
Solving a 6120-bit DLP on a Desktop Computer?

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Complex & Adaptive Systems Laboratory and
School of Mathematical Sciences

University College Dublin, Ireland
{farukgologlu,robbiegranger}@gmail.com, {gary.mcguire,jens.zumbragel}@ucd.ie

Abstract. In this paper we show how some recent ideas regarding the discrete logarithm
problem (DLP) in finite fields of small characteristic may be applied to compute logarithms
in some very large fields extremely efficiently. In particular, we demonstrate a practical DLP
break in the finite field of 26120 elements, using just a single core-month.

Keywords: Discrete logarithm problem, binary finite fields

1 Introduction

The understanding of the hardness of the DLP in the multiplicative group of finite ex-
tension fields could be said to be undergoing a mini-revolution. It began with Joux’s
2012 paper in which he introduced a method of relation generation dubbed ‘pinpointing’,
which reduces the time required to obtain the logarithms of the elements of the factor
base [8]. For medium-sized base fields, this technique has heuristic complexity as low as
Lqn(1/3, 2/32/3) ≈ Lqn(1/3, 0.961), significantly improving upon the previous best by Joux
and Lercier [12] Lqn(1/3, 31/3) ≈ Lqn(1/3, 1.442). To demonstrate the practicality of this
approach, Joux solved two example DLPs in fields of bitlength 1175 and 1425 respectively,
both with prime base fields.

Soon afterwards Göloğlu, Granger, McGuire, and Zumbrägel showed that in the context
of binary fields (and more generally small characteristic fields), finding relations for the
factor base can be polynomial time in the size of the field [3]. By extending the basic idea
to eliminate degree two elements during the descent phase, for medium-sized base fields
an heuristic complexity as low as Lqn(1/3, (2/3)2/3) ≈ Lqn(1/3, 0.763) was achieved; this
approach was demonstrated via the solution of the DLP in the field F21971 [5], and in the
field F23164 .

After the initial publication of [3], Joux released a preprint [9] detailing an algorithm
for solving the discrete logarithm problem for fields of the form Fq2n , with q = pk and
n ≈ q, which was used in the solving of a DLP in F21778 [10], and later in F24080 [11]. This
algorithm has heuristic complexity L(1/4 + o(1)), and also has an heuristic polynomial
time relation generation method, similar in principle to that in [3]. While the degree two
element elimination in [3] is arguably superior, for other small degrees, Joux’s elimination
method is faster, resulting in the stated complexity.

In this paper we explain in detail how these new ideas may be combined to compute
discrete logarithms in some large finite fields very efficiently. Indeed, we explain the details
of the algorithms used in the world record discrete logarithm computation in the finite
field F26120 [4]. We emphasise that this work is but an initial foray into the behaviour and
performance of the new techniques, and we expect many more developments both in terms
of our algorithmic understanding, and larger computations, in due course.

? Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006.
The fourth author was in addition supported by SFI Grant 08/IN.1/I1950.

The remainder of the paper is organised as follows. Section 2 explains the algorithm in
detail. Section 3 concentrates on the practical issues regarding the computation. Finally,
Section 4 gives the details of a discrete logarithm computation in F26120 .

2 The algorithm

The following describes the index calculus method that we use for our discrete logarithm
computation.

2.1 Setup

Let k and k′ be positive integers, ` := kk′, q := 2`, and n := 2k − 1. We construct the
finite field Fqn of bit length `n = kk′(2k − 1) in which we solve the DLP as follows.1

We consider Fq as an extension of F2k of degree k′. Then we choose γ ∈ Fq such that
the polynomial Xn + γ is irreducible over Fq and define Fqn as the Kummer extension

Fq(x) ∼= Fq[X]/〈Xn + γ〉 ,

where x is the root of the polynomial Xn + γ in Fqn . Note that a Kummer extension of
degree n over Fq exists if and only if n | q−1. Throughout the paper, the upper case letters
X,W, . . . are used for indeterminates and the lower case letters x,w, . . . are reserved for
the roots of polynomials.

The following table displays the bit length `n of the finite field Fqn for various choices
of the numbers k and k′.

k′ \ k 6 7 8 9

3 1134 2667 6120 13797
4 1512 3556 8160 18396
5 1890 4445 10200 22995
6 2268 5334 12240 27594

In Section 4, we will give the details of the discrete logarithm computation when
`n = 6120. The algorithm we explain in this section can be applied in principle to any of
the above parameters. However, for a very fast degree 2 elimination, some of the above
parameters (including 6120) are more suitable.

2.2 Factor base and automorphisms

The factor base we use consists of the elements in Fqn which have degree 1 in the polynomial
representation over Fq, i.e., we consider the set {x+a | a ∈ Fq}. As noted in [12, 8, 3] factor
base preserving automorphisms of Fqn can be used to drastically reduce the number of

variables involved in the linear algebra step. Indeed, the map σ := Frobk : α → α2k

satisfies σ(x) = γx with γ ∈ Fq, and thus preserves the factor base. Furthermore, for
ϕ := σk

′
= Frob` : α→ αq we have ϕ(x) = µx with µ ∈ F2k a primitive n-th root of unity,

and thus we find

(x+ a)2
j`+ik

= σk
′j+i(x+ a) = σi(ϕj(x+ a)) = σi(µjx+ a) = µjγeix+ a2

ki
,

1 Our choice of representation of the finite field Fqn will be advantageous for our method to solve the
discrete log problem. Note that it is a computationally easy problem to switch between two different
representations of a finite field [15].

2

where e0 = 0 and ei = 2kei−1 + 1 for 1 ≤ i ≤ k′; thus it follows

log
(
x+

a2
ki

µjγei

)
= 2j`+ik log(x+ a)

for all 0 ≤ j < n and 0 ≤ i < k′.

The automorphism σ generates a group of order k′n, which acts on the set of q factor
base elements, thus dividing the factor base into about N orbits, where N ≈ q

k′n ≈
1
k′ 2

`−k

is the number of variables to consider.

2.3 Relation generation

In order to generate relations between the factor base elements we use a method based on
Case n = 2k − 1 in [3]. We consider polynomials of the form

FB(X) := X2k+1 +BX +B ,

which have been studied by Bluher [1] and Helleseth/Kholosha [7]. We recall in particular
the following result of Bluher [1] (see also [7, 3]):

Theorem 1. The number of elements B ∈ F∗q such that the polynomial FB(X) splits
completely over Fq equals

2`−k − 1

22k − 1
if k′ is odd ,

2`−k − 2d

22k − 1
if k′ is even .

Let B ∈ F∗q be an element such that FB(X) splits and denote its roots by µi, where i =

1, . . . , 2k + 1. For arbitrary a, b ∈ Fq (with a2
k 6= b) there exists c ∈ Fq with (a2

k
+ b)

2k+1
=

B (ab+ c)2
k

and we then find that

f(X) := F
(ab+ c

a2k + b
X + a

)
= X2k+1 + aX2k + bX + c

and that f(X) also splits over Fq, with roots νi := ab+c

a2k+b
µi + a.

Now by definition of Fqn we have xn = γ and thus x2
k

= γx, where γ ∈ Fq. Hence in
Fqn there holds

f(x) = γx2 + aγx+ bx+ c = γ(x2 + (a+ b
γ)x+ c

γ) = γg(x) ,

where g(X) := X2 + (a + b
γ)X + c

γ . Hence, if this polynomial also splits, say g(X) =

(X + ξ1)(X + ξ2), which occurs with probability 1
2 , then we find a relation of factor base

elements, namely
2k+1∏
i=1

(x+ νi) = γ(x+ ξ1)(x+ ξ2) .

Such a relation corresponds to a linear relation among the discrete logarithms of the
factor base elements. Once we have found more than N relations we can solve the discrete
logarithms of the factor base elements by means of linear algebra (see Subsection 3.3).

3

2.4 Individual logs

After the logarithms of the factor base elements have been found, a general individual
discrete logarithm can be computed, as is common, by a descent strategy. The basic idea
of this method is trying to write an element, given by its polynomial representation over
Fq, as a product in Fqn of factors represented by lower degree polynomials. By applying
this principle repeatedly a descent tree is constructed, and we can eventually express a
given target element by a product of factor base elements. This will enable us to obtain
the discrete logarithm of the target element easily.

While for larger degree polynomials it is computationally relatively easy to find an
expression involving lower degree polynomials by a standard approach, this method be-
comes increasingly less efficient as the degree becomes smaller. In addition, the number
of small degree polynomials in the descent tree grows significantly with lower degree. We
therefore propose new methods for degree 2 elimination and small degree descent, which
are inspired by the recent works [3] and [9] respectively.

Degree 2 elimination Given a polynomial Q(X) := X2 + q1X + q0 ∈ Fq[X] we aim at
expressing the corresponding finite field element Q(x) ∈ Fqn as a product of factor base
elements.

Our basic approach is to find a, b, c ∈ Fq such that, up to a multiplicative constant in Fq,
Q(x) = x2+q1x+q0 equals x2

k+1
+ax2

k
+bx+c where the polynomial X2k+1

+aX2k +bX+c
splits into linear factors (compare with [3, Sec. 5]).

As xn = γ holds, we have x2
k+1

+ ax2
k

+ bx + c = γ(x2 + (a + b
γ)x + c

γ) and com-
paring coefficients we find γq0 = c and γq1 = γa + b. Now letting B ∈ F∗q be an element
satisfying the splitting property of Theorem 1 and combining the previous equations with

(a2
k

+ b)
2k+1

= B (ab+ c)2
k

we arrive at the condition

(a2
k

+ γa+ γq1)
2k+1 +B(γa2 + γq1a+ γq0)

2k = 0 .

Considering Fq as a degree k′ extension over F2k this equation gives a quadratic system
in the k′ components of a, which can be solved very fast by a Gröbner basis method.

Heuristically, for each of the above B’s the probability of success of this method, i.e.,
when an a ∈ Fq as above exists, is 1

2 . Note that if k′ = 3 there is just one single B in the
context of Theorem 1, and so this direct method fails in half of the cases. However, this
issue can be resolved under certain circumstances, e.g., if k = 8, as will be explained in
Subsection 4.4.

Small degree descent The following describes the Gröbner basis descent of Joux [9]

applied in the context of the polynomials FB(X) = X2k+1 + BX + B of Theorem 1. Let
g(X) and h(X) be polynomials over Fq of (low) degree δ. We substitute X by the rational

function g(X)
h(X) and thus find that the polynomial

P (X) := g(X)2
k+1 + g(X)h(X)2

k
+ h(X)2

k+1

factors into polynomials of degree at most δ. Since x2
k

= γx holds in Fqn the element P (x)
can also be represented by a polynomial of degree 2δ.

Now given a polynomial Q(X) ∈ Fq[X] of degree 2δ or 2δ − 1 to be eliminated we
consider the equation P (x) = Q(x) (or P (x) = Q(x)(x+ a)), which results as above in a
quadratic system in variables over F2k representing the coefficients of g(X) and h(X) in
Fq. By solving this system with a Gröbner basis algorithm we can perform the descent.

4

Large degree descent This part of the descent is somewhat classical (see [12] for ex-
ample), but includes the degree balancing technique described in [3, Sec. 4], which makes
the descent far more rapid when the base field Fq is a degree k′ extension of a non-prime

field. In the finite field Fqn we let y := x2
k

and x̄ := x2
k−a

for some suitably chosen integer

1 < a < k. Then y = x̄2
a

and x̄ = (yγ)2
k−a

holds. Now for given Q(X) ∈ Fq[X] of degree d
representing Q(y) we consider the lattice

L :=
{

(w0, w1) : Q(X) | (Xγ)2
k−a

w0(X) + w1(X)
}
⊆ Fq[X]2 .

By Gaussian lattice reduction we find a basis (u0, u1), (v0, v1) of L of degree ≈ d
2 and can

thus generate lattice elements (w0, w1) = r(u0, u1)+s(v0, v1) of low degree. In Fqn we then
consider the equation

x̄w0(x̄
2a) + w1(x̄

2a) = x̄w0(y) + w1(y) = (yγ)2
k−a

w0(y) + w1(y) ,

where the right-hand side is divisible by Q(y) by construction, and a is chosen so as to
make the degrees of both sides as close as possible. The descent is successful whenever a
lattice element (w0, w1) is found such that the involved polynomials Xw0(X

2a) +w1(X
2a)

and 1
Q(x)(X

2k−a
w0(X) + γ2

k−a
w1(X)) are (d− 1)-smooth, i.e., have only factors of degree

less than d.

3 Practical considerations

3.1 Factorisation of the group order

The factorisation of the group order |F∗qn | = 2`n−1 is of interest for several reasons. First it
indicates the difficulty of solving the associated DLP using the Pohlig-Hellman algorithm.
It is also required for proving that some element is a generator of the group. Finally, we
need it to determine the small factors, for which we apply Pollard’s rho method, and the
large factors for the index calculus method.

However, the number 2`n − 1 cannot always be completely factored in a reasonable
time. In this case it is vital to know at least all the small prime factors of the group order.
We remark that the factorisation problem of the number 2`n− 1 can be slightly simplified
by using the identity

2`n − 1 =
∏
d|`n

Φd(2) ,

where Φd ∈ Z[x] denotes the d-th cyclotomic polynomial and d runs through all divisors
of `n.

3.2 Pohlig-Hellman and Pollard’s rho method

In order to compute a discrete logarithm in a group G of order m we can use any fac-
torisation of m = m1 · . . . ·mr into pairwise coprime factors mi and compute the discrete
log modulo each factor. Indeed, if we are to compute z = logα β it suffices to compute
logαci β

ci with ci = m/mi, which determines z mod mi. With the information of z mod mi

for all i one easily determines z (mod m) by the Chinese Remainder Theorem.
For the small prime (power) factors of m we use Pollard’s rho method to compute the

discrete logarithm modulo each factor. Regarding the large factors of m we find it most
efficient to combine them into a single product m∗, so that in the linear algebra step of the
index calculus method we work over the ring Zm∗ . Note that each iteration of the Lanczos
method that we use for the linear algebra problem requires the inversion of a random
element in Zm∗ ; this is the reason why we actually have to separate the small factors of
the group order from the large ones.

5

3.3 Linear algebra

The relation generation phase of the index calculus method produces linear relations
among the logarithms of the factor base elements. As the factor base logs are also related
by the automorphism group as explained in Subsection 2.2 the number N of variables is
reduced and the linear relations will have coefficients being powers of 2. Once M > N rela-
tions have been generated we have to find a nonzero solution vector for the linear system.
To ensure that the matrix is of maximal rank N − 1 we generate M ≈ N + 100 relations.
As noted earlier the number of variables N is expected to be about 2`

k′(2k−1) ≈
2`−k

k′ .

We let B be the M × N matrix of the relations’ coefficients, which is a matrix of
constant row-weight 2k + 3. We have to find a nonzero vector v of length N such that
Bv = 0 modulo m∗, the product of the large prime factors of the group order m.

A common approach in index calculus algorithms is to reduce the matrix size at this
stage by using a structured Gaussian elimination (SGE) method. In our case, however, the
matrix is not extremely sparse while its size is quite moderate, hence the expected benefit
from SGE would be minimal and we refrained from this step.

We use the iterative Lanczos method [14, 13] to solve the linear algebra problem, which
we briefly describe here. Let A = BtB, which is a symmetric N×N matrix. We let v ∈ ZNm∗
be random, w = Av, and find a vector x ∈ ZNm∗ such that Ax = w holds (since A(x−v) = 0
we have thus found a kernel element). We compute the following iteration

w0 = w , v0 = Aw0 , w1 = v0 −
(v0, v0)

(v0, w0)
w0

vi = Awi , wi+1 = vi −
(vi, vi)

(vi, wi)
wi −

(vi, vi−1)

(vi−1, wi−1)
wi−1

and stop once (vj , wj) = 0; if wj 6= 0 the algorithm fails, otherwise we find the solution
vector

x =

j−1∑
i=0

(w,wi)

(vi, wi)
wi .

Performing the above iteration consists essentially of several matrix-vector products,
scalar-vector multiplications, and vector-vector inner products. As the matrix is sparse and
consists of entries being powers of 2 the matrix-vector products can be carried out quite
efficiently. Therefore, the scalar multiplications and inner products consume a significant
part of the computation time. We have used a way to reduce the number of inner products
per iteration, as was suggested recently [16].

Indeed, using the A-orthogonality (vi, wj) = wtiAwj = 0 for i 6= j we find that

(vi, vi−1) = (vi, wi) and (w,wi+1) = − (vi, vi)

(vi, wi)
wi −

(vi, vi−1)

(vi−1, wi−1)
wi−1 .

Now at each iteration, given wi we compute the matrix-vector product Bwi and the
inner product ai := (vi, wi) = (Bwi, Bwi), as well as vi = Awi = Bt(Bwi) and bi :=
(vi, vi) = (Awi, Awi). We then have the simplified iteration

w0 = w , w1 = v0 −
b0
a0
w0 , wi+1 = vi −

bi
ai
wi −

ai
ai−1

wi−1

and the solution vector x =
∑j−1

i=0
ci
ai
wi, where ci := (w,wi) can be computed by the

iteration

c0 = (w,w) , c1 = a0 −
b0
a0
c0 , ci+1 = − bi

ai
ci −

ai
ai−1

ci−1 .

6

We see that each iteration requires two matrix-vector products, three scalar multipli-
cations, and two inner products.

3.4 Target element

In order to set ourselves a DLP challenge we construct the “random” target element
β ∈ Fqn using the binary digits expansion of the mathematical constant π. More precisely,
considering the q-ary expansion

π = 3 +
∞∑
k=1

ci q
−i with ci ∈ Sq := {0, 1, . . . , q − 1}

we use a bijection between the sets Sq and Fq, which is defined by the mappings ϕ2k :

F2k → S2k ,
∑k−1

i=0 aiti 7→
∑k−1

i=0 ai2
i and ϕ : Fq → Sq,

∑2
j=0 bjw

j 7→
∑2

j=0 ϕ2k(bj)2
kj , and

construct this way the target element

βπ :=
n−1∑
i=0

ϕ−1(ci)x
i ∈ Fqn .

4 Discrete logarithms in F26120

In this section we document the breaking of DLP in the case k = 8 and k′ = 3, i.e., in
F26120 . The salient features of the computation are:

– The relation generation for degree 1 elements took 60 seconds.
– The corresponding linear algebra took 60.5 core-hours.
– In contrast to [11, 9], we computed the logarithm of degree 2 irreducibles as they arise;

each took on average 0.03 seconds.
– The descent was designed so as to significantly reduce the number of bottleneck (de-

gree 6) eliminations. As a result, the individual logarithm phase took just under 689
core-hours.

4.1 Setup

We first defined F28 using the irreducible polynomial T 8 + T 4 + T 3 + T + 1. Letting t be
a root of this polynomial, we defined F224/F28 using the irreducible polynomial W 3 + t.
Letting w be a root of this polynomial, we finally defined F26120/F224 using the irreducible
polynomial X255 + w + 1, where we denote a root of this polynomial by x.

We chose as a generator g = x+w, which provably has order 26120−1, since 26120−1 =

33 · 52 · 7 · 11 · 13 · 172 · 19 · 31 · 37 · 41 · 61 · 73 · 103 · 109 · 137 · 151 · 181 · 241 · 307 · 331 · 409

· 433 · 613 · 631 · 919 · 953 · 1021 · 1321 · 1361 · 1531 · 2143 · 2857 · 3061 · 4421 · 6121 · 6529 · 8161

· 11119 · 12241 · 13669 · 16831 · 23311 · 26317 · 36721 · 38737 · 43691 · 51001 · 54001 · 61681 · 70381

· 106591 · 123931 · 131071 · 354689 · 550801 · 949111 · 2582029 · 3696481 · 4260133 · 12717361

· 15571321 · 18837001 · 23650061 · 29247661 · 40932193 · 318194713 · 965133181 · 1326700741

· 2949879781 · 4562284561 · 26159806891 · 168692292721 · 611787251461 · 1392971637361

· 1467129352609 · 2879347902817 · 15455023589221 · 27439122228481 · 253190737566001

· 418562986357561 · 737539985835313 · 2109936092650831 · 12458723489217613

· 171664686650370481 · 238495197879143209 · 469775495062434961 · 7226904352843746841

· 9520972806333758431 · 26831423036065352611 · 51366149455494753931

· 1230412270786066204321 · 8088220746627020943841 · 75582488424179347083438319

· 5702451577639775545838643151 · 4251553088834471719044481725601

· 630894905395143528221826310327361 · 33141833204828142196706150379164851

· 358689400191468213568189014966376501 · 24710462787135943791475548268920478656481

7

· 13854772173181680651901626546855984966582610663321

· 248874698438226985948262801677583907882912640924946896364438952961

· 112993216763723572293509811422126922278036735923954184346074567839714750801

· 2711444137600163497895557362175930929049957308111453253450530500257825579176440384

4101991735185701

· 3941162582624000619514491715839711880862271743966320992286699473302536141559265786

9325317153624161209612886683422721

· 5975904557270453215173451422967690370176306469811061801024542342862722123563989904

5664816790870237783305610352947361 · P463,

where P463 is the 463 digit prime (proven with Magma [2] V2.16-12) Φ6120(2), the 6120-th
cyclotomic polynomial evaluated at 2.

As usual, the target element was set to be βπ as explained in Subsection 3.4.

4.2 Relation generation

Our factor base is simply the set of degree 1 elements of F26120/F224 . As detailed in Sub-
section 2.2, quotienting out by the action of the 8-th power of Frobenius produces 21932
distinct orbits. To obtain relations, as explained in Subsection 2.3, we make essential use
of the single polynomial X257 + X + 1, which splits completely over F224 . In particular,
letting y := x256 so that x = y

w+1 , the F26120 element xy + ay + bx + c corresponds to

X257 + aX256 + bX + c on the one hand, and X2

w+1 + aX + bX
w+1 + c on the other. The

first of these transforms to X257 + X + 1 if and only if (a256 + b)257 = (ab + c)256. So
for randomly chosen (a, b) we compute c and check whether the corresponding quadratic
splits. If it does - which occurs with probability 1/2 - we obtain a relation. Thanks to the
simplicity of this approach, we collected 22932 relations and wrote these to a matrix in 60
seconds using C++/NTL [17].

4.3 Linear algebra

We took as our modulus the product of the largest 35 factors listed above, which has
bitlength 5121. We ran a parallelised C/GMP [6] implementation of Lanczos on 4 of the
Intel (Westmere) Xeon E5650 hex-core processors of ICHEC’s SGI Altix ICE 8200EX
Stokes cluster. This took 60.5 core-hours (just over 2.5 hours wall time).

4.4 Individual logarithm

Using C++/NTL we first used continued fractions to express βπ as a ratio of two 27-
smooth polynomials, which took 10 core-hours, and then we applied the three different
descent strategies as explained in Subsection 2.4.

We used the large degree descent strategy to express all of the featured polynomials
using polynomials of degree 6 or less. This took a further 495 core-hours. While we could
have performed this part of the descent more efficiently, as noted above we opted to find
expressions which resulted in a relatively small number of degree 6 polynomials - which
are the bottleneck eliminations for the subsequent descent - namely 326.

For degrees 6 down to 3 we used the analogue of Joux’s small degree elimination
method, based on the same polynomial that we used for relation generation, i.e., X257 +

8

X + 1, rather than the polynomial X256 + X that was used in [11], since the resulting
performance was slightly better.

For degree 2 elimination we try to equate Q(x) = x2+q1x+q0 with x257+ax256+bx+c,
where (a256+b)257 = (ab+c)256. If this fails we apply the following strategy, making use of
the fact that Fq can also be viewed as a field extension over F26 . We consider y = x256 and
x̄ = x4, so that y = x̄64 and x̄ = (yγ)4 holds, and apply the large degree descent method

to Q̄(X) := Q(Xγ) (note that Q̄(y) = Q(x)). Considering the lattice L we construct a
basis of the form (X + u0, u1), (v0, X + v1), where u0, u1, v0, v1 ∈ Fq. Then for s ∈ Fq we
have lattice elements (X + u0 + sv0, sX + u1 + sv1) ∈ L. Now for each B ∈ F∗q such that
X65 +BX +B splits we solve for s ∈ Fq satisfying

(v0s
2 + (u0 + v1)s+ u1)

64 = B (s64 + v0s+ u0)
65 ,

which can be expressed as a quadratic system in the F26-components of s, and thus solved
by a Gröbner basis computation over F26 . We then have an equation

x̄65 + ax̄64 + bx̄+ c = 1
γ4

(y5 + by4 + aγ4y + cγ4)

with a = s, b = γs+ q1, and c = q0
γ , where the left-hand side polynomial splits, while the

right-hand side polynomial contains Q̄(X). The polynomial X5 + bX4 + aγ4X + cγ4 =
Q̄(X)R(X) has the property that R(X) factors always into a linear factor and a quadratic
polynomial Q′(X). Now if Q′(X) is resolvable by the direct method, we have successfully
eliminated the original polynomial Q(X). The number of B such that X65+BX+B splits
over Fq equals 64, according to Theorem 1, and by experiment, for each one the success
probability to find a resolvable polynomial Q′(X) is about 1

3 .
For convenience we coded the eliminations of polynomials of degrees 6 down to 2 in

Magma [2] V2.16-12, using Faugere’s F4 algorithm. The total time for this part was just
over 183.5 core-hours on a 2GHz AMD Opteron computer.

For the logarithm modulo the cofactor of our modulus we used either linear search or
Pollard’s rho method, which took 20 minutes in total in C++/NTL. Thus the total time
for the descent was just under 689 hours.

Finally, we found that βπ = glog, with log =

1385875983639786926254757112831231710092363615038969923664959317045177002801271780222348

9409861758136013144183507425636373062442681429323347427252159816612695792811682544311096

5404253837938808595404111035238027107772178822939281873403451999731815140073481766513715

3584492793145567973524462468603179467501244756894744062749423560359365016740509334489092

0102983452222673224777189708322321728205157364501360361304236778271636187781793837439382

4313019073624786387618414037541681120284044659383192907436852526392087724304775451631271

8252509681114514005027334043817696752552891273466393500982215708444003807885163324965838

8252243638191800820016703218635024510775134697959631469615366671616895148194809106006673

0184766758137773944303875429830867205463918144256843911730747265146154193438041627833661

7397750571612363460962365668752512778430623299730444754865610622043569085684714712793837

8103853881888446379698990607607984324812725202083970588643607121365057518670745694858407

2378916942925369140868417196479573481032711481021729162865973588174096389913305607677858

0339963617349055371503620247205157726607812088555054343310557665700142118756029406335757

6385045750307908707437658530447052041132024629225537571145757355528606023669931703945447

9326718281128961423275142787569425690532833283344049635521302596000897192512036695298807

2940329645309596913770872045463489601327600955441059801982552454932024128315938919847881

5241795769193981711236618206368752991536515036118021445123438765688325614935599440505114

9585969163075307026647956035683671589546448539955132726112034938655961291856203422247680

3870290784735209511603344725254750716806726236615872927203296061825120443121943571561392

0134095203787297524325447608155493700212295341594940726213723209985229839483842290764319

13976732902383441830460409758599159285365304456971453176680449737096483324156185041.

9

4.5 Total running time

The total running time is 689+60.5 = 749.5 core-hours. Note that most of the computation
(all except the linear algebra part) was performed on a personal computer. On a modern
quad-core PC, the total running time would be around a week.

References

1. Antonia W. Bluher. On xq+1 + ax + b. Finite Fields and Their Applications, 10(3):285–305, 2004.
2. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language.

J. Symbolic Comput., 24(3-4):235–265, 1997.
3. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function field sieve and

the impact of higher splitting probabilities: Application to discrete logarithms in F21971 and F23164 . To
appear in Advances in Cryptology—CRYPTO 2013.

4. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Dis-
crete Logarithms in GF (26120). NMBRTHRY list, https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;fe9605d9.1304, April 11th, 2013.

5. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Dis-
crete Logarithms in GF (21971). NMBRTHRY list, https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;f7755cbe.1302, February 19th, 2013.

6. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arith-
metic Library, 5.0.5 edition, 2012. http://gmplib.org/.

7. Tor Helleseth and Alexander Kholosha. x2l+1 + x + a and related affine polynomials over GF(2k).
Cryptogr. Commun., 2(1):85–109, 2010.

8. Antoine Joux. Faster index calculus for the medium prime case. Application to 1175-bit and 1425-bit
finite fields. Cryptology ePrint Archive, Report 2012/720, 2012. http://eprint.iacr.org/.

9. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in very small character-
istic. Cryptology ePrint Archive, Report 2013/095, 2013. http://eprint.iacr.org/.

10. Antoine Joux. Discrete Logarithms in GF (21778). NMBRTHRY list, https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;7d4dd9a6.1302, February 11th, 2013.

11. Antoine Joux. Discrete Logarithms in GF (24080). NMBRTHRY list, https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;71e65785.1303, March 22nd, 2013.

12. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case. In Advances
in cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in Comput. Sci., pages 254–270.
Springer, 2006.

13. Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems over finite fields. In
Advances in cryptology—CRYPTO ’90, volume 537 of Lecture Notes in Comput. Sci., pages 109–133.
Springer, Berlin, 1991.

14. Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. J. Research Nat. Bur. Standards, 45:255–282, 1950.

15. Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Math. Comp., 56(193):329–347,
1991.

16. Ilya Popovyan. Efficient parallelization of lanczos type algorithms. Cryptology ePrint Archive, Report
2011/416, 2011. http://eprint.iacr.org/.

17. Victor Shoup. NTL: A library for doing number theory, 5.5.2 edition, 2009. http://www.shoup.net/ntl/.

10

