e.g. d = 1, 2, 3 or more,

3. w (1 ≤ w ≤ 2n): the number of masks, that coincides with the number of
sboxes (i.e. the implementation cost).

2

The analysis will reveal (Theorem 1) that the problem consists in:

• finding the masks as a code C ⊆ Fn2 of dimension n, size w and dual-
distance d+ 1; or equivalently

• finding a Boolean function f (the indicator of the C in Fn2) of weight w
and that is dth-order correlation immune.

Those problems are classical ones, and actually consist in trade-offs: either
maximizing d for a given w or minimizing w for a given d.

In this article, we intend to find correlation-immune Boolean functions f
whose support (the reciprocal image of 1, i.e. supp(f) = f−1(1)) has a cardi-
nality as small as possible. Therefore we are also interested in unbalanced f ;
thus, in the sequel, f is non-necessarily resilient. Moreover, for reasons which
will clearly appear below, we are only interested in nonzero functions f .

Definition 1. A Boolean function f is dth-order correlation-immune (d-CI for
short) if its output value distribution does not change when at most d components
of its input are fixed to arbitrary values.

Let us recall that the Hamming weight wH(x) of a vector x ∈ Fn2 is the
number of bits set to one. A classical characterization of d-CI functions involves
the Fourier or the Walsh transform.

Definition 2. The Fourier transform f̂ of a function f is defined as f̂ : a ∈
Fn2 7→

∑
x f(x)(−1)a·x ∈ Z.

Definition 3. The Walsh transform Wf of a function f is the Fourier transform
of its character fχ : x 7→ (−1)f(x).

It has been proved in [35] that f is d-CI if and only if ∀a ∈ Fn2 , 0 < wH(a) ≤
d,Wf (a) = 0 (or equivalently, if and only if ∀a ∈ Fn2 , 0 < wH(a) ≤ d, f̂(a) = 0).

We recall that d-CI functions are functions whose supports are (simple)
binary orthogonal arrays of strength d, that is, linear or nonlinear codes of dual
distance at least d + 1. A survey on orthogonal arrays can be found in [12].
The first contribution of this paper is the exhibition of new d-CI functions. We
give the minimal weights of all d-CI functions of n variables for n ∈ J1, 10K,
and notably the previously unknown minimal weights of functions with those
parameters: (n = 9, d = 4) and (n = 10, d ∈ {4, 5, 6}).

The rest of the paper is organized as follows. The security analysis of the
masking scheme based on the random choice of premasked sboxes is carried out
in Sec. 2. This first section is aimed towards the definition of the criteria to
find masks (n-input d-CI functions of weight w). Such functions are studied in
Sec. 3 with three classical methods:

1. as indicators of binary linear codes (Sec. 3.3.2),

2. with the Maiorana-McFarland construction [6] (Sec. 3.3.3), and

3. using simple binary orthogonal arrays (Sec. 3.4).

3

These methods do not always allow to derive the minimal weight. Therefore we
also conduct an exhaustive computer search using a satisfiability modulo theory
(SMT) tool. Previously unknown d-CI functions of lowest weight are exhib-
ited. Finally, the conclusions are drawn in Sec. 4. Some appendices provides
technical proofs (App. A), the difficulty to build d-CI functions in certain cases
as (n ∈ {8, 9, 10, 11}, d = 2), (n ∈ {9, 10, 11, 12}, d = 3) (App. B), and detail
the difference between d-CI functions and general orthogonal arrays (App. C).
In this appendix, we also present an open problem: the minimal weight wn,d
of a d-CI function of n variables might not increase with n, as is the case for
(non-simple) orthogonal arrays.

2 Boolean Masking

2.1 Presentation of Boolean Masking

The goal of cryptographic algorithms is to provide various functionalities, such
as ensuring the confidentiality, the authenticity or the integrity of transmitted
information. For instance, the confidentiality of blocks of data can be achieved
by the encryption, using algorithms like AES. Those algorithms, considered
blackboxes (that is, leaking no information on the computations made in them;
the only information available to the attacker being the inputs and the outputs
to the box), are purportedly strong: no attack (or only little efficient ones, i.e.
concretely impractical) are known that would be able to extract the key by
intercepting their input, output or both.

However, once the algorithm is implemented (either in software or in hard-
ware), the so-called “side-channel attacks” become possible. These attacks con-
sist in recording the unintentional emanations emitted from an implementation
in a view to derive some information about the secret key. As a matter of fact,
the key is mixed with the encrypted data, and any leakage that depends on
this data can be used as an oracle: the attacker guesses a manageable part of
the key (a “subkey”), and deduces an internal variable (usually referred to as a
“sensitive variable”). If the sensitive variable is somehow leaked by the device,
then the attacker can test exhaustively all the values of the subkey, and check
whether the measured leakage is likely to originate from this variable. The cor-
rect subkey is the subkey hypothesis that maximizes the dependency between a
modelled leakage and the measured leakage.

For example, the plaintext X that is encrypted by a block cipher is usually
mixed with a key K before being input in a substitution box (sbox) S. The
sbox plays a role of “confusion”, that allows to decorrelate the output Z from
the plaintext X. At this stage, Z = S(X⊕K) is sensitive. Indeed, this variable
depends on the key (usually, only one subkey enters each sbox), and can be
predicted from X. So, the attacker is able to predict Z for every possible value
of K.

In practice, the variable Z is leaking much because it is stored in a series of
flip-flops (register), waiting for the next processing that consists in the iteration

4

S

X

K

Z

L = wH(Z)

S ′

K

L = wH(Z ⊕Mout)

X ⊕Min

Z ⊕Mout

Figure 1: Side-channel leakage L in a block cipher, unprotected (left) and
masked (right).

of the same “round function”. This next operation is carried out on the data just
processed previously by the same round function. The register is a micrometric
object, whose contents cannot be measured directly. Only the sum of each bit set
in Z is available when using a mesoscopic sensor (e.g. an integrated antenna of
0.1 to 1 mm diameter). This leakage model is called the Hamming weight leakage
function. It is widely accepted as a valid model for representative devices [5].
This model is suitable for FPGAs that are configured with a custom function,
ASIC and microcontroller based implementataions. In other words, the Haming
weight leakage model stays valid for a wide range of pratical cryptographic
implementations.

The leakage model of a typical block cipher is illustrated in the left-hand
side of Fig. 1: L = wH(X). As it is easy to correlate this leakage model to
actual measurements, many side-channel key retrieval attacks have been devised
in theory and conducted successfully in practice. Therefore, it is important that
cryptographic implementations be protected against side-channel attacks.

The Boolean masking is a protection where the internal data are manip-
ulated XORed with a random mask that changes at every computation [19].
For instance, X is manipulated as X ⊕ Min. The key mixing (operation:
X 7→ X ⊕ K) is compatible with the Boolean masking because it is a linear
function. The application of the sbox S is complex, because it is not linear (i.e.
S(X ⊕K ⊕Min) 6= S(X ⊕K)⊕ S(Min)).

One method to apply sbox on masked data involves the re-computation of
the sbox applied as follows:

• the masks Min and Mout are randomly drawn;

• the sbox S is recomputed – this means that a new table S′ is created, with
this functionality: x 7→ S′(x) = S(x⊕Min)⊕Mout.

5

This way, the data can enter the sbox masked by Min and remains masked at
the output, as Z ⊕Mout. This countermeasure is illustrated in the right-hand
side of Fig. 1. If we simply note M instead of Mout, the leakage model is now:

L = wH (Z ⊕M) . (1)

In some applications, the recomputation of the sbox S′ is too long. For
instance, a hardware AES with 128-bit key can be executed in about 11 clock
periods, whereas a single sbox recomputation requires at least 256 clock periods.
Therefore, it is relevant to precompute required set of masked sboxes S′ once for
all, and to cache them. Indeed, keeping all the possible S′ certainly requires too
much memory. Although not impossible (2563 bytes, i.e. 16 MB, are needed
for AES [22]), such “Global Look-up-Table” [27] is expensive. Please note that
in hardware where implementations are parallel in general, several instances of
a Sbox are used and all of them must be masked. A single AES GLUT would
occupy about 90% of the available memory in a low-cost FPGA thus making a
parallel AES implementation unfeasible. It explains why fewer number of masks
is preferable. If win (resp. wout) masks are used in input (resp. output) of the
sbox, then the memory requirement is only 256× win × wout bytes.

Thus, in terms of implementation, it is more efficient to use for M a subset
of all possible masks (we focus on M = Mout in the sequel because Min does not
appear in the expression of the leakage model L). So, unlike previous masking
schemes, the mask M is not fully entropic. If n ∈ N∗ is the input size of an
sbox, then the masks belong to a subset of Fn2 called M. A choice of masks is
identified by the Boolean function f : Fn2 → F2, that is defined as the indicator
of M in Fn2 , i.e. f(x) = 1⇐⇒ x ∈M.

From a designer point of view, security is not the only parameter. The key
parameters for an implementations are area, performance, power-consumption
and security of a design. Therefore often a designer is required to make ap-
propriate trade-offs between the key parameters to make the implementation
practical. For instance, lets focus on two complementary parameters i.e. area
and security. Most of the methodologies to secure an implementation (includ-
ing Boolean masking) rely on redundancy in the design i.e. increase of area.
Area increase can further lead to increase in power-consumption and decrease
in speed. In such a scenario, an elevated security with fewer number of mask
has a clear interest. In the following, we analyze the security of the depleted
masking countermeasure.

2.2 Security Analysis of the “Depleted” Masking Coun-
termeasure

It is well-known that an attack can be mounted against the masking scheme
just presented, since the leakage function conveys information on the sensitive
variable Z. Indeed, the mutual information I[L ;Z] between L and Z is equal
to zero if and only if M is uniformly distributed. However, the objective is not
to achieve perfect security, but to make the exploitation as hard as possible, i.e.

6

to increase as much as possible the number of traces required for an attack to
succeed. Now, an information-theoretic attack (such as a mutual-information
analysis, aka MIA [1]) consists, in practice, in computing an estimation of a
mutual information on noisy signals (L can only be measured approximately,
because of algorithmic noise and imperfect acquisition conditions). Such an
estimation requires a lot of measurements to be accurate (i.e. reliable).

The defender’s strategy is to find masks that reduce the dependency between
the leakage L and Z. To quantify the amount of dependency, we recall this
result, that holds whatever the random variables L and Z:

L ⊥⊥ Z =⇒ ∀d ∈ N, Var
[
E
[
L d|Z

]]
= 0 .

In this equation, the symbol “⊥⊥” expresses the statistical independence, and
E (resp. Var) denotes the expectation (resp. variance) operator. If we call
“classes” the values z taken by Z, then the term Var

[
E
[
L d|Z

]]
is also called

the inter-class variance of L d; the expectation of L d is computed in each class
Z = z and the variance is taken on Z.

Without countermeasure, the leakage L has, in average, a value that de-
pends on the sensitive variable Z; indeed, as shown at the left of Fig. 1,
L = wH(Z). This means that the mean of L knowing Z = z for each class
Z = z is scattered, or equivalently that E [L |Z] depends on Z = z, or equiva-
lently that the inter-class variance Var [E [L |Z]] is nonzero. For instance, this
condition is required for the correlation power attack (CPA [5]) to work. The
CPA computes the Pearson correlation coefficient ρ between the leakage and
the sensitive variable. The CPA fails if ρ(L , Z) = ρ(E [L |Z] , Z) = 0, i.e. if
E [L |Z = z] does not vary with z. The goal of a first-order masking counter-
measure is to equal the inter-class variance to zero, by balancing the leakage
in each class. Thus Var [E [L |Z]] = 0, but Var

[
E
[
L 2|Z

]]
6= 0. Second-order

masking countermeasures not only balance, but also normalize the leakage, so
that we have Var

[
E
[
L d|Z

]]
= 0 for d ∈ {1, 2}. Thus, by extrapolation, the

quality of the countermeasure can be assessed as the largest d such that, for all
i ∈ J1, dK,Var

[
E
[
L i|Z

]]
= 0. The greater it is, the better the countermeasure.

Such a countermeasure is said to resist dth-order attacks.
Back to the information-theoretic notion of security (I[L ;Z] 6= 0 if M is not

uniform) it shall be noted that in practice, the authors of the MIA [11] concur
that MIA is seldom more efficient than correlation attacks (like CPA [5] or high-
order CPA [34]). Moreover, the paper [33] indicates that MIA can be relevant
only if the leakage model is badly known by the attacker. This is however not
the case in this paper, where we assume that the designer of the countermeasure
knows or is able to test the leakage model.

To allow for a trade-off between the security and the implementation cost,
we envision a case where some masks are forbidden, whereas the others can be
used. More precisely, the masks M follow a uniform distribution over a subset
M⊆ Fn2 .

Theorem 1. Let d ≤ n. A masking scheme with leakage as per Eqn. (1) resists

7

to dth-order attacks if the indicator f of the masksM is a dth-order correlation-
immune Boolean function.

Proof. Theorem 1 had already be demonstrated for d 6 2 in [23]. However, the
proof was very ad hoc (with manual developments of the power of sums, and
without spectral analysis tools). We simplify and generalize it below.

Remark 1. Incidentally, we notice that the notion of d-order attacks is inde-
pendent of the condition d ≤ n. Actually, when d = n, Theorem 1 states that
f must be n-CI, which is equivalent (cf Example 1) to having all the masks.
In this case, I[L ;Z] = 0 and the countermeasure actually resists attacks of any
order d ∈ N.

Remark 2. It is noteworthy that theorem 1 links two different concepts of
correlation. The attack uses dth-order correlation power analysis, whereas the
defense (the countermeasure) employs dth-order correlation-immunity. It is a
fortuitous coincidence that those two notions encounter one with the other in
the framework of side-channel analysis.

Remark 3. We see that finding d-CI functions of low-weight is relevant in this
case, because the memory size to save the masked sboxes is equal to the number
of masks, i.e. to Card[supp(f)].

We begin with one lemma:

Lemma 1. ŵdH (z) = 0 ⇐⇒ wH (z) > d.

Proof. See Appendix A, and in particular the property P5 of Lemma 12.

Proof. (of Theorem 1) Given one z ∈ Fn2 , the random variable (wH (Z ⊕M))
i |

Z = z depends only on M . Its average is:

E
[
(wH (Z ⊕M))

i | Z = z
]

=
1

f̂(0)

∑
m∈M

wiH (z ⊕m)

=
1

f̂(0)

∑
m∈Fn

2

f(m) · wiH (z ⊕m) // Expression 1

=
f

f̂(0)
⊗ wiH (z)

=
1

2n

̂̂f
f̂(0)

· ŵHi(z) . // Expression 2

Note that expression 2 comes from these properties: φ̂⊗ ψ = φ̂ × ψ̂, φ̂ ⊗ ψ̂ =

2nφ̂× ψ, and thus φ⊗ ψ = 1
2n

̂̂
φ× ψ̂. They relate the convolution product (⊗)

and the regular product (×) when the Fourier transform is applied.

8

Now, security metric is equal to the variance on z ∈ Fn2 of the previous
expression:

1

23n

∑
z

 ̂̂f
f̂(0)

· ŵHi(z)

2

−

 1

2n

∑
z

1

f̂(0)

∑
m∈Fn

2

f(m) · wiH (z ⊕m)

2

,

using expressions 2 and 1. The first term simplifies when considering Parseval’s
relation:

∑
φ̂2 = 2n

∑
φ2. The second term can also be simplified:

1

2n

∑
z∈Fn

2

1

f̂(0)

∑
m∈Fn

2

f(m) · wiH (z ⊕m)

=
1

2n
1

f̂(0)

∑
m∈Fn

2

f(m) ·

 1

2n

∑
z∈Fn

2

wiH (z ⊕m)

=

1

2n

∑
z∈Fn

2

wiH (z) =
ŵHi(0)

2n
. (2)

Eventually, the inter-class variance Var
[
E
[
L i|Z

]]
takes the following simple

form:

Var
[
E
[
wiH(Z ⊕M) | Z

]]
=

1

22n

∑
z 6=0

(
f̂(z)

f̂(0)
· ŵiH (z)

)2

. (3)

If the masking scheme resists against dth-order attacks, then, by definition,
for all 0 < i ≤ d, Eqn. (3) is null. Let us consider simply the case i = d. For

all z 6= 0, f̂(z) · ŵdH (z) = 0. The contrapositive of lemma 1 is the equivalence

ŵdH (z) 6= 0 ⇐⇒ wH (z) ≤ d. Thus, for all nonzero z with Hamming weight

smaller or equal to d, f̂(z) is equal to zero. This means that f is d-CI.
Conversely, if f is d-CI, then Eqn. (3) is null for all 0 < i ≤ d, because:

• when wH (z) ≤ i, f̂(z) = 0 because f is i-CI (weaker property of the
dth-order correlation-immunity),

• when wH (z) > i, ŵiH (z) = 0 (lemma 1).

Corollary 1. Theorem 1 also holds if the leakage variable (Eqn. (1)) is centered,
i.e. L̃ = w̃H (Z ⊕M) = wH (Z ⊕M) − n/2 is considered instead of L =
wH (Z ⊕M).

Remark 4. It has indeed been proved, for instance in [28], that the distinguish-
ers are optimal if the leakage is centered before processing.

9

Proof. The basic architecture of the proof of Theorem 1 still holds, albeit with
some minor adjustments.

Let us assume that the equivalent of Eqn. (3): Var
[
E
[
(w̃H (Z ⊕M))

i | Z
]]

=

1
22n

∑
z 6=0

(
f̂(z)

f̂(0)
· ̂̃wHi (z)

)2
is null for all 0 < i ≤ d. Then for all 0 < i ≤ d and

z 6= 0, f̂(z)· ̂̃wHi (z) = 0. Let us choose one i ∈ J1, dK. According to the property

P2 of lemma 10, we have that ̂̃wHi (z) 6= 0 if wH (z) = i. So, f̂(z) if wH (z) = i.
But now, this is true for all i ∈ J1, dK. So, this proves that f is d-CI.

The converse is shown as in the proof of Theorem 1, with the following
modification: Property P1 of lemma 10 is invoked instead of lemma 1.

2.3 Example of Application

The results can be applied on algorithms for which the datapath is segmented
in words of n-bits. For instance, the AES [26] manipulates bytes, hence n = 8.
Then, the security level shall be determined. First-order resistance is a mini-
mum for most evaluation schemes, but for practical applications, a resistance
d > 2 is welcome, as second-order attacks are now known for more than 12
years [20]. Higher-order attacks, e.g. attacks of order d = 3, are more difficult
to realize successfully provided the noise level is sufficient [21] (e.g. hardware
implementations are noisy owing to the large activity of parallel operations that
can be seen as noise). So, for a strong security level of today, we set d = 3.
Then, the designer looks for the minimally sized masks set. A look-up in Tab. 3
shows that this set can be depleted from 256 down to 16 masks. In this case,
the entry of the table is not gray, which means that the masks are actually the
codewords of a linear code1 namely [8, 4, 3]. The implementation overhead is
straightforward: 16 different masks can be used, hence a factor 16 in resources
usage. Also, in a system-on-chip, the masks are drawn from a true random num-
ber generator (TRNG). For the randomness to be of good quality, this module
is typically limited in throughput. Thus, it is also beneficial for the overall se-
cure system (TRNG and AES) to limit the amount of required randomness per
encryption.

In the case of AES, the datapath is itself made up of 16 bytes arranged as
a 4 × 4 matrix. In this matrix, each byte is processed similarly (notably, the
non-linear operation SB, called SubBytes, is composed of 16 identical sboxes).
Therefore, before the application of the countermeasure, 16 identical sboxes
were required to compute one round of AES in one clock period. To apply the
masking scheme, 16 different S′ are computed one for each mask in M. The
main idea is to reuse the 16 different S′ for 16 bytes. In hardware, where the 16
bytes are processed in parallel, reusing S′ can be achieved simply by rotataion
(as illustrated in Fig 2).

The masking applies as follows:

1Put differently, the mask values, denoted M in Sec. 2.1, coincide with the codewords,
denoted C in Sec. 3.3.1.

10

4

Barrel shifter

Barrel shifter

M0

M1

m0

m1

m1

m2 m0

m15

SB′
0

offset ∈ {0− 15}

offset ∈ {0− 15}

S ′
15S ′

1S ′
0

128 = 16× 8

128 = 16× 8
4

SubBytes SubBytes SubBytes. . .

Figure 2: Organization of 16 different S′ in RSM countermeasure.

• At the beginning of the encryption, the mapping between the 4× 4 bytes
and the 16 masked sboxes is chosen according to a randomly generated
offset;

• Then, to protect also the sbox input, one output mask Mout can be chosen
as the input mask Min for the neighbor sbox; thus at the next round, all
the sboxes S′ are rotated in a circular manner by one position. This
allows to change the masks for the next round, as in the “rotating sboxes
masking” (RSM [23, 25]) countermeasure for AES.

Thus, in this case, the countermeasure is at constant cost. In the previous
implementation of this RSM countermeasure (refer to [23, 25]), only a protection
against first- and second-order attacks was sought. As we now know that a 3-CI
function of 8 variables and of minimal weight 16 exists, we can improve (at a
constant cost) the security of RSM on AES to resist also third-order attacks,
simply by choosing for the mask values the codewords of [8, 4, 3].

3 Low-weight d-CI Boolean Functions

In this section, we first give general results about d-CI functions, then detail
some (non-optimal) constructive techniques (linear codes indicator, Maiorana-
McFarland construction and orthogonal arrays), and finally present an exhaus-
tive search technique to find d-CI functions. Eventually, a summary of the
minimal weight of d-CI functions of n ≤ 10 variables is given with construc-
tions.

3.1 General Results about d-CI Functions

We recall in this section known facts, for the article to be self-contained.

11

Example 1. The only Fn2 → F2 Boolean functions that are n-CI are the

constant functions. Indeed, let us assume that ∀a 6= 0, f̂(a) = 0. Thus

∀a, f̂(a) = f̂(0)δ(a). Now,
̂̂
f = 2nf and δ̂ = 1, so: ∀a, f(a) = f̂(0)/2n. But

f(a) ∈ {0, 1}. Thus either f̂(0) = 0 or f̂(0) = 2n, which is equivalent to having
either f = 0 or f = 1.

Example 2. There exists a Boolean function that is (n − 1)-CI and of weight
2n−1, i.e. a function that is (n− 1)-resilient. As a matter of fact, the function

f(x) =
⊕n

i=1 xi is (n − 1)-CI and has weight f̂(0) = 2n−1. Indeed, ∀a 6= 0,

(̂−1)f (a) =
∑
x(−1)1·x⊕a·x =

∑
x(−1)¬a⊕x, that is equal to zero if and only if

¬a 6= 0 ⇐⇒ a 6= 1 ⇐⇒ wH(a) 6= n. So, for all a of Hamming weight strictly
less than n, f has a null Fourier transform, which means that f is (n− 1)-CI.

Lemma 2. The support of a d-CI (d > 0) function has a cardinality divisible
by 2d. Incidentally, the weight of a d-CI function is divisible by more than 2d,
depending on the algebraic degree2 of f .

Proof. The proof is a specific case where l = 0 in Theorem 6 of [7]. Let us
note a typographic mistake in this theorem: if the algebraic degree of f is noted

m ≥ 1, the weight of f is divisible by 2d+bn−d−1
m c and not 2n−1− 2d+bn−d−1

m c as
erroneously written in [7]. We notice that the algebraic degree is bounded by
n− d [29].

3.2 General Results about d-CI Functions of Lowest-Weight

In this section, we give some properties of nonzero d-CI functions of lowest
weight. We denote:

• Dn,d the set of d-CI nonzero functions of n variables,

• wn,d the lowest weight of d-CI nonzero functions of n variables (elements
of Dn,d). According to Lemma 2, 2d divides wn,d.

Lemma 3. Let d > 1 and n ≥ 1. Then wn,d−1 ≤ wn,d.

Proof. As Dn,d ⊆ Dn,d−1,

wn,d = min
f∈Dn,d

Card[supp(f)] ≥ min
f∈Dn,d−1

Card[supp(f)] = wn,d−1 .

Lemma 4. Let d ≥ 1 and n ≥ 1. Then wn+1,d ≤ 2wn,d.

Proof. Let f ∈ Dn,d. Then, the new function f̃(x1, · · · , xn, xn+1) = f(x1, · · · , xn) ∈
Dn+1,d, and has weight twice that of f because its truth table is the concatena-
tion of twice that of f .

2A Boolean function f can be uniquely written in an algebraic normal form as f(x) =⊕
u∈Fn2

au
∏n

j=1 x
uj

j . The algebraic degree of f is defined as d◦f = max{wH (u) ; au 6= 0}.

12

Lemma 5. Let d, n > 1. Then wn−1,d−1 ≤ 1
2wn,d.

Proof. Let f ∈ Dn,d. Let us denote (a, b) ∈ Fn−12 × F2 and (x, y) ∈ Fn−12 × F2.
As f is d-CI, if 0 < wH (a, b) ≤ d,

∑
(x,y)(−1)f(x,y)⊕a·x⊕b·y = 0. So we have:

• When b = 0, for all 0 < wH (a) ≤ d,
∑
x(−1)f(x,0)⊕a·x+

∑
x(−1)f(x,1)⊕a·x =

0;

• When b = 1, for all 0 < wH (a) ≤ d−1,
∑
x(−1)f(x,0)⊕a·x−∑x(−1)f(x,1)⊕a·x =

0.

Thus, for all 0 < wH (a) ≤ d, we have
∑
x(−1)f(x,0)⊕a·x = 0 (sum of the two

previous relations). Therefore, x 7→ f(x, 0) is (d−1)-CI, and of weight half that
of f .

Theorem 2 (Fon-Der-Flaass). Let f be an unbalanced non-constant d-CI Boolean
function. Then d ≤ 2

3n− 1.

Proof. Let f be an unbalanced non-constant d-CI Boolean function. The fact
that f is unbalanced follows that Wf (0) 6= 0. The fact that f is non-constant
follows that there exists at least one more vector u ∈ Fn2 such that Wf (u) 6= 0.
The spectral characterization of CI functions gives that wH(u) ≥ d+ 1.

Assume the contrary. Suppose that d > 2
3n − 1. By Titsworth’s theorem,

we have: ∑
x∈Fn

2

Wf (x)Wf (x⊕ u) = 0 . (4)

For x = 0, the summand in the left part of (4) is not equal to 0. If 1 ≤ wH(x) ≤
2
3n < d + 1, then Wf (x) = 0. If wH(x) > 2

3n, then the vectors x and u have
more than n

3 common ones, therefore wH(x⊕ u) < 2
3n. Hence, in the last case,

Wf (x ⊕ u) 6= 0 only for x = u. Thus the left side of Eqn. (4) has exactly
two equal non-zero summands (for x = 0 and x = u), therefore the equality in
Eqn. (4) cannot be achieved. This contraction proves the theorem.

Remark 5. The Fon-Der-Flaass theorem has been introduced in [9]. Its exten-
sion to orthogonal arrays is in [13]. The simple proof of the Fon-Der-Flaass
given in this paper can also be found at pages 148-149 of [31].

3.3 Constructions of d-CI Functions with Codes

3.3.1 Relationship between Correlation-Immune Functions and Codes

By definition, the dual distance of a code C ⊆ Fn2 is equal to the maximal number
d⊥C such that there is no monomial of degree relative to Y strictly smaller than
d⊥C in DC(X+Y,X−Y), where DC is the distance enumerator polynomial of C:
DC(X,Y) = 1

Card[C]

∑
x,y∈C X

n−wH(x⊕y)Y wH(x⊕y). When the code C is linear

(i.e. C is a linear subspace of the vector space Fn2), its minimum distance is equal
to min{wH (x) ,∀x ∈ C∗}, and the distance enumerator, which equals then the
weight enumerate WC (defined as WC(X,Y) = 1

Card[C]

∑
x∈C X

n−wH(x)Y wH(x)),

13

satisfies WC(X + Y,X − Y) = Card[C]WC⊥(X,Y), where the dual distance of
C is minimum distance of C⊥.

Lemma 6. Let f be a nonzero Boolean function Fn2 → F2. f is d-CI if and only
if the set C = supp(f) is a subcode of Fn2 of dual distance equal to or greater
than d+ 1.

Proof. This lemma is an immediate application of the MacWilliams’ identity [15]:

DC(X + Y,X − Y) =
1

Card[C]

∑
x,y∈C

∑
z∈Fn

2

Xn−wH(z)Y wH(z)(−1)z·(x⊕y)

=
1

Card[C]

∑
z∈Fn

2

Xn−wH(z)Y wH(z)

(∑
x∈C

(−1)z·x

)2

.

The result comes from the fact the coefficient of Xn−iY i is a sum of squares
that can be null only if all the terms are null.

Remark 6. When C = Fn2 , the dual distance C is strictly greater than n; we
consider in the sequel it is equal to n+ 1.

3.3.2 Construction of d-CI Boolean Functions based on Linear Codes

Lemma 7. Let n and 1 ≤ d < n. Let kmax(n, d) be the largest dimension of a
binary linear code [n, kmax(n, d), d + 1]. The lowest weight of d-CI functions is
upper bounded by 2n−kmax(n,d).

Proof. The dual of the linear code [n, kmax(n, d), d + 1] has parameters [n, n −
kmax(n, d)] and dual distance d+1. According to Lemma 6, the indicator of this
code is d-CI. Its weight is two to the power of its dimension, i.e. 2n−kmax(n,d).
Therefore, the lowest weight of d-CI functions is smaller than or equal to this
quantity.

Corollary 2. The weight wn,d reaches its minimum 2d if and only if a binary
linear maximum distance separable (MDS) code of length n and of minimum
distance d+ 1 exists.

Proof. In Lemma 7, we have kmax(n, d) ≤ n − d because of the Singleton
bound [15]. This bound is tight for linear codes over finite fields (but not by bi-
nary codes, in general, see below) and attained by the MDS codes. If such binary
MDS codes exist then there exist d-CI functions of weight 2n−kmax(n,d) = 2d.
Conversely, the maximal degree of a d-CI function f is n− d [29]. Thus f is the
indicator of an affine space of dimension n− d [15]. Without loss of generality,
we assume it is a vectorial space. So it is a linear code of parameters [n, d] and
of dual distance at least d+ 1, whose dual has parameters [n, n− d, d+ 1] (i.e.
reaches the Singleton bound, thus is MDS). Therefore the weight wn,d = 2d is
attained only by the cosets of linear MDS codes.

14

Remark 7. The Singleton bound exists for unrestricted (that is, linear or non-
linear) codes: given its length n and its minimum distance, say d1, the size of
such a code is at most 2n−d1+1. The fact that every code of dual distance at
least d + 1 has a size divisible by 2d, and therefore has size at least 2d, can be
viewed as an equivalent of the Singleton bound dealing with the dual distance. It
is nice to see that the same (linear) MDS codes attain both bounds. This remark
is also given as Theorem 4.21, due to Delsarte (1973), in [12, §4.5, page 79].

Example 3. As the repetition code [n, 1, n] and its dual [n, n−1, 2] are MDS, we
have wn,n−1 = 2n−1 and wn,1 = 2. Incidentally, those are the only cases where
Corollary 2 can be used, since all binary MDS codes are trivial (i.e. either
the empty code, the parity-check code, the universe code — all Fn2 — or the
repetition code).

Remark 8. For all 1 < d < n − 1, wn,d ≥ 2d+1. Indeed, lemma 2 states
that a nonzero d-CI function has weight at least 2d. When n = d + 2 and
n ≥ 4, the bound is reached, i.e. the lowest weight wn,n−2 of d-CI functions
is exactly 2d+1 = 2n−1. The reason is that the maximum algebraic degree is
n − (n − 2) − 1 = 1. Thus these are affine functions and naturally the weight
will be 2n−1.

3.3.3 Construction of d-CI Boolean Functions based on Maiorana-
McFarland Construction

Maiorana-McFarland’s construction [8, §7.5.1] allows to build Boolean resilient
functions. The dimension n is split into n = r + s, where r 6= 0 and s 6= 0. A
function f : Fn2 → F2 is written as f(u, v) = u · φ(v)⊕ g(v), where φ : Fs2 → Fr2
and g : Fs2 → F2 are arbitrary functions.

The Walsh transform of a Maiorana-McFarland function f in x ∈ Fn2 , noted
x = (a, b) ∈ Fr2 × Fs2, is equal to:

Wf (a, b) =
∑
u,v

(−1)u·φ(v)⊕g(v)⊕a·u⊕b·v

=
∑
v

(−1)g(v)⊕b·v
∑
u

(−1)u·(φ(v)⊕a)

= 2r
∑

v∈φ−1(a)

(−1)g(v)⊕b·v , (5)

because
∑
u(−1)u·(φ(v)⊕a) is equal to 0 but when φ(v)⊕a = 0. If every element

in φ(Fs2) has Hamming weight strictly greater than d, then f is (at least) d-
resilient.

The same template f(u, v) = u·φ(v)⊕g(v) can be used to design correlation-
immune functions. Let us illustrate it with the following assumptions:

• g is null;

15

• for every v, φ(v) is either the null vector3 or has a Hamming weight strictly
greater than d, and

• φ−1(0) is an affine space w + E such that E⊥ has minimum distance at
least d+ 1.

Then the Maiorana-McFarland function is at least d-CI. The reason is that:

• If a 6= 0, then φ−1(a) = ∅ unless wH(a) > d. Thus, for all a such that
1 ≤ wH(a) ≤ d, Wf (a, b) = 0 (whatever b).

• If a = 0, then b 6= 0 since (a, b) 6= (0, 0). Thus
∑
v∈φ−1(a)(−1)g(v)⊕b·v =∑

v∈w+E(−1)b·v = (−1)b·wCard[E]δE⊥(b) = 0 because wH(b) ≤ d and E⊥

has minimum distance strictly greater than d by hypothesis.

3.4 Deriving d-CI Boolean Functions from Binary Orthog-
onal Arrays

In this section, we recall known facts developed in [12], that help transport
properties of orthogonal arrays (OAs) without multiple rows to d-CI functions.

Definition 4. An orthogonal array OA(w, n, s = 2, d) is a w×n binary (because
s = 2) array of w rows and n columns, such that every subarray of size w × d
contains the elements of Fd2 an equal number of times. The OA is said to be of
strength d.

Remark 9. Orthogonal arrays can have identical lines. In this paper, we are
interested in simple OAs, i.e. OAs whose lines are different.

Theorem 3. If C is a binary (n,w) code with dual distance d + 1, then the
corresponding OA is OA(w, n, 2, d). Conversely, the code corresponding to an
OA(w, n, 2, d) is a (n,w) code with dual distance greater than or equal to d+ 1.
If the orthogonal array has strength d but not d + 1, then the dual distance of
the code is precisely d+ 1.

Proof. It is the Theorem 4.9 of [12, p. 70].

Corollary 3. The minimum number of rows w of an OA(w, n, 2, d) is smaller
than or equal to the minimum weight of a d-CI function. They are identical if
and only if there exists a minimal OA(w, n, 2, d) whose rows are unique.

Proof. This is a direct application of Theorem 3, with the link between d-CI
functions and codes of dual distance d + 1 given by Lemma 6. Since not all
OAs are simple, the minimum number of rows w of an OA is smaller or equal
to the minimum weight of a d-CI function. This distinctive feature is discussed
in App. C. There is equality if and only if there exists a minimal OA(w, n, 2, d)
whose rows are unique.

3It is necessary to have zero in the image of φ for f to be of weight strictly smaller than
2n−1.

16

Table 1: Lower bounds on wn,d obtained by the Delsarte LP algorithm.

n

d
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2

2 2 4

3 2 4 8

4 2 6 8 16

5 2 8 12 16 32

6 2 8 16 32 32 64

7 2 8 16 48 64 64 128

8 2 10 16 64 88 112 128 256

9 2 12 20 96 128 192 224 256 512

10 2 12 24 96 192 320 384 512 512 1024

11 2 12 24 96 192 512 640 1024 1024 1024 2048

12 2 14 24 112 176 768 1024 1536 1792 2048 2048 4096

13 2 16 28 128 224 1024 1536 2560 3072 3584 4096 4096 8192

It is proved in [12, §4.5] that the number of rows of an OA can be lower-
bounded by a linear programming problem (Delsarte LP bound). The numerical
values are given in Tab. 1 for all n ≤ 13.

Lemma 8. A lower bound for the minimal weight of a d-CI function can also
be found in Tab. 1. Indeed, Corollary 3 states that the minimal weight of a d-CI
function is greater than the minimal number of rows in an OA, that is in turn
greater than the optimal solution of Delsarte linear programming problem.

3.5 A Search for Correlation-Immune Boolean Functions
with SMT

Satisfiability modulo theory (SMT) tools solve SAT problems within a domain-
specific theory. Like SAT-solvers, SMT require the problem to be written as
clauses. Unlike SAT-solvers, higher-level constructions can be used.

A function f : Fn2 → F2 is d-CI if it satisfies:

∀a ∈ Fn2 , 1 6 wH(a) 6 d,

f̂(a) =
∑
x∈Fn

2

f(x)(−1)a·x = 0 ⇐⇒

∑
x∈Fn

2

f(x) ∧ (a · x) =
1

2
f̂(0) . (6)

17

Indeed, (−1)a·x = 1− 2(a · x), and (a · x) can be seen both as an integer living
in {0, 1} or as an element of F2.

Concretely, we are looking for the existence of functions of a given weight
f̂(0) = w. As recalled in Lemma 2, w must be a multiple of 2d. There are 2n

unknown literals, noted f(x), x ∈ Fn2 , and the problem consists in satisfying

simultaneously
∑d
i=0

(
n
i

)
clauses:

∑
x∈Fn

2

f(x) = w

 ∧ ∧
a∈Fn

2
?,

wH(a)6d

 ∑
x∈Fn

2 ,
a·x=0

f(x) =
1

2
w

 . (7)

For example, with n = 3 and d = 2, we get the following condition, expressed
in conjunctive normal form (CNF):

(f(7)+f(6)+f(5)+f(4)+f(3)+f(2)+f(1)+f(0) =w)

∧ (f(7)+ f(5)+ f(3)+ f(1) =w/2) [a=1]

∧ (f(7)+f(6)+ f(3)+f(2) =w/2) [a=2]

∧ (f(7)+f(6)+f(5)+f(4) =w/2) [a=4]

∧ (f(6)+f(5)+ f(2)+f(1) =w/2) [a=3]

∧ (f(6)+ f(4)+f(3)+ f(1) =w/2) [a=5]

∧ (f(5)+f(4)+f(3)+f(2) =w/2) . [a=6]

The algorithm to find d-CI Boolean functions of low-weight w is given in
Alg. 1: the possible values for w can tested in ascending order until the Eqn. (7)
becomes satisfiable.

Algorithm 1: Method to find the lowest weight of d-CI functions.

input : n, the number of variables of the function f
input : d, the order of correlation-immunity
output: wn,d, the minimal weight of d-CI functions of n variables

for w ∈ {i× 2d; i ∈ J1, 2n−dK} do // See Lemma 2 for the steps of w1

if Eqn. (7) is unsatisfiable then2

// No d-CI f of weight w exists

else3

return w // Yields at the same time the lowest weight4

and an example of f

end5

end6

SMT implement various theories. The one that specifically fits our needs is
QF BV, that handles arithmetic and logic operations on bitvectors of fixed size.

The SMT actually feature many advantages compared to SAT-solvers. Our
problem of Eqn. (7) implies sums and equality tests. They can be expressed
as two cardinality constraints in SAT-solvers [23], in an obviously suboptimal
way, whereas these operations are captured natively and at high-level in SMT.

18

Table 2: Script that finds (if it exists) a 2-CI Boolean function of 3 variables
and weight 4.

(set-logic QF_BV)

(set-info :smt-lib-version 2.0)

(set-option :produce-models true)

(declare-fun f () (_ BitVec 8)); The 2-CI function, our unknown (8 literals)

; Sub-functions for the Hamming weight

(define-fun w_H0 ((x (_ BitVec 8))) (_ BitVec 8)

(bvadd (bvand x #x55)

(bvand (bvlshr x #x01) #x55)))

(define-fun w_H1 ((x (_ BitVec 8))) (_ BitVec 8)

(bvadd (bvand x #x33)

(bvand (bvlshr x #x02) #x33)))

(define-fun w_H2 ((x (_ BitVec 8))) (_ BitVec 8)

(bvadd (bvand x #x0f)

(bvand (bvlshr x #x04) #x0f)))

; The complete Hamming weight (noted w_H)

(define-fun w_H ((x (_ BitVec 8))) (_ BitVec 8) (w_H2 (w_H1 (w_H0 x))))

; Our problem (7 clauses: 1 for w_H(a)=0, 3 for w_H(a)=1 and 3 for w_H(a)=2)

(assert (= (w_H f) #x04)); [a=#x00]

(assert (= (w_H (bvand f #xaa)) #x02)); [a=#x01]

(assert (= (w_H (bvand f #xcc)) #x02)); [a=#x02]

(assert (= (w_H (bvand f #xf0)) #x02)); [a=#x04]

(assert (= (w_H (bvand f #x66)) #x02)); [a=#x03]

(assert (= (w_H (bvand f #x5a)) #x02)); [a=#x05]

(assert (= (w_H (bvand f #x3c)) #x02)); [a=#x06]

(check-sat); Answers ‘sat’

(get-value (f)); Gives one solution, here ‘#x96’ (10010110 in binary)

Therefore SMT tools produce optimized CNF formulas whose satisfiability is
easier to check than hand-written CNF formulas. For instance, one SAT-solver
(cryptominisat [30]) exhausted all the 16 GB RAM of a computer when trying
to solve the problem n = 8 and d = 4 with cardinality constraints for the
equality. Now, an SMT succeeds within one to two minutes with a couple of tens
of MB of RAM only. The reason is that the SMT finds high-level simplifications
of the problem. Furthermore, with SMT, the problem is formulated in human-
readable code, as the solution.

The SMT program (written in LISP and compliant with SMT-LIB2 format)
can be generated automatically. For instance, the lowest weight Boolean func-
tions from F3

2 to F2 of second-order correlation-immunity (n = 3, d = 2) have
Hamming weight 4. A script that finds a solution is given in Tab. 2.

The Hamming weight computation is based on a divide-and-conquer ap-
proach, for instance explained in [14]. The parallel with the CNF expression
given at page 18 is clear.

19

3.6 Summary of Minimally Weighted d-CI Functions

Table 3 lists, (in bold and in italic), the exact minimal cardinality of supp(f),
where f : Fn2 → F2 is d-CI. It lists values of n from 1 to 13, with complete
results for n up to 10.

The figures in bold have been obtained by the algorithm 1. The resolution
of the satisfiability problem can last several days. Let us comment on the most
computing-intensive entry of Tab. 3 computed by SMT. The minimal weight
when n = 10 and d = 6 is w10,6 = 512. Because of the LP bound (Lemma 8),
we knew that w10,6 ≥ 320 (see Tab. 1). Furthermore, this figure must be a
multiple of 26 (see Lemma 2), and smaller than or equal to w10,7 = 512. Thus,
there are only four possible solutions: 5× 26 = 320, 6× 26 = 384, 7× 26 = 448,
or 8 × 26 = 512. We led the computation on a 2.33 GHz server with 4 MB
cache and 16 GB of RAM. A program similar to that of Tab. 2 (but optimized)
revealed that:

• the problem with weight 320 is found unsatisfiable in 1.5 hour,

• the problem with weight 384 is found unsatisfiable in about 3 days and 4
hours (the script was optimized),

• the problem with weight 448 is found unsatisfiable in about 1 day and 9
hours,

• the problem with weight 512 is found satisfiable in 1 hour (but this step
was not necessary, since one solution for d = 7 was known and of the same
weight – hence Lemma 3 applied).

The optimization consisted in implementing Hamming weight calculations ac-
cording to the vector size. Instead of keeping the data on 2n bits, a new Ham-
ming weight function uses 2n−1 bit inputs4. However, the result w10,6 = 512
was already known mathematically by Theorem 2.

The figures in italic font have been deduced from various lemmas. They are
marked by a letter, that refers to the explanations below:

a The weights for wn,n = 2n for d = n result from Example 1;

b The weights for d = n − 1 result from Lemma 2 (wn,n−1 is a nonzero
multiple of 2n−1), and from Example 2 (one solution of weight 2n−1 exists).
Those weights wn,n−1 = 2n−1 are also given in Example 3.

c The weights for d = n− 2 results from Remark 8.

d According to Lemma 5, the weight for n = 10 and d = 7 is greater
than twice w9,6. Thus w10,7 ≥ 256 × 2 (w9,6 = 256) was found by the
SMT. But also, w10,7 ≤ w10,8 = 2n−1 = 512 because of Remark 8. Thus
w10,7 = 2n−1.

4The script is available online at: http://perso.enst.fr/guilley/dCI/dCI_z3_opt.py.

20

http://perso.enst.fr/guilley/dCI/dCI_z3_opt.py

e Similarly, by recursion, we can show that wn,n−3 = 2n−1 starting from
n = 7 onwards.

f Similarly, by recursion, we can show that wn,n−4 = 2n−1 starting from
n = 10 onwards.

g The weight for n = 13 and d = 3 is lower bounded by Delsarte LP to 28
(cf. Tab. 1). In addition, this value must be a multiple of 23 = 8, it is
thus greater of equal to 32. Now, code [13, 13− log2 32 = 8, 4] has distance
4 [16], hence it is the support of one solution (Lemma 7).

h The weight for n = 11 and d = 6 is lower bounded by 2×w10,5 = 512 = 29

(Lemma 5). Now, code [11, 11− log2 512 = 2, 7] has distance 7 [16], hence
it is the support of one solution.

i The weight for n = 12 and d = 7 is lower bounded by 2×w11,6 = 1024 =
210 (result above and Lemma 5). Now, code [12, 12− log2 1024 = 2, 8] has
distance 8 [16], hence it is the support of one solution.

j The weight w10,6 = 210−1 = 512 and w13,8 = 213−1 = 4096 immediately
follow application of Theorem 2.

The values contributed by the authors are underlined. In particular, the
case of n = 9 can have an application in cryptography when the sbox fanin is
9 bits, as is the case for MISTY [17] and KASUMI [18] (used in GSM, GPRS
and UMTS mobile communications systems).

Eventually, unknown values are indicated by question marks. They corre-
spond to the lack of mathematical proofs for the lowest weight and to the failure
of the SMT to converge fast enough (within a couple of days). A single question
mark indicates that the exact lower value for OA is tabulated in a Tab. 12.1
of [12]. A triple question mark indicates that the value is completely unknown.

The truth tables of the functions can be found in an online document at:
http://perso.enst.fr/guilley/dCI/index.html.

4 Conclusion

In this article, a masking scheme based on randomly selected “hardcoded”
masked sboxes is analyzed under the view of high-order zero-offset attacks.
We have explained that the indicator of the masks shall meet two contradic-
tory properties: low weight and high correlation-immunity order. Our results
quantify the trade-off between order of resistance (that corresponds to the or-
der of correlation-immunity) and the number of values taken by the mask. In
particular, we explain that it is possible with only 16 masks to protect AES
against attacks of orders 1, 2 and 3, while the state-of-the-art was a protection
at orders 1 and 2 only. We have identified, thanks to an SMT, correlation-
immune functions of lowest possible weight. In particular, we provided all the
minimal weights for functions up to 10 variables, along with a construction for
the functions.

21

http://perso.enst.fr/guilley/dCI/index.html

T
ab

le
3:

M
in

im
al

va
lu

e
w
n
,d

of
th

e
ca

rd
in

al
of

su
p

p
(f

),
w

h
er

e
f

:
Fn 2
→

F 2
is
d
-C

I.
T

h
e

ce
ll

s
in

g
ra

y
h

ig
h

li
g
h
t

fu
n

ct
io

n
s

o
f

m
in

im
al

w
ei

gh
t

n
ot

p
ow

er
of

tw
o,

th
a
t

ar
e

d
is

cu
ss

ed
in

A
p

p
en

d
ix

B
.

n

d
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
2

2
2

4

3
2

4
8

4
2

8
8

1
6

5
2

8
1
6

1
6

3
2

6
2

8
1
6

3
2

3
2

6
4

7
2

8
1
6

6
4

6
4

6
4

1
2
8

8
2

1
2

1
6

6
4

1
2
8

1
2
8

1
2
8

2
5
6

9
2

1
2

2
4

1
2
8

1
2
8

2
5
6

2
5
6

2
5
6

5
1
2

10
2

1
2

2
4

1
2
8

2
5
6

5
1
2
j

5
1
2
d

5
1
2
c

5
1
2
b

1
0
2
4
a

11
2

1
2

2
4

??
?

??
?

5
1
2
h

1
0
2
4
f

1
0
2
4
e

1
0
2
4
c

1
0
2
4
b

2
0
4
8
a

12
2

1
6

2
4

??
?

??
?

??
?

1
0
2
4
i

2
0
4
8
f

2
0
4
8
e

2
0
4
8
c

2
0
4
8
b

4
0
9
6
a

13
2

1
6

3
2
g

??
?

??
?

?
??

?
4
0
9
6
j

4
0
9
6
f

4
0
9
6
e

4
0
9
6
c

4
0
9
6
b

8
1
9
2
a

22

Acknowledgments

The authors thank Patrick Solé for interesting discussions and relevant advices.
We are also very grateful to Yuriy Tarannikov for pointing out some known
results that have been incorporated in this paper.

References

[1] Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-
Charvillon, N.: Mutual Information Analysis: a Comprehensive Study. J.
Cryptology 24(2), 269–291 (2011)

[2] Bierbrauer, J.: Bounds on orthogonal arrays and resilient functions. Jour-
nal of Combinatorial Designs 3(3), 179–183 (1995). DOI 10.1002/jcd.
3180030304. URL http://dx.doi.org/10.1002/jcd.3180030304

[3] Bierbrauer, J., Gopalakrishnan, K., Stinson, D.R.: Bounds for Resilient
Functions and Orthogonal Arrays. In: Y. Desmedt (ed.) CRYPTO, Lecture
Notes in Computer Science, vol. 839, pp. 247–256. Springer (1994)

[4] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Rob-
shaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight
Block Cipher. In: CHES, LNCS, vol. 4727, pp. 450–466. Springer (2007).
Vienna, Austria

[5] Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leak-
age Model. In: CHES, LNCS, vol. 3156, pp. 16–29. Springer (2004). Cam-
bridge, MA, USA

[6] Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On Correlation-Immune
Functions. In: J. Feigenbaum (ed.) CRYPTO, Lecture Notes in Computer
Science, vol. 576, pp. 86–100. Springer (1991)

[7] Carlet, C.: On the coset weight divisibility and nonlinearity of resilient
and correlation-immune functions. In: Sequences and their Applications
(SETA), Discrete Mathematics and Theoretical Computer Science, pp.
131–144. Springer-Verlag (2001). Bergen, Norway

[8] Carlet, C.: Boolean Functions for Cryptography and Error Correcting
Codes: Chapter of the monography Boolean Models and Methods in
Mathematics, Computer Science, and Engineering. pp. 257–397. Cam-
bridge University Press, Y. Crama and P. Hammer eds (2010). Prelimi-
nary version available at http://www.math.univ-paris13.fr/~carlet/

chap-fcts-Bool-corr.pdf

[9] Fon-Der-Flaass, D.G.: A bound on correlation immunity. Sib. Elektron.
Mat. Izv. 4, 133–135 (2007). http://semr.math.nsc.ru/v4/p133-135.

pdf

23

http://dx.doi.org/10.1002/jcd.3180030304
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://semr.math.nsc.ru/v4/p133-135.pdf
http://semr.math.nsc.ru/v4/p133-135.pdf

[10] Friedman, J.: On the bit extraction problem. In: FOCS, pp. 314–319.
IEEE Computer Society (1992)

[11] Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information anal-
ysis. In: CHES, 10th International Workshop, Lecture Notes in Computer
Science, vol. 5154, pp. 426–442. Springer (2008). Washington, D.C., USA

[12] Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays, Theory
and Applications. Springer series in statistics. Springer, New York (1999).
ISBN 978-0-387-98766-8

[13] Khalyavin, A.V.: Estimates of the capacity of orthogonal arrays of large
strength. Moscow University Mathematics Bulletin 65(3), 130–131 (2010).
DOI 10.3103/S0027132210030101. URL http://dx.doi.org/10.3103/

S0027132210030101

[14] Lauradoux, C., Dalke, A.: Hamming weight (2009). Research report avail-
able at:
http://perso.citi.insa-lyon.fr/claurado/ham/overview.pdf

[15] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
Elsevier, Amsterdam, North Holland (1977). ISBN: 978-0-444-85193-2

[16] Markus Grassl: Code Tables: Bounds on the parameters of various types
of codes. Universität Karlsruhe, http://www.codetables.de/

[17] Matsui, M.: New Block Encryption Algorithm MISTY. In: E. Biham (ed.)
FSE, Lecture Notes in Computer Science, vol. 1267, pp. 54–68. Springer
(1997)

[18] Matsui, M., Tokita, T.: Data Transformation Apparatus and Data Trans-
formation Method (2006). US patent 7096369

[19] Messerges, T.S.: Power Analysis Attacks and Countermeasures for Cryp-
tographic Algorithms. Ph.D. thesis, University of Illinois at Chicago, USA
(2000). 468 pages

[20] Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Re-
sistant Software. In: CHES, LNCS, vol. 1965, pp. 238–251. Springer-Verlag
(2000). Worcester, MA, USA

[21] Moradi, A.: Statistical tools flavor side-channel collision attacks. In:
D. Pointcheval, T. Johansson (eds.) EUROCRYPT, Lecture Notes in Com-
puter Science, vol. 7237, pp. 428–445. Springer (2012)

[22] Moradi, A., Mischke, O.: How Far Should Theory be from Practice? Eval-
uation of a Countermeasure. In: CHES (2012). Leuven, Belgium

24

http://dx.doi.org/10.3103/S0027132210030101
http://dx.doi.org/10.3103/S0027132210030101
http://perso.citi.insa-lyon.fr/claurado/ham/overview.pdf
http://www.codetables.de/

[23] Nassar, M., Guilley, S., Danger, J.L.: Formal Analysis of the Entropy /
Security Trade-off in First-Order Masking Countermeasures against Side-
Channel Attacks. In: INDOCRYPT, LNCS, vol. 7107, pp. 22–39. Springer
(2011). Chennai, Tamil Nadu, India. DOI: 10.1007/978-3-642-25578-6 4

[24] Nassar, M., Guilley, S., Danger, J.L.: Formal Analysis of the Entropy /
Security Trade-off in First-Order Masking Countermeasures against Side-
Channel Attacks — Complete version. Cryptology ePrint Archive, Report
2011/534 (2011). http://eprint.iacr.org/2011/534

[25] Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a Small and Fast
Countermeasure for AES, Secure against First- and Second-order Zero-
Offset SCAs. In: DATE, pp. 1173–1178. IEEE Computer Society (2012).
Dresden, Germany. (TRACK A: “Application Design”, TOPIC A5: “Se-
cure Systems”)

[26] NIST/ITL/CSD: Advanced Encryption Standard (AES). FIPS PUB
197 (2001). http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf

[27] Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation.
In: S. Kim, M. Yung, H.W. Lee (eds.) WISA, Lecture Notes in Computer
Science, vol. 4867, pp. 227–244. Springer (2007)

[28] Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order
Differential Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

[29] Siegenthaler, T.: Correlation-immunity of nonlinear combining functions
for cryptographic applications. IEEE Transactions on Information Theory
30(5), 776–780 (1984)

[30] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Crypto-
graphic Problems. In: O. Kullmann (ed.) SAT, Lecture Notes in Computer
Science, vol. 5584, pp. 244–257. Springer (2009)

[31] Tarannikov, Y.: Combinatorial properties of discrete structures and ap-
plications to cryptology (in Russian) (2011). http://biblio.mccme.ru/

node/2440

[32] University of Sydney: Magma Computational Algebra System. http://

magma.maths.usyd.edu.au/magma/

[33] Veyrat-Charvillon, N., Standaert, F.X.: Mutual Information Analysis:
How, When and Why? In: CHES, LNCS, vol. 5747, pp. 429–443. Springer
(2009). Lausanne, Switzerland

[34] Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis.
In: CHES, LNCS, vol. 3156, pp. 1–15. Springer (2004). Cambridge, MA,
USA

25

http://eprint.iacr.org/2011/534
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://biblio.mccme.ru/node/2440
http://biblio.mccme.ru/node/2440
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

[35] Xiao, G.Z., Massey, J.L.: A spectral characterization of correlation-immune
combining functions. IEEE Transactions on Information Theory 34(3),
569–571 (1988)

A Properties of the Fourier Transform of the
Powers of the Hamming Weight Function

The quantity ŵdH (z) is central to the computations about the RSM masking
scheme described in Sec. 2. For the safe of simplicity, we begin with the study

of ̂̃wHd (z) in App. A.1; The function w̃H is the centered Hamming weight,
defined as w̃H (x)

.
= wH (x) − n/2, where x is a bitvector belonging to Fn2 .

Afterwards, we continue with the study of ŵdH (z) in App. A.2.

A.1 Properties of ̂̃wHd (z)
First of all, this lemma is proved:

Lemma 9. (Invariance in bits reordering). ̂̃wHd (a) depends only on wH (a).

Proof. It is well-known that the Walsch transform of a symmetric function is
symmetric (that is, invariant under permutation of the input coordinates).

Some numerical values are given in Tab. 4. Then, we state Lemma 10.

Lemma 10. ̂̃wHd (z) has the following properties:

P1: ̂̃wHd (z) = 0 if wH (z) > d;

P2: ̂̃wHd (z) = (−1)d2n−dd! if wH (z) = d;

P3: ̂̃wHd (z) = 0 if |d − wH (z) | ∈ 2N + 1 (i.e. d and wH (z) have different

parities); In particular, ̂w̃H
wH(z)+1 (z) = 0.

P4: When ̂̃wHd (z) is nonzero, it has sign (−1)d (or equivalently sign of (1)wH(z)).

Proof. We recall that w̃H (z) = − 1
2

∑n−1
i=0 (−1)zi . Thus the Fourier transform of

the dth power of the centered Hamming weight is ̂̃wHd (z) =
(
− 1

2

)d∑
x∈Fn

2

(∑n−1
i=0 (−1)xi

)d
(−1)x·z.

Now, the term
(∑n−1

i=0 (−1)zi
)d

can be developed as a sum of weighted quantities

that have the form: (−1)
⊕

i∈I,Card[I]∈{d,d−2,...} xi ; the weights themselves are multi-
nomial coefficients – their value is irrelevant for this proof, but we simply note
that they are all positive. If z has a Hamming weight strictly greater than d, then

26

in x · z, there will always be a component of x, say xj , such that j 6∈ I. There-
fore

∑
x(−1)

⊕
i∈I xi(−1)x·z =

∑
x0,x1,··· ,xj−1,xj+1,··· ,xn−1

(−1)
⊕

i∈I xi(−1)x·z ×∑
xj

(−1)xj = 0 (because
∑
xj

(−1)xj = 0). This proves that ̂̃wHd (z) = 0 if

wH (z) > d (property P1).
Now, let us examine the case where wH (z) = d. We find some quantities

with (−1)
⊕

i∈I xi where I is the set of indices where z is nonzero. This quantity
is thus equal to (−1)x·z. There are d! of them, that are each of unitary weight.

Now,
∑
x(−1)x·z⊕x·z =

∑
x 1 = 2n. Therefore, if d is equal to wH (z), ̂̃wHd (z) =(

− 1
2

)d
d!2n 6= 0, as announced in property P2.

In general, the terms
∑
x(−1)⊕i∈Ixi(−1)x·z are nonzero if and only if I is

the support of z. In this case, the terms are strictly positive (equal to 2n). In

the development of
(∑n−1

i=0 (−1)zi
)d

, the cardinality of the I have all the same

parity:

• d,

• d− 2, when two terms cancel,

• d− 4, when four terms or two pairs of terms cancel,

• etc.

Thus, when d and wH (z) have different parities, ̂̃wHd (z) is null (property P3).

Eventually, in the case ̂̃wHd (z) is nonzero (wH (z) ≤ d and of identical
parity), we have seen that the development involves a sum of positive values

multiplied by
(
− 1

2

)d
. Thus ̂̃wHd (z) has the same sign as (−1)d (property P4).

A.2 Properties of ŵd
H (z)

Similar results as those from Lemma 10 can be obtained for ŵdH (z) instead of̂̃wHd (z) (see some numerical values in Tab. 5):

Lemma 11. (Invariance in bits reordering). ŵdH (a) depends only on wH (a).

Lemma 12. ŵdH (z) has the following properties:

P5: ŵdH (z) = 0 if and only if wH (z) > d;

P6: ŵdH (z) = (−1)d2n−dd! 6= 0 when wH (z) = d.

Proof. (of Lemma 12) We have:

ŵdH (z) =
̂

(w̃H + n/2)
d
(z) =

d∑
i=0

(
d

i

)
· ̂̃wHi (z)

(n
2

)d−i
, (8)

27

by linearity of the Fourier transform. Let z and d satisfy wH (z) > d. Thus,

∀i ≤ d,wH (z) > i. So, according to Lemma 10, ̂̃wHi (z) = 0, hence all terms
are null in Eqn. (8) (property 5, backward implication). If wH (z) = d, then

the only nonzero term is
(
d
d

)
· ̂̃wHd (z)

(
n
2

)0
= ̂̃wHd (z) (property P6). If now

wH (z) ≤ d, then some terms in Eqn. (8) are nonzero, but they are all of the
same sign:

•
(
d
i

)
and

(
n
2

)d−i
are positive, and

• ̂̃wHi (z) is either zero if i and wH (z) have different parities (property P3
of Lemma 10) or of sign (−1)wH(z) (property P4 of Lemma 10).

So the sum in Eqn. (8) is nonzero, which proves the direct implication of property
P5.

B Comparison of SMT Results with Other Known
Methods

B.1 Comparison of SMT Results with Indicators of Linear
Codes

Remark 10. We checked that the results from Tab. 3 obtained by the SMT can
all be written as an indicator of a linear code, but when supp(f) is not a power
of two (highlighted in gray).

As accounted for in Lemma 7, those linear codes have parameters

[n, n− log2(Card[supp(f)]), d+ 1] ,

i.e. have length n, size 2n/Card[supp(f)] and minimal distance d+ 1.
Linear codes of small length (< 36) have been completely characterized (e.g.

in Magma [32]). For a given dimension n and distance d+1, the best size kmax is
tabulated (e.g. by Markus Grassl [16]). In the list that follows, we characterize
the d-CI functions of n = 8 variables:

• For d = 1, the lowest-weight 1-CI function is the indicator of [8, 7, 2], the
dual of the [8, 1, 8] repetition code (also refer to Example 3).

• For d = 3, the lowest-weight 3-CI function is the indicator of [8, 4, 4], a
quasi-cyclic of degree 2 linear code.

• For d = 4, the lowest-weight 4-CI function is the indicator of [8, 2, 5], the
Cordaro-Wagner code of length 8.

• For d = 5, the lowest-weight 5-CI function is identical to the lowest-weight
7-CI.

28

T
ab

le
4
:

V
a
lu

es
o
f
̂̃ w Hd

(z
)

fo
r
n

=
8
.

wH (z)

d = 0

d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

d = 9

0
25

6
0

51
2

0
2
8
1
6

0
2
3
5
5
2

0
2
5
0
4
9
6

0

1
0

−
12

8
0

−
7
0
4

0
−

5
8
8
8

0
−

6
2
6
2
4

0
−

7
7
4
8
4
8

2
0

0
12

8
0

1
2
8
0

0
1
4
5
2
8

0
1
8
5
6
0
0

0

3
0

0
0

−
1
9
2

0
−

2
8
8
0

0
−

4
0
9
9
2

0
−

6
0
0
9
6
0

4
0

0
0

0
3
8
4

0
7
6
8
0

0
1
2
9
0
2
4

0

5
0

0
0

0
0

−
9
6
0

0
−

2
3
5
2
0

0
−

4
4
3
5
2
0

6
0

0
0

0
0

0
2
8
8
0

0
8
0
6
4
0

0

7
0

0
0

0
0

0
0

−
1
0
0
8
0

0
−

3
0
2
4
0
0

8
0

0
0

0
0

0
0

0
4
0
3
2
0

0

29

T
a
b

le
5
:

V
a
lu

es
o
f
ŵ
d H

(z
)

fo
r
n

=
8
.

wH (z)

d = 0

d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

d = 9

0
25

6
10

24
46

08
22

52
8

11
7
5
0
4

6
4
6
1
4
4

3
7
1
4
0
4
8

2
2
1
7
1
6
4
8

1
3
6
7
6
1
9
8
4

8
6
8
0
6
3
7
4
4

1
0

−
12

8
−

10
2
−

68
48

−
44

0
3
2
−

2
8
2
3
6
8
−

1
8
2
8
8
6
4
−

1
2
0
1
8
8
4
8
−

8
0
2
5
3
9
5
2
−

5
4
4
4
8
8
1
2
8

2
0

0
12

8
36

13
5
6
8

1
0
7
5
2
0

8
1
3
2
4
8

6
0
2
6
4
9
6

4
4
3
1
1
8
0
8

3
2
5
4
3
2
3
2
0

3
0

0
0

−
19

2
−

3
0
7
2

−
3
3
6
0
0

−
3
1
4
8
8
0

−
2
7
2
8
9
9
2
−

2
2
6
4
3
7
1
2
−

1
8
3
1
6
9
9
2
0

4
0

0
0

0
3
8
4

7
6
8
0

9
9
8
4
0

1
0
7
5
2
0
0

1
0
4
5
0
9
4
4

9
5
4
7
7
7
6
0

5
0

0
0

0
0

−
9
6
0

−
2
3
0
4
0

−
3
4
6
0
8
0

−
4
1
9
3
2
8
0

−
4
4
9
5
6
8
0
0

6
0

0
0

0
0

0
2
8
8
0

8
0
6
4
0

1
3
7
0
8
8
0

1
8
3
8
5
9
2
0

7
0

0
0

0
0

0
0

−
1
0
0
8
0

−
3
2
2
5
6
0

−
6
1
0
8
4
8
0

8
0

0
0

0
0

0
0

0
4
0
3
2
0

1
4
5
1
5
2
0

30

• For d = 6, the lowest-weight 6-CI function is identical to the lowest-weight
7-CI.

• For d = 7, the lowest-weight 7-CI function is the indicator of the [8, 1, 8]
repetition code (also refer to Example 3).

• For d = 8, the lowest-weight 8-CI function is the constant 1 (see Exam-
ple 1, from which we exclude the constant 0).

The case excluded from this list is that of the indicator of a code of length
n = 8, size 12, and dual distance d+1 = 3. The best binary linear code matching
these characteristics has parameters [8, 4, 3], whose dual has size 24 = 16 > 12.
The best Z4-linear code is also of a size power of two, hence non-optimal.

A possible solution has already been discussed in Appendix D.2. of [24]. It
has algebraic degree 6.

B.2 Comparison of SMT Results with Maiorana-McFarland
Construction

We can wonder if the 2-CI function of weight 12 over F8
2 could have been found by

the Maiorana-McFarland construction, presented in Sec. 3.3.3. Now, the weight
of f , equal to f̂(0), satisfiesWf (0) = 2n−2f̂(0) = 2rCard[φ−1(0)], by considering
Eqn. (5) in (a, b) = (0, 0). Thus Card[φ−1(0)] = (2n − 2Card[supp(f)])/2r. This
cardinality is incompatible with the general construction (g = 0 and φ−1(0)
an affine space), since an affine space has cardinality power of two, whereas
(2n − 2Card[supp(f)])/2r can only take the following values: 116, 58 or 29.

Thus, specific constructions with g 6= 0 and unstructured φ−1(0) (i.e. φ−1(0)
is an arbitrary subset of Fs2) must be considered. Let us start with the case
a 6= 0; the construction demands that the reciprocal image of a be empty for
1 ≤ wH (a) ≤ d. Therefore r must be strictly greater than d. But in addition,
Eqn. (5) applied to (a, b) = (0, 0) shows that Wf (0, 0) must be a multiple of
2r. As Wf (0) = 256 − 2 × 12 = 232, the possible values for r are 1, 2 and 3,
since 23 | 232 but 24 - 232. This means that r must be chosen equal to 3. Now,
always in (a, b) = (0, 0), Eqn. (5) writes:∑

v∈φ−1(0)

(−1)g(v) = Card[φ−1(0)]− 2Card[supp(g|φ−1(0))] = 29 , (9)

where g|φ−1(0) represents the restriction of g to the set φ−1(0). As φ : Fs2 → Fr2,

0 ≤ Card[φ−1(0)] ≤ 2s = 32. Thus, there are two possibilities for the cardinals
in Eqn. (9), namely either

1. Card[φ−1(0)] = 29 and Card[supp(g|φ−1(0))] = 0, or

2. Card[φ−1(0)] = 31 and Card[supp(g|φ−1(0))] = 1.

However, as we will show, those two cases are incompatible with the conditions
when a = 0. Indeed, in this case, it must be checked that for all b, 1 ≤

31

wH (b) ≤ d,
∑
v∈φ−1(0)(−1)g(v)⊕b·v = 0. But when Card[φ−1(0)] is odd, so

is
∑
v∈φ−1(0)(−1)g(v)⊕b·v. Therefore, as Card[φ−1(0)] ∈ {29, 31}, this quantity

cannot be equal to zero.
So, in conclusion, the Maiorana-McFarland construction cannot disclose the

2-CI function of weight 12 over F8
2 found by the SMT.

Let us note fn,d,w d-CI functions of n variables and of weight w. The same
reasoning can be applied to show that the cases f9,2,12, f10,2,12 and f11,2,12
cannot be found by the Maiorana-McFarland construction. Indeed, we have
r > d because the nonzero images of φ must be of Hamming weight strictly
greater than d. At the same time, Eqn. (5) demands that Wf (0) be a multiple
of 2r. Concretely, we have those factorizations:

• For f9,2,12: Wf9,2,12(0) = 29 − 2× 12 = 488 = 23 × 61;

• For f10,2,12: Wf10,2,12(0) = 210 − 2× 12 = 1000 = 23 × 125;

• For f11,2,12: Wf11,2,12(0) = 211 − 2× 12 = 2024 = 23 × 253.

In all cases, 23 is a multiple ofWf (0) but not 24, thus r = 3. As
∑
v∈φ−1(0)(−1)g(v)

is odd in all cases (it is equal to 61, 125 or 253), then the condition of Eqn. (5)
when a = 0 cannot be fulfilled.

The case of functions f9,3,24, f10,3,24, f11,3,24 and f12,3,24 is similar, except
that the only possible value for r is 4.

C Orthogonal Arrays vs d-CI Functions

In this appendix, we explain the difference between the minimal number of lines
of orthogonal arrays and the weight of d-CI functions. We first give a graphical
illustration of an orthogonal array OA(w, n, s = 2, d) in Fig. 3. As explained
in Theorem 3, the lines of an orthogonal array form a (n,w) code with dual
distance greater than or equal to d+ 1.

C.1 Classical Inequalities

If we note wn,d the minimal number of lines in an orthogonal array with n
columns and of strength d, then the relationships depicted in Fig. 4 are verified.
They are given in [12, §12.2, p. 318], and recalled here:

1. wn,d ≥ wn,d−1;

2. wn,d ≥ 1
2 × wn+1,d;

3. wn,d ≥ wn−1,d;

4. wn,d ≥ 2× wn−1,d−1.

Indeed, from an OA(wn,d, n, s = 2, d), one can derive:

32

The strength d

An element of {1, · · · , s}

T
h
e
w

ro
w
s

The n columns

Figure 3: Notations for an orthogonal array OA(w, n, s = 2, d).

1. an OA(wn,d, n, s = 2, d − 1), since a strength d implies any strength d′

such that 0 ≤ d′ ≤ d;

2. an OA(2× wn,d, n+ 1, s = 2, d), by the construction A 7→ 0 A

1 A
;

3. an OA(wn,d, n− 1, s = 2, d), by dropping one factor;

4. an OA(1
2 × wn,d, n− 1, s = 2, d− 1), extracting A0 from

0 A0

1 A1

.

The first, second, and fourth properties also apply to d-CI functions. They
have been demonstrated in Sec. 3.2 respectively as Lemma 3, 4 and 5. However,
the third relationship does not apply to d-CI functions, since it is possible that
the same codeword appears multiple times. This point is not covered in [12],
because orthogonal arrays are considered non-simple (i.e. that can have multiple
identical lines). To our best knowledge, it is, as of today, still an open problem.
We tackle some aspects of it in the next Sec. C.2.

Incidentally, our results from Tab. 3 can complement the Tab. 12.1 of [12]
(binary OAs):

• The OA with 9 columns and of strength 4 with no duplicate lines has a
minimal number of lines equal to 128;

• The OA with 10 columns and of strength 4 with no duplicate lines has a
minimal number of lines equal to 128;

• The OA with 10 columns and of strength 5 with no duplicate lines has a
minimal number of lines equal to 256;

• The OA with 10 columns and of strength 6 with no duplicate lines has a
minimal number of lines equal to 512.

33

wn−1,d−1 wn−1,d

wn,d−1 wn,d

wn+1,d

≥
12 ×

≥

≤

≥2×

d

n

Figure 4: Relationships between the minimal number of columns of orthogonal
arrays of strength d with n columns.

C.2 On the Comparison Between wn,d and wn−1,d

Remark 11. It appears that all columns in Tab. 3 have the property that the
values which are computed are increasing (in a non-strict way) with n. We
leave open the question of knowing whether this is true for all values (computed
or not). This result is easily proved for orthogonal arrays but not for d-CI
Boolean functions (refer to App. C for more details.) We observed that, for all
the computed values, the functions f achieving these values have the property
that the (n− 1)-variable subfunctions f0(x) = f(x, 0) and f1(x) = f(x, 1) have
disjoint supports. Note that, if such property could be proved, it would imply the
increasing property of the entries of Tab. 3 with n; indeed, in every such case,
the input at row n and column d in Tab. 3 is larger than or equal to the input at
row n−1 and same column. Since, when an n-variable nonzero function f is d-
CI and is such that f0 and f1 have disjoint supports, the nonzero (n−1)-variable
function f0⊕f1 is also d-CI since, for every nonzero vector a of length n−1 and

Hamming weight at most d, we have f̂0 ⊕ f1(a) = f̂0(a) + f̂1(a) = f̂(a, 0) = 0,
and the Hamming weight of f0 ⊕ f1 is equal to that of f (and of course the
minimum Hamming weight of nonzero (n−1)-variable d-CI functions is smaller
than or equal to the Hamming weight of f0 ⊕ f1).

Actually, it would be sufficient to prove that f0f1 is d-CI. Indeed, then

f̂0f1(a) = 0 for all 0 < wH (a) ≤ d and as f̂0(a) + f̂1(a) = 0 = f̂0 ⊕ f1(a) +

2f̂0f1(a), we have two cases:

1. f0f1 = 0, then f0 ⊕ f1 is nonzero d-CI of weight at most that of f ,

2. f0f1 6= 0, then f0f1 is nonzero d-CI of weight at most that of f (and
f0 ⊕ f1 can be zero).

Proposition 1. If there exists a d-CI function f of n variables and of minimal
weight wn,d whose support is a linear code C, then we have wn,d ≥ wn−1,d.

34

Proof. Let us assume that there exists f : Fn2 → F d-CI, of minimal weight
wn,d, and whose support is a linear code C. If the code C contains all the n
vectors ei (i ∈ J1, nK) of weight 1, then C = Fn2 because these vectors form a
basis (e1, · · · , en) of Fn2 . This concerns only the case d = n. Otherwise, when
d < n, the number of codewords in C is strictly smaller than 2n. Hence there
exists one coordinate 1 ≤ i ≤ n such that ei 6∈ C. Let C ′ be the code C in
which the coordinate i has been erased. C ′ is a set of (n − 1)-bit words, that
are all different. Indeed, C being linear, if two codewords of C differ by one
position at coordinate i, then by addition, C contains the codeword ei, which
is a contradiction. As a consequence, C ′ is a code. The indicator f ′ of C ′ has
the same weight as f , and is also d-CI. Therefore, the minimal weight of d-CI
functions of (n−1) inputs is smaller than that of f ′, i.e. wn−1,d ≤ wn,d.

Lemma 13. In the general case (C is unrestricted), we have:

• the inequality: wn,d ≥ 2n
(

1− n
2(d+1)

)
, and

• the property: if wn,d = 2n
(

1− n
2(d+1)

)
, then wn−1,d ≤ wn,d.

Proof. Let us define the set E = {(x, y) ∈ C2/∃i ∈ J1, nK/x⊕ y = ei}. We have:

Card[E] =

n∑
i=1

Card[{(x, y) ∈ C2/x⊕ y = ei}]

= 2−n
n∑
i=1

∑
x,y∈C

∑
a∈Fn

2

(−1)(x⊕y⊕ei)·a

= 2−n
n∑
i=1

 ∑
a∈Fn

2 /ai=0

(∑
x∈C

(−1)a·x

)2

−
∑

a∈Fn
2 /ai=1

(∑
x∈C

(−1)a·x

)2

= 2−n
n∑
i=1

∑
a∈Fn

2

(∑
x∈C

(−1)a·x

)2

− 2
∑

a∈Fn
2 /ai=1

(∑
x∈C

(−1)a·x

)2

= 2−n

n ∑
a∈Fn

2

∑
x,y∈C

(−1)(x⊕y)·a − 2

n∑
i=1

∑
a∈Fn

2 /ai=1

(∑
x∈C

(−1)a·x

)2

= nCard[C]− 21−n
∑
a∈Fn

2

wH(a)

(∑
x∈C

(−1)a·x

)2

.

As the indicator of C is d-CI, we have
∑
x∈C(−1)a·x = 0 if 0 < wH(a) ≤ d.

35

Thus:

Card[E] ≤ nCard[C]− 21−n(d+ 1)
∑
a∈Fn

2

(∑
x∈C

(−1)a·x

)2

+ 21−n(d+ 1)Card[C]2

= nCard[C]− 21−n(d+ 1)2nCard[C] + 21−n(d+ 1)Card[C]2

= Card[C]
(
n− 2(d+ 1) + 21−n(d+ 1)Card[C]

)
,

since
∑
a∈Fn

2
(−1)u·a = 0 when u 6= 0. Consequently:

• as the cardinal of E is non-negative, n− 2(d+ 1) + 21−n(d+ 1)Card[C] ≥
0, i.e. Card[C] ≥ 2n

(
1− n

2(d+1)

)
, which is trivial if d + 1 ≤ n/2 but

definitely of different nature than the well-known inequality Card[C] ≥ 2d

(Lemma 2); We notice that the same result has been found by other means
in [10, 3]. Besides, it has been generalized on nonbinary OAs in [2].

• if Card[C] is minimal (Card[C] = 2n
(

1− n
2(d+1)

)
), then Card[E] = 0, and

thanks to an argument similar to that of Proposition 1, we can derive from
C a code of length (n − 1) by puncturing any coordinate (the minimal
distance of C is at least 2), and thus wn−1,d ≤ wn,d.

Remark 12. All the lower bounds on wn,d presented in Tab. 1 for 0 < d ≤
n ≤ 13 are greater than or equal to the minoration given in Lemma 13, i.e

wn,d ≥ 2n
(

1− n
2(d+1)

)
. It is an open problem to know whether the minoration

of Lemma 13 is always smaller than or equal to than the values obtained by
Delsarte LP bound.

Remark 13. The Preparata code, that is the formal dual of the Kerdock code,
has a length 2n (n even, n ≥ 4) and dual distance of 2n−1 − 2n/2−1. As the
Kerdock code has an optimal cardinal (large) for this minimal distance and this
length, the Preparata code probably has a minimal cardinal.

36

	Introduction
	Boolean Masking
	Presentation of Boolean Masking
	Security Analysis of the ``Depleted'' Masking Countermeasure
	Example of Application

	Low-weight d-CI Boolean Functions
	General Results about d-CI Functions
	General Results about d-CI Functions of Lowest-Weight
	Constructions of d-CI Functions with Codes
	Relationship between Correlation-Immune Functions and Codes
	Construction of d-CI Boolean Functions based on Linear Codes
	Construction of d-CI Boolean Functions based on Maiorana-McFarland Construction

	Deriving d-CI Boolean Functions from Binary Orthogonal Arrays
	A Search for Correlation-Immune Boolean Functions with SMT
	Summary of Minimally Weighted d-CI Functions

	Conclusion
	Properties of the Fourier Transform of the Powers of the Hamming Weight Function
	Properties of d"0362d (z)
	Properties of wHd"0362wHd (z)

	Comparison of SMT Results with Other Known Methods
	Comparison of SMT Results with Indicators of Linear Codes
	Comparison of SMT Results with Maiorana-McFarland Construction

	Orthogonal Arrays vs d-CI Functions
	Classical Inequalities
	On the Comparison Between wn,d and wn-1,d

